ON THE CHARACTER RING
OF A FINITE GROUP

by

Cédric Bonnafé

Abstract. — Let G be a finite group and let k be a sufficiently large finite field. Let $R(G)$ denote the character ring of G (i.e. the Grothendieck ring of the category of $\mathbb{C}G$-modules). We study the structure and the representations of the commutative algebra $k \otimes \mathbb{Z} R(G)$.

Contents

Introduction ... 5
1. Preliminaries .. 6
2. Modules for $k R(G)$ and $k R(kG)$ 7
3. Principal block ... 11
4. Some invariants ... 13
5. The symmetric group .. 15
6. Dihedral groups ... 17
7. Some tables .. 19
References ... 23

Introduction

Let G be a finite group. We denote by $R(G)$ the Grothendieck ring of the category of $\mathbb{C}G$-modules (it is usually called the character ring of G). It is a natural question to try to recover properties of G from the knowledge of $R(G)$. It is clear that two finite groups having the same character table have the same Grothendieck rings and it is a Theorem of Saksonov [S] that the converse also holds. So the problem is reduced to an intensively studied question in character theory: recover properties of the group through properties of its character table.

In this paper, we study the k-algebra $k R(G) = k \otimes \mathbb{Z} R(G)$, where k is a splitting field for G of positive characteristic p. It is clear that the knowledge of $k R(G)$ is a much weaker information than the knowledge of $R(G)$. The aim of this paper is to gather results on the representation theory of the algebra $k R(G)$: although most of the results are certainly well-known, we have not found any general treatment of these questions. The blocks of $k R(G)$ are local algebras which are parametrized by conjugacy classes of p-regular elements of G. So the simple $k R(G)$-modules are parametrized by conjugacy classes of p-regular elements of G. Moreover, the dimension of the projective cover of the simple module associated to the conjugacy class of the p-regular element $g \in G$ is equal to the number of conjugacy classes of p-elements in the centralizer $C_G(g)$. We also prove that the radical of $k R(G)$ is the kernel of the decomposition map $k R(G) \to k \otimes \mathbb{Z} R(kG)$, where $R(kG)$ is the Grothendieck ring of the category of kG-modules (i.e. the ring of virtual Brauer characters of G).

2000 Mathematics Subject Classification. — primary 19A31; secondary 19A22.
We prove that the block of $kR(G)$ associated to the p'-element g is isomorphic to the block of $kR(C_G(g))$ associated to 1 (such a block is called the principal block). This shows that the study of blocks of $kR(G)$ is reduced to the study of principal blocks. We also show that the principal block of $kR(G)$ is isomorphic to the principal block of $kR(H)$ whenever H is a subgroup of p'-index which controls the fusion of p-elements or whenever H is the quotient of G by a normal p'-subgroup.

We also introduce several numerical invariants (Loewy length, dimension of Ext-groups) that are partly related to the structure of G. These numerical invariants are computed completely whenever G is the symmetric group S_n (this relies on previous work of the author: the descending Loewy series of $kR(S_n)$ was entirely computed in [B]) or G is a dihedral group and $p = 2$. We also provide tables for these invariants for small groups (alternating groups A_n with $n \leq 12$, some small simple groups, groups $PSL(2,q)$ with q a prime power ≤ 27, exceptional finite Coxeter groups).

Notation - Let O be a Dedekind domain of characteristic zero, let p be a maximal ideal of O, let K be the fraction field of O and let $k = O/p$. Let O_p be the localization of O at p: then $k = O_p/pO_p$. If $x \in O_p$, we denote by \bar{x} its image in $O_p/pO_p = k$. Throughout this paper, we assume that k has characteristic $p > 0$ and that K and k are splitting fields for all the finite groups involved in this paper. If n is a non-zero natural number, n_p denotes the largest divisor of n prime to p and we set $n_p = n/n_p$.

If F is a field and if A is a finite dimensional F-algebra, we denote by $\mathcal{R}(A)$ its Grothendieck group. If M is an A-module, the radical of M is denoted by $\text{Rad}M$ and the class of M in $\mathcal{R}(A)$ is denoted by $[M]$. If S is a simple A-module, we denote by $[M : S]$ the multiplicity of S as a chief factor of a Jordan-Hölder series of M. The set of irreducible characters of A is denoted by $\text{Irr}A$.

We fix all along this paper a finite group G. For simplification, we set $\mathcal{R}(G) = \mathcal{R}(KG)$ and $\text{Irr} G = \text{Irr} KG$ (recall that K is a splitting field for G). The abelian group $\mathcal{R}(G)$ is endowed with a structure of ring induced by the tensor product. If $\chi \in \mathcal{R}(G)$, we denote by χ^* its dual (as a class function on G, we have $\chi^*(g) = \chi(g^{-1})$ for any $g \in G$). If R is any commutative ring, we denote by $\text{Class}_{R}(G)$ the space of class functions $G \to R$ and we set $\mathcal{R}(G) = R \otimes \mathcal{R}(G)$. If X is a subset of G, we denote by $1_X^G : G \to R$ the characteristic function of X. If R is a subring of K, then we simply write $1_X = 1_X^K$. Note that 1_G is the trivial character of G. If $f, f' \in \text{Class}_{K}(G)$, we set

$$\langle f, f' \rangle_G = \frac{1}{|G|} \sum_{g \in G} f(g^{-1})f'(g).$$

Then $\text{Irr} G$ is an orthonormal basis of $\text{Class}_{K}(G)$. We shall identify $\mathcal{R}(G)$ with the sub-\mathbb{Z}-module (or sub-\mathbb{Z}-algebra) of $\text{Class}_{K}(G)$ generated by $\text{Irr} G$, and $K \mathcal{R}(G)$ with $\text{Class}_{K}(G)$. If $f \in O_p \mathcal{R}(G)$, we denote by f its image in $k \mathcal{R}(G)$.

If g and h are two elements of G, we write $g \sim h$ (or $g \sim_G h$ if we need to emphasize the group) if they are conjugate in G. We denote by g_p (resp. g'_p) the p-part (resp. the p'-part) of g. If X is a subset of G, we set $X_{p'} = \{g_{p'} \mid g \in X\}$ and $X_p = \{g_p \mid g \in X\}$. If moreover X is closed under conjugacy, the set of conjugacy classes contained in X is denoted by X/\sim. In this case, $1_X^G \in \text{Class}_{R}(G)$. The centre of G is denoted by $Z(G)$.

Remark - We have recently discovered that some of the questions investigated in this paper were already studied by M. Deiml in his Ph.D. Thesis [D, Chapter 3]. More precisely, most of the results of our Section 2 were already proved by M. Deiml.

1. Preliminaries

1.A. Symmetrizing form. — Let

$$\tau_G : \mathcal{R}(G) \longrightarrow \mathbb{Z}$$

$$\chi \quad \mapsto \quad \langle \chi, 1_G \rangle_G$$
denote the canonical symmetrizing form on $R(G)$. The dual basis of $\text{Irr} G$ is $(\chi^*)_{\chi \in \text{Irr} G}$. It is then readily seen that $(R(G), \text{Irr} G)$ is a based ring (in the sense of Lusztig [L, Page 236]).

If R is any ring, we denote by $\tau^R_G : R R(G) \to R$ the symmetrizing form $\text{Id}_R \otimes \tau G$.

1.B. Translation by the centre. — If $\chi \in \text{Irr} G$, we denote by $\omega : Z(G) \to \mathbb{O}^\times$ the linear character such that $\chi(z g) = \omega(z) \chi(g)$ for all $z \in Z(G)$ and $g \in G$. If $z \in Z(G)$, we denote by $t_z : K R(G) \to K R(G)$ the linear map defined by $(t_z f)(g) = f(z g)$ for all $f \in K R(G)$ and $g \in G$.

It is clear that $t_z t_{z'} = t_z \circ t_{z'}$ for all z, $z' \in Z(G)$ and that t_z is an automorphism of algebra.

Moreover,

$$t_z \chi = \omega(z) \chi$$

for every $\chi \in \text{Irr} G$. Therefore, t_z is an isometry which stabilizes $\mathcal{O} R(G)$. If R is a subring of K such that $O \subset R \subset K$, we still denote by $t_z : R R(G) \to R R(G)$ the restriction of t_z. Let $\ell_z = \text{Id}_k \otimes t_z : k R(G) \to k R(G)$.

