On linear congruence relations related to 2-adic dilogarithms

J. URBANOWICZ A. WÓJCIK

On linear congruence relations related to 2-adic dilogarithms

Jerzy Urbanowicz

Ambroży Wójcik

Warszawa

Dedicated to Professor Jerzy Browkin on the occasion of his 60th birthday

Abstract

The paper gives a further generalization of congruences of the K. Hardy and K.S. Williams [3] type among the values of 2-adic L-functions $L_2(k,\chi\omega^{1-k})$ for quadratic Dirichlet characters χ and for $-1 \le k \le 2$ which produce some new congruences between the conjectured orders of K_2 -groups of the integers and class numbers of appropriate quadratic fields. These congruences extend results of [2], [5], [3], [6] and are of the same type as congruences of [8] and [7]. We apply ideas of R.F. Coleman [1] and methods of T. Uehara [5].

1 Introduction

Let k be an integer. If p is a prime number, let C_p stand for completion of an algebraic closure of Q at some place above p. Consider the formal series:

$$l_k(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^k}.$$

This series determines an analytic function on the open unit ball in C_p . Using "the action of Frobenius" on some differential equations, R.F. Coleman [1] extended l_k to a locally analytic function $l_{k,p}$ on $C_p - \{1\}$. He gave a p-adic analogue of some well-known

analytic formulas for the values of p-adic L-functions at integers

$$L_{p}(k,\chi\omega^{1-k}) = (1 - \chi(p)p^{-k})g(\chi)M^{-1}\sum_{a=1}^{M-1} \overline{\chi}(a)l_{k,p}(\zeta^{-a}),$$
(1)

extending Leopoldt's formulas for $L_p(1,\chi)$, where χ denotes a primitive Dirichlet character modulo M (M>1) with values in \mathbb{C}_p (for positive k see formula (2) of [1] and for non-positive k see Theorem 5.11 and Lemma 5.20 [9]). Here $\zeta := \exp(2\pi i/M)$, $g(\chi)$ stands for the Gauss sum attached to χ and $\omega := \omega_p$ denotes the Teichmüller character at p. It is well-known that for Dirichlet characters χ_1 and χ_2 with relatively prime conductors we have $g(\chi_1\chi_2) = g(\chi_1)g(\chi_2)$. The formula (1) is true for primitive characters. However note also that if the character χ is induced from a character χ_1 modulo some divisor of M, then

$$B_{n,\chi} = B_{n,\chi_1} \prod_{p|M} (1 - \chi_1(p)p^{n-1}),$$

where $B_{n,\chi}$ is the *n*th generalized Bernoulli number belonging to the character χ (cf. the proof of Theorem [8]). Therefore by

$$L_p(k,\chi) = \lim L_p(1-n,\chi),$$

where $1 - n \to k$ p-adically and $n \to \infty$, and by Theorem 5.11 [9] we get

$$L_p(k,\chi) = -\lim \left(1 - \chi(p)p^{n-1}\right) \frac{B_{n,\chi}}{n} = -\lim \frac{B_{n,\chi}}{n}$$

$$= -\lim \left(\frac{B_{n,\chi_1}}{n} \prod_{q \mid M, q - \text{prime}} (1 - \chi_1(q)q^{n-1})\right)$$

$$= L_p(k,\chi_1) \prod_{q \mid M, q \neq p} \left(1 - \chi_1(q)\omega^{k-1}(q)q^{-k}\right),$$

because

$$\lim q^n = \lim (\omega(q) < q >)^n = \lim < q >^n = < q >^{1-k} = q^{1-k} \omega^{k-1}(q),$$

if $q \neq p$. Consequently, we obtain

$$L_p(k, \chi \omega^{1-k}) = L_p(k, \chi_1 \omega^{1-k}) \prod_{q | M, q \neq p} (1 - \chi_1(q)q^{-k}),$$

but we shall not use this in the paper.

Following R.F. Coleman [1], the functions $l_k := l_{k,p}$ are called the multilogarithms. For $-1 \le k \le 1$ by definition we get explicit formulas for l_k :

$$l_{-1}(z) = \frac{z}{(1-z)^2}$$
,

$$l_0(z)=\frac{z}{1-z}\;,$$

$$l_1(z) = -\log_{p}(1-z),$$

where \log_p denotes the p-adic logarithm. The function l_2 is related to the so-called p-adic dilogarithm function defined by the formula

$$D(z) = l_2(z) + \frac{1}{2} \log_p(z) \log_p(1-z).$$

It is well-known (see Proposition 6.4 [1]) that

$$l_k(z) + (-1)^k l_k(z^{-1}) = \frac{-1}{k!} \log_p^k(z), \tag{2}$$

(1/k! := 0, if k < 0) and for any positive integer m the functions l_k satisfy the identity

$$\frac{1}{m} \sum_{\zeta^m = 1} l_k(\zeta z) = \frac{l_k(z^m)}{m^k} \tag{3}$$

(see Proposition 6.1 [1] with z replaced by z^m on the right hand side of the equation). Let χ be a primitive non-trivial Dirichlet character. Then, it follows from (2) that for $k \neq 0$

$$\sum_{a=1}^{M-1} \overline{\chi}(a) l_k(\zeta^{-a}) = \left(1 + (-1)^{k+1} \overline{\chi}(-1)\right) \sum_{a=1}^{[M/2]} \overline{\chi}(a) l_k(\zeta^{-a}),$$

where [x] denotes the integral part of x. Thus for $k \neq 0$ and for primitive non-trivial characters χ , by (1) we get

$$L_p(k, \chi \omega^{1-k}) = 0, (4)$$

if $\overline{\chi}(-1) = (-1)^k$ (i.e., if χ and k are of the same parity). If k = 0 then by (2) we have

$$l_k(z) + l_k(z^{-1}) = -1$$

and

$$\sum_{a=1}^{M-1} \overline{\chi}(a) l_k(\zeta^{-a}) = \left(1 - \overline{\chi}(-1)\right) \sum_{a=1}^{[M/2]} \overline{\chi}(a) l_k(\zeta^{-a}) - \overline{\chi}(-1) \sum_{a=1}^{[M/2]} \overline{\chi}(a),$$

which gives (4) for an even non-trivial Dirichlet character χ at once. For k = 0, by (1) the equation (4) holds for $\chi(p) = 1$ too but we shall not use this.

Let χ be trivial and let $k \neq 1$. If $k \leq 0$ then, by Theorem 5.11 [9] we have

$$L_p(k,\omega^{1-k}) = -(1-p^{-k})\frac{B_{1-k,\chi}}{1-k}.$$

Thus if k = 0 then (4) holds for the trivial character χ too because of the Euler factor equals 0. If $k \le -1$ then (4) holds if $B_{1-k} = 0$, i.e., if k is even.

Let p be finite and let E_p be a finitely ramified extension of \mathbb{Q}_p in \mathbb{C}_p . If $k \geq 2$ then

$$L_p(k,\omega^{1-k}) = (1-p^{-k})\lim l_{k,p}(z),$$

where $z \to 1$ and elements z lie in $E_p - \{1\}$ (see the formula (4) in [1]). Thus if $k \ge 2$ is even then (2) implies

$$2L_p(k,\omega^{1-k}) = -\frac{1}{k!}(1-p^{-k})\lim_{z \to \infty} \log_p^k(z) = 0.$$

Summarizing, if χ is trivial then (4) holds if $k \neq 1$ is even, i.e., if k has the same parity as χ again.

Following R.F. Coleman [1], write

$$l_k^{(p)}(z) = l_k(z) - p^{-k}l_k(z^p),$$

where $l_k = l_{k,p}$. The functions $l_k^{(p)}(z)$ are called *p*-adic multilogarithms. In particular, in view of (3), we have

$$l_k^{(2)}(z) = \frac{1}{2} (l_k(z) - l_k(-z)). \tag{5}$$

Let A be an integer. For any Dirichlet character ψ modulo A, any integer k and $z \in \mathbb{C}_2$, set

$$\mathcal{L}_{k,\psi}(z) = (-1)^{k+1} l_k^{(2)}(z) \qquad (z \neq \pm 1),$$

if ψ is the trivial character modulo A and

$$\mathcal{L}_{k,\psi}(z) = (-1)^{k+1} g(\overline{\psi}) A^{-1} \sum_{i=1}^{A} \psi(a) l_k(\zeta_A^a z) \quad (z \neq \zeta_A^a, \ (a, A) = 1),$$

otherwise.

In particular, if A is even and ψ is a quadratic character modulo A then by (5) we have

$$\mathcal{L}_{k,\psi}(z) = (-1)^{k+1} 2g(\psi) A^{-1} \sum_{a=1}^{A/2} \psi(a) l_k^{(2)}(\zeta_A^a z)$$

because

$$\psi\left(\frac{A}{2}+a\right)=-\psi(a).$$

For any odd natural number b, let r(b) denote the number of prime factors of b. Set $b^* = b$ (resp. -b), if $b \equiv 1 \pmod{4}$ (resp. $b \equiv 3 \pmod{4}$). These numbers are examples of the so-called fundamental discriminants (which can be described as the set of square-free numbers of the form 4n + 1 and 4 times square-free numbers not of this form). For any fundamental discriminant d, denote by χ_d the primitive quadratic character modulo |d| (in this notation χ_1 is the primitive trivial character). Write $\mathcal{L}_{k,d} = \mathcal{L}_{k,\chi_d}$. For a natural number m, denote by \mathcal{T}_m the set of all fundamental discriminants dividing m. Let us adopt the notations $\prod_{p|c}$ (resp. $\prod_{a=1}^{c}$) to stand for a product taken over all primes dividing c (resp. a product or a sum taken over integers a prime to c).

2 The Main Theorem

Let $K = \{-1, 0, 1, 2\}$. Let us consider a sequence of 2-adic integers $\{x_{k,e}\}, k \in K$, $e \in \mathcal{T}_8$. For any $L \subset K$ this sequence is said to be defined on L, if $x_{k,e} = 0$ for $k \notin L$. Given $\{x_{k,e}\}$, let us define a sequence $\{z_n\}_{n=0,1,\ldots}$ by the following:

$$z_0 = \sum_{k \in K, e \in \mathcal{T}_8} x_{k,e}, \qquad z_1 = 2 \sum_{\substack{k \in K, e \in \mathcal{T}_8, \\ \operatorname{sgn} e = (-1)^k}} x_{k,e},$$

$$z_{2l+\rho} = 2^{l+\rho} \left(2^{l} (2l+1)^{2} \left((1-\rho)x_{-1,1} + x_{-1,-4} \right) - (2l-1)(2l+1)^{2} \left((1-\rho)x_{-1,8} + x_{-1,-8} \right) + (2l+1)^{2} \left(x_{0,1} + (1-\rho)x_{0,-4} \right) + 2^{l} (2l+1) \left((1-\rho)x_{1,1} + x_{1,-4} \right) + (2l+1) \left((1-\rho)x_{1,8} + x_{1,-8} \right) + 2^{3l} \binom{2l}{l}^{-1} \left(\left(x_{2,1} + (1-\rho)x_{2,-4} \right) + \sum_{k=0}^{l} \binom{2k}{k} 2^{-3k} \left(x_{2,8} + (1-\rho)x_{2,-8} \right) \right) \right),$$
(6)

where $l \geq 1$ and $\rho \in \{0, 1\}$.

