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Abstract

The paper gives a further generalization of congruences of the K. Hardy and
K.S. Williams [3] type among the values of 2-adic L-functions L(k, xw'~¥) for
quadratic Dirichlet characters x and for —1 < k£ < 2 which produce some new
congruences between the conjectured orders of Kj-groups of the integers and
class numbers of appropriate quadratic fields. These congruences extend results
of [2], [5], [3], [6] and are of the same type as congruences of [8] and [7]. We
apply ideas of R.F. Coleman [1] and methods of T. Uehara [5].

1 Introduction

Let k be an integer. If p is a prime number, let C, stand for completion of an algebraic
closure of Q at some place above p. Consider the formal series:

This series determines an analytic function on the open unit ball in C,. Using "the
action of Frobenius” on some differential equations, R.F. Coleman [1] extended I to a
locally analytic function k., on C,—{1}. He gave a p-adic analogue of some well-known



analytic formulas for the values of p-adic L-functions at integers

Ly(k, xw' ™) = (1 = x(p)p™*)g(x)M™* Z— x(a)lp(C7%), (1)

a=1

extending Leopoldt’s formulas for L,(1, x), where x denotes a primitive Dirichlet char-
acter modulo M (M > 1) with values in C, (for positive k see formula (2) of [1] and
for non-positive k see Theorem 5.11 and Lemma 5.20 [9]). Here { := exp(27i/M),
g(x) stands for the Gauss sum attached to x and w := w, denotes the Teichmiiller
character at p. It is well-known that for Dirichlet characters x; and x, with relatively
prime conductors we have g(x1x2) = 9(x1)9(x2)- The formula (1) is true for primitive
characters. However note also that if the character x is induced from a character x,
modulo some divisor of M, then

Bn,x = Bn,)a H (1 - XI(P)Pn_l),
piM

where B, , is the nth generalized Bernoulli number belonging to the character x (cf. the
proof of Theorem [8]). Therefore by

L,(k,x) =limL,(1 —n,x),

where 1 — n — k p-adically and n — oo, and by Theorem 5.11 [9] we get

: n— B'"" : an
Ly(k,x) = —lim(1 — x(p)p I)TX = —11m~——n—x

= —lim (Pinﬁ I1 (1—X1(q)q""))

g|M, g—prime
=Ly(k,x) [I (1-xl@w* g™,
q|M, g#p

because

limg" = lim(w(q) < ¢ >)" =lim < ¢ >"=< ¢ >'F= ¢ 7F*"1(g),

if ¢ # p. Consequently, we obtain

Ly(k, xw0' ™) = Ly(k,xw'™*) [ (1-xale)g™),
alM, g#p

but we shall not use this in the paper.



Following R.F. Coleman [1], the functions } := l;,, are called the multilogarithms.
For —1 < k <1 by definition we get explicit formulas for I:

Li(z) = (1—_2'2‘53 )

h(z) = —log,(1 - z),
where log, denotes the p-adic logarithm. The function k is related to the so-called
p-adic dilogarithm function defined by the formula

1
D(z) = b(z) + 5log (2)log (1 — ).
It is well-known (see Proposition 6.4 [1]) that

K(z) + (~1)H(=) = TTlogh(2), @)

(1/k! := 0, if k£ < 0) and for any positive integer m the functions I satisfy the identity

L5 ) = HED )

¢m=1 m

(see Proposition 6.1 [1] with z replaced by z™ on the right hand side of the equation).
Let x be a primitive non-trivial Dirichlet character. Then, it follows from (2) that

for k#0

M-1 M/2]
> x@(¢) = (1+ (=1)*%(=1)) Y ®@h(C™),

where [z] denotes the integral part of 2. Thus for k # 0 and for primitive non-trivial

characters x, by (1) we get
LP(k,le_k) =0, (4)

if ¥(—1) = (=1)* (i.e., if x and k are of the same parity). If k = 0 then by (2) we have

lk(z) + lk(z"l) = —1



and

M-1 [M/2] [M/2]
Y x(@k(¢) = (1=%x(=1)) Y X(@h(¢™) =x(=1) Y X(a),

which gives (4) for an even non-trivial Dirichlet character x at once. For k = 0, by (1)
the equation (4) holds for x(p) =1 too but we shall not use this.
Let x be trivial and let k # 1. If k£ < 0 then, by Theorem 5.11 [9] we have

B
L,,(k,wl_k) = —(1 —p'k)—ll_k;:‘ .

Thus if £ = 0 then (4) holds for the trivial character x too because of the Euler factor
equals 0. If ¥ < —1 then (4) holds if Bi_x =0, i.e., if k is even.

Let p be finite and let E, be a finitely ramified extension of Q, in C,. If k¥ > 2 then

Ly(k,w'™*) = (1 = p™*)limk,(2),
where z — 1 and elements z lie in E, — {1} (see the formula (4) in [1]). Thus if £ > 2
is even then (2) implies
- 1 ks
2L, (k,w'*) = —g(l-p "limlog ¥(z) = 0.

Summarizing, if x is trivial then (4) holds if £ # 1 is even, i.e., if k has the same parity
as x again.

Following R.F. Coleman [1], write

IP)(2) = I(2) — p*U(2"),

where Iy = l;, . The functions l,gp)(z) are called p-adic multilogarithms. In particular,
in view of (3), we have

19)(2) = %(lk(z) — I(=2)). (5)

Let A be an integer. For any Dirichlet character 1 modulo A, any integer k and 2 € C,,
set

Lig(2) = (DD (2) (2 # 1),

if 9 is the trivial character modulo A and

Liy(2) = (1) g(B)ATY Y(a)h((32) (2 # (5, (a,4) = 1),

a=1

otherwise.



In particular, if A is even and % is a quadratic character modulo A then by (5) we

have
Af2

Liy(z) = (=1)F*129() A7 Y ()P ((52)

because

1/J<§ + a) = —(a).

For any odd natural number b, let r(b) denote the number of prime factors of b. Set
b* = b (resp. —b), if b=1 (mod4) (resp. b = 3 (mod 4)). These numbers are examples
of the so-called fundamental discriminants (which can be described as the set of square-
free numbers of the form 4n + 1 and 4 times square-free numbers not of this form).
For any fundamental discriminant d, denote by x4 the primitive quadratic character
modulo |d| (in this notation x; is the primitive trivial character). Write Ly 4 = Lk x,-
For a natural number m, denote by 7,,, the set of all fundamental discriminants dividing
m. Let us adopt the notations J] . (resp. 5., 3¢_,') to stand for a product taken
over all primes dividing ¢ (resp. a product or a sum taken over integers a prime to c).