This is again an automorphism of k-algebra. If z is a p-element, then $t_z = \text{Id}_{k R(G)}$.

1.C. Restriction. — If $\pi : H \to G$ is a morphism of groups, then the restriction through π induces a morphism of rings $\text{Res}_\pi : R R(G) \to R R(H)$. If R is a subring of K, we still denote by $\text{Res}_\pi : R R(G) \to R R(H)$ the morphism $\text{Id}_R \otimes \text{Res}_\pi$. We denote by $\overline{\text{Res}_\pi} : k R(G) \to k R(H)$ the reduction modulo p of $\text{Res}_\pi : \mathcal{O} R(G) \to \mathcal{O} R(H)$. Recall that, if H is a subgroup of G and π is the canonical injection, then Res_π is just Res_H^G. In this case, $\overline{\text{Res}_\pi}$ will be denoted by $\overline{\text{Res}_H}$. Note the following fact:

(1.1) If π is surjective, then $\overline{\text{Res}_\pi}$ is injective.

Proof of 1.1. — Indeed, if π is surjective, then $\text{Res}_\pi : R R(G) \to R R(H)$ is injective and its image is a direct summand of $R R(H)$. \hfill \square

1.D. Radical. — First, note that, since $k R(G)$ is commutative, we have

(1.2) $\text{Rad} k R(G)$ is the ideal of nilpotent elements of $k R(G)$.

So, if $\pi : H \to G$ is a morphism of finite groups, then

(1.3) $\text{Res}_\pi (\text{Rad} k R(G)) \subset \text{Rad} k R(H)$.

The Loewy length of the algebra $k R(G)$ is defined as the smallest natural number n such that $(\text{Rad} k R(G))^n = 0$. We denote it by $\ell_p(G)$. By 1.1 and 1.3, we have:

(1.4) If π is surjective, then $\ell_p(G) \leq \ell_p(H)$.

2. Modules for $K R(G)$ and $k R(G)$

2.A. Semisimplicity. — Recall that $K R(G)$ is identified with the algebra of class functions on G. If $C \in G/\sim$ and $f \in K R(G)$, we denote by $f(C)$ the constant value of f on C. We now define $e v_C : K R(G) \to K$, $f \mapsto f(C)$. It is a morphism of K-algebras. In other words, it is an irreducible representation (or character) of $K R(G)$. We denote by \mathcal{D}_C the corresponding simple $K R(G)$-module $(\dim_K \mathcal{D}_C = 1$ and an element $f \in K R(G)$ acts on \mathcal{D}_C by multiplication by $e v_C(f) = f(C)$). Now, 1_C is a primitive idempotent of $K R(G)$ and it is easily checked that

(2.1) $K R(G) 1_C \simeq \mathcal{D}_C$.

Recall that

(2.2) $1_C = \frac{|C|}{|G|} \sum_{\chi \in \text{Irr} G} \chi(C^{-1}) \chi$.

and
\[(2.3) \quad \sum_{C \in G/\sim} 1_C = 1_G.\]

Therefore:

Proposition 2.4. — We have:

(a) \((DC)_{C \in G/\sim}\) is a family of representatives of isomorphy classes of simple \(KR(G)\)-modules.

(b) \(\text{Irr} \, KR(G) = \{ev_C \mid C \in G/\sim\}\).

(c) \(KR(G)\) is split semisimple.

We conclude this section by the computation of the Schur elements (see [GP, 7.2] for the definition) associated to each irreducible character of \(KR(G)\). Since
\[(2.5) \quad t^K_G = \sum_{C \in G/\sim} |C| |G| ev_C,
\]
we have by [GP, Theorem 7.2.6]:

Corollary 2.6. — Let \(C \in G/\sim\). Then the Schur element associated with the irreducible character \(ev_C\) is \(|G|/|C|\).

Remark 2.7 - If \(z \in Z(G)\), then \(t_z\) induces an isomorphism of algebras \(KR(G)_{1C} \cong KR(G)_{1z^{-1}C}\).

Remark 2.8 - If \(f \in KR(G)\), then \(f = \sum_{C \in G/\sim} f(C)_{1C}\).

Example 2.9 - The map \(ev_1\) will sometimes be denoted by \(\text{deg}\), since it sends a character to its degree.

2.B. **Decomposition map.** — Let \(d_p : R(G) \to R(kG)\) denote the decomposition map. If \(R\) is any commutative ring, we denote by \(d_p^R : RR(G) \to RR(kG)\) the induced map. Note that \(R(kG)\) is also a ring (for the multiplication given by tensor product) and that \(d_p\) is a morphism of ring. Also, by [CR, Corollary 18.14],
\[(2.10) \quad d_p \text{ is surjective.}\]

Since \(\text{Irr}(kG)\) is a linearly independent family of class functions \(G \to k\) (see [CR, Theorem 17.4]), the map \(\chi : kR(kG) \to \text{Class}_k(G)\) that sends the class of a \(kG\)-module to its character is (well-defined and) injective. This is a morphism of \(k\)-algebras.

Now, if \(C\) is a conjugacy class of \(p\)-regular elements (i.e. \(C \in G_{p'/\sim}\)), we define
\[S'_p(C) = \{g \in G \mid g_{p'} \in C\}\]
(for instance, \(S'_p(1) = C_p\)). Then \(S'_p(C)\) is called the \(p'\)-section of \(C\): this is a union of conjugacy classes of \(G\). Let \(\text{Class}^p_k(G)\) be the space of class functions \(G \to k\) which are constant on \(p'\)-sections. Then, by [CR, Lemma 17.8], \(\text{Irr}(kG) \subset \text{Class}^p_k(G)\), so the image of \(\chi\) is contained in \(\text{Class}^p_k(G)\). But, \(\chi\) is injective, \(|\text{Irr}(kG)| = |G_{p'/\sim}|\) (see [CR, Corollary 17.11]) and \(\dim_k \text{Class}^p_k(G) = |G_{p'/\sim}|\). Therefore, we can identify, through \(\chi\), the \(k\)-algebras \(kR(kG)\) and \(\text{Class}^p_k(G)\). In particular,
\[(2.11) \quad kR(kG) \text{ is split semisimple.}\]
2.C. Simple $k\mathcal{R}(G)$-modules. — If $C \in G/\sim$, we still denote by $\text{ev}_C : \mathcal{O}_R(G) \to \mathcal{O}$ the restriction of ev_C and we denote by $\overline{\text{ev}}_C : k\mathcal{R}(G) \to k$ the reduction modulo p of ev_C. It is easily checked that $\overline{\text{ev}}_C$ factorizes through the decomposition map d_p. Indeed, if $\text{ev}_C^b : k\mathcal{R}(kG) \to k$ denote the evaluation at C (recall that $k\mathcal{R}(kG)$ is identified, via the map χ of the previous subsection, to $\text{Class}_{k'}(G)$), then

$$\overline{\text{ev}}_C = \text{ev}_C^b \circ d_p^b.$$

Let D_C be the corresponding simple $k\mathcal{R}(G)$-module. Let $\delta_p : \mathcal{R}(k\mathcal{R}(G)) \to \mathcal{R}(k\mathcal{R}(G))$ denote the decomposition map (see [GP, 7.4] for the definition). Then

$$\delta_p[D_C] = [D_C].$$

The following facts are well-known:

Proposition 2.14. — Let $C, C' \in G/\sim$. Then $D_C \simeq D_{C'}$ if and only if $C_p' = C'_p$.

Proof. — The “if” part follows from the following classical fact [CR, Proposition 17.5 (ii) and (iv)] and Lemma 17.8: if $\chi \in \mathcal{R}(G)$ and if $g \in G$, then

$$\chi(g) \equiv \chi(gp') \mod p.$$

The “only if” part follows from 2.12 and from the surjectivity of the decomposition map d_p. □

Corollary 2.15. — We have:

(a) $(D_C)_{C \in G/\sim}$ is a family of representatives of isomorphy classes of simple $k\mathcal{R}(G)$-modules.

(b) $\text{Irr} k\mathcal{R}(G) = \{\overline{\text{ev}}_C | C \in G_p'/\sim\}.$

(c) $\text{Rad} k\mathcal{R}(G) = \text{Ker} d_p^k.$

(d) $k\mathcal{R}(G)$ is split.