It is evident that the numbers z_n , $n \geq 0$ are 2-adic integers. Indeed, it is well known that

$$\operatorname{ord}_2\binom{2t}{t} = s_2(t),$$

where $s_2(t)$ denotes the sum of digits in the 2-adic expansion of t. Thus we have

$$\operatorname{ord}_{2}\left(2^{3l}\binom{2l}{l}^{-1}\right) = 3l - s_{2}(l) \ge 2l. \tag{7}$$

Moreover, we observe that

$$\operatorname{ord}_{2}\left(2^{3l}\binom{2l}{l}^{-1}\sum_{k=0}^{l}\binom{2k}{k}2^{-3k}\right) = \operatorname{ord}_{2}\left(\sum_{k=0}^{l}\frac{l!((2k-1)!)_{2}}{k!((2l-1)!)_{2}}2^{2(l-k)}\right) = 0, \quad (8)$$

where $(t!)_2 := 1 \cdot 3 \cdots t$ (t odd) denotes the 2-adic factorial.

DEFINITION. For any non-empty subset $L \subset K$, let $c := c(L) \ge 0$ be an integer such that:

(i) there exists a sequence of 2-adic integers $\{x_{k,e}\}$ defined on L, not all being even, satisfying

$$z_n \equiv 0 \; (\bmod \, 2^c) \,,$$

if n = 0, 1, 2, ...

(ii) if for some sequence of 2-adic integers $\{x_{k,e}\}$ defined on L we have

$$z_n \equiv 0 \; (\bmod \, 2^{c+1})$$

then all the numbers $x_{k,e}$ are even.

If χ is a primitive Dirichlet character and M>1 is any natural number then for $k\in \mathbf{Z}$ we set

$$L_2^{[M]}(k,\chi\omega^{1-k}) = 0,$$

if k = 1 and χ is trivial, and

$$L_2^{[M]}(k, \chi \omega^{1-k}) = \prod_{p|M, p-\text{prime}} (1 - \chi(p)p^{1-k}) L_2(k, \chi \omega^{1-k}),$$

otherwise.

Our purpose is to prove the following theorem:

THEOREM. Let m > 1 be a square-free odd natural number having r := r(m) prime factors and let $\Psi \colon \mathbb{N} \to \mathbb{C}_2$ be a multiplicative function satisfying $\Psi(s) \equiv 1 \pmod{2}$, if $s \mid m$. Set $K = \{-1, 0, 1, 2\}$. Let L be a non-empty subset of K having δ elements and let $x := \{x_{k,e}\}_{k \in K, e \in \mathcal{I}_8}$ be a sequence of 2-adic integers not all being even defined on L. Write

$$\mathcal{J}_m = \left\{ egin{array}{ll} (\log_2 m)/2, & \mbox{if} & m \mbox{ is a prime number}, \\ 0, & \mbox{otherwise}. \end{array}
ight.$$

Then the number

$$\Lambda_2(x,m) := \sum_{\substack{e \in \mathcal{T}_8, \\ k \in K}} (-1)^{k+1} x_{k,e} \sum_{d \in \mathcal{T}_m} \Psi(|d|) L_2^{[m]} (k, \chi_{ed} \omega^{1-k}) + x_{1,1} \mathcal{J}_m$$

is a 2-adic integer divisible by $2^{r+\lambda}$, where 2^{λ} is the greatest common divisor of $2^{c(L)}$ and z_n , $0 \le n \le 2c(L) - 2$, and

$$c(L) = \left[(7\delta - 3)/2 \right] + \sigma,$$

 $\sigma = 1$, if $L = \{-1, 1\}$ or $\{0, 2\}$, and $\sigma = 0$, otherwise.

REMARK. These congruences are of the same general type as those of [2], [5] and also of [3], [6], [7], [8]. In particular, for $L = \{0,1\}$ we get Gras-Uehara's congruences for class numbers of quadratic fields which are modulo $2^{r(m)+5}$ and for $L = \{-1,0\}$ (resp. $L = \{0\}$) we obtain congruences modulo $2^{r(m)+5}$ (resp. modulo $2^{r(m)+2}$) for the same objects as those in [6] (resp. in [3]). These objects are equal to the orders of K_2 -groups of the rings of integers of real quadratic fields or class numbers of appropriate imaginary quadratic fields. If $2 \in L$ then the obtained congruences are quite new and especially interesting. They produce, via a 2-adic version of the Lichtenbaum conjecture, some new congruences for the orders of K_2 -groups of the integers of imaginary quadratic fields. For a deeper discussion of this case we refer the reader to the last section of the paper.

3 Lemmas

The proof of the Main Theorem is divided into a sequence of lemmas. First, we shall extend Lemma 3 [5].

LEMMA 1. Let χ be a Dirichlet character modulo M > 1 and let N be a multiple of M such that N/M > 0 is a rational square-free integer prime to M. Set $\zeta_N = \zeta_M \zeta_{N/M}$. Then for any integer k we have

$$S_{k,\chi}(N) := \sum_{a=1}^{N} \chi(a) l_k(\zeta_N^a)$$

$$= (-1)^{r(N/M)} \prod_{p|(N/M)} \left(1 - \overline{\chi}(p) p^{1-k}\right) \sum_{b=1}^{M} \chi(b) l_k(\zeta_M^b).$$

Proof. Let q be a prime number. Then for any natural number n not divisible by q we have

$$S_{k,\chi}(nq) = (q^{1-k} - \chi(q))S_{k,\chi}(n). \tag{9}$$

Indeed, it is easy to see that

$$S_{k,\chi}(nq) = \sum_{a=1}^{n} \sum_{c=0}^{q-1} \chi(cn+a) l_k(\zeta_{nq}^{cn+a}) - \sum_{b=1}^{n} \chi(bq) l_k(\zeta_{nq}^{bq})$$
$$= \sum_{a=1}^{n} \chi(a) \sum_{c=0}^{q-1} l_k(\zeta_{nq}^a \zeta_q^c) - \chi(q) S_{k,\chi}(n)$$

and (9) is implied by the identity (3) at once.

Now the lemma follows from (9) by induction on the number of prime factors of $N.\Box$

From now on we regard l_k as the multilogarithms defined on $C_2 - \{1\}$.

LEMMA 2. Given any odd integer M, let χ be a primitive Dirichlet character modulo M. Suppose that N is an odd multiple of M such that N/M is square-free and relatively prime to M. Let ψ be either the trivial primitive Dirichlet character or a primitive Dirichlet character of even conductor prime to N. Let ω denote the Teichmüler character at p=2 and set $\zeta_N=\zeta_M\zeta_{N/M}$. Then for $k\in K$ we have

$$\Lambda_{k,\psi} := \Lambda_{k,\psi}(N,\chi) = g(\overline{\chi})M^{-1} \sum_{a=1}^{N} \chi(a) \mathcal{L}_{k,\psi}(\zeta_N^a)$$
$$= (-1)^{r(N/M)+k+1} \prod_{p|(N/M)} \left(1 - \overline{\chi}\overline{\psi}(p)p^{1-k}\right) L_2(k, \overline{\chi}\overline{\psi}\omega^{1-k}),$$

unless k=1 and the characters χ and ψ are trivial, in which case we have

$$\Lambda_{k,\psi} = \sum_{a=1}^{N} \mathcal{L}_{k,\psi}(\zeta_N^a) = \left\{ egin{array}{ll} -(\log_2 N)/2, & \mbox{if} & N & \mbox{is a prime power}, \\ 0, & \mbox{otherwise}. \end{array}
ight.$$

Proof. If M > 1 and ψ is the trivial character then since N is odd we get

$$(-1)^{k+1} \Lambda_{k,\psi}(N,\chi)$$

$$= g(\overline{\chi}) M^{-1} (-1)^{k+1} \sum_{a=1}^{N} \chi(a) \mathcal{L}_{k,\psi}(\zeta_N^a) = g(\overline{\chi}) M^{-1} \sum_{a=1}^{N} \chi(a) l_k^{(2)}(\zeta_N^a)$$

$$= g(\overline{\chi}) M^{-1} \Big(\sum_{a=1}^{N} \chi(a) l_k(\zeta_N^a) - 2^{-k} \overline{\chi}(2) \sum_{a=1}^{N} \chi(2a) l_k(\zeta_N^{2a}) \Big)$$

$$= g(\overline{\chi}) M^{-1} \Big(1 - 2^{-k} \overline{\chi}(2) \Big) \sum_{a=1}^{N} \chi(a) l_k(\zeta_N^a).$$

Thus, by Lemma 1 and (1) we obtain

$$(-1)^{r(N/M)+k+1} \Lambda_{k,\psi}(N,\chi)$$

$$= g(\overline{\chi}) M^{-1} (1 - 2^{-k} \overline{\chi}(2)) \prod_{p \mid (N/M)} (1 - \overline{\chi}(p) p^{1-k}) \sum_{b=1}^{M} \chi(b) l_k(\zeta_M^b)$$

$$= \prod_{p \mid (N/M)} (1 - \overline{\chi}(p) p^{1-k}) L_2(k, \overline{\chi} \omega^{1-k})$$

and the lemma follows.

If ψ is a nontrivial character modulo A then we have

$$(-1)^{k+1} \Lambda_{k,\psi}(N,\chi)$$

$$= g(\overline{\psi}) A^{-1} g(\overline{\chi}) M^{-1} \sum_{a=1}^{N} \chi(a) \sum_{b=1}^{A} \psi(b) l_k(\zeta_N^a \zeta_A^b)$$

$$= g(\overline{\psi}\overline{\chi}) (AM)^{-1} \sum_{a=1}^{N} \sum_{b=1}^{A} \chi(a) \psi(b) l_k(\zeta_N^a \zeta_A^b)$$

$$=g(\overline{\psi}\overline{\chi})(AM)^{-1}\sum_{a=1}^{NA}'(\chi\psi)(a)l_k(\zeta_{NA}^a).$$

Thus, by Lemma 1 and (1) we find that

$$(-1)^{r(N/M)+k+1} \Lambda_{k,\psi}(N,\chi)$$

$$= g(\overline{\psi}\overline{\chi})(AM)^{-1} \prod_{p|(N/M)} \left(1 - \overline{\chi}\overline{\psi}(p)p^{1-k}\right) \sum_{b=1}^{MA} (\chi\psi)(b) l_k(\zeta_{MA}^b)$$

$$= \prod_{p|(N/M)} \left(1 - \overline{\chi}\overline{\psi}(p)p^{1-k}\right) L_2(k, \overline{\chi}\overline{\psi}\omega^{1-k}).$$

This completes the proof of the lemma in case when either χ or ψ is not trivial. In order to finish the proof of the lemma it remains to consider the case when both the characters χ and ψ are trivial. Then, by definition of the functions $\mathcal{L}_{k,\psi}$ we have

$$(-1)^{k+1}\Lambda_{k,\psi} = \sum_{a=1}^{N} l_k^{(2)}(\zeta_N^a) = (1 - 2^{-k}) \sum_{a=1}^{N} l_k(\zeta_N^a).$$

Thus, we get

$$\Lambda_{k,\psi}=0$$

if k = 0 or k = 2 because of (2) and $\log_2(\zeta_N^a) = 0$.