2 The Main Theorem

Let K = {—1,0,1,2}. Let us consider a sequence of 2-adic integers {zx.}, k € K,
e € Ts. For any L C K this sequence is said to be defined on L, if x4, = 0 for k ¢ L.
Given {zk.}, let us define a sequence {z,}n=0,,.. by the following:

Zo = E Tk, 2 =2 E The,

k€K, e€Ty keK, e€Ts,
sgne=(—1)%

zap, =27 (2’(21 + 1)*((1 = p)z—1,1 + T-1,-4)
~ (2= 1)2 + 1)*((1 = p)z1,8 + x-1,-8) + (21 + 1)* (w01 + (1 — p)To,-4)
+2'20 + 1)((1 = p)z1g + x1,-4) + (2L + 1)((1 = p)z1,8 + T1,-8)

+2% (211) i ((1'72,1 + (1= p)za-a) + ) (2:) 2 (eaa+ (1 p)xz,_s))) ’

I
k=0
(6)
where [ > 1 and p € {0,1}.

(1]



It is evident that the numbers z,, n > 0 are 2-adic integers. Indeed, it is well known

that ot
ord, ( ; ) = s,(t),

where s3(t) denotes the sum of digits in the 2-adic expansion of ¢. Thus we have

ordy (2* (i’) _1) = 31— s(l) > 2. (7)

Moreover, we observe that

20\ ' (2K L2k = 1))
3l -3k _ 2292(1-K))
ordy (2 (1) § (k )2 ) = orda 2 R, )=0, ®
where (t!);:=1-3---t (¢ odd) denotes the 2-adic factorial.

DEFINITION. For any non-empty subset L C K, let ¢ := ¢(L) > 0 be an integer
such that:
(i) there exists a sequence of 2-adic integers {x.} defined on L, not all being even,

satisfying ( )
zn = 0 (mod 2°),

ifn=20,1,2,...
(ii) if for some sequence of 2-adic integers {zi.} defined on L we have

2, = 0 (mod 2°*7)

then all the numbers z . are even.

If x is a primitive Dirichlet character and M > 1 is any natural number then for
k € 1 we set

L8 (k, xw' ™) =0,

if k=1 and y is trivial, and

Lk, xo'™ ) = [I @ =xmp'™*)La(k,xw'),

p|M, p—prime

otherwise.



Our purpose is to prove the following theorem:

THEOREM. Let m > 1 be a square-free odd natural number having r := r(m) prime
factors and let ¥: N — C; be a multiplicative function satisfying ¥(s) = 1(mod2), if
s|lm. Set K = {-1,0,1,2}. Let L be a non-empty subset of K having § elements and
let z := {4 }rek, e be a sequence of 2-adic integers not all being even defined on L.

Write

7 { (logym)/2, if m is a prime number,

0, otherwise.

Then the number

Aa(z,m) = 3 (=1 are 3 W)LY (b, xea'™) + 2107

e€7Tg, d€Tm
keK

is a 2-adic integer divisible by 27+, where 2* is the greatest common divisor of 2°(F)
and z,, 0 <n < 2¢(L) -2, and

e(L) = [(16-3)/2] + 0,

o=1,if L ={-1,1} or {0,2}, and o = 0, otherwise.

REMARK. These congruences are of the same general type as those of [2], [5] and
also of [3], [6], [7], [8]- In particular, for L = {0,1} we get Gras-Uehara’s congruences
for class numbers of quadratic fields which are modulo 2"™*% and for L = {—1,0}
(resp. L = {0}) we obtain congruences modulo 27(™+3 (resp. modulo 27(™+2) for the
same objects as those in [6] (resp. in [3]). These objects are equal to the orders of K,-
groups of the rings of integers of real quadratic fields or class numbers of appropriate
imaginary quadratic fields. If 2 € L then the obtained congruences are quite new and
especially interesting. They produce, via a 2-adic version of the Lichtenbaum conjec-
ture, some new congruences for the orders of Kj-groups of the integers of imaginary
quadratic fields. For a deeper discussion of this case we refer the reader to the last
section of the paper.

3 Lemmas

The proof of the Main Theorem is divided into a sequence of lemmas. First, we shall
extend Lemma 3 [5].



LEMMA 1. Let x be a Dirichlet character modulo M > 1 and let N be a multiple of
M such that N/M > 0 is a rational square-free integer prime to M. Set {(xy = (pmCn/m-
Then for any integer k we have

N
Sex(N): = ) "x(a)k(CR)

a=1

M
= (1M I (=% *) D x(b)k(Chr)-
b=1

pl(N/M)

Proof. Let ¢ be a prime number. Then for any natural number n not divisible by ¢ we

have
Sex(ng) = (4% = x(4))Skx(n) - (9)
Indeed, it is easy to see that

n

Sk (nq) z Zx en + a)l(Cat®) — Z'X(b‘I)lk(CzZ)

a=1 c=0 b=1
n g—1
=Y 'X(@) D WG s) = x(@)Skn(n)
a=1 c=0

and (9) is implied by the identity (3) at once.
Now the lemma follows from (9) by induction on the number of prime factors of N.O

From now on we regard I as the multilogarithms defined on C; — {1}.

LEMMA 2. Given any odd integer M, let x be a primitive Dirichlet character mod-
ulo M. Suppose that N is an odd multiple of M such that N/M is square-free and
relatively prime to M. Let v be either the trivial primitive Dirichlet character or a prim-
itive Dirichlet character of even conductor prime to N. Let w denote the Teichmiiler
character at p = 2 and set (x = (M(n/m. Then for k € K we have

N
Ak = Mg (N,x) = 9(OM™ D " x(@) La(CR)

a=1

= (=) WO T (1= xB(p)p'™*) Lok, Xebw' ™),
PI(N/M)



unless k = 1 and the characters x and i are trivial, in which case we have

N
Aoy =Y 'Lrg(CR) =

a=1

—(log,N)/2, if N is a prime power,
0, otherwise.

Proof. If M > 1 and 1 is the trivial character then since N is odd we get
(—1)k+l Akﬂ/’(N’ X)

N
= g®M ()Y x(@)Lry(Gh) = 9(RIM ™ Z x(a)i(GR)
N N
= g M ™ (3 x(@h(C) - 27%(2) D x Ca)h(¢E))

N

= g(M (1 - 27%%(2)) DX (@) i(CR)-

a=1
Thus, by Lemma 1 and (1) we obtain
(—1)TVMHERAL (N, X)

=g@M(1-27*%(2) [I (-x@w'" k)ZX(b)Ik Chr)

p|(N/M)
= [ O -x@»p'*)Lalk,x'*)
pl(N/M)

and the lemma follows.
If 4 is a nontrivial character modulo A then we have

(=1)**! Ay (N, x)
N

= g(@) A g@M ™D x( a)Z NOIAGETA)

a=1

N A
= gFRAM)T 3 S (@B Ch)

a=1 b=1



= g($X)(AM)~ Z (x)(a)h(Chra) -

Thus, by Lemma 1 and (1) we find that
(= 1) NI AL 4 (N, x)