Proof. — (a) follows from 2.13 and from the fact that the isomorphy class of any simple $k\mathcal{R}(G)$-modules must occur in some $\delta_p[S]$, where S is a simple $K\mathcal{R}(G)$-module. (b) follows from (a). (c) and (d) follow from (a), (b), 2.12 and 2.11. □

Corollary 2.16. — $\dim_k \text{Rad}(k\mathcal{R}(G)) = |G/\sim| - |G_p'/\sim|.$

Corollary 2.17. — $k\mathcal{R}(G)$ is semisimple if and only if p does not divide $|G|$.

Example 2.18 — Since ev_1 is also denoted by deg, we shall sometimes denote by $\overline{\text{deg}}$ the morphism $\overline{\text{ev}}_1$. If G is a p-group, then Corollary 2.15 shows that $\text{Rad} k\mathcal{R}(G) = \text{Ker}(\overline{\text{deg}})$. In this case, if $1, \lambda_1, \ldots, \lambda_r$ denote the linear characters of G and χ_1, \ldots, χ_s denote the non-linear irreducible characters of G, then $(\overline{\chi}_1 - 1, \ldots, \overline{\chi}_r - 1, \overline{\lambda}_1, \overline{\lambda}_s)$ is a k-basis of $\text{Rad} k\mathcal{R}(G)$.

2.D. Projective modules. — We now fix a conjugacy class C of p-regular elements (i.e. $C \in G_p'/\sim$). Let

$$e_C = 1_{S_{p'}(C)} = \sum_{D \in S_{p'}(C)/\sim} 1_D.$$

If necessary, e_C will be denoted by e_C^G. If H is a subgroup of G, then

$$\text{Res}_H^G e_C^G = \sum_{D \in (C \cap H)/\sim_H} e_D^H.$$

Proposition 2.20. — Let $C \in G_p'/\sim$. Then $e_C \in \mathcal{O}_p \mathcal{R}(G)$.

Proof. — Using Brauer’s Theorem, we only need to prove that \(\text{Res}_N^G e_C^G \in \mathcal{O}_p \mathcal{R}(N) \) for every nilpotent subgroup \(N \) of \(G \). By 2.19, this amounts to prove the lemma whenever \(G \) is nilpotent. So we assume that \(G \) is nilpotent. Then \(G = G' \times G_p \), and \(G_p \) and \(G_p' \) are subgroups of \(G \). Moreover, \(C \subseteq G_p' \) and \(S_p(G) = C \times G_p \). If we identify \(K \mathcal{R}(G) \) and \(K \mathcal{R}(G_p') \otimes K K \mathcal{R}(G_p) \), we have \(e_C^G = 1_{C_p'} \otimes \alpha_s e_1^G \). But, by 2.2, we have that \(e_C^G \in \mathcal{O}_p \mathcal{R}(G_p') \). On the other hand, \(e_1^G = 1_{G_p} \in \mathcal{R}(G_p) \). The proof of the lemma is complete.

Corollary 2.21. — Let \(C \in G_p'/\sim \). Then \(e_C \) is a primitive idempotent of \(\mathcal{O}_p \mathcal{R}(G) \).

Proof. — By Proposition 2.15 (a), the number of primitive idempotents of \(k \mathcal{R}(G) \) is \(|G_p'/\sim| \). So the number of primitive idempotents of \(\mathcal{O}_p \mathcal{R}(G) \) is also \(|G_p'/\sim| \) (here, \(\mathcal{O}_p \) denotes the completion of \(\mathcal{O}_p \) at its maximal ideal). Now, \((e_C)_{C \in G_p'/\sim} \) is a family of orthogonal idempotents of \(\mathcal{O}_p \mathcal{R}(G) \) (see Proposition 2.20) and \(1_G = \sum_{C \in G_p'/\sim} e_C \). The proof of the lemma is complete.

Let \(e_C \in k \mathcal{R}(G) \) denote the reduction modulo \(p \mathcal{O}_p \) of \(e_C \). Then it follows from 2.12 that

\[
(2.22) \quad d_C^k e_C = 1^k_{S_p'(C)} \in k \mathcal{R}(kG) \simeq \text{Class}_k^p(G).
\]

Let \(P_C = \mathcal{O}_p \mathcal{R}(G) e_C \) and \(\bar{P}_C = k \mathcal{R}(G) e_C \): they are indecomposable projective modules for \(\mathcal{O}_p \mathcal{R}(G) \) and \(k \mathcal{R}(G) \) respectively. Then

\[
\mathcal{O}_p \mathcal{R}(G) = \bigoplus_{C \in G_p'/\sim} P_C
\]

and

\[
k \mathcal{R}(G) = \bigoplus_{C \in G_p'/\sim} \bar{P}_C.
\]

Note also that

\[
(2.23) \quad \dim k \mathcal{R}(G) e_C = \text{rank}_{\mathcal{O}_p} \mathcal{O}_p \mathcal{R}(G) e_C = |S_p'(G)/\sim|.
\]

Proposition 2.24. — Let \(C \) and \(C' \) be two conjugacy classes of \(p' \)-regular elements of \(G \). Then:

(a) \(|\bar{P}_C : \mathcal{D}_C| = \begin{cases} |S_p'(C)/\sim| & \text{if } C = C', \\ 0 & \text{otherwise}. \end{cases} \)

(b) \(\bar{P}_C / \text{Rad} \bar{P}_C \simeq \mathcal{D}_C \).

Proof. — Let us first prove (a). By definition of \(e_C \), we have

\[
[K \otimes_{\mathcal{O}_p} P_C] = \sum_{D \in S_p'(G)/\sim} [P_D].
\]

Also, by definition of the decomposition map \(\delta_p : \mathcal{R}(K \mathcal{R}(G)) \to \mathcal{R}(k \mathcal{R}(G)) \), we have

\[
\delta_p[K \otimes_{\mathcal{O}_p} P_C] = [\mathcal{P}_C].
\]

So the result follows from these observations and from 2.13. Now, (b) follows easily from (a).

2.E. More on the radical. — Let \(\text{Rad}_p(G) \) denote the set of functions \(f \in \mathcal{O}_p \mathcal{R}(G) \) whose restriction to \(G_p' \) is zero. Note that \(\text{Rad}_p(G) \) is a direct summand of the \(\mathcal{O}_p \)-module \(\mathcal{O}_p \mathcal{R}(G) \). So, \(k \text{Rad}_p(G) = k \otimes_{\mathcal{O}_p} \text{Rad}_p(G) \) is a sub-\(k \)-vector space of \(k \mathcal{R}(G) \).

Proposition 2.25. — We have:

(a) \(\dim_k k \text{Rad}_p(G) = |G/\sim| - |G_p'/\sim| \).

(b) \(k \text{Rad}_p(G) \) is the radical of \(k \mathcal{R}(G) \).

Proof. — (a) is clear. (b) follows from 2.12 and from Corollary 2.15.

Corollary 2.26. — Let \(e \) be the number such that \(p^e \) is the exponent of a Sylow \(p \)-subgroup of \(G \). If \(f \in \text{Rad} k \mathcal{R}(G) \), then \(f^{p^e} = 0 \).