On the other hand, $L_2(0,\omega) = L_2(2,\omega^{-1}) = 0$ (see the Introduction) and the right hand side of the equation of the lemma equals 0, too.

If k = 1 then we have

$$\Lambda_{k,\psi} = -\frac{1}{2} \sum_{n=1}^{N} \log_2(1 - \zeta_N^a) = -\frac{1}{2} \log_2\left(\prod_{n=1}^{N} (1 - \zeta_N^a)\right),\,$$

and consequently

$$\Lambda_{k,\psi} = -(\log_2 N)/2,$$

if N is a prime power and $\Lambda_{k,\psi} = 0$, otherwise.

Finally, if k = -1 then we have

$$\Lambda_{k,\psi} = \sum_{a=1}^{N} l_{-1}(\zeta_N^a) = \sum_{a=1}^{N} \frac{\zeta_N^a}{(1-\zeta_N^a)^2} = r_2'(N) - r_1'(N), \qquad (10)$$

where

$$r'_k(N) = \sum_{a=1}^{N} \frac{1}{(1-\zeta_N^a)^k}.$$

It is easy to see that $r'_1(N) = \frac{1}{2}\phi(N)$ because

$$\frac{1}{1 - \zeta_N^a} + \frac{1}{1 - \zeta_N^{N-a}} = 1.$$

In order to calculate $r'_2(N)$, let us observe that for any arithmetical function f we have

$$\sum_{\substack{1 \le a \le x \\ (a,N)=1}} f(a) = \sum_{1 \le a \le x} \left(\sum_{d \mid (a,N)} \mu(d) \right) f(a) = \sum_{d \mid N} \mu(d) \sum_{\substack{1 \le a \le x, \\ d \mid a}} f(a)$$
$$= \sum_{d \mid N} \mu(d) \sum_{1 \le a \le x/d} f(ad)$$

Therefore, putting

$$f(a) = \frac{1}{(1 - \zeta_N^a)^k}$$

and x = N - 1 we get the formula

$$r'_k(N) = \sum_{d|N} \mu(d) r_k(N/d), \tag{11}$$

where

$$r_k(n) = \sum_{a=1}^{n-1} \frac{1}{(1-\zeta_n^a)^k}$$

and $\zeta := \zeta_n = \exp(2\pi i/n)$.

Let us compute $r_2(n)$. Then the numbers $\zeta^a - 1$, $1 \le a \le n - 1$ are all the zeros of the polynomial

$$(x+1)^n + \dots + (x+1) + 1 = \frac{(x+1)^n - 1}{x}$$
.

Therefore, all the zeros of the polynomial

$$(1+x)^n - x^n = nx^{n-1} + \binom{n}{2}x^{n-2} + \binom{n}{3}x^{n-3} + \dots$$

are of the form $x_a := 1/(\zeta^a - 1)$, where $1 \le a \le n - 1$. Thus

$$r_2(n) = \sum_{a=1}^{n-1} x_a^2 = \left(\sum_{a=1}^{n-1} x_a\right)^2 - 2 \sum_{1 \le a < b \le n-1} x_a x_b$$
$$= \left(\frac{n-1}{2}\right)^2 - \frac{(n-1)(n-2)}{3}$$
$$= -\frac{(n-1)(n-5)}{12}.$$

Substituting the above to (11) gives

$$r_2'(N) = -\frac{N^2}{12} \sum_{d|N} \frac{\mu(d)}{d^2} + \frac{N}{2} \sum_{d|N} \frac{\mu(d)}{d} - \frac{5}{12} \sum_{d|N} \mu(d)$$
$$= -\frac{N^2}{12} \prod_{p|N} (1 - p^{-2}) + \frac{N}{2} \prod_{p|N} (1 - p^{-1})$$
$$= -\frac{N^2}{12} \prod_{p|N} (1 - p^{-2}) + \frac{\phi(N)}{2}.$$

Thus the lemma for k = -1 follows from (10) and Theorem 5.11 [9]. This completes the proof of Lemma 2.

LEMMA 3. Let $n \ge 0$ be an integer. Set $\gamma_n = -1$, if $n \equiv 1, 2 \pmod{4}$, and $\gamma_n = 1$, otherwise. Then we have

(i)
$$\sum_{k=0}^{n} \binom{n+k}{n-k} \frac{4^{2k}(-1)^k}{(2k+1)^2} \binom{2k}{k}^{-1} = \frac{1}{(2n+1)^2} ,$$

(ii)
$$\sum_{k=0}^{n} \binom{n+k}{n-k} \frac{4^{2k}(-1)^k}{(2k+1)^2} \binom{2k}{k}^{-1} \sum_{l=0}^{k} \binom{2l}{l} 2^{-3l} = \frac{\gamma_n}{(2n+1)^2}.$$

Proof. (A. Granville) Set

$$\lambda_k = (-1)^k 2^{4k} \binom{n+k}{n-k} \binom{2k}{k}^{-1}.$$

The main idea of the proof is to note the following identity:

$$\lambda_k - \lambda_{k+1} = \left(\frac{2n+1}{2k+1}\right)^2 \lambda_k$$

for all $k \geq 0$. Thus the left hand side of the equation (i) of the lemma equals

$$\sum_{k=0}^{n} \frac{\lambda_k}{(2k+1)^2} = \frac{1}{(2n+1)^2} \sum_{k=0}^{n} (\lambda_k - \lambda_{k+1}) = \frac{\lambda_0}{(2n+1)^2} = \frac{1}{(2n+1)^2} .$$

The identity (ii) is a little more subtle. Multiplying through by $(2n+1)^2$ we get

$$(2n+1)^2 \sum_{k=0}^n \frac{\lambda_k}{(2k+1)^2} \sum_{l=0}^k {2l \choose l} 2^{-3l} = \sum_{k=0}^n (\lambda_k - \lambda_{k+1}) \sum_{l=0}^k {2l \choose l} 2^{-3l}$$
$$= \sum_{k=0}^n \lambda_k {2k \choose k} 2^{-3k} = \sum_{k=0}^n {n+k \choose n-k} (-2)^k.$$

To evaluate the last sum, note that $\binom{n+k}{n-k}$ is the coefficient of t^n in

$$\frac{t^k}{(1-t)^{2k+1}}.$$

Thus our sum is the coefficient of t^n in

$$\sum_{k>0} \frac{(-2t)^k}{(1-t)^{2k+1}} = \frac{1}{(1-t)} \frac{1}{1-((-2t)/(1-t)^2)} = \frac{1-t}{1+t^2} = \frac{1-t-t^2+t^3}{1-t^4}$$

and so equals -1, if $n \equiv 1, 2 \pmod{4}$ and 1, otherwise.

Now we extend Lemmas 6 and 7 of [5]. In the two next lemmas let $\xi \neq 1$ be a primitive Nth root of unity, where N is an odd natural number.

LEMMA 4. For any $e \in \mathcal{T}_8$ write $\alpha = \operatorname{sgn} e$ and set

$$w_{\alpha} = \frac{\alpha \xi}{1 + \alpha \xi^2} .$$

Then we have

$$\mathcal{L}_{-1,e}(\xi) = \sum_{k=0}^{\infty} (4\alpha)^k w_{\alpha}^{2k+1} , \qquad \mathcal{L}_{0,e}(\xi) = w_{-\alpha} ,$$

$$\mathcal{L}_{1,e}(\xi) = \sum_{k=0}^{\infty} \frac{(4\alpha)^k w_{\alpha}^{2k+1}}{2k+1} , \qquad \mathcal{L}_{2,e}(\xi) = \sum_{k=0}^{\infty} \frac{(-16\alpha)^k w_{-\alpha}^{2k+1}}{(2k+1)^2} {2k \choose k}^{-1} ,$$

if $e \in \mathcal{T}_4$ and

$$\mathcal{L}_{-1,e}(\xi) = -\sum_{k=0}^{\infty} (2\alpha)^k (2k-1) w_{\alpha}^{2k+1}, \qquad \mathcal{L}_{0,e}(\xi) = \sum_{k=0}^{\infty} (-2\alpha)^k w_{-\alpha}^{2k+1},$$

$$\mathcal{L}_{1,e}(\xi) = \sum_{k=0}^{\infty} \frac{(2\alpha)^k w_{\alpha}^{2k+1}}{2k+1}, \qquad \mathcal{L}_{2,e}(\xi) = \sum_{k=0}^{\infty} \frac{(-16\alpha)^k w_{-\alpha}^{2k+1}}{(2k+1)^2} {2k \choose k}^{-1} \sum_{l=0}^{k} {2l \choose l} 2^{-3l},$$

if $e \in \mathcal{T}_8 - \mathcal{T}_4$.

Proof. As for the expansions of $\mathcal{L}_{\nu,e}(\xi)$ for $\nu = 0, 1$, we refer the reader to Lemma 6 [5]. Let us consider the case of $\nu = -1$. Then we have

$$\mathcal{L}_{-1,e}(\xi) = -\frac{\alpha \xi (1 + \alpha \xi^2)}{(1 - \alpha \xi^2)^2},$$

if $e \in \mathcal{T}_4$. In this case it suffices to use the 2-adic expansion

$$\sum_{n \ge 1, n - \text{odd}} x^n = \frac{x}{1 - x^2} \tag{12}$$

with $x = 2\omega_{\alpha}\sqrt{\alpha}$. Furthermore, if $e \notin T_4$ then we have

$$\mathcal{L}_{-1,e}(\xi) = -\frac{\alpha \xi(\xi^2 + \alpha)(\xi^4 - 4\alpha \xi^2 + 1)}{(1 + \xi^4)^2}.$$

In this case it sufficient to apply (12) together with the 2-adic series

$$\sum_{n \ge 1, n - \text{odd}} nx^n = \frac{x(1+x^2)}{(1-x^2)^2}$$

with $x = \omega_{\alpha} \sqrt{2\alpha}$ in both formulas. Indeed, we have

$$\sqrt{2\alpha} \sum_{k=0}^{\infty} (2\alpha)^k (2k-1)\omega_{\alpha}^{2k+1} = \sum_{k=0}^{\infty} (2k-1)(\omega_{\alpha}\sqrt{2\alpha})^{2k+1}$$
$$= \sum_{n\geq 1, n-\text{odd}} n(\omega_{\alpha}\sqrt{2\alpha})^n - 2 \sum_{n\geq 1, n-\text{odd}} (\omega_{\alpha}\sqrt{2\alpha})^n.$$

It remains to prove the lemma in the case of $\nu = 2$. Then, let us consider the following 2-adic series

$$G_e$$
: = $\sum_{k=0}^{\infty} \frac{(-16\alpha)^k \eta_{k,e} \omega_{-\alpha}^{2k+1}}{(2k+1)^2}$,

where

$$\eta_{k,e} = \begin{cases} \binom{2k}{k}^{-1} \sum_{l=0}^{k} \binom{2l}{l} 2^{-3l}, & \text{if} \quad e \notin \mathcal{T}_4, \\ \binom{2k}{k}^{-1}, & \text{if} \quad e \in \mathcal{T}_4. \end{cases}$$