=R [ (-5 Z (xX$)()1k(Chra)
pl(N/M)
= [I (-x9@)p'™*) Lk, X' *).
pl(N/M)
This completes the proof of the lemma in case when either x or % is not trivial. In

order to finish the proof of the lemma it remains to consider the case when both the
characters x and 9 are trivial. Then, by definition of the functions £y, we have

N

(=1 Ay =Y D (CR) = (1 - 27F) Z (¢E).

a=1 a=1

Thus, we get
Agy =0
if k=0 or k = 2 because of (2) and log2({}) = 0.
On the other hand, L;(0,w) = Ly(2,w™!) = 0 (see the Introduction) and the right
hand side of the equation of the lemma equals 0, too.
If K =1 then we have

N N
Ay = 5 3 oga(1 — &) = —3logs (T](1 - &%),
a=1 a=1
and consequently
Aky = —(log2N)/2,
if N is a prime power and Ay = 0, otherwise.
Finally, if ¥ = —1 then we have
N N o
Mo = STa(Gh) = DTy = (V) = (), (10)
a=1 a=1

10



where
5
M(N)=) '——.
=2 ey
It is easy to see that r{(N) = J¢(N) because
1 1

+ =1
1-C%  1-¢y°

In order to calculate r}(N), let us observe that for any arithmetical function f we have

> @) =3 (X @)@ =2 ud Y @

(}:,513)5;1 1<a<z  d|(a,N) dIN lsﬁasw,
=Y u(d Y flad)
d|N 1<a<z/d

Therefore, putting

1
=gy

and z = N — 1 we get the formula
ri(V) = D w(@)re(N/d), (11)

dN

where

and ¢ := (, = exp(2mz/n).
Let us compute r3(n). Then the numbers (* — 1,1 < a < n —1 are all the zeros of

the polynomial
(z+1)" -1

(z+D)"+..+(x+1)+1= .

Therefore, all the zeros of the polynomial

(142)"—2" =nz"" + (g) "% 4 (g) "% 4.

11



are of the form z, := 1/({* — 1), where 1 < a < n — 1. Thus

n—1

Zm—-(Zma)2—2 Z TaTp

a=1 a=1 1<a<b<n-1
_ (n—1)2_ (n —1)(n —2)
L2 3
(n - 1)(n —5)
= T .
Substituting the above to (11) gives
pd) Ngpld) 5
) = 12Z e T )
dIN dN
2, N -1
o -+ X0 -»
pIN pIN
N? 2y, ()
=-75 110 -p7) + =~
pIN
Thus the lemma for £ = —1 follows from (10) and Theorem 5.11 [9]. This completes
the proof of Lemma 2. m]

LEMMA 3. Let n > 0 be an integer. Set vy, = —1, if n = 1,2 (mod4), and v, = 1,
otherwise. Then we have

(i)
i n+k\ 4225(=1)F 2\ 1
= \n—k/)(2k+1)2\ k T (2n+1)2°
n (n+k) 42 (1) (2k>-1 k (21)2_3, _ M
P (2k+1)2\ &k =\ (2n + 1)?
Proof. (A. Granville) Set

_(_koak [T R\ (2k -
A= (=1)72 (n——k)(k

12



The main idea of the proof is to note the following identity:

m+1)\2
Me = App1 = (——2k+1) Ak

for all £ > 0. Thus the left hand side of the equation (i) of the lemma equals

- Ak 1 = Ao 1
2 2k+1)2  (2n+1)? (e = M) = (2n+1)2 (2n+1)2°

k=0 k=0
The identity (ii) is a little more subtle. Multiplying through by (2rn + 1) we get

k n k

= A 21 21
2 k -3 _ -3l
et 0" iy 2o ()7 = e 35 (7):
k=0 =0 k=0 =0
. - 2k\ 3k “n+k ok
_Zxk<k)z _Z<n_k)(—z).
k=0 k=0
n+k\ . . .
To evaluate the last sum, note that (n k) is the coeflicient of " in
tk
(1 — )2kt
Thus our sum is the coefficient of t" in
> (=2t) 1 1 1=t 1—t—t2 448
—_ k+1 — —((— - - - —_
e (1—=t)2k+1  (1—¢)1—((-2t)/(1—1¢)?) 1412 1—t4
and so equals —1, if n = 1,2 (mod4) and 1, otherwise. 0

Now we extend Lemmas 6 and 7 of [5]. In the two next lemmas let £ # 1 be a
primitive Nth root of unity, where N is an odd natural number.

LEMMA 4. For any e € Tg write a = sgn e and set

af

wa=m.

13



Then we have

ﬁ—l,e(é) = E(4a)kw§k+l ’
k=0
_ N (4a)kw?k+t
cl,e(f) - ; 2k + 1 ’

if e € Ty and

- Z(?a k

k=0

‘CO,B(E) =Wy,
= (—16a)Fw?iH 2k
52"’(5)‘; (2k+1)2 (k) ’
Dwd* . Lol(6) = i(—%)"wi’;“ s
k=0

-1 k
(20)Fw2k+1 (=16a)* w2 26\ T N (21, g
£16) Z k1 2e(8) = Z 2k+1)2 \k ZO: )%
ifeeTg—1T,.
Proof. As for the expansions of £, () for v = 0,1, we refer the reader to Lemma 6
[5]. Let us consider the case of ¥ = —1. Then we have
ab(1 + ab?)
L_1.(é) = ————T+,
1, (6) (1 —062)2

if e € Ty. In this case it suffices to use the 2-adic expansion

n T
>, = (12)

n>1,n—odd

with z = 2w,+/a. Furthermore, if e ¢ T4 then we have

L—l,e(é‘) = -

ab(E2 + a) (€ —4at? + 1) ‘

(1+¢4)?

In this case it sufficient to apply (12) together with the 2-adic series

E nz" =

n>1,n—odd

z(1 + z?)
(1 — x2)?

14



with £ = w,Vv2a in both formulas. Indeed, we have

\/Q_ai(2a)k(2k — 1w+ = }o:o:(Zk — 1)(waV2a) %+
= Z n(waV2a)" — 2 z (wWaV20)" .
n>1,n—odd n>1,n—odd

It remains to prove the lemma in the case of v = 2. Then, let us consider the following
2-adic series

_ i —16a)kn;, ewi’f,“
- —~ (2k + 1)2 ’
where -
() e o oo
Nke = {=0
' 2%\ 7!
(k) , if e€Ty.

y (7) and (8) the series G, converges. Furthermore, setting 92 = o we have formally
Z ( 16a T]ke( —af )2k+1
2k +1)2 \1—af?