Proof. — Let \(e = e_p(G) \). If \(f \in K\mathcal{R}(G) \) and if \(n \geq 1 \), we denote by \(f^{(n)} : G \to K \), \(g \mapsto f(g^n) \). Then the map \(K\mathcal{R}(G) \to K\mathcal{R}(G) \), \(f \mapsto f^{(n)} \) is a morphism of \(K \)-algebras. Moreover (see for instance [CR, Corollary 12.10]), we have

\[
(2.27) \quad \text{If } f \in \mathcal{R}(G), \text{ then } f^{(n)} \in \mathcal{R}(G).
\]

Therefore, it induces a morphism of \(k \)-algebras \(\theta_n : k\mathcal{R}(G) \to k\mathcal{R}(G) \). Now, let \(F : k\mathcal{R}(G) \to k\mathcal{R}(G) \), \(\lambda \otimes z \mapsto \lambda^p \otimes z \). Then \(F \) is an injective endomorphism of the ring \(k\mathcal{R}(G) \). Moreover (see for instance [I, Problem 4.7]), we have

\[
(2.28) \quad F \circ \theta_p(f) = f^p
\]

for every \(f \in k\mathcal{R}(G) \). Since \(F \) and \(\theta_p \) commute, we have \(F^e \circ \theta_p^e(f) = f^{p^e} \) for every \(f \in k\mathcal{R}(G) \). Therefore, if \(\chi \in \text{Rad}_p(G) \), we have

\[
\tilde{\chi}^{p^e} = F^e(\chi^{p^e}).
\]

But, by hypothesis, \(g^{p^e} \in G^{p^e} \) for every \(g \in G \). So, if \(f \in \text{Rad}_p(G) \), then \(f^{(p^e)} = 0 \). Therefore, \(\tilde{f}^{p^e} = 0 \). The corollary follows from this observation and from Proposition 2.25. \(\square \)

3. Principal block

If \(C \in G_{p^e} / \sim \), we denote by \(\mathcal{R}_p(G,C) \) the \(\mathcal{O}_p \)-algebra \(\mathcal{O}_p \mathcal{R}(G) e_C \). As an \(\mathcal{O}_p \mathcal{R}(G) \)-module, this is just \(\mathcal{P} \mathcal{C} \), but we want to study here its structure as a ring, so that is why we use a different notation. If \(R \) is a commutative \(\mathcal{O}_p \)-algebra, we set \(H\mathcal{R}_p(G,C) = R \otimes_{\mathcal{O}_p} \mathcal{R}_p(G,C) \). For instance, \(k\mathcal{R}_p(G,C) \) and \(K\mathcal{R}_p(G,C) \) can be identified with the algebra of class functions on \(S_p(G) \).

The algebra \(\mathcal{R}_p(G,1) \) (resp. \(k\mathcal{R}_p(G,1) \)) will be called the principal block of \(\mathcal{O}_p \mathcal{R}(G) \) (resp. \(k\mathcal{R}(G) \)). The aim of this section is to construct an isomorphism \(\mathcal{R}_p(G,C) \cong \mathcal{R}_p(G,C,G) \), where \(g \) is any element of \(C \). We also emphasize the functorial properties of the principal block.

Remark 3.1 - If \(C \in G_{p^e} / \sim \) and if \(z \in Z(G) \), then \(t_z \) induces an isomorphism of algebras \(\mathcal{R}_p(G,C) \cong \mathcal{R}_p(G,z^{-1}C) \) (see Remark 2.7). Consequently, \(\tilde{t}_z \) induces an isomorphism of algebras \(k\mathcal{R}_p(G,C) \cong k\mathcal{R}_p(G,z^{-1}C) \).

3. A. Centralizers. — Let \(C \in G_{p^e} / \sim \). Let \(\text{proj}^G_p : K\mathcal{R}(G) \to K\mathcal{R}_p(G,C) \), \(x \mapsto x e_C \) denote the canonical projection. We still denote by \(\text{proj}^G_p : \mathcal{O}_p \mathcal{R}(G) \to \mathcal{R}_p(G,C) \), the restriction of \(\text{proj}^G_p \) and we denote by \(\text{proj}^G_p \mathcal{R}(G) \to \mathcal{R}_p(G,C) \) its reduction modulo \(p\mathcal{C} \).

Let us now fix \(g \in C \). It is well-known (and easy) that the map \(C_G(g)_p / \sim_{C_G(g)} \to S_p(G) / \sim_G \) that sends the \(C_G(g) \)-conjugacy class \(D \in C_G(g)_p / \sim_{C_G(g)} \) to the \(G \)-conjugacy class containing \(gD \) is bijective. In particular,

\[
|S_p(G) / \sim_G| = |C_G(g)_p / \sim_{C_G(g)}|.
\]

Now, let \(d^G_g : K\mathcal{R}(G) \to K\mathcal{R}_p(C_G(g)) \) be the map defined by:

\[
d^G_g(f)(h) = \begin{cases} f(gh) & \text{if } h \in C_G(g)_p, \\ 0 & \text{otherwise,} \end{cases}
\]

for all \(f \in K\mathcal{R}(G) \) and \(h \in C_G(g) \). Then \(d^G_g f \in K\mathcal{R}_p(C_G(g),1) \). It must be noticed that

\[
(3.3) \quad d^G_g = \text{proj}^G_{C_G(g)} \circ d^C_g \circ \text{Res}^G_{C_G(g)} = t^{C_G(g)} \circ \text{proj}^G_{C_G(g)} \circ \text{Res}^G_{C_G(g)}.
\]

In particular, \(d^G_g \) sends \(\mathcal{O}_p \mathcal{R}(G) \) to \(\mathcal{R}_p(C_G(g),1) \). We denote by \(\text{res}_g : \mathcal{R}_p(G,C) \to \mathcal{R}_p(C_G(g),1) \) the restriction of \(d^G_g \) to \(\mathcal{R}_p(G,C) \). Let \(\text{ind}_g : K\mathcal{R}_p(C_G(g),1) \to K\mathcal{R}_p(G,C) \) be the map defined by

\[
\text{ind}_g f = \text{Ind}^G_{C_G(g)}(t^{C_G(g)}_g f)
\]
for every $f \in KR_p(C_G(g), 1)$. It is clear that $\text{ind}_g f \in R_p(G, C)$ if $f \in R_p(C_G(g), 1)$. Thus we have defined two maps

$$\text{res}_g : R_p(G, C) \rightarrow R_p(C_G(g), 1)$$

and

$$\text{ind}_g : R_p(C_G(g), 1) \rightarrow R_p(G, C).$$

We have:

Theorem 3.4. — If $g \in G_p'$, then res_g and ind_g are isomorphisms of O_p-algebras inverse to each other.

Proof. — We first want to prove that $\text{res}_g \circ \text{ind}_g$ is the identity morphism. Let $f \in KR_p(C_G(g), 1)$. Let $f' = t_{g^{-1}} f$ and let $x \in C_G(g)_p$. We just need to prove that

$$(\text{Ind}^G_{C_G(g)} f')(gx) = f'(gx).$$

But, by definition,

$$(\text{Ind}^G_{C_G(g)} f')(gx) = \sum_{h \in [G/C_G(g)]} f'(h(gx)h^{-1}).$$

Here, $[G/C_G(g)]$ denotes a set of representatives of $G/C_G(g)$. Since f' has support in $gC_G(g)_p$, we have $f'(h(gx)h^{-1}) \neq 0$ only if the p'-part of $h(gx)h^{-1}$ is equal to g, which happens if and only if $h \in C_G(g)$. This shows (7).

The fact that $\text{ind}_g \circ \text{res}_g$ is the identity can be proved similarly, or can be proved by using a trivial dimension argument. Since res_g is a morphism of algebras, we get that ind_g is also a morphism of algebras.

\[\square \]

3.B. Subgroups of index prime to p.

If H is a subgroup of G, then the restriction map Res^G_H sends $R_p(G, 1)$ to $R_p(H, 1)$ (indeed, by 2.19, we have $\text{Res}^G_H e_f^G = e_f^H$).

Theorem 3.5. — If H is a subgroup of G of index prime to p, then $\text{Res}^G_H : R_p(G, 1) \rightarrow R_p(H, 1)$ is a split injection of O_p-modules.

Proof. — Let us first prove that Res^G_H is injective. For this, we only need to prove that the map $\text{Res}^G_H : KR_p(G, 1) \rightarrow KR_p(H, 1)$. But $KR_p(G, 1)$ is the space of functions whose support is contained in G_p. Since the index of H is prime to p, every conjugacy class of p-elements of G meets H. This shows that Res^G_H is injective.

In order to prove that it is a split injection, we only need to prove that the O_p-module $R_p(H, 1)/\text{Res}^G_H(R_p(G, 1))$ is torsion-free. Let π be a generator of the ideal pO_p. Let $\gamma \in R_p(G, 1)$ and $\eta \in R_p(H, 1)$ be such that $\pi \eta = \text{Res}^G_H \gamma$. We only need to prove that $\gamma/\pi \in R_p(G, 1)$. By Brauer’s Theorem, it is sufficient to show that, for any nilpotent subgroup N of G, we have $\text{Res}^G_N \gamma \in \pi O_p \mathcal{R}(N)$.