By (7) and (8) the series G_e converges. Furthermore, setting $\gamma^2 = \alpha$ we have formally

$$G_{e} = \sum_{k=0}^{\infty} \frac{(-16\alpha)^{k} \eta_{k,e}}{(2k+1)^{2}} \left(\frac{-\alpha \xi}{1-\alpha \xi^{2}}\right)^{2k+1}$$

$$= \sum_{k=0}^{\infty} \frac{(-16\alpha)^{k} \eta_{k,e}}{(2k+1)^{2}} \left(-\alpha \xi \sum_{l=0}^{\infty} (\gamma \xi)^{2l}\right)^{2k+1}$$

$$= -\gamma \sum_{k=0}^{\infty} \frac{(-16)^{k} \eta_{k,e}}{(2k+1)^{2}} \left(\sum_{l=0}^{\infty} (\gamma \xi)^{2l+1}\right)^{2k+1}$$

$$= -\gamma \sum_{k=0}^{\infty} \frac{(-16)^{k} \eta_{k,e}}{(2k+1)^{2}} \sum_{l=0}^{\infty} \binom{2k+l}{l} (\gamma \xi)^{2(k+l)+1}$$

$$= -\gamma \sum_{l=0}^{\infty} \sum_{k=0}^{l} \frac{(-16)^{k} \eta_{k,e}}{(2k+1)^{2}} \binom{l+k}{l-k} (\gamma \xi)^{2l+1}$$

$$= -\gamma \sum_{l=0}^{\infty} (\gamma \xi)^{2l+1} \sum_{k=0}^{l} \binom{l+k}{l-k} \frac{(-16)^{k} \eta_{k,e}}{(2k+1)^{2}}$$

because for any function f we have

$$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} f(k,l) = \sum_{l=0}^{\infty} \sum_{k=0}^{l} f(k,l-k).$$

Therefore by Lemma 3, we have

$$G_e = \mathcal{L}_{2,e}(\xi).$$

Since both the series converge Lemma 4 for $\nu = 2$ follows.

We need some congruences between the numbers $\mathcal{L}_{k,e}(\xi)$, where $k \in \{-1,0,1,2\}$.

LEMMA 5. Set $K = \{-1, 0, 1, 2\}$. Let $\{x_{k,e}\}_{k \in K, e \in \mathcal{T}_8}$ be a sequence of integers in \mathbb{C}_2 not all being even defined on a non-empty subset L of K having δ elements. Then we have

(i)
$$\sum_{k \in L} x_{k,e} \mathcal{L}_{k,e}(\xi) \equiv 0 \pmod{2^{\lambda}},$$

where 2^{λ} is the greatest common divisor of $2^{c(L)}$ and $z_n,\, 0 \leq n \leq 2c(L)-2$,

(ii)

$$c(L) = \left[(7\delta - 3)/2 \right] + \sigma,$$

where $\sigma = 1$, if $L = \{-1, 1\}$ or $\{0, 2\}$, and $\sigma = 0$, otherwise.

Proof. From the previous lemma we get

$$\Lambda := \sum_{\substack{k \in \mathcal{I}_{8} \\ e \in \mathcal{T}_{8}}} x_{k,e} \mathcal{L}_{k,e}(\xi)$$

$$= \sum_{e \in \mathcal{T}_{8}} \left(x_{-1,e} \mathcal{L}_{-1,e}(\xi) + x_{0,e} \mathcal{L}_{0,e}(\xi) + x_{1,e} \mathcal{L}_{1,e}(\xi) + x_{2,e} \mathcal{L}_{2,e}(\xi) \right)$$

$$= \left(x_{-1,1} + x_{-1,8} + x_{0,-4} + x_{0,-8} + x_{1,1} + x_{1,8} + x_{2,-4} + x_{2,-8} \right) \omega_{1}$$

$$+ \left(x_{-1,-4} + x_{-1,-8} + x_{0,1} + x_{0,8} + x_{1,-4} + x_{1,-8} + x_{2,1} + x_{2,8} \right) \omega_{-1}$$

$$+ \sum_{k=1}^{\infty} \left(4^{k} x_{-1,1} - 2^{k} (2k-1) x_{-1,8} + 2^{k} x_{0,-8} + \frac{2^{k}}{2k+1} x_{1,1} + \frac{2^{k}}{2k+1} x_{1,8} \right)$$

$$+ \frac{16^{k}}{(2k+1)^{2}} {2k \choose k}^{-1} x_{2,-4} + \frac{16^{k}}{(2k+1)^{2}} {2k \choose k}^{-1} \sum_{l=0}^{k} {2l \choose l} 2^{-3l} x_{2,-8} \omega_{1}^{2k+1}$$

$$+ \sum_{k=1}^{\infty} (-1)^{k} \left(4^{k} x_{-1,-4} - 2^{k} (2k-1) x_{-1,-8} + 2^{k} x_{0,8} + \frac{4^{k}}{2k+1} x_{1,-4} + \frac{2^{k}}{2k+1} x_{1,-8} + \frac{16^{k}}{(2k+1)^{2}} {2k \choose k}^{-1} x_{2,1} + \frac{16^{k}}{(2k+1)^{2}} {2k \choose k}^{-1} \sum_{l=0}^{k} {2l \choose l} 2^{-3l} x_{2,8} \omega_{-1}^{2k+1} .$$

Consequently, we obtain

$$\Lambda = z_0 \omega_1 + z_1 v_1 + \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} (z_{2k} \omega_1^{2k+1} + z_{2k+1} v_{2k+1}),$$

where

$$v_{2k+1} := v_{2k+1}(\xi) = \frac{1}{2} \left((-1)^k \omega_{-1}^{2k+1} - \omega_1^{2k+1} \right)$$

is an integer in \mathbb{C}_2 and the coefficients z_n , $n \geq 0$ are defined by (6). Without loss of generality we may assume that not all $x_{k,e}$ $(k \in K, e \in \mathcal{T}_8)$ are even. Denote by 2^{λ} the highest power of 2 dividing all z_n , $n \geq 0$. By definition, part (i) of the lemma follows immediately and we have $\lambda \leq c(L)$.

In order to prove part (ii) we need consider 4 cases:

1. Let L = K.

Then we shall prove that c(L) = 12. Putting (for example)

$$x_{-1,-4} = x_{-1,-8} = 1,$$

 $x_{0,1} = x_{0,8} = -3,$
 $x_{1,-4} = x_{1,-8} = -61,$
 $x_{2,1} = x_{2,8} = 63,$

and

$$x_{k,1} = -x_{k,-4}, \quad x_{k,8} = -x_{k,-8},$$

we shall show that $z_n \equiv 0 \pmod{2^{12}}$, $n \geq 0$, i.e., that $c(L) \geq 12$. Indeed, it is easily seen that

$$z_1=0$$
, $z_{2l}=0$ $(l\geq 0)$.

Moreover, by (6) we have

$$z_3 = 4(18x_{-1,-4} - 9x_{-1,-8} + 9x_{0,8} + 6x_{1,-4} + 3x_{1,-8} + 5x_{2,8} + 4x_{2,1}),$$
(13)

and so $z_3 = 0$.

On the other hand, putting

$$\eta_{l,1} = 2^{3l} \binom{2l}{l}^{-1},$$

$$\eta_{l,2} = \eta_{l,1} \sum_{k=0}^{l} \binom{2k}{k} 2^{-3k},$$

if $l \ge 1$ we get

$$t_{l} := z_{2l+3} - \frac{8(l+1)}{2l+1} z_{2l+1}$$

$$= 2^{l+2} \left(2^{l+1} (2l+3)^{2} x_{-1,-4} - (2l+1)(2l+3)^{2} x_{-1,-8} + (2l+3)^{2} x_{0,8} + 2^{l+1} (2l+3) x_{1,-4} + (2l+3) x_{1,-8} + \eta_{l+1,1} x_{2,1} + \eta_{l+1,2} x_{2,8} \right)$$

$$- \frac{2^{l+4} (l+1)}{2l+1} \left(2^{l} (2l+1)^{2} x_{-1,-4} - (2l-1)(2l+1)^{2} x_{-1,-8} + (2l+1)^{2} x_{0,8} + 2^{l} (2l+1) x_{1,-4} + (2l+1) x_{1,-8} + \eta_{l,1} x_{2,1} + \eta_{l,2} x_{2,8} \right).$$

Thus we obtain

$$t_{l} = 2^{l+2} \left(x_{2,8} + (8l^{3} - 12l^{2} - 34l - 13)x_{-1,-8} + (5 - 4l^{2})x_{0,8} - (2l+1)x_{1,-8} \right) + 2^{2l+3} \left((6l+7)x_{-1,-4} + x_{1,-4} \right)$$
(14)

because

$$\eta_{l+1,1} - \frac{4(l+1)}{2l+1} \eta_{l,1} = 0$$

and

$$\eta_{l+1,2} - \frac{4(l+1)}{2l+1}\eta_{l,2} = 1.$$

We shall prove that $2^{12}|z_{2l+1}$, $l \ge 1$. If $l \ge 11$ then this is obvious by (6). In order to prove this for $l \le 10$ it suffices to prove that $2^{12}|t_l$, if $l \le 9$. For our sequence $\{x_{k,e}\}$, by (14) we find that

$$t_l = 2^{l+2} (63 + (8l^3 - 12l^2 - 34l - 13) - 3(5 - 4l^2) + 61(2l + 1))$$

+2^{2l+3} ((6l + 7) - 61) = 2^{l+5} (l³ + 11l + 12) + 2^{2l+4} (3l - 27),

and consequently $t_l = 0$, if $l \leq 5$ and $t_l \equiv 0 \pmod{2^{12}}$, if $6 \leq l \leq 9$ as is easy to check. Thus we have $c(L) \geq 12$. In order to prove that c(L) = 12 let us assume that $c(L) \geq 13$, i.e., $2^{13}|z_n$, if $n \geq 0$. Therefore, by (14) we get

$$0 \equiv -2^{7}t_{1} + 2^{7}t_{2} - 2^{3}t_{3} - 2^{2} \cdot 7t_{4} + 2 \cdot 5t_{5} - t_{6}$$

$$\equiv -2^{10}(x_{2,8} + 5x_{-1,-8} + x_{0,8} - 3x_{1,-8}) + 2^{12}(x_{-1,-4} + x_{1,-4})$$

$$+ 2^{11}(x_{2,8} - x_{-1,-8} + x_{0,8} - x_{1,-8})$$

$$- 2^{8}(x_{2,8} - 7x_{-1,-8} + x_{0,8} - 7x_{1,-8}) + 2^{12}(x_{-1,-4} + x_{1,-4})$$

$$- 2^{8} \cdot 7(x_{2,8} + 11x_{-1,-8} + 5x_{0,8} - 9x_{1,-8})$$

$$+ 2^{8} \cdot 5(x_{2,8} + 5x_{-1,-8} + x_{0,8} - 11x_{1,-8})$$

$$- 2^{8}(x_{2,8} - 9x_{-1,-8} - 11x_{0,8} - 13x_{1,-8})$$

$$\equiv 2^{12}x_{0,8} \pmod{2^{13}},$$

and consequently $x_{0,8}$ must be even. Since $2^{13}|z_n$ we have $2^{13}|t_l$, and so by $2l+3 \ge l+2$ we get

$$\gamma_{l} := x_{2,8} + (8l^{3} - 12l^{2} - 34l - 13)x_{-1,-8} + (5 - 4l^{2})x_{0,8} - (2l + 1)x_{1,-8}
+ 2^{l+1}((6l + 7)x_{-1,-4} + x_{1,-4}) \equiv 0 \pmod{2^{11-l}}.$$
(15)

Hence, we obtain

$$\gamma_7 \equiv x_{2.8} + x_{-1.-8} + x_{0.8} + x_{1.-8} \equiv 0 \pmod{16}, \tag{16}$$

$$\gamma_8 \equiv x_{2,8} + 3x_{-1,-8} - 3x_{0,8} - x_{1,-8} \equiv 0 \pmod{8}. \tag{17}$$

Therefore we get

$$\gamma_7 + \gamma_8 \equiv 2x_{2,8} + 4x_{-1,-8} - 2x_{0,8} \equiv 0 \pmod{8}$$

and consequently we deduce $2x_{2,8} \equiv 0 \pmod{4}$ because $x_{0,8}$ is even. Thus $x_{2,8}$ must be even too.