=~ (—16a)*ns. . d o\ 2K+
; (2k + 1)2 (‘“52(75)')

. 2k+1
—’72 2k+;]kz (Z 2I+l)

1=0

- Z Qk _|_ 1) ; E (2kl+ l) (75)2(k+1)+1
2~ (=16)5 ke [T+ K\, ooatn
=-7> > ((Qk ( k) (&)™

=0 k=0

2041 I+k (16)77e
= v 2 (1) G




because for any function f we have

0
Therefore by Lemma 3, we have
Ge = L?,e(f) .

Since both the series converge Lemma 4 for v = 2 follows. i

We need some congruences between the numbers L .({), where k € {—1,0,1,2}.
LEMMA 5. Set K = {—1,0,1,2}. Let {zk.}rek,ccT, be a sequence of integers in C,

not all being even defined on a non-empty subset L of K having § elements. Then we
have

(i)
Z Tr,eLre(€) =0 (mod2t),

k€L,
e€Tg

where 2* is the greatest common divisor of 2°1) and z,,0 < n < 2¢(L) -2,
(ii)
(L) =[(76-3)/2] + o,
where 0 = 1, if L = {—1,1} or {0,2}, and o = 0, otherwise.
Proof. From the previous lemma we get

A=) zkeLie()

kel,
eeTg

= Z (w—l,eﬁ-—l,e(f) + xO,e£0,e(£) + xl,ecl,e(f) + x2,e£2,e(€))

e€Ty
= (z-11 + o158+ To—a + To,—s + T1,1 + T1,8 + T2,—a + T2 _g)wn
+(zo1—a+ To1,-8 + o1 + Tos + T1,-4 + T1,—8 + T21 + T28)w_1
k 2k

o0
+ ; (4k$—1,1 —2%(2k — D)zy g+ 28708 + mxl,l + CT %18

16



165 [2k\7" 165 26\ 7" = (20 .y .
+_(2k 1) (k) Z3,-4+ _(Qk 1) ( k) Z (1)2 3 xz,—s)wf +

=0
- k( gk k k 4F 2k
+ 2(—1) (#52-1,-4 = 24(2k = D1, + 24008 + 01,4 + 57 o

2k +1

165 (2k\"7 165 /26\ 7' = /20y .
+(2k+1)2(k) x2'1+(2k+1)2(k) Z(l)ﬂ”’?’s)“’ilﬂ'

=0

Consequently, we obtain

oo
1
2k+1
A = zow; + 210y + E ( zgpwi ! 4 22k+1'02k+1) )
k=1

> @

where

1
V241 = v2k+1(f) = 5((—1 k“’zliﬂ - wfkﬂ)

is an integer in C, and the coefficients z,, n > 0 are defined by (6). Without loss of
generality we may assume that not all 2. (k € K, e € Tg) are even. Denote by 22 the
highest power of 2 dividing all z,, n > 0. By definition, part (i) of the lemma follows
immediately and we have A < ¢(L).

In order to prove part (ii) we need consider 4 cases:

l.Let L=K.
Then we shall prove that ¢(L) = 12. Putting (for example)

Lo1,—4 = T_.1-8 = 1,
Tog — Tog = —3,
Li,-4 = I1,-8 = —61,
I21 = I28 = 63,
and
Tkl = —Tk—4, Tipg= —Tk-8,

we shall show that z, = 0(mod 2!2), n > 0, i.e., that ¢(L) > 12. Indeed, it is easily
seen that

Z]ZO, 22[=0(120)

17



Moreover, by (6) we have
23 = 4(182_1,_4 — 92_1,~8 + 9Tos + 6T1,—4 + 321, + 528 + 472,), (13)

oN !
N = 23‘( l) )

!
2k
M2 =My E ( 3 )2_3’° ,

k=0

and so z3 = 0.
On the other hand, putting

if 1 >1 we get
b = zu43 — "8'%1‘—1)22l+1
= 222421 4 3)22 g — (20 + 1)(21 + 3)?z_1,-5 + (2] + 3)’wos
424120 + 3)z1,-4 + (20 + 3)1,-8 + M41,1%2,1 + M41,2T2,8)
_ 2H4(1 4 1)
2l+1
(21 + 1)%z08 + 2(20 + 1)w1,—4 + (21 + 1)1,-8 + M1T21 + M2T2,8) -
Thus we obtain
t = 2% (28 + (81° — 121 — 341 — 13)z_1 s + (5 — 4*)zos — (21 + 1)21,5)

(221 + 1)2zr,mq — (21— 1)(2U + 1)z 4 s

14
42243 ((61 + TNzoy—a+ $1,-4) (14
because A0+ 1)
+
Y my =0
and 41 +1)
- , = 1
Ni4+1,2 A+ 1 N2

We shall prove that 2'2|zy,4, [ > 1. If { > 11 then this is obvious by (6). In order
to prove this for [ < 10 it suffices to prove that 2'2|t;, if I < 9. For our sequence {z.},
by (14) we find that

t = 27%(63 + (81° — 1217 — 341 — 13) — 3(5 — 41*) 4 61(21 4+ 1))
+22H3((61 4+ 7) — 61) = 2F5(1° + 111+ 12) + 22+4(31 — 27),
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and consequently #; = 0, if I < 5 and #; = 0(mod2'?), if 6 < 1 < 9 as is easy to
check. Thus we have ¢(L) > 12. In order to prove that ¢(L) = 12 let us assume that
c(L) > 13, i.e., 213|z,, if n > 0. Therefore, by (14) we get

0 = 274, + 27, — 223 — 22 - Tty + 2 5ts — g

= —2"%zy8 + 5218 + Tog — 371,-8) + 212(1'—1,—4 + 1,-4)

+ 21 (x2,8 — 1,8 + To,s — T1,-8)

—2%(w28 — TT_1,-8 + Tog — T21,-8) + 2'(T_1,-4 + T1,-4)
—2% . 7(228 + 11z_1,-8 + 5Tos — 971,-8)

+2% - 5(z28 + 52_1,-8 + Tos — 1171,8)

~2%(zy8 — 9213 — 11zgg — 1321,-3)

= 2'%z95 (mod 2'?),

and consequently o g must be even. Since 2'3|z, we have 213|t;, and so by 21+3 > [+2
we get

o= xgs+ (8 =121 =341 — 13)x_y, g + (5 — 41¥)zo5 — (21 + 1)21,-8 (15
+ 2’+1 ((61 + 7):B_1,_4 + (111’_4) =0 (mod 211_1) . )
Hence, we obtain

Y7 = X384+ T-1,-8 + Lo + £1,-8 = 0 (mod 16), (16)

T8 = T28 + 31:—1,—8 - 351:0,8 —T1,-8 = 0 (mod 8) . (17)

Therefore we get
7 + 98 = 228 + 4x_1 -3 — 2z9g = 0 (mod 8),

and consequently we deduce 2z, 5 = 0 (mod 4) because zgg is even. Thus z2 5 must be
even too.
Substituting ! = 6, 4 to (15) gives the congruences

Yo = T2,8 — 9(17_1,_3 - 11330,8 - 1311)1,_3 =0 (mod 32), (18)

Y4 = T28 -+ 11.’17..17_3 -+ 5:170,8 - 91'1,—8 =0 (mod 32) . (19)
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Consequently, it may be concluded that
Yo — Y4 = —2033_1,_3 - 16.’1)0,8 - 411)1'_8 =0 (IIIOd 32) y

and we get
—5x_y,_8 — 21,-s = 0 (mod 8) (20)

because zgg is even.