So let N be a nilpotent subgroup. We have $N = N_p \times N_{p'}$ and, since the index of H in G is prime to p, we may assume that $N_p \subset H$. Since $\text{Res}^G_N \psi \in R_p(N, 1) = O_p \mathcal{R}(N_p) \otimes_{O_p} e_1^{N_{p'}}$, we have

$$\text{Res}^G_N \gamma = (\text{Res}^G_{N_p} \gamma) \otimes_{O_p} e_1^{N_{p'}}$$

$$= (\pi \text{Res}^H_{N_p} \eta) \otimes_{O_p} e_1^{N_{p'}} \in \pi O_p \mathcal{R}(N),$$

as expected.

\[\square \]

Corollary 3.6. — If H is a subgroup of G of index prime to p, then the map $\overline{\text{Res}}^G_H : kR_p(G, 1) \rightarrow kR_p(H, 1)$ is an injective morphism of k-algebras.

Corollary 3.7. — If H is a subgroup of G of index prime to p which controls the fusion of p-elements, then $\text{Res}^G_H : R_p(G, 1) \rightarrow R_p(H, 1)$ is an isomorphism of O_p-algebras.
Proof. — In this case, \(\dim_K K \mathcal{R}_p(G, 1) = \dim_K K \mathcal{R}_p(H, 1) \), so the result follows from Corollary 3.6.

Example 3.8 - Let \(P \) be a Sylow \(p \)-subgroup of \(G \) and assume in this example that \(P \) is abelian. Then \(N_G(P) \) controls the fusion of \(p \)-elements. It then follows from Corollary 3.7 that the restriction from \(G \) to \(N_G(P) \) induces isomorphisms of algebras \(\mathcal{R}_p(G, 1) \cong \mathcal{R}_p(N_G(P), 1) \) and \(k \mathcal{R}_p(G, 1) \cong k \mathcal{R}_p(N_G(P), 1) \). In particular, \(\ell_p(G, 1) = \ell_p(N_G(P), 1) \).

Example 3.9 - Let \(N \) be a \(p' \)-group, let \(H \) be a group acting on \(N \) and let \(G = H \rtimes N \). Then \(H \) is of index prime to \(p \) and controls the fusion of \(p \)-elements of \(G \). So \(\text{Res}_N^G \) induces isomorphisms of algebras \(\mathcal{R}_p(G, 1) \cong \mathcal{R}_p(H, 1) \) and \(k \mathcal{R}_p(G, 1) \cong k \mathcal{R}_p(H, 1) \). In particular, \(\ell_p(G, 1) = \ell_p(H, 1) \).

3.C. Quotient by a normal \(p' \)-subgroup. — Let \(N \) be a normal subgroup of \(G \). Let \(\pi : G \to G/N \) denote the canonical morphism. Then the morphism of algebras \(\text{Res}_\pi : \mathcal{R}_p(G/N) \to \mathcal{R}_p(G) \) induces a morphism of algebras \(\text{Res}_\pi(1) : \mathcal{R}_p(G/N, 1) \to \mathcal{R}_p(G, 1), f \mapsto (\text{Res}_\pi f)e_1^G \). Note that \(\text{Res}_\pi(1)e_1^{G/N} = e_1^G \). We denote by \(\overline{\text{Res}_\pi(1)} : k \mathcal{R}_p(G/N, 1) \to k \mathcal{R}_p(G, 1) \) the morphism induced by \(\text{Res}_\pi(1) \). Then:

Theorem 3.10. — With the above notation, we have:

(a) \(\text{Res}_\pi(1) \) is a split injection of \(\mathcal{O}_p \)-modules.
(b) If \(N \) is prime to \(p \), then \(\text{Res}_\pi(1) \) is an isomorphism.

Proof. — (a) The injectivity of \(\text{Res}_\pi(1) \) follows from the fact that \((G/N)_p = G_p/N/N \). Now, let \(I \) denote the image of \(\text{Res}_\pi(1) \). Since \(\text{Res}_\pi(\mathcal{O}_p \mathcal{R}(G/N)) \) is a direct summand of \(\mathcal{O}_p \mathcal{R}(G) \), we get that \(\text{Res}_\pi(\mathcal{R}_p(G/N, 1)) \) is a direct summand of \(\mathcal{O}_p \mathcal{R}(G) \). Since \(I = e_1^G \text{Res}_\pi(\mathcal{R}_p(G/N, 1)) \) and \(e_1^G = e_1^G \text{Res}_\pi(e_1^{G/N}) \), we get that \(I = e_1^G \text{Res}_\pi(\mathcal{O}_p \mathcal{R}(G/N)) \) is a direct summand of \(\mathcal{O}_p \mathcal{R}(G) \), as desired.

(b) now follows from (a) and from the fact that the map \(\pi \) induces a bijection between \(G_p/\sim_G \) and \((G/N)_p/\sim_{G/N} \) whenever \(N \) is a normal \(p' \)-subgroup.

4. Some invariants

We introduce in this section some numerical invariants of the \(k \)-algebra \(k \mathcal{R}(G) \) (more precisely, of the algebras \(k \mathcal{R}_p(G, C) \)): Loewy length, dimension of the \(\text{Ext} \)-groups.

4.A. Loewy length. — If \(C \in G_p/\sim \), we denote by \(\ell_p(G, C) \) the Loewy length of the \(k \)-algebra \(k \mathcal{R}_p(G, C) \). Then, by definition, we have

\[
\ell_p(G) = \max_{C \in G_p/\sim} \ell_p(G, C).
\]

On the other hand, by Theorem 3.4, we have

\[
\text{If } C \in G_p/\sim \text{ and if } g \in C, \text{ then } \ell_p(G, C) = \ell_p(C_G(g), 1).
\]

The following bound on the Loewy length of \(k \mathcal{R}(G) \) is obtained immediately from 2.23 and 3.2:

\[
\ell_p(G) \leq \max_{C \in G_p/\sim} |S_p(C)/\sim| = \max_{g \in G_p} |C_G(g)_p/\sim_{C_G(g)}|.
\]

We set \(S_p(G) = \max_{C \in G_p/\sim} |S_p(C)/\sim| \).

Example 4.4 - The inequality 4.3 might be strict. Indeed, if \(G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), then \(\ell_2(G) = 3 < 4 = S_2(G) \).
Example 4.5 - If $S_p(G) = 2$, then $\ell_p(G) = 2$. Indeed, in this case, we have that p divides $|G|$, so $kR(G)$ is not semisimple by Corollary 2.17, so $\ell_p(G) \geq 2$. The result then follows from 4.3.

4.B. Ext-groups. — If $i \geq 0$ and if $C \in G_{p'}/\sim$, we set

$$\text{ext}^i_p(G, C) = \dim_k \text{Ext}_k^i(G, C)(\bar{\mathcal{D}}, \bar{\mathcal{D}}).$$

Note that $\text{ext}^i_p(G, C) = \dim_k \text{Ext}_k^i(kR(G, C)(\bar{\mathcal{D}}, \bar{\mathcal{D}}))$. So, if $g \in C$, it follows from Theorem 3.4 that

$$(4.6) \quad \text{ext}^i_p(G, C) = \text{ext}^i_p(C_G(g), 1).$$

4.C. Subgroups, quotients. — The next results follows respectively from Corollaries 3.6, 3.7 and from Theorem 3.10:

Proposition 4.7. — Let H be a subgroup of G of index prime to p and let N be a normal subgroup of G.

(a) $\ell_p(G, 1) \leq \ell_p(H, 1)$.
(b) If H controls the fusion of p-elements, then $\ell_p(G, 1) = \ell_p(H, 1)$ and $\text{ext}^i_p(G, 1) = \text{ext}^i_p(H, 1)$ for every $i \geq 0$.
(c) $\ell_p(G/N, 1) \leq \ell_p(G, 1)$.
(d) If $|N|$ is prime to p, then $\ell_p(G, 1) = \ell_p(H, 1)$ and $\text{ext}^i_p(G, 1) = \text{ext}^i_p(H, 1)$ for every $i \geq 0$.