Substituting l = 6, 4 to (15) gives the congruences

$$\gamma_6 \equiv x_{2,8} - 9x_{-1,-8} - 11x_{0,8} - 13x_{1,-8} \equiv 0 \pmod{32},\tag{18}$$

$$\gamma_4 \equiv x_{2,8} + 11x_{-1,-8} + 5x_{0,8} - 9x_{1,-8} \equiv 0 \pmod{32}. \tag{19}$$

Consequently, it may be concluded that

$$\gamma_6 - \gamma_4 \equiv -20x_{-1,-8} - 16x_{0,8} - 4x_{1,-8} \equiv 0 \pmod{32}$$

and we get

$$-5x_{-1,-8} - x_{1,-8} \equiv 0 \pmod{8} \tag{20}$$

because $x_{0,8}$ is even.

On the other hand, by (16) and (18) we obtain

$$\gamma_6 - \gamma_7 \equiv 3x_{-1,-8} + 2x_{0,8} + x_{1,-8} \equiv 0 \pmod{8}$$

and consequently we find that

$$-x_{-1,-8} + x_{1,-8} \equiv 0 \pmod{4}. \tag{21}$$

Adding the above and (20) implies

$$-6x_{-1,-8} \equiv 0 \pmod{4},$$

and so

$$x_{-1,-8} \equiv 0 \pmod{2}$$
.

The above together with (20) yields

$$x_{1,-8} \equiv 0 \pmod{2}$$
.

Substituting l = 1, 2 to (15) gives

$$\gamma_{1} \equiv x_{2,8} + 13x_{-1,-8} + x_{0,8} - 3x_{1,-8}
+4(5x_{-1,-4} + x_{1,-4}) \equiv 0 \pmod{32},
\gamma_{2} \equiv x_{2,8} - x_{-1,-8} - 11x_{0,8} - 5x_{1,-8}
+8(3x_{-1,-4} + x_{1,-4}) \equiv 0 \pmod{32}.$$
(22)

Thus by the above, and by (16) and (18) we deduce that

$$2\gamma_{1} - \gamma_{2} + \gamma_{6} \equiv 2x_{2,8} - 14x_{-1,-8} + 2x_{0,8} - 14x_{1,-8} - 16x_{-1,-4}$$

$$\equiv 2x_{2,8} + 2x_{-1,-8} + 2x_{0,8} + 2x_{1,-8} - 16(x_{-1,-8} + x_{1,-8}) - 16x_{-1,-4}$$

$$\equiv 2\gamma_{7} - 16x_{-1,-4} \equiv 0 \pmod{32}$$

because $x_{-1,-8} + x_{1,-8} \equiv 0 \pmod{2}$. Hence $x_{-1,-4}$ must be even. Furthermore, by the above and by (22), (18), (16), (17) we get

$$\gamma_1 + \gamma_6 - \gamma_7 - \gamma_8 \equiv 4x_{-1,-4} + 4x_{1,-4} \equiv 4x_{1,-4} \pmod{8}$$

and consequently $x_{1,-4}$ must be even.

In order to prove that $x_{2,1}$ is even we shall use the congruence $z_3 \equiv 0 \pmod{32}$. By (13), we obtain

$$(z_3/4) \equiv 2x_{-1,-4} - x_{-1,-8} + x_{0,8} - 2x_{1,-4} + 3x_{1,-8} + 5x_{2,8} + 4x_{2,1} \equiv 0 \pmod{8}$$
.

Therefore, by (17) and (18) we conclude

$$(z_3/4) + \gamma_8 - \gamma_6 \equiv (2x_{-1,-4} - x_{-1,-8} + x_{0,8} - 2x_{1,-4} + 3x_{1,-8} + 5x_{2,8} + 4x_{2,1})$$

$$+ (x_{2,8} + 3x_{-1,-8} - 3x_{0,8} - x_{1,-8}) - 2(x_{2,8} - 9x_{-1,-8} - 11x_{0,8} - 13x_{1,-8})$$

$$\equiv 2(x_{-1,-4} - x_{1,-4}) + 4(x_{2,8} + x_{-1,-8} + x_{0,8} + x_{1,-8}) + 4x_{2,1} \pmod{8},$$

and consequently we get

$$2(x_{-1,-4} - x_{1,-4}) + 4x_{2,1} \equiv 0 \pmod{8}. \tag{23}$$

On the other hand, by (22) and (16) we obtain

$$\gamma_{1} - \gamma_{7}
\equiv (x_{2,8} - 3x_{-1,-8} + x_{0,8} - 3x_{1,-8} + 4(x_{-1,-4} + x_{1,-4})) - (x_{2,8} + x_{-1,-8} + x_{0,8} + x_{1,-8})
\equiv -4(x_{-1,-8} + x_{1,-8}) + 4(x_{-1,-4} + x_{1,-4}) \equiv 0 \pmod{16},$$

and so by (21) we get

$$x_{-1,-4} + x_{1,-4} \equiv 0 \pmod{4}$$

because $x_{1,-8}$ is even.

The above together with (23) imply $4x_{2,1} \equiv 0 \pmod{8}$ because $x_{1,-4}$ is even and $x_{2,1}$ must be even. At last since $(z_1/2)$ is even it may be concluded that $x_{0,1}$ is even too.

Summarizing, we have proved that $x_{k,e}$ is even if $\operatorname{sgn} e = (-1)^k$. In order to prove that $x_{k,e}$ are also even in case $\operatorname{sgn} e \neq (-1)^k$, let us note that

$$2z_{2l} = z_{2l+1} + \tilde{z}_{2l+1} \,, \tag{24}$$

where \tilde{z}_{2l+1} comes into z_{2l+1} by substituting $x_{k,1}$ (resp. $x_{k,-4}$, $x_{k,8}$ or $x_{k,-8}$) instead of $x_{k,-4}$ (resp. $x_{k,1}$, $x_{k,-8}$ or $x_{k,8}$). We have

$$2^{13} | z_{2l}, z_{2l+1},$$

and so

$$2^{13} \mid \tilde{z}_{2l+1}$$
.

Thus, by the same reasoning as in the case of $\operatorname{sgn} e = (-1)^k$ we get $2|x_{k,e}$ in the other case.

2. Let $\delta = 3$.

In this case we shall prove that c(L) = 9. First, we shall show that $c(L) \ge 9$. Indeed, putting (for example)

$$x_{-1,-4} = -x_{-1,-8} = a_{-1},$$
 $x_{0,1} = -x_{0,8} = a_0,$
 $x_{1,-4} = -x_{1,-8} = a_1,$
 $x_{2,1} = -x_{2,8} = a_2,$

and

$$x_{k,1} = -x_{k,-4}, \quad x_{k,8} = -x_{k,-8} \ (k \in L),$$

where $a_k := a_k(L)$, $k \in K$, $a_k = 0$, if $k \notin L$ and the remaining a_k are defined by the following:

$$a_{-1} = 1$$
, $a_0 = -2$, $a_1 = -15$, if $L = \{-1, 0, 1\}$, $a_{-1} = 2$, $a_0 = -19$, $a_2 = 225$, if $L = \{-1, 0, 2\}$, $a_{-1} = 1$, $a_1 = -19$, $a_2 = -30$, if $L = \{-1, 1, 2\}$, $a_0 = -1$, $a_1 = 2$, $a_2 = 15$, if $L = \{0, 1, 2\}$,

we shall prove that $z_n \equiv 0 \pmod{2^9}$, if $n \geq 0$. In fact, in all these cases we have $z_1 = z_{2n} = 0$, $n \geq 0$. Moreover, by (13) we get

$$z_3 = 4(27a_{-1} - 9a_0 + 3a_1 - a_2)$$

and so $z_3 = 0$, as easy to check. Thus in order to prove that $z_{2l+1} \equiv 0 \pmod{2^9}$ for $2 \le l \le 7$, it suffices to show that $t_l \equiv 0 \pmod{2^9}$ for $1 \le l \le 6$.

Indeed, by (14) we get

$$t_l = 2^{l+4}(-2l^3 + l^2 + l + 2) + 2^{2l+4}(3l - 4),$$

if $2 \notin L$,

$$t_l = 2^{l+4}(-4l^3 - 13l^2 + 17l + 26) + 2^{2l+4}(6l+7),$$

if $1 \notin L$,

$$t_l = 2^{l+4}(-2l^3 + 3l^2 - l + 6) + 2^{2l+4}3(l-2),$$

if $0 \notin L$,

$$t_l = 2^{l+4}(-l^2 + l - 2) + 2^{2l+4}$$

if $-1 \notin L$.

Therefore in all these cases we have $t_l \equiv 0 \pmod{2^9}$, if $l \geq 4$. Furthermore, an easy computation shows that $t_l = 0$, if $l \leq 3$.

In order to prove that c(L) = 9, suppose, contrary to our claim, that $c(L) \ge 10$, i.e., $z_n \equiv 0 \pmod{2^{10}}$, if $n \ge 0$. Then we shall prove that all the $x_{k,e}$ must be even. In view of (24), it suffices, similarly as in case L = K, to check it for $k \in L$, $e \in \mathcal{T}_8$ satisfying $\operatorname{sgn} e = (-1)^k$.

Since $t_l \equiv 0 \pmod{2^9}$, we can apply the congruence (15) modulo 2^{8-l} (instead of modulo 2^{11-l}). Then, by (14) we get the congruences

$$\gamma_l \equiv (8l^3 - 12l^2 - 34l - 13)x_{-1,-8} + (5 - 4l^2)x_{0,8} - (2l + 1)x_{1,-8} + 2^{l+1}((6l + 7)x_{-1,-4} + x_{1,-4}) \equiv 0 \pmod{2^{8-l}},$$

if $2 \notin L$,

$$\gamma_l \equiv x_{2,8} + (8l^3 - 12l^2 - 34l - 13)x_{-1,-8} + (5 - 4l^2)x_{0,8} + 2^{l+1}(6l+7)x_{-1,-4} \equiv 0 \pmod{2^{8-l}},$$

if $1 \notin L$,

$$\gamma_l = x_{2,8} + (8l^3 - 12l^2 - 34l - 13)x_{-1,-8} - (2l+1)x_{1,-8} + 2^{l+1}((6l+7)x_{-1,-4} + x_{1,-4}) \equiv 0 \pmod{2^{8-l}},$$

if $0 \notin L$,

$$\gamma_l = x_{2,8} + (5 - 4l^2)x_{0,8} - (2l + 1)x_{1,-8} + 2^{l+1}x_{1,-4} \equiv 0 \pmod{2^{8-l}},$$

if $-1 \notin L$.