On the other hand, by (16) and (18) we obtain
Y6 — 17 = 3x_1,-8 + 208 + £1,-s = 0 (mod 8),
and consequently we find that
—2_1,-8 + z1,-3 = 0 (mod 4). (21)
Adding the above and (20) implies
—6z_1,—s = 0 (mod 4),

and so

z_3,-8 =0 (mod?2).
The above together with (20) yields

Iy,-8 = 0 (and 2) .
Substituting ! = 1, 2 to (15) gives

N =S Tes+ 13r_1,_8 + Tog — 3718

(22)
+4(5.’E_1,_4 + 1171,_4) = (mod 32) y

Y2 =38 — T_1,-8 — llxos — 31,8
+8(3x-1,—4 + z1,-4) = 0 (mod 32).
Thus by the above, and by (16) and (18) we deduce that

21 — Y2+ v = 2wy — 14wy g+ 2x08 — 1421, — 162_1,4
= 2298 4+ 2218 + 2208 + 2218 — 16(x-1,—8 + T1,-8) — 162_1,4
= 2v7 — 16z_1,—4 = 0 (mod 32)
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because z_1,-s + z1,—s = 0 (mod 2). Hence z_1,_4 must be even. Furthermore, by the
above and by (22), (18), (16), (17) we get

T+ Y% — Y — s =42_1,-4 + 421,—4 = 4z1,-4 (mod 8),

and consequently z; _4 must be even.
In order to prove that z;; is even we shall use the congruence z3 = 0 (mod 32). By
(13), we obtain

(23/4) = 2.’1,'_1'_4 — r_-1,-8 + Zo,8 — 2.’1,'1'_4 + 3.@1,_8 + 5-7"2,8 + 4.7,‘2,1 =0 (mod 8) .
Therefore, by (17) and (18) we conclude
(23/4) + 78 — ¥6 = (27-1,-4 — £_1,-8 + To,s — 2T1,—4 + 3718 + Sr28 + 423,1)

+ (228 + 3z_1,-8 — 30,8 — Z1,-8) — 2(T2,8 — 9z_1,—8 — l1lz0 s — 1321,—38)

= 2(x-1,-4 — T1,-4) + 4228 + T-1,-8 + Tos + T1,-8) + 4231 (Mod 8),
and consequently we get
2(z-1,-4 — T1,-4) + 4223 = 0 (mod 8). (23)
On the other hand, by (22) and (16) we obtain
N7

= (228 — 3%-1,-8 + Tog — 3T1,—5 + 4(T-1,-4 + Z1,-4)) — (z2,8 + T—1,-8 + Tos + T1,-8)

= —4(z_1,-8 + z1,-8) + 4(2-1,~4 + z1,-4) = 0 (mod 16),

and so by (21) we get
T4+ T1,-4 =0 (mod 4)

because zy,g is even.

The above together with (23) imply 4z, = 0 (mod 8) because z;,_4 is even and
T,1 must be even. At last since (z;/2) is even it may be concluded that zo, is even
too.

Summarizing, we have proved that z;. is even if sgne = (—1)*. In order to prove
that z; . are also even in case sgne # (—1)*, let us note that

2z = zag1 + Zus, (24)
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where Zj;41 comes into 241 by substituting zx1 (resp. zk 4, Trs or 5 _g) instead of
Tk,—4 (TESP. Tg1, Th,—8 OT Tig). We have

13
2 | 221y 22141 s

and so
13 =
27 24

Thus, by the same reasoning as in the case of sgne = (—1)* we get 2|z . in the other
case.

2. Let § = 3.

In this case we shall prove that ¢(L) = 9. First, we shall show that ¢(L) > 9. Indeed,
putting (for example)

Tol,-q = —T_1,-8 =4A_1,
Zo1 = —To,8 = Qop,

L1,—4 = —IT1,-8 = 41,
I21 = —T28 = A2,

and
Tg1 = —Tk-4y, T8 = —Tk-8 (k € L) ’

where ay := ax(L), k € K, ar =0, if k¥ ¢ L and the remaining a;, are defined by the
following:

a1=1, a=-2, a=-15, if L={-1,0,1},
a1 =2, ao=—19, a=225, if L={—1,0,2},
a1 =1, ay=-19, ay=-30, if L={-1,1,2},
aw=-1, a=2 a=15 if L={0,1,2},

we shall prove that z, = 0(mod 2°), if n > 0. In fact, in all these cases we have
21 = zgn = 0, n > 0. Moreover, by (13) we get

z3 = 4(27a_; — a0 + 3a; — ay),

and so z3 = 0, as easy to check. Thus in order to prove that 2341 = 0 (mod2°) for
2 <1< 17, it suffices to show that ¢, = 0 (mod2®) for 1 <1 < 6.
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Indeed, by (14) we get

t =2 2B + P 414 2) + 22431 - 4),

if2¢ L,
t) = 24 (—4l® — 131% 4 171 + 26) + 22461 4+ 7),
if1¢L,
t = 2442 4 312 — 1 + 6) + 2¥+3(1 - 2),
ifo¢gL,
t = 2 (=12 4 1 — 2) 4 2%+
if —1¢ L.

Therefore in all these cases we have t; = 0 (mod 2°), if [ > 4. Furthermore, an easy
computation shows that ¢; =0, 1f { < 3.

In order to prove that ¢(L) = 9, suppose, contrary to our claim, that ¢(L) > 10,
i.e., z, = 0 (mod2'?), if n > 0. Then we shall prove that all the zx,. must be even.
In view of (24), it suffices, similarly as in case L = K, to check it for k € L, e € Tg
satisfying sgne = (—1)*.