4.D. Direct products. — We study here the behaviour of the invariants $\ell_p(G, C)$ and $\text{ext}^i_p(G, C)$ with respect to taking direct products. We first recall the following result on finite dimensional algebras:

Proposition 4.8. — Let A and B be two finite dimensional k-algebras. Then:

(a) $\text{Rad}(A \otimes_k B) = A \otimes_k (\text{Rad} B) + (\text{Rad} A) \otimes_k B$.
(b) If $A/\text{Rad} A \simeq k$ and $B/\text{Rad} B \simeq k$, then

$$\text{Rad}(A \otimes_k B)/\text{Rad}(A \otimes_k B)^2 \simeq (\text{Rad} A)/(\text{Rad} A)^2 \oplus (\text{Rad} B)/(\text{Rad} B)^2.$$

Proof. — (a) is proved for instance in [CR, Proof of 10.39]. Let us now prove (b). Let $\theta : (\text{Rad} A) \oplus (\text{Rad} B) \rightarrow \text{Rad}(A \otimes_k B)/\text{Rad}(A \otimes_k B)^2$, $a \oplus b \mapsto \bar{a} \otimes_k 1 + 1 \otimes_k \bar{b}$. By (a), θ is surjective and $(\text{Rad} A)^2 \oplus (\text{Rad} B)^2$ is contained in the kernel of θ. Now the result follows from dimension reasons (using (a)).

Proposition 4.9. — Let G and H be two finite groups and let $C \in G_{p'}/\sim$ and $D \in H_{p'}/\sim$. Then

$$\ell_p(G \times H, C \times D) = \ell_p(G, C) + \ell_p(H, D) - 1$$

and

$$\text{ext}^i_p(G \times H, C \times D) = \text{ext}^i_p(G, C) + \text{ext}^i_p(H, D).$$

Proof. — Write $A = kR_p(G, C)$ and $B = kR_p(H, D)$. It is easily checked that $kR_p(G \times H, C \times D) = A \otimes_k B$. So the first equality follows from Propositon 4.8 (a) and from the commutativity of A and B. Moreover $A/(\text{Rad} A) \simeq k$ and $B/(\text{Rad} B) \simeq k$. In particular

$$\dim_k \text{Ext}_k^i(A/\text{Rad} A, A/\text{Rad} A) = \dim_k (\text{Rad} A)/(\text{Rad} A)^2.$$

So the second equality follows from Proposition 4.8 (b).
4.E. Abelian groups. — We compute here the invariants $\ell_p(G, 1)$ and $\text{ext}^1_p(G, 1)$ whenever G is abelian. If G is abelian, then there is a (non-canonical) isomorphism of algebras $kR(G) \simeq kG$.

Let us first start with the cyclic case:

(4.10) if G is cyclic, then $\ell_p(G) = |G|_p + 1$ and $\text{ext}^1_p(G, 1) = \begin{cases} 1 & \text{if } p \text{ divides } |G|, \\ 0 & \text{otherwise}. \end{cases}$

Therefore, by Proposition 4.9, we have: if G_1, \ldots, G_n are cyclic, then

(4.11) $\ell_p(G_1 \times \cdots \times G_n) = |G_1|_p + \cdots + |G_n|_p - n + 1.$

and

(4.12) $\text{ext}^1_p(G_1 \times \cdots \times G_n) = \{|1 \leq i \leq n \mid p \text{ divides } G_i\}$.

5. The symmetric group

In this section, and only in this section, we fix a non-zero natural number n and a prime number p and we assume that $G = \mathfrak{S}_n$, that $O = \mathbb{Z}$ and that $p = p\mathbb{Z}$. Let $\overline{F}_p = k$. It is well-known that \mathbb{Q} and \overline{F}_p are splitting fields for \mathfrak{S}_n. For simplification, we set $R_n = R(\mathfrak{S}_n)$ and $\overline{R}_n = \overline{F}_p R(\mathfrak{S}_n)$. We investigate further the structure of \overline{R}_n. This is a continuation of the work started in [B] in which the description of the descending Loewy series of \overline{R}_n was obtained.

We first introduce some notation. Let $\text{Part}(n)$ denote the set of partitions of n. If $\lambda = (\lambda_1, \ldots, \lambda_r) \in \text{Part}(n)$ and if $1 \leq i \leq n$, we denote by $r_i(\lambda)$ the number of occurences of i as a part of λ. We set

$$\pi_p(\lambda) = \sum_{i=1}^{n} \left[\frac{r_i(\lambda)}{p} \right]$$

where, for $x \in \mathbb{R}$, $x \geq 0$, we denote by $[x]$ the unique natural number $m \geq 0$ such that $m \leq x < m + 1$. Note that $\pi_p(\lambda) \in \{0, 1, 2, \ldots, [n/p]\}$ and recall that λ is p-regular (resp. p-singular) if and only if $\pi_p(\lambda) = 0$ (resp. $\pi_p(\lambda) \geq 1$). We denote by \mathfrak{S}_{λ} the Young subgroup canonically isomorphic to $\mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_r}$, by 1_{λ} the trivial character of \mathfrak{S}_{λ}, and by c_{λ} an element of \mathfrak{S}_{λ} with only r orbit in $\{1, 2, \ldots, n\}$. Let C_{λ} denote the conjugacy class of c_{λ} in \mathfrak{S}_n. Then the map $\text{Part}(n) \rightarrow \mathfrak{S}_n/\sim$, $\lambda \mapsto C_{\lambda}$ is a bijection. Let $W(\lambda) = N_{\mathfrak{S}_n}(\mathfrak{S}_{\lambda})/\mathfrak{S}_{\lambda}$. Then

(5.1) $W(\lambda) \simeq \prod_{i=1}^{n} \mathfrak{S}_{r_i(\lambda)}.$

In particular, $\pi_p(\lambda)$ is the p-rank of $W(\lambda)$, where the p-rank of a finite group is the maximal rank of an elementary abelian subgroup. Now, we set $\varphi_\lambda = \text{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_n} 1_{\lambda}$. An old result of Frobenius says that

(5.2) $(\varphi_\lambda)_{\lambda \in \text{Part}(n)}$ is a \mathbb{Z}-basis of R_n

(see for instance [GP, Theorem 5.4.5 (b)]). Now, if $i \geq 1$, let

$$\text{Part}^i_p(n) = \{ \lambda \in \text{Part}(n) \mid \pi_p(\lambda) \geq i \}$$

and

$$\text{Part}^i_p(n) = \{ \lambda \in \text{Part}(n) \mid \pi_p(\lambda) = i \}.$$

Then, by [B, Theorem A], we have

(5.3) $$(\text{Rad } \overline{R}_n)^i = \bigoplus_{\lambda \in \text{Part}^i_p(n)} F_p \varphi_\lambda.$$
Let \(\text{Part}_{p^e}(n) \) denote the set of partitions of \(n \) whose parts are prime to \(p \). Then the map \(\text{Part}_{p^e}(n) \to G_{p^e}/\sim, \lambda \mapsto C_\lambda \) is bijective. We denote by \(\tau_{p^e}(\lambda) \) the unique partition of \(n \) such that \((c_\lambda)_p \in C_{\tau_{p^e}(\lambda)}\). If \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r) \), the partition \(\tau_{p^e}(\lambda) \) is obtained as follows. Let
\[
\lambda' = ((\lambda_1)_p', \ldots, (\lambda_1)_p', \ldots, (\lambda_r)_p', \ldots, (\lambda_r)_p').
\]
Then \(\tau_{p^e}(\lambda) \) is obtained from \(\lambda' \) by reordering the parts. The map \(\tau_{p^e} : \text{Part}(n) \to \text{Part}_{p^e}(n) \) is obviously surjective. If \(\lambda \in \text{Part}_{p^e}(n) \), we set for simplification \(\mathcal{R}_{n,p}(\lambda) = \mathcal{R}_{p^e}(\mathfrak{S}_n, C_\lambda) \) and \(\mathcal{R}_n(\lambda) = \mathcal{R}_{p^e}(\mathfrak{S}_n, C_\lambda) \). In other words,
\[
\mathcal{Z}_{p\mathbb{Z}} \mathcal{R}_n = \bigoplus_{\lambda \in \text{Part}_{p^e}(n)} \mathcal{R}_{n,p}(\lambda)
\]
and
\[
\mathcal{R}_n = \bigoplus_{\lambda \in \text{Part}_{p^e}(n)} \mathcal{R}_n(\lambda)
\]
are the decomposition of \(\mathcal{Z}_{p\mathbb{Z}} \mathcal{R}_n \) and \(\mathcal{R}_n \) as a sum of blocks. We now make the result 5.3 more precise:

Proposition 5.4. — If \(\lambda \in \text{Part}_{p^e}(n) \) and if \(i \geq 0 \), then
\[
\dim_{\mathbb{F}_p} (\text{Rad} \mathcal{R}_n(\lambda))^i = |\tau_{p^e}^{-1}(\lambda) \cap \text{Part}_{p^e}(n)|^i.
\]