Regarding the case $2 \notin L$. Then we have:

$$\begin{split} \gamma_1 &\equiv 52x_{-1,-4} - 51x_{-1,-8} + x_{0,8} + 4x_{1,-4} - 3x_{1,-8} \equiv 0 \pmod{128} \,, \\ \gamma_2 &\equiv 24x_{-1,-4} - x_{-1,-8} - 11x_{0,8} + 8x_{1,-4} - 5x_{1,-8} \equiv 0 \pmod{64} \,, \\ \gamma_3 &\equiv 16x_{-1,-4} - 7x_{-1,-8} + x_{0,8} + 16x_{1,-4} - 7x_{1,-8} \equiv 0 \pmod{32} \,, \\ \gamma_4 &\equiv 11x_{-1,-8} + 5x_{0,8} - 9x_{1,-8} \equiv 0 \pmod{16} \,, \\ \gamma_5 &\equiv 5x_{-1,-8} + x_{0,8} - 3x_{1,-8} \equiv 0 \pmod{8} \,, \\ \gamma_6 &\equiv -x_{-1,-8} + x_{0,8} - x_{1,-8} \equiv 0 \pmod{4} \,. \end{split}$$

Therefore, we get

$$0 \equiv \gamma_1 - \gamma_5 \equiv 4x_{-1,-4} + 4x_{1,-4} \pmod{8},$$

and so $x_{-1,-4} + x_{1,-4}$ must be even.

Consequently, we obtain

$$0 \equiv \gamma_2 - \gamma_4 \equiv 4(x_{-1,-8} + x_{1,-8}) \pmod{16},$$

i.e.,

$$x_{-1,-8} + x_{1,-8} \equiv 0 \pmod{4}. \tag{25}$$

Hence we get

$$0 \equiv \gamma_6 + x_{-1,-8} + x_{1,-8} \equiv x_{0,8} \pmod{4},$$

and consequently

$$0 \equiv \gamma_4 + \gamma_5 \equiv 4x_{1,-8} \pmod{8}$$
.

Hence and from (25), $x_{1,-8}$ and $x_{-1,-8}$ must be even. On other hand, by (13) we find that

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2(x_{-1,-4} - x_{1,-4}) \pmod{8}$$

because $x_{0,8}$ is divisible by 4, and so

$$x_{-1,-4} - x_{1,-4} \equiv 0 \pmod{4}. \tag{26}$$

Thus, by $4|x_{0,8}$ and $2|x_{-1,-8}$ we get

$$0 \equiv \gamma_1 + \gamma_3 - 2\gamma_2 \equiv 4(x_{-1,-4} - x_{1,-4}) \equiv 0 \pmod{16},$$

which together with (26) imply $2x_{-1,-4} \equiv 0 \pmod{4}$ and consequently $x_{-1,-4}, x_{1,-4}$ must be even.

Finally, since $(z_1/2)$ is even $x_{0,1}$ must be even and so all the $x_{k,e}$ are even. Contradiction.

Regarding the case $1 \notin L$. Then we have:

$$\begin{split} \gamma_1 &\equiv 52x_{-1,-4} - 51x_{-1,-8} + x_{0,8} + x_{2,8} \equiv 0 \; (\text{mod } 128) \,, \\ \gamma_2 &\equiv 24x_{-1,-4} - x_{-1,-8} - 11x_{0,8} + x_{2,8} \equiv 0 \; (\text{mod } 64) \,, \\ \gamma_3 &\equiv 16x_{-1,-4} - 7x_{-1,-8} + x_{0,8} + x_{2,8} \equiv 0 \; (\text{mod } 32) \,, \\ \gamma_4 &\equiv -5x_{-1,-8} + 5x_{0,8} + x_{2,8} \equiv 0 \; (\text{mod } 16) \,, \\ \gamma_5 &\equiv -3x_{-1,-8} + x_{0,8} + x_{2,8} \equiv 0 \; (\text{mod } 8) \,, \\ \gamma_6 &\equiv -x_{-1,-8} + x_{0,8} + x_{2,8} \equiv 0 \; (\text{mod } 4) \,. \end{split}$$

Therefore, we get

$$0 \equiv \gamma_1 - \gamma_5 \equiv 4x_{-1,-4} \pmod{8},$$

and so $x_{-1,-4}$ must be even.

Furthermore, we get

$$0 \equiv \gamma_2 - \gamma_4 \equiv 4x_{-1,-8} \pmod{16}$$
,

and consequently $x_{-1,-8} \equiv 0 \pmod{4}$, which implies

$$0 \equiv \gamma_4 - \gamma_5 \equiv 4x_{0,8} \pmod{8}.$$

Thus $x_{0,8}$ must be even and

$$0 \equiv \gamma_4 + \gamma_3 \equiv 6x_{0.8} + 2x_{2.8} \pmod{16}$$
,

which gives

$$0 \equiv \gamma_1 + \gamma_4 \equiv 4x_{-1,-4} \pmod{16}$$

because $x_{-1,-8}$ is even.

Consequently, we have $x_{-1,-4} \equiv 0 \pmod{4}$, which together with (13) yield

$$0 \equiv \gamma_1 - (z_3/4) \equiv 4x_{2,1} \pmod{8}$$
.

Thus $x_{2,1}$ and, by $2|(z_1/2)$, $x_{0,1}$ must be even. Summarizing, by the same reasoning as in the previous cases, all the $x_{k,e}$ are even. Contradiction.

Regarding the case $0 \notin L$. Then we have:

$$\begin{split} \gamma_1 &\equiv 52x_{-1,-4} - 51x_{-1,-8} + 4x_{1,-4} - 3x_{1,-8} + x_{2,8} \equiv 0 \pmod{128} \,, \\ \gamma_2 &\equiv 24x_{-1,-4} - x_{-1,-8} + 8x_{1,-4} - 5x_{1,-8} + x_{2,8} \equiv 0 \pmod{64} \,, \\ \gamma_3 &\equiv 16x_{-1,-4} + 9x_{-1,-8} + 16x_{1,-4} - 7x_{1,-8} + x_{2,8} \equiv 0 \pmod{32} \,, \\ \gamma_4 &\equiv 11x_{-1,-8} - 9x_{1,-8} + x_{2,8} \equiv 0 \pmod{16} \,, \\ \gamma_5 &\equiv -3x_{-1,-8} - 3x_{1,-8} + x_{2,8} \equiv 0 \pmod{8} \,, \\ \gamma_6 &\equiv -x_{-1,-8} - x_{1,-8} + x_{2,8} \equiv 0 \pmod{4} \,. \end{split}$$

Consequently, we get

$$0 \equiv \gamma_4 + \gamma_5 \equiv 4x_{1,-8} + 2x_{2,8} \pmod{8},$$

and so $x_{2,8}$ must be even. Next, we have

$$0 \equiv \gamma_1 - \gamma_5 \equiv 4(x_{-1,-4} + x_{1,-4}) \pmod{8},$$

and so $x_{-1,-4} + x_{1,-4}$ must be even, too.

Hence, since γ_6 , $x_{2,8}$ and $(z_1/2)$ are even, $x_{2,1}$ must be even and

$$0 \equiv \gamma_4 - \gamma_2 \equiv -4(x_{-1,-8} + x_{1,-8}) \pmod{16}.$$

Consequently, the congruence (25) in this case holds and $x_{2,8}$ must be even because $\gamma_6 \equiv 0 \pmod{4}$. Moreover, we get

$$0 \equiv \gamma_2 + \gamma_3 \equiv 4x_{1,-8} \pmod{8},$$

and so $x_{1,-8}$ must be even. Furthermore, since γ_6 and $x_{2,8}$ are even, $x_{-1,-8}$ must be even and, by (13), we deduce

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2(x_{-1,-4} - x_{1,-4}) \pmod{8}$$

because $x_{2,1}$ and $x_{2,8}$ are even. This implies the congruence (26) in this case. On the other hand, we have

$$0 \equiv \gamma_1 - \gamma_3 \equiv 4(x_{-1,-4} + x_{1,-4}) \pmod{16}$$
,

and so $x_{-1,-4}$ and $x_{1,-4}$ must be even because of (26).

Summarizing, by the same arguments as in the previous cases all the $x_{k,e}$ must be even. Contradiction.

Regarding the case $-1 \notin L$. Then we have:

$$\gamma_{1} \equiv x_{0,8} + 4x_{1,-4} - 3x_{1,-8} + x_{2,8} \equiv 0 \pmod{128},$$

$$\gamma_{2} \equiv -11x_{0,8} + 8x_{1,-4} - 5x_{1,-8} + x_{2,8} \equiv 0 \pmod{64},$$

$$\gamma_{3} \equiv x_{0,8} + 16x_{1,-4} - 7x_{1,-8} + x_{2,8} \equiv 0 \pmod{32},$$

$$\gamma_{4} \equiv 5x_{0,8} - 9x_{1,-8} + x_{2,8} \equiv 0 \pmod{16},$$

$$\gamma_{5} \equiv x_{0,8} - 3x_{1,-8} + x_{2,8} \equiv 0 \pmod{8},$$

$$\gamma_{6} \equiv x_{0,8} - x_{1,-8} + x_{2,8} \equiv 0 \pmod{4}.$$

Hence, we get

$$0 \equiv \gamma_1 - \gamma_5 \equiv 4x_{1,-4} \pmod{8},$$

and consequently $x_{1,-4}$ must be even. Furthermore, we obtain

$$0 \equiv \gamma_2 - \gamma_4 \equiv 4x_{1,-8} \pmod{16},$$

i.e., $x_{1,-8}$ is divisible by 4. Moreover, we find that

$$0 \equiv \gamma_3 - \gamma_4 \equiv 4x_{0.8} \pmod{8},$$

i.e., $x_{0,8}$, and next $x_{2,8}$ must be even (because γ_6 is even). On other hand, we have

$$0 \equiv \gamma_1 - \gamma_3 \equiv 4x_{1,-4} \pmod{16},$$

i.e., $x_{1,-4}$ is divisible by 4.

Hence we get

$$0 \equiv (z_3/4) - \gamma_1 \equiv 4x_{2,1} \equiv 0 \pmod{8}$$

because $x_{1,-8}$ is divisible by 4 and $x_{2,8}$ is even. Consequently, $x_{2,1}$ must be even. This completes the proof of the lemma in case $\delta = 3$.

3. Let $\delta = 2$.

In this case we shall prove that $c(L) = c_0$, where $c_0 = 5$ unless $L = \{-1, 1\}$ or $L = \{0, 2\}$, in which cases $c_0 = 6$.

First, we shall show that $c(L) \geq c_0$. Putting (for example)

$$x_{-1,-4} = x_{-1,-8} = b_{-1}$$
,
 $x_{0,1} = x_{0,8} = b_0$,
 $x_{1,-4} = x_{1,-8} = b_{-1}$,
 $x_{2,1} = x_{2,8} = b_2$,

and

$$x_{k,1} = -x_{k,-4}, \quad x_{k,8} = -x_{k,-8} \ (k \in L),$$

where $b_k := b_k(L)$, $k \in K$, $b_k = 0$, if $k \notin L$ and the remaining b_k are defined by the following:

$$b_k = -b_l = 1 \,,$$

if $L = \{k, l\}$, k < l, we shall prove that $z_n \equiv 0 \pmod{2^{c_0}}$, if $n \ge 0$.