Since t; = 0 (mod 2°), we can apply the congruence (15) modulo 28~! (instead of
modulo 2!'7!). Then, by (14) we get the congruences

M= (813 - 1212 — 34l — 13)-73—1,—8 + (5 - 412)370,8 - (2l + 1).'121,_8

+21*1 ((61 + T)x_1,-4 + w1,—4) = 0 (mod 28") ,

if2¢L,
= za8+ (8P — 1217 — 341 — 13)z_s,5 + (5 — 41%)0s
+27Y(61 + T)z_1 —4 = 0 (mod 27),
ifl1¢L,
i = 2o+ (81 — 121 =341 — 13)z_y, s — (21 + 1)71,5
+2H1((61 + T)o_1,-4 + 71,4) = 0 (mod 257,
ifo¢L,

i =298+ (5 — 41*)zog — (20 + 1)z1,-8
+2%1 5, 4 =0 (mod 2879,
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if -1¢ L.
Regarding the case 2 € L. Then we have:

m= 52.’17_1,_4 - 511"—1,—8 + Zo,8 + 4.’1,'1,..4 - 3(131,_3 =0 (mod 128) )

Yo = 24T 1,4 — Toq1,—8 — 11Zo8 + 8z1,_4 — 521, = 0 (mod 64),
v3 = 162_1,-4 — T2_1,—8 + Tos + 1621,_4 — 771,83 = 0 (mo0d 32),
v4 = 1lz_1,_5 + 5205 — 921,-5 = 0 (mod 16),

Ys = 5%_1,-8 + To,s — 321, = 0 (mod 8),

Y6 = —Z-1,-8 + Tog — &1, = 0 (mod 4).

Therefore, we get
0=m —v =42_1,-4 + 4214 (mod 8),

and so x_y,_4 + 1,4 must be even.
Consequently, we obtain

0 =19 — 71 = 4z_1,-8 + 71,-8) (mod 16),

le.,

r—i,-8 + Iy—-8 = 0 (mod 4) . (25)

Hence we get
0= Y6 + Z_1,-8 + Z1,-8 = To,8 (mod 4) ,

and consequently
0 =~4+ 95 = 4z1,-5 (mod 8).

Hence and from (25), z1,—s and z_;,-s must be even. On other hand, by (13) we find
that
0= (23/4) — 2 = 2(x-1,-4 — 1,-4) (mod 8)

because zg g is divisible by 4, and so
T_1,-4 — T1,-4 = 0 (mod 4). (26)
Thus, by 4|zeg and 2|z_,,_s we get

0=m+73~27 =4(r_1,-4 — 1,-4) = 0 (mod 16),
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which together with (26) imply 2z_y,_4 = 0 (mod4) and consequently z_; _4, Z1,—4
must be even.

Finally, since (2,/2) is even zo; must be even and so all the z;. are even. Contra-
diction.

Regarding the case 1 ¢ L. Then we have:
"= 52:13_1,_4 — 51.’13_11..3 + Zo,;8 + T8 = 0 (mod 128) )

Yo =24z g4 — 1,8 — llzos + 228 = 0 (mod 64),
¥3 = 162_q,_4 — Tx_1,_3 + Tos + 23 = 0 (mod 32),
Y4 = —52_1,-8 + S2os + 28 = 0 (mod 16),

s = —32_1,-8 + 208 + 28 = 0 (mod 8),

Yo = —Z_1,-8 + Tos + T28 = 0 (mod 4).

Therefore, we get
0= M — Y = 4.’17_1,_4 (mod 8) ,

and so z_;,_4 must be even.
Furthermore, we get
0=, — v =4z_1,_s (mod 16),

and consequently z_;,_s = 0 (mod 4), which implies
0=~4— 75 = 4z0s (mod 8).
Thus z¢s must be even and
0 =74+ 73 = 6z0s + 2225 (mod 16)

which gives
0= +7s = 4x_1,~4 (mod 16)

because r_;,-g is even.
Consequently, we have z_; _4 = 0 (mod 4), which together with (13) yield

0= — (23/4) = 4z2, (mod 8).

Thus z,, and, by 2|(z1/2), o1 must be even. Summarizing, by the same reasoning as
in the previous cases, all the . are even. Contradiction.
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Regarding the case 0 ¢ L. Then we have:
"= 52.’1:._1’_4 — 51‘77—1,—8 + 41:1'_4 — 3(121,_3 + Tog = 0 (mod 128) ’

Yo =24x_1,_4 — T_1-8+ 8%1,—4 — 5218 + 28 = 0 (mod 64)
Y3 = 16214 + 97_q1 g + 16214 — Tz1,—5 + 28 = 0 (mod 32),
Y4 = 11z_q_5 — 9215 + 28 = 0 (mod 16),
vs = —32_1,—8 — 3z1,-8 + 28 = 0 (mod 8),

Yo = —%_1,-8 — T1,-8 + T28 = 0 (mod4).

Consequently, we get
0 =74+ = 421,38 + 2725 (mod 8),
and so 2 must be even. Next, we have
0=v —v =4(x-1,-4 + 21,-4) (M0d 8),

and so _1,—4 + *1,—4 must be even, too.
Hence, since 7, 25 and (21/2) are even, x;; must be even and

0=vs— 72 = —4(z-1,-8 + z1,—8) (mod 16).

Consequently, the congruence (25) in this case holds and z,5 must be even because
Y6 = 0 (mod 4). Moreover, we get

0 =792 + 73 = 4z1,-3 (nod 8),

and so z1,_g must be even. Furthermore, since v¢ and x5 are even, z_;,_g must be
even and, by (13), we deduce

0= (23/4) — Y2 = 2(.’12_1,_4 —_ :l}],_4) (mod 8) y

because 223 and x5 are even. This implies the congruence (26) in this case.
On the other hand, we have

0= T — Y3 = 4(.’E_1'_4 + 1171,_4) (mod 16) s

and so z_; 4 and z; _4 must be even because of (26).
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Summarizing, by the same arguments as in the previous cases all the zj,. must be
even. Contradiction.

Regarding the case —1 ¢ L. Then we have:
71 = Zos + 4:1,'1,_4 - 3.’171,—8 + I28 = 0 (mod 128) ’

2 = —1lzog + 81,4 — 51,5 + T25 = 0 (mod 64),
Y3 = Tog + 16214 — Ty, + 238 = 0 (mod 32),
Y4 = 520 — 921,~8 + 25 = 0 (mod 16),

Y5 = Tos — 3&1,-8 + T28 = 0 (mod 8),

Y6 = Tog — &1,—8 + T2,8 = 0 (mod 4).

Hence, we get
0= — 95 = 4z1,-4 (mod 8),

and consequently z;,_4 must be even. Furthermore, we obtain
0 = v — 74 = 421,-s (mod 16)
i.e., 1,—g is divisible by 4. Moreover, we find that
0 =73 — 74 = 4z0s (mod 8),

i.e., o, and next z; s must be even (because g is even).
On other hand, we have

0= M1 — Y3 = 4(171'_4 (mod 16) ’

i.e., £1,—4 is divisible by 4.
Hence we get
0= (23/4) — 71 = 4227 = 0 (mod 8)
because z1,-g is divisible by 4 and ;5 is even. Consequently, x;; must be even. This
completes the proof of the lemma in case § = 3.
3. Let 6 = 2.

In this case we shall prove that ¢(L) = cp, where ¢¢ = 5 unless L = {~1,1} or
L = {0,2}, in which cases ¢ = 6.