Proof. — If \(\lambda \) and \(\mu \) are two partitions of \(n \), we write \(\lambda \subset \mu \) if \(\mathfrak{S}_\lambda \) is conjugate to a subgroup of \(\mathfrak{S}_\mu \). This defines an order on \(\text{Part}(n) \). On the other hand, if \(d \in \mathfrak{S}_n \), we denote by \(\lambda \cap d\mu \) the unique partition \(\nu \) of \(n \) such that \(\mathfrak{S}_\lambda \cap d\mathfrak{S}_\mu \) is conjugate to \(\mathfrak{S}_\nu \). Then, by the Mackey formula for tensor product (see for instance [CR, Theorem 10.18]), we have
\[
\varphi_\lambda \otimes \varphi_\mu = \sum_{d \in [\mathfrak{S}_\lambda \cap d\mathfrak{S}_\mu]} \varphi_{\lambda \cap d\mu}.
\]
Here, \([\mathfrak{S}_\lambda / \mathfrak{S}_\mu]\) denotes a set of representatives of the \((\mathfrak{S}_\lambda, \mathfrak{S}_\mu)\)-double cosets in \(\mathfrak{S}_n \). This shows that, if we fix \(\lambda_0 \in \text{Part}(n) \), then \(\bigoplus_{\lambda \subseteq \lambda_0} \mathcal{Z} \varphi_\lambda \) and \(\bigoplus_{\lambda \subseteq \lambda_0} \mathcal{Z} \varphi_\lambda \) are sub-\(\mathcal{R}(G) \)-module of \(\mathcal{R}(G) \). We denote by \(\mathcal{D}_\lambda^{\mathbb{Z}} \) the quotient of these two modules. Then
\[
K \otimes_{\mathbb{Z}} \mathcal{D}_\lambda^{\mathbb{Z}} \simeq \mathcal{D}_C, \lambda.
\]
This follows for instance from [GP, Proposition 2.4.4]. Consequently,
\[
k \otimes_{\mathbb{Z}} \mathcal{D}_\lambda^{\mathbb{Z}} \simeq \mathcal{D}_C, \lambda.
\]
It then follows from Proposition 2.14 that
\[
k \otimes_{\mathbb{Z}} \mathcal{D}_\mu^{\mathbb{Z}} \simeq k \otimes_{\mathbb{Z}} \mathcal{D}_\mu^{\mathbb{Z}} \quad \text{if and only if} \quad \tau_{p^e}(\lambda) = \tau_{p^e}(\mu).
\]
Now the Theorem follows from easily from (3), (4) and 5.3. \(\square \)

Now, if \(\lambda \in \text{Part}_{p^e}(n) \), then \(C_{\phi_n}(\psi_\lambda) \) contains a normal \(p^e \)-subgroup \(N_\lambda \) such that \(C_{\phi_n}(w_\lambda)/N_\lambda \) is isomorphic to \(W(\lambda) \). We denote by \(1^n \) the partition \((1, 1, \ldots, 1)\) of \(n \). It follows from Theorem 3.4 and Theorem 3.10 that
\[
\mathcal{R}_{n,p}(\lambda) \simeq \mathcal{R}_{p^e}(W(\lambda), 1) \simeq \bigoplus_{i=1}^n \mathcal{R}_{\tau_{p^e}(\lambda), p}(1^{r_i(\lambda)})
\]
and
\[
\mathcal{R}_n(\lambda) \simeq \mathcal{R}(W(\lambda), 1) \simeq \bigoplus_{i=1}^n \mathcal{R}_{\tau(\lambda), 1}(1^{r_i(\lambda)}).
\]
We denote by \(\text{Log}_{p^e} n \) the real number \(x \) such that \(p^x = n \). Then:

Corollary 5.7. — If \(\lambda \in \text{Part}_{p^e}(n) \), then
\[
\text{ext}_{\mathbb{F}_p}(\mathfrak{S}_n, C_\lambda) \simeq \sum_{i=1}^n \text{Log}_{p^e} r_i(\lambda)
\]
and
\[
\ell_{p}(\mathfrak{S}_n, C_\lambda) = \pi_{p}(\lambda) + 1.
\]
Proof. — By 5.6 and by Proposition 4.9, both equalities need only to be proved whenever \(\lambda = (1^n) \).
So we assume that \(\lambda = (1^n) \).

Let us show the first equality. By Proposition 5.4, we are reduced to show that \(|\tau_{p'}^{-1}(1^n) \cap \text{Part}_p^1(n)| = [\text{Log}_p n] \). Let \(r = [\text{Log}_p n] \). In other words, we have \(p^r \leq n < p^{r+1} \).
If \(1 \leq i \leq r \), write \(n - p^i = \sum_{j=0}^{r} a_{ij} p^j \) with \(0 \leq a_{ij} < p - 1 \) (the \(a_{ij}'s \) are uniquely determined). Let
\[
\lambda(i) = (p^i, \ldots, p^i, p^{i-1}, \ldots, p^{i-1}, p^{i-2}, \ldots, 1, \ldots, 1).
\]
The result will follow from the following equality
\[
(\ast)
\]
So let us now prove (\ast\). Let \(I = \{\lambda(1), \lambda(2), \ldots, \lambda(r)\} \). It is clear that \(I \subset \tau_{p'}^{-1}(1^n) \cap \text{Part}_p^1(n) \).

Now, let \(\lambda \in \tau_{p'}^{-1}(1^n) \cap \text{Part}_p^1(n) \). Then there exists a unique \(i \in \{1, 2, \ldots, r\} \) such that \(r_{p'}^{-1}(\lambda) \geq p \).
Moreover, \(r_{p'}^{-1}(\lambda) < 2p \). So, if we set \(r_{p'} = r_{p'}(\lambda) \) if \(j \neq i \) and \(r_{p'}^{-1} = r_{p'}^{-1}(\lambda) - p \), we get that \(0 \leq r_{p'} \leq p - 1 \) and \(n - p^i = \sum_{j=0}^{r} r_{p'} p^j \). This shows that \(\tau_{p'} = a_{ij}, \) so \(\lambda = \lambda(i) \).

Let us now show the second equality by the Corollary. By Proposition 5.4, we only need to show that \(|\tau_{p'}^{-1}(1^n) \cap \text{Part}_p^{[n/p]}(n)| \geq 1 \). But in fact, it is clear that \(\tau_{p'}^{-1}(1^n) \cap \text{Part}_p^{[n/p]}(n) = \{1^n\} \).

Corollary 5.8. — We have
\[
\dim_p (\text{Rad} \mathcal{R}_p(n))^{|n/p|} = 1
\]
and
\[
\dim_p \text{Ext}_p^1 \mathcal{R}_p(D_1^n, D_1^n) = [\text{Log}_p n].
\]
In particular, \(\ell_p(\mathfrak{G}_n, 1) = \ell_p(\mathcal{R}_p) = |n/p| \).

Proof. — This is just a particular case of the previous corollary. The first equality has been obtained in the course of the proof of the previous corollary.

6. Dihedral groups

Let \(n \geq 1 \) and \(m \geq 0 \) be two natural numbers. We assume in this section, and only in this subsection, that \(G = D_{2^n(2m+1)} \) is the dihedral group of order \(2^n(2m+1) \) and that \(p = 2 \).

Proposition 6.1. — If \(n \geq 1 \) and \(m \geq 0 \) are natural numbers, then
\[
\ell_2(D_{2^n(2m+1)}, 1) = \begin{cases}
2 & \text{if } n = 1, \\
3 & \text{if } n = 2, \\
2^n - 1 & \text{if } n \geq 3.
\end{cases}
\]
and
\[
\text{ext}_2^1(D_{2^n(2m+1)}, 1) = \begin{cases}
1 & \text{if } n = 1, \\
2 & \text{if } n = 2, \\
3 & \text{if } n \geq 3.
\end{cases}
\]

Proof. — Let \(N \) be the normal subgroup of \(G \) of order \(2m+1 \). Then \(G \simeq D_{2m+1} \times N \). So, by Proposition 4.7 (d), we may, and we will, assume that \(m = 0 \). If \(n = 1 \) or 2 the result is easily checked. Therefore, we may, and we will, assume that \(n \geq 3 \).