Indeed, in all these cases we have $z_1 = z_{2n} = 0$, $n \ge 0$. Moreover, by (13) we have

$$z_3 = 36(b_{-1} + b_0 + b_1 + b_2),$$

and so $z_3 = 0$, as easy to check.

In order to prove that $z_{2l+1} \equiv 0 \pmod{2^{c_0}}$ for $l \geq 2$, it suffices to show that $t_l \equiv 0 \pmod{2^{c_0}}$ for $l \geq 1$. In fact, by (14) we get

$$t_l = 2^{l+4}(2l^3 - 3l^2 - 8l - 3) + 2^{2l+4}3(l+1)\,,$$
 if $L = \{-1, 1\},$
$$t_l = 2^{l+4}(1 - l^2)\,,$$
 if $L = \{0, 2\},$
$$t_l = 2^{l+3}(4l^3 - 4l^2 - 17l - 9) + 2^{2l+3}(6l + 7)\,,$$
 if $L = \{-1, 0\},$
$$t_l = 2^{l+3}(4l^3 - 6l^2 - 17l - 7) + 2^{2l+3}(6l + 7)\,,$$
 if $L = \{-1, 2\},$
$$t_l = -2^{l+3}(l+1) + 2^{2l+3}\,,$$
 if $L = \{1, 2\},$
$$t_l = 2^{l+3}(-2l^2 + l + 3) - 2^{2l+3}\,,$$

if
$$L = \{0, 1\}$$
.

In two the first cases we have $t_1=0$ and $2^6|t_l$, if $l\geq 2$. In the remaining cases it is easily seen that $2^5|t_l$, too. This gives $c(L)\geq c_0$. In order to prove that $c(L)\leq c_0$ let us suppose, contrary to our claim, that $c(L)\geq c_0+1$, i.e., $z_n\equiv 0\pmod{2^{c_0+1}}$, if $n\geq 0$. Then we shall prove that all the $x_{k,e}$ must be even. Again, it suffices to prove that $x_{k,e}$ are even in case $\operatorname{sgn} e=(-1)^k$.

Since $t_l \equiv 0 \pmod{2^{c_0+1}}$ we can use the congruence (15) modulo 2^{c_0-l-1} (instead of 2^{11-l}). Then, by (14) we get the congruences

$$\gamma_l \equiv (8l^3 - 12l^2 - 34l - 13)x_{-1,-8} - (2l+1)x_{1,-8} + 2^{l+1} ((6l+7)x_{-1,-4} + x_{1,-4}) \pmod{2^{5-l}},$$

if
$$L = \{-1, 1\},\$$

$$\gamma_l \equiv x_{2.8} + (5 - 4l^2)x_{0.8} \pmod{2^{5-l}}$$

if
$$L = \{0, 2\},\$$

$$\gamma_l \equiv (8l^3 - 12l^2 - 34l - 13)x_{-1,-8} + (5 - 4l^2)x_{0,8} + 2^{l+1}(6l + 7)x_{-1,-4} \pmod{2^{4-l}},$$

if
$$L = \{-1, 0\},\$$

$$\gamma_l \equiv x_{2,8} + (8l^3 - 12l^2 - 34l - 13)x_{-1,-8} + 2^{l+1}(6l+7)x_{-1,-4} \pmod{2^{4-l}},$$

if
$$L = \{-1, 2\},\$$

$$\gamma_l \equiv x_{2.8} - (2l+1)x_{1.-8} + 2^{l+1}x_{1.-4} \pmod{2^{4-l}}$$

if
$$L = \{1, 2\},\$$

$$\gamma_l \equiv (5 - 4l^2)x_{0,8} - (2l + 1)x_{1,-8} + 2^{l+1}x_{1,-4} \pmod{2^{4-l}},$$

if
$$L = \{0, 1\}$$
.

Regarding the case $L = \{-1, 1\}$. Then we have:

$$\gamma_1 \equiv 4x_{-1,-4} - 3x_{-1,-8} + 4x_{1,-4} - 3x_{1,-8} \equiv 0 \pmod{16},$$

$$\gamma_2 \equiv -x_{-1,-8} + 3x_{1,-8} \equiv 0 \pmod{8},$$

$$\gamma_3 \equiv -3x_{-1,-8} - 3x_{1,-8} \equiv 0 \pmod{4},$$

and

$$(z_1/2) \equiv x_{-1,-4} + x_{-1,-8} + x_{1,-4} + x_{1,-8} \equiv 0 \pmod{64},$$

$$(z_3/4) \equiv 2x_{-1,-4} - 9x_{-1,-8} + 6x_{1,-4} + 3x_{1,-8} \equiv 0 \pmod{32}.$$

Hence we get

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2(x_{-1,-4} - x_{1,-4}) \pmod{8},$$

i.e., $x_{-1,-4} - x_{1,-4} \equiv 0 \pmod{4}$, which implies

$$0 \equiv \gamma_1 + \gamma_2 \equiv 4x_{-1,-8} \pmod{8}$$
.

Consequently, $x_{-1,-8}$ must be even, and so $x_{1,-8}$ must be even too because $(z_1/2)$ is even. Moreover, we have

$$0 \equiv (z_1/2) - \gamma_3 - (x_{-1,-4} - x_{1,-4}) \equiv 2x_{1,-4} \pmod{4},$$

and so $x_{1,-4} \equiv x_{-1,-4} \equiv 0 \pmod{2}$.

Regarding the case $L = \{0, 2\}$. Then we have:

$$\gamma_1 \equiv x_{0,8} + x_{2,8} \pmod{16},$$

$$\gamma_2 \equiv 5x_{0,8} + x_{2,8} \pmod{8},$$

$$(z_3/4) \equiv 9x_{0,8} + 5x_{2,8} + 4x_{2,1} \pmod{32}.$$

Therefore we obtain

$$0 \equiv \gamma_2 - \gamma_1 \equiv 4x_{0,8} \pmod{8},$$

i.e., $x_{0,8}$ and $x_{2,8}$ must be even because γ_1 is even. Consequently, since γ_1 is divisible by 8 we find that $0 \equiv (z_3/4) \equiv 4x_{2,1} \pmod{8}$, i.e., $x_{2,1}$ must be even.

Regarding the case $L = \{-1, 0\}$. Then we have:

$$\gamma_1 \equiv 4x_{-1,-4} - 3x_{-1,-8} + x_{0,8} \equiv 0 \pmod{8},$$

$$\gamma_2 \equiv -x_{-1,-8} + x_{0,8} \equiv 0 \pmod{4},$$

$$(z_3/4) \equiv 2x_{-1,-4} - 9x_{-1,-8} + 9x_{0,8} \equiv 0 \pmod{16}.$$

Thus we get

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2x_{-1,-4} \pmod{4},$$

i.e., $x_{-1,-4}$ must be even.

On the other hand, we have

$$0 \equiv \gamma_1 + \gamma_2 \equiv 2x_{0,8} \pmod{4},$$

i.e., $x_{0,8}$ must be even, and so $x_{-1,-8}$ must be even too because γ_2 is even. Regarding the case $L = \{-1,2\}$. Then we have:

$$\gamma_1 \equiv 4x_{-1,-4} + 5x_{-1,-8} + x_{2,8} \equiv 0 \pmod{8},$$

$$\gamma_2 \equiv -x_{-1,-8} + x_{2,8} \equiv 0 \pmod{4},$$

$$(z_3/4) \equiv 2x_{-1,-4} - 9x_{-1,-8} + 4x_{2,1} + 5x_{2,8} \equiv 0 \pmod{16}.$$

Hence we get

$$0 \equiv \gamma_1 - \gamma_2 \equiv 2x_{-1,-8} \pmod{4},$$

i.e., $x_{-1,-8}$ and $x_{2,8}$ must be even because γ_2 is even. Consequently, we have

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2x_{-1,-4} \pmod{4}$$

i.e., $x_{-1,-4}$ must be even.

Regarding the case $L = \{1, 2\}$. Then we have:

$$\gamma_1 \equiv 4x_{1,-4} - 3x_{1,-8} + x_{2,8} \equiv 0 \pmod{8},$$

$$\gamma_2 \equiv -x_{1,-8} + x_{2,8} \equiv 0 \pmod{4},$$

$$(z_3/4) \equiv 6x_{1,-4} + 3x_{1,-8} + 5x_{2,8} + 4x_{2,1} \equiv 0 \pmod{16}.$$

Thus we have

$$0 \equiv \gamma_1 + \gamma_2 \equiv 2x_{2,8} \pmod{4},$$

i.e., $x_{2,8}$ and $x_{1,-8}$ must be even because γ_2 is even. Next, we have

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2x_{1,-4} \pmod{4}$$

and so $x_{1,-4}$ must be even. To finish the proof of the lemma in this case it remains to prove that $x_{2,1}$ is even. But it follows easily because $(z_1/2)$ is even.

Regarding the case $L = \{0, 1\}$. This case was considered in [2] and [5]. Then we have:

$$\gamma_1 \equiv x_{0,8} + 4x_{1,-4} - 3x_{1,-8} \equiv 0 \pmod{8}$$

$$\gamma_2 \equiv x_{0,8} - x_{1,-8} \equiv 0 \pmod{4},$$

$$(z_3/4) \equiv 9x_{0,8} + 6x_{1,-4} + 3x_{1,-8} \equiv 0 \pmod{16}.$$

Hence we get

$$0 \equiv \gamma_1 + \gamma_2 \equiv 2x_{0,8} \pmod{4},$$

i.e., $x_{0,8}$ and $x_{1,-8}$ must be even because γ_2 is even. Moreover, we have

$$0 \equiv (z_3/4) - \gamma_2 \equiv 2x_{1,-4} \pmod{4}$$

i.e., $x_{1,-4}$ must be even, which completes the proof of the lemma in case $\delta = 2$. 4. Let $\delta = 1$.

In this case we shall prove that c(L) = 2. First, we shall show that $c(L) \ge 2$. Let $L = \{k\}$. Set

$$x_{k,1} = -x_{k,8} = 1$$
,

if k is even and

$$x_{k,-4} = -x_{k,-8} = 1$$

if k is odd, and

$$x_{k,1} = -x_{k,-4}$$
, $x_{k,8} = -x_{k,-8}$,

and $x_{l,e} = 0$, if $l \in K$, $l \neq k$. For any $k \in K$ we have $z_1 = z_{2n} = 0$, $n \geq 0$. Moreover, by definition $4|z_{2l+1}$, if $l \geq 0$. Thus we have proved that $c(L) \geq 2$. Let us suppose, contrary to our claim, that $c(L) \geq 3$, i.e., that $8|z_n$, if $n \geq 0$. We must prove that all the $x_{k,e}$ are even. Again, it suffices to prove it in case $\operatorname{sgn} e = (-1)^k$. By (13) and $4|(z_1/2)$, we get

$$x_{k,1} + x_{k,8} \equiv x_{k,-4} + x_{k,-8} \equiv 0 \pmod{4}$$
,

and since $(z_3/4)$ is even, $x_{k,e}$ satisfying sgn $e = (-1)^k$ must be even. Consequently by the same reasoning as previously all the $x_{k,e}$ $(k \in L, e \in \mathcal{T}_8)$ must be even and the lemma is proved completely.