27



First, we shall show that ¢(L) > ¢p. Putting (for example)
T 1,-4 = T_1,-8= b_1,
Toa = To8 = bo,
T1,-4 = 21,-8 = b_y,

I21 = T8 = bz y

and
Ty = —Th,-4, Ths=—Tk-s (k€ L),

where by := bi(L), k € K, b =0, if k ¢ L and the remaining by are defined by the
following;:
by =—-b =1,

if L = {k,1}, k < I, we shall prove that z, = 0(mod 2%), if n > 0.
Indeed, in all these cases we have z; = 2,, = 0, n > 0. Moreover, by (13) we have

23 =36(b_1 + bo + by + b2),

and so z3 = 0, as easy to check.
In order to prove that zy41 = 0 (mod2%) for I > 2, it suffices to show that
t; = 0 (mod 2%) for [ > 1. In fact, by (14) we get

t = 2421 — 31% — 81 — 3) 4+ 22+13(1 4+ 1),

if L={-1,1},
ty =241 - 1),

if L =1{0,2},

b =234 — 4 — 171 = 9) + 22361 + 1),
if L ={-1,0},

=234 — 612 — 171 —7) + 224361 4+ 7),
if L={-1,2},

ty = =231 4+ 1) + 2443,

if L={1,2},

t =23 (=28 + 1+ 3) — 23,
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if L ={0,1}.

In two the first cases we have t; = 0 and 2%|t;, if [ > 2. In the remaining cases it is
easily seen that 2°|¢;, too. This gives ¢(L) > co. In order to prove that ¢(L) < co let us
suppose, contrary to our claim, that ¢(L) > ¢ + 1, i.e., 2z, = 0 (mod 2+, if n > 0.
Then we shall prove that all the ;. must be even. Again, it suffices to prove that z;

are even in case sgne = (—1)F.
Since #; = 0 (mod 2°*!) we can use the congruence (15) modulo 2°~'-? (instead of

211-1), Then, by (14) we get the congruences
v =8P —12P =34l - 13)z_1,s — (21 + 1)z, g
+2H41((61 4+ T)2—1,—4 + 21,-4) (mod 257F)

if L ={-1,1},
Y = 228+ (5 — 41} zog (mod 2°7Y),

if L ={0,2},
v = (8 — 121 — 341 — 13)2_y g + (5 — 41))zo g + 2 (61 + T)z_1,_4 (mod 2*7'),
if L ={-1,0},
i = o+ (813 — 1212 — 341 — 13)z_1 _g + 27 (6] + T)z_y,_4 (mod 2*7),
if L={-1,2},
= @28 — (20 + 1)y g + 22y _4 (mod 2¢71),
if L={1,2},
= (5—4zes — (20 + Dy g + 2 71,4 (mod 2*7),

if L ={0,1}.
Regarding the case L = {—1,1}. Then we have:

"= 4.'1,'_1,_4 - 3.'13_1’_3 + 4:1,‘1,._4 - 31‘1,—8 =0 (mod 16) s

Y2 = —T-1,-8 + 3:131’._3 =0 (mod 8) ’
Y3 = —-3.’17_1,_3 — 3.’121'._3 =0 (mod 4) ,

and
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(z1/2) =214+ 2o1,-8 + T1,-4 + T1,-s = 0 (mod 64) ,

(23/4) = 2z_1,-4 — 92_1,_g + 621,—4 + 321,-3 = 0 (M0d 32).

Hence we get

0= (23/4) — 72 = 2(2-1,-4 — 21,—4) (mMod 8),
i.e., £_1,-4 — 21,4 = 0 (mod 4), which implies
0=~ +72 = 4z_1,-s (mod 8).

Consequently, x_;,_s must be even, and so z;,_g must be even too because (z1/2) is
even. Moreover, we have

0= (21/2) —v3 — (£-1,-4 — T1,~4) = 221,—4 (m0d 4),
and so 1,4 = z_1,—4 = 0 (mod 2).
Regarding the case L = {0,2}. Then we have:
1 = Zog + 22,8 (Mod 16) ,
¥z = 5zos + 22,8 (Mod 8),
(23/4) = 9205 + ST28 + 4221 (mod 32).

Therefore we obtain
0=v—v =4zos (Mod8),

i.e., o8 and 25 must be even because v; is even. Consequently, since v, is divisible
by 8 we find that 0 = (23/4) = 4221 (mod 8), i.e., 27 must be even.

Regarding the case L = {—1,0}. Then we have:
"= 4.’1,'_1,_4 — 337-—1,-—8 + Tog = 0 (mod 8) y

Y2 = —Z_3,-3+ Zog = 0 (mod 4),
(23/4) = 2.’1,‘_1‘_4 - 933-—1,-—8 + 9210,3 =0 (mod 16) .
Thus we get

0 = (23/4) — 72 = 2x-1,—4 (mod4),
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i.e., _1,-4 must be even.
On the other hand, we have

0= T + Y2 = 2:1:0,8 (mod 4) s

i.e., o8 must be even, and so x_; _g must be even too because ; is even.

Regarding the case L = {~1,2}. Then we have:
N =4x_1,-4+ 5218 + 28 = 0 (mod 8),
Y2 = —T-1,-8 + Iog = 0 (rnod4) ’
(23/4) = 2z_1,-4 — 9T_1,—5 + 4221 + 5228 = 0 (mod 16).

Hence we get
0=v — v =2z (mod4),

i.e., r_3,_g and z2g must be even because v, is even. Consequently, we have

0 = (23/4) — v2 = 2z_1,-4 (mod4),

i.e., _1,—4 must be even.

Regarding the case L = {1,2}. Then we have:
"= 4.'1,'1,_4 — 3-'131,-—8 + I28 = 0 (mod 8) ,
Y2 = —T1,-8 + Tog = 0 (mod4) ’
(23/4) = 6x1,—4 + 321,—8 + S238 + 4221 = 0 (mod 16).

Thus we have
0= T + Y2 = 2.’1,'2'3 (mod 4) ,

i.e., 28 and z; g must be even because 7, is even. Next, we have
0 = (23/4) — 72 = 2z1,-4 (mod 4),

and so 1,4 must be even. To finish the proof of the lemma in this case it remains to
prove that z,, is even. But it follows easily because (z1/2) is even.

Regarding the case L = {0,1}. This case was considered in [2] and [5]. Then we have:

7 = Togs + 4.’171,._4 - 33:1,-—8 =0 (mod 8),
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Y2 = Tosg — T1,-8 = 0 (rnod 4) y
(Z3/4) = 9:1,'0,3 + 611?1,—4 + 3231,_3 =0 (mod 16) .

Hence we get
0= + v = 2268 (mod4),

i.e., zog and z;,_s must be even because 7y, is even. Moreover, we have
0= (23/4) — 72 = 2(1,'1,_4 (mod4) y

i.e., 1,4 must be even, which completes the proof of the lemma in case § = 2.
4. Let § = 1.