Write \(h = 2^{n-1} \). We have
\[
G = \langle s, t \mid s^2 = t^2 = (st)^h = 1 \rangle.
\]
Let \(H = \langle s, t \rangle \) and \(S = \langle s \rangle \). Then \(|H| = 2^{n-1} = h \) and \(G = S \rtimes H \). We fix a primitive \(h \)-th root of unity \(\xi \in \mathbb{C}^\times \). If \(i \in \mathbb{Z} \), we denote by \(\xi_i \) the unique linear character of \(H \) such that \(\xi_i(st) = \xi^i \).
Then \(\text{Irr} H = \{\xi_0, \xi_1, \ldots, \xi_{h-1}\} \), and \(\xi_0 = 1_H \).
Since \(n \geq 3 \), \(h \) is even and, if we write \(h = 2h' \), then \(h' = 2^{n-2} \) is also even. For \(i \in \mathbb{Z} \), we set
\[
\chi_i = \text{Ind}^G_H \xi_i.
\]
It is readily seen that \(\chi_1 = \chi_{-i} \), that \(\chi_{i+h} = \chi_i \) and that
\[
(6.2) \quad \chi_i \chi_j = \chi_{i+j} + \chi_{i-j}.
\]
Let \(\varepsilon \) (resp. \(\varepsilon_s \), resp. \(\varepsilon_t \)) be the unique linear character of order 2 such that \(\varepsilon(st) = 1 \) (resp. \(\varepsilon_s(s) = 1 \), resp. \(\varepsilon_t(t) = 1 \)). Then
\[
\begin{align*}
\chi_0 &= 1_G + \varepsilon, \\
\chi_h' &= \varepsilon_s + \varepsilon_t,
\end{align*}
\]
and, if \(h' \) does not divide \(i \),
\[
\chi_i \in \text{Irr} G.
\]
Moreover, \(|\text{Irr} G| = h' + 3 \) and
\[
\text{Irr} G = \{1_G, \varepsilon, \varepsilon_s, \varepsilon_t, \chi_1, \chi_2, \ldots, \chi_{h'-1}\}.
\]
Finally, note that
\[
(6.3) \quad \varepsilon_s \chi_i = \varepsilon_t \chi_i = \chi_{i+h'}.
\]
Let us start by finding a lower bound for \(\ell_2(G) \). First, notice that the following equality holds: for all \(i, j \in \mathbb{Z} \) and every \(r \geq 0 \), we have
\[
(6.4) \quad (\bar{\chi}_i + \bar{\chi}_j)^{2^r} = \bar{\chi}_{2^r i} + \bar{\chi}_{2^r j}.
\]

Proof of 6.4. — Recall that \(\bar{\chi}_i \) denotes the image of \(\chi_i \) in \(k\mathcal{R}(G) \). We proceed by induction on \(r \). The case \(r = 0 \) is trivial. The induction step is an immediate consequence of 6.2. \(\square \)

Note also the following fact (which follows from Example 2.18):
\[
(6.5) \quad \text{If } i \in \mathbb{Z}, \text{ then } \bar{\chi}_i \in \text{Rad} k\mathcal{R}(G).
\]
Therefore,
\[
(6.6) \quad \ell_2(G) \geq 2^{n-2} + 1.
\]

Proof of 6.6. — By 6.4, we have immediately that \((\bar{\chi}_0 + \bar{\chi}_1)^{2^{n-2}} = \bar{\chi}_0 + \bar{\chi}_{h'} \neq 0 \)
and, by 6.5, \(\bar{\chi}_0 + \bar{\chi}_1 \in \text{Rad} k\mathcal{R}(G) \). \(\square \)

By Example 2.18, we have
\[
(6.7) \quad (\bar{1}_G + \bar{\varepsilon}_s, \bar{\chi}_0, \bar{\chi}_1, \ldots, \bar{\chi}_{h'}) \text{ is a } k\text{-basis of } \text{Rad} k\mathcal{R}(G).
\]
By 6.3 and 6.2, we get that
\[
(6.8) \quad (\bar{\chi}_i + \bar{\chi}_{i+2})_{0 \leq i \leq h'-2} \text{ is a } k\text{-basis of } (\text{Rad} k\mathcal{R}(G))^2.
\]
This shows that \(\text{ext}_p^k(G) = 3 \), as expected. It follows that, if \(n \geq 3 \) and \(2 \leq i \leq 2^{n-2} + 1 \), then
\[
(6.9) \quad \dim_k (\text{Rad} k\mathcal{R}(D_{2^n}))^i = 2^{n-2} + 1 - i
\]

Proof of 6.9. — Let \(d_i = \dim_k (\text{Rad} k\mathcal{R}(D_{2^n}))^i \). By 6.8, we have \(d_2 = 2^{n-2} - 1 \).
By 6.6, we have \(d_{2^n-2} \geq 1 \). Moreover, \(d_1 > d_2 > d_3 > \ldots \) So the proof of 6.9 is complete. \(\square \)

In particular, we get:
\[
(6.10) \quad \text{If } n \geq 3, \text{ then } (\text{Rad} k\mathcal{R}(D_{2^n}))^{2^{n-2}} = k(\bar{1}_{D_{2^n}} + \varepsilon + \bar{\varepsilon}_s + \bar{\varepsilon}_t),
\]
and \(\ell_2(D_{2^n}) = 2^{n-2} + 1 \), as expected. \(\square \)
7. Some tables

For $0 \leq i \leq \ell_p(G) - 1$, we set $d_i = \dim_k(\text{Rad} kR(G))^i$. Note that $d_0 = |G/\sim|$ and $d_0 - d_1 = |G_P/\sim|$. In this section, we give tables containing the values $\ell_p(G)$, $\ell_p(G,1)$, $S_p(G)$, $\text{ext}_p^1(G,1)$ and the sequence (d_0, d_1, d_2, \ldots) for various groups. These computations have been made using GAP3 [GAP3].

These computations show that, if G satisfies at least one of the following conditions:

1. $|G| \leq 200$;
2. G is a subgroup of S_8;
3. G is one of the groups contained in the next tables;

then $\ell_p(G,1) = \ell_p(N_G(P),1)$ (here, P denotes a Sylow p-subgroup of G). Note also that this equality holds if P is abelian (see Example 3.8).

Question. Is it true that $\ell_p(G,1) = \ell_p(N_G(P),1)$?

The first table contains the data for the the exceptional Weyl groups, the second table is for the alternating groups A_n for $5 \leq n \leq 12$, the third table is for some small finite simple groups, and the last table is for the groups $PSL(2,q)$ for q a prime power ≤ 27.

| G | $|G|$ | p | $\ell_p(G)$ | $S_p(G)$ | d_0, d_1, d_2, \ldots | $\ell_p(G,1)$ | $\text{ext}_p^1(G,1)$ |
|---------|-------|-----|-------------|----------|--------------------------|--------------|------------------------|
| $W(E_6)$ | 51840 | 2 | 5 | 10 | 25, 19, 9, 3, 1 | 5 | 3 |
| | 2^7.3^4.5 | 3 | 4 | 5 | 25, 13, 4, 1 | 4 | 2 |
| | | 5 | 2 | 2 | 25, 2 | 2 | 1 |
| $W(E_7)$ | 2903040 | 2 | 7 | 24 | 60, 52, 35, 18, 7, 3, 1 | 7 | 4 |
| | 2^10.3^4.5.7 | 3 | 4 | 5 | 60, 30, 8, 2 | 4 | 2 |
| | | 5 | 2 | 2 | 60, 6 | 2 | 1 |
| | | 7 | 2 | 2 | 60, 2 | 2 | 1 |
| $W(E_8)$ | 696729600 | 2 | 8 | 32 | 112, 100, 68, 36, 17, 7, 3, 1 | 8 | 5 |
| | 2^11.3^5.5^2.7 | 3 | 5 | 8 | 112, 65, 24, 7, 2 | 5 | 2 |
| | | 5 | 3 | 3 | 112, 17, 2 | 3 | 1 |
| | | 7 | 2 | 2 | 112, 4 | 2 | 1 |
| $W(F_4)$ | 1152 | 2 | 5 | 14 | 25, 21, 12, 4, 1 | 5 | 4 |
| | 2^7.3^2 | 3 | 3 | 4