4 Proof of Theorem

By Lemma 2 we have

 $\Lambda_2(x,m)$

$$= (-1)^{r} \sum_{\substack{k \in K, \\ e \in \mathcal{T}_{8}}} (-1)^{k+1} (-1)^{k+1} x_{k,e} \sum_{d \in \mathcal{T}_{m}} \Psi(|d|) \mu(|d|) g(\chi_{d}) |d|^{-1} \sum_{a=1}^{m} \chi_{d}(a) \mathcal{L}_{k,e}(\zeta_{m}^{a})$$

$$= (-1)^{r} \sum_{a=1}^{m} \sum_{\substack{k \in K, \\ e \in \mathcal{T}_{8}}} x_{k,e} \mathcal{L}_{k,e}(\zeta_{m}^{a}) \sum_{d \in \mathcal{T}_{m}} \Psi(|d|) \mu(|d|) g(\chi_{d}) |d|^{-1} \chi_{d}(a)$$

$$= (-1)^{r} \sum_{a=1}^{m} \left(\sum_{\substack{k \in K, \\ e \in \mathcal{T}_{8}}} x_{k,e} \mathcal{L}_{k,e}(\zeta_{m}^{a}) \right) \cdot \left(\prod_{p|m} \left(1 - \Psi(p) g(\chi_{p^{*}}) p^{-1} \chi_{p^{*}}(a) \right) \right),$$

where $p^* = (-1)^{(p-1)/2}p$. Therefore it follows from Lemma 4 that the numbers $\Lambda_2(x, m)$ are 2-adic integers and since

$$\Psi(p)g(\chi_{p^*})|p|^{-1}\chi_{p^*}(a)-1 \equiv 1+\zeta_p+\cdots \zeta_p^{p-1} \equiv 0 \,(\text{mod }2)$$

by Lemma 5 they are divisible by $2^{r+\lambda}$. The latter lemma implies the rest of the theorem immediately.

REMARK. A similar proof works for the numbers

$$L_2^{[m,\theta]}(k,\chi\omega^{1-k}) = \prod_{p|m,\ p-\text{prime}} \left(1 - \chi(p)\theta(p)p^{1-k}\right) L_2(k,\chi\omega^{1-k}),$$

where $\theta: \mathbb{N} \to \mathbb{C}_2$ is a multiplicative function (satisfying $\theta(s) \equiv 1 \pmod{2}$ for s|m) instead of the numbers $L_2^{[m]}(k, \chi \omega^{1-k})$.

5 Applications

For $k \leq 0$, by Theorem 5.11 [9] we get

$$L_p(k, \chi \omega^{1-k}) = -(1 - \chi(p)p^{-k}) \frac{B_{1-k,\chi}}{1-k}.$$

Therefore, for k = -1 and 0 we have

$$L_p(-1, \chi\omega^2) = -(1 - \chi(p)p)\frac{B_{2,\chi}}{2},$$

and

$$L_p(0,\chi\omega) = -(1-\chi(p))B_{1,\chi}.$$

On the other hand, the Mazur-Wiles-Kolster-Greither theorem (earlier the Birch-Tate conjecture) for real quadratic fields F states

$$\eta k_2(D) = B_{2,\chi_D},$$

where D is the discriminant of F, $k_2(D) := |K_2(O_F)|$ and O_F (resp. K_2) denotes the integers in F (resp. the Milnor functor). Here $\eta(5) := 1/5$, $\eta(8) := 1/2$ and $\eta(D) := 1$, if D > 8. If D = 1, write $k_2(D) = 2$ and $\eta(D) = 1/12$. Moreover the Dirichlet class number formulas for imaginary quadratic fields F state

$$\xi h(D) = -B_{1,\chi_D},$$

where h(D) stands for the class number of F, and $\xi(-3) := 1/3$, $\xi(-4) := 1/2$ and $\xi(D) := 1$, if D < -4.

The above formulas give (for $\chi = \chi_D$)

$$L_p(-1,\chi_D\omega^2) = -\frac{1}{2}(1-\chi_D(p)p)\eta k_2(D), \qquad (27)$$

if $D \geq 5$ and

$$L_p(0,\chi\omega) = (1-\chi(p))\xi h(D). \tag{28}$$

if $D \leq -3$.

If k=1 and χ_D is an even quadratic character then, by the Leopoldt formulas we obtain

$$L_p(1,\chi_D) = 2(1 - \chi(p)p^{-1})D^{-1/2}h(D)\log_p \varepsilon(D), \qquad (29)$$

where $\varepsilon(D)$ denotes the fundamental unit of a quadratic field with the discriminant D (see Theorems 5.18 and 5.24 [9]).

As usual the complex and p-adic formulas "differ by an Euler factor". Indeed, the corresponding complex formulas are of the form

$$L(-1,\chi_D) = -\frac{1}{2}\eta k_2(D),$$

if $D \geq 5$,

$$L(0,\chi_D) = \xi h(D),$$

if $D \leq -3$ (for both the formulas see Theorem 4.2 [9]), and

$$L(1,\chi_D) = 2D^{-1/2}h(D)\log\varepsilon(D),$$

if $D \geq 5$ (see Chapter 4 [9]).

If $D \leq -3$ then the modified complex Lichtenbaum conjecture states

$$L(2,\chi_D) = 2R_2|D|^{-3/2}k_2(D),$$

where $R_2 := R_2(D)$ denotes the second Borel regulator of the corresponding quadratic field (see Notes and comments to §2, p. 199, [4]). Consequently, by analogy the *p*-adic Lichtenbaum conjecture should read

$$L_{\nu}(2,\chi_{D}\omega^{-1}) = 2(1-\chi_{D}(p)p^{-2})R_{2,\nu}|D|^{-3/2}k_{2}(D), \qquad (30)$$

where $R_{2,p} := R_{2,p}(D)$ denotes the second p-adic Borel regulator of the corresponding quadratic field.

For any fundamental discriminant, let

$$H(D) = \begin{cases} \xi(D)h(D), & \text{if } D \leq -3, \\ D^{-1/2}h(D)\log_{2}\varepsilon(D), & \text{if } D \geq 5. \end{cases}$$

$$K_{2}(D) = \begin{cases} \eta(D)k_{2}(D), & \text{if } D \geq 5, \\ |D|^{-3/2}h(D)R_{2,2}(D)k_{2}(D), & \text{if } D \leq -3. \end{cases}$$

Then via the p-adic Lichtenbaum conjecture for imaginary quadratic fields and by (27), (28), (29) and (30) (for p = 2), we can rewrite the main theorem in the form:

THEOREM. Let m > 1 be a square-free odd natural number having r prime factors and let $\Psi \colon \mathbb{N} \to \mathbb{C}_2$ be a multiplicative function such that $\Psi(s) \equiv 1 \pmod{2}$, if $s \mid m$. Set $K = \{-1, 0, 1, 2\}$. Let L be a non-empty subset of K having δ elements and let $\{x_{k,e}\}_{k \in K, e \in \mathcal{T}_8}$ be a sequence of 2-adic integers defined on L. Set

$$\Lambda \,:=\, \Lambda_{-1} \,+\, \Lambda_{0} \,+\, \Lambda_{1} \,+\, \Lambda_{2} \,+\, \Lambda_{-1}^{'} \,+\, \Lambda_{1}^{'}\,,$$

where

$$\Lambda_{-1} = -\frac{1}{2} \sum_{e \in \mathcal{T}_8} x_{-1,e} \sum_{\substack{d \in \mathcal{T}_m, \\ 1 \neq ed > 0}} \Psi(|d|) \prod_{\substack{p \mid m, \\ p = \text{prime}}} (1 - \chi_{ed}(p)p^2) (1 - \chi_{ed}(2)2) K_2(ed),$$

$$\Lambda_0 = \sum_{e \in \mathcal{T}_8} x_{0,e} \sum_{\substack{d \in \mathcal{T}_m, \\ ed \leq 0}} \Psi(|d|) \prod_{\substack{p \mid m, \\ p = \text{prime}}} \left(1 - \chi_{ed}(p)p\right) \left(1 - \chi_{ed}(2)\right) H(ed),$$

$$\Lambda_1 = \sum_{e \in \mathcal{T}_8} x_{1,e} \sum_{\substack{d \in \mathcal{T}_m, \\ 1 \neq ed > 0}} \Psi(|d|) \prod_{\substack{p \mid m, \\ p - \text{prime}}} (1 - \chi_{ed}(p)) (2 - \chi_{ed}(2)) H(ed),$$

$$\Lambda_{2} = \frac{1}{2} \sum_{e \in \mathcal{T}_{8}} x_{2,e} \sum_{\substack{d \in \mathcal{T}_{m}, \\ ed < 0}} \Psi(|d|) \prod_{\substack{p | m, \\ p - \text{prime}}} (1 - \chi_{ed}(p)p^{-1}) (4 - \chi_{ed}(2)) K_{2}(ed),$$

and

$$\Lambda'_{-1} = \frac{1}{12} x_{-1,1} \prod_{\substack{p \mid m, \\ p = \text{prime}}} (1 - p^2),$$

$$\Lambda_{1}^{'} = \begin{cases} (x_{1,1} \log_{2} m)/2, & \text{if } m \text{ is a prime number,} \\ 0, & \text{otherwise.} \end{cases}$$

Assume in case $2 \in L$ that the 2-adic Lichtenbaum conjecture for imaginary quadratic fields holds. Then the number Λ is a 2-adic integer divisible by $2^{r+\lambda}$, where λ has the same meaning as in the main theorem.

REMARK. The above theorem produces many new congruences between the orders of K_2 -groups of the integers and class numbers of appropriate quadratic fields modulo higher powers of 2. We shall deal with such congruences in another paper.

References

- [1] R.F. Coleman, Dilogarithms, Regulators and p-adic L-functions, Invent. Math., 69 (1982), 171-208.
- [2] G. Gras, Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith., 52 (1989), 147-162.
- [3] K. Hardy and K.S. Williams, A congruence relating the class numbers of complex quadratic fields, Acta Arith., 47 (1986), 263-276.

- [4] D. Ramakrishnan, Regulators, Algebraic Cycles, and Values of L-Functions, AMS Contemp. Math., 83 (1989), 183-310.
- [5] T. Uehara, On linear congruences between class numbers of quadratic fields, J. Number Theory, **34** (1990), 362–392.
- [6] J. Urbanowicz, Connections between $B_{2,\chi}$ for even quadratic Dirichlet characters χ and class numbers of appropriate imaginary quadratic fields, II, Compositio Math., 75 (1990), 271–285, Corrigendum: ibidem 75 (1991), 119–125.
- [7] J. Szmidt and J. Urbanowicz, Some new congruences for generalized Bernoulli numbers of higher orders, preprint FI94-LF05 of the Fields Institute for Research in Math. Sciences, 1994.
- [8] J. Szmidt, J. Urbanowicz and D. Zagier, Congruences among generalized Bernoulli numbers, Acta Arithmetica (to appear).
- [9] L.C. Washington, Introduction to cyclotomic fields, Springer Verlag, New York Inc., 1982.

Institute of Mathematics Polish Academy of Sciences ul. Śniadeckich 8 00-950 Warszawa, Poland