In this case we shall prove that ¢(L) = 2. First, we shall show that ¢(L) > 2. Let
L = {k}. Set

Tg1 = —Tpg =1,
if k is even and
Lg,—4 = —Tg,—8 =1,
if k 1s odd, and
Lkl = —Lk,~45 Tks8 = —Tk-8,

and ;. =0,ifl € K, l # k. For any k € K we have z; = 22, = 0, n > 0. Moreover,
by definition 4|zg41, if { > 0. Thus we have proved that ¢(L) > 2. Let us suppose,
contrary to our claim, that ¢(L) > 3, i.e., that 8|z,, if n > 0. We must prove that
all the z; . are even. Again, it suffices to prove it in case sgne = (—1)*. By (13) and
4|(21/2), we get
Ty + Thg = Tk,—4 + Tk,—s = 0 (mod4),

and since (z3/4) is even, zj . satisfying sgn e = (—1)* must be even. Consequently by
the same reasoning as previously all the =4, (k € L, e € Tg) must be even and the
lemma is proved completely. 0

4 Proof of Theorem

By Lemma 2 we have

Az(.’B,m)
= (=1 D (=DM (=1, Y W(jd)) (| g (xa)ld ™ > xa@)Lre(Gr)
k€K, deTm a=1
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m

= (=17 Y whelrelGn) D W(IdD)u(ld)g(xa)ld|™ xa(a)

a=1 keK, d€Tm
= 2 (3 omenelcs) - (TL (1 - ¥l 50 (@) )
a=1 ek, plm

where p* = (—1)®~1/2p, Therefore it follows from Lemma 4 that the numbers Ay(z, m)
are 2-adic integers and since

U(p)g(xp)lpl ' xpr(a) =1 = 1+ G +--- (27! = 0(mod 2)

by Lemma 5 they are divisible by 27**. The latter lemma implies the rest of the
theorem immediately. |

REMARK. A similar proof works for the numbers

ko' ™) = [ (1= x@8@)p' ) La(k, xw'*),

p|m, p—prime

where 0:N — C; is a multiplicative function (satisfying 6(s) = 1(mod 2) for s|m)
instead of the numbers Lgn](k, xw!=F).

5 Applications

For k < 0, by Theorem 5.11 [9] we get

i Bk
Ly(k, x'™) = —(1 = x(plp™) 75

Therefore, for £ = —1 and 0 we have

L(-1,xw*) = =(1~ x(p)p)% ,

and

L,(0,xw) = —(1 = x(p))B1x-
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On the other hand, the Mazur-Wiles-Kolster-Greither theorem (earlier the Birch-
Tate conjecture) for real quadratic fields F states

Uk2(D) = B2,xpa

where D is the discriminant of F, ky(D) := |K2(OF)| and OF (resp. K3) denotes the

integers in F' (resp. the Milnor functor). Here n(5) := 1/5, 7(8) :=1/2 and (D) := 1,
if D> 8. If D=1, write k(D) = 2 and n(D) = 1/12. Moreover the Dirichlet class
number formulas for imaginary quadratic fields F' state

fh(D) = —Bixp,

where h(D) stands for the class number of F, and £(-3) := 1/3, {(—4) := 1/2 and
(D) :=1,if D < —4.
The above formulas give (for x = xp)

L(= 1 xpw?) = —5(1 = xo(p)pInka(D) (27)

if D> 5 and
L, (0,xw) = (1 — x(p))éR(D). (28)
if D < -3.

If k =1 and xp is an even quadratic character then, by the Leopoldt formulas we
obtain

L,(1,xp) = 2(1 — x(p)p™")D"/*h(D)log »e(D), (29)
where £(D) denotes the fundamental unit of a quadratic field with the discriminant D

(see Theorems 5.18 and 5.24 [9]).
As usual the complex and p-adic formulas ”differ by an Euler factor”. Indeed, the
corresponding complex formulas are of the form

1
L(—17 XD) = _EnkZ(D) )

if D> 5,
L(0,xp) = £r(D),
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if D < —3 (for both the formulas see Theorem 4.2 [9]), and

L(1,xp) = 2D™*h(D)loge(D),

if D > 5 (see Chapter 4 [9)]).
If D < —3 then the modified complex Lichtenbaum conjecture states

L(2) XD) = 2R2|D|_3/2k2(D) ’

where R, := Ry(D) denotes the second Borel regulator of the corresponding quadratic

field (see Notes and comments to §2, p. 199, [4]). Consequently, by analogy the p-adic
Lichtenbaum conjecture should read

Ly(2,xpw™") = 2(1 — xp(p)p™*) Ra| DI *k2(D), (30)

where Rs, := R;,(D) denotes the second p-adic Borel regulator of the corresponding

quadratic field.

For any fundamental discriminant, let

E(D)h(D), if D<-3,

H(D) =

D™ Y2h(D)log,e(D), if D>5.

n(D)ky(D), if D>5,

P GO

|D|73/2h(D)R;5(D)ky(D), if D < -3.
Then via the p-adic Lichtenbaum conjecture for imaginary quadratic fields and by (27),
(28), (29) and (30) (for p = 2), we can rewrite the main theorem in the form:

THEOREM. Let m > 1 be a square-free odd natural number having r prime factors
and let ¥: N — C, be a multiplicative function such that ¥(s) = 1(mod?2), if s|m.
Set K = {—1,0,1,2}. Let L be a non-empty subset of K having § elements and let
{Zke}rek,ecy be a sequence of 2-adic integers defined on L. Set

AZIA_1+A0+A1+A2+AI-I+A;7

where
1
A—l = _5 Z T-1,e Z \I!(ldl) H (1 - Xed(p)pz) (1 - Xed(2)2)K2(ed) 9
R < J—. ¢
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Ao=7 woe D W(dl) JT (1 —xeap)p) (1 — xea(2)) H(ed),

CG% dGTm [ pl’"ﬂ
ed<0 p—prime

M=Yoe 30 0(d) T] (1= xea®) (2~ Xea(2)) H(ed),

e€Tg dETmy le,
1#ed>0 p—prime

A; = %Z 3¢ », V(ld) JT (1= XealP)p™) (4 — Xea(2)) Ka(ed),

e€Ts d€Tm, plm,
ed<0 p—prime

and
' 1
A_1 = Ex_l'l H (1 —p2),

plm,
p—prime

A (z11log,m)/2, if m is a prime number,
e 0, otherwise .

Assume in case 2 € L that the 2-adic Lichtenbaum conjecture for imaginary quadratic
fields holds. Then the number A is a 2-adic integer divisible by 2"+* where \ has the
same meaning as in the main theorem. a

REMARK. The above theorem produces many new congruences between the orders
of K,-groups of the integers and class numbers of appropriate quadratic fields modulo
higher powers of 2. We shall deal with such congruences in another paper.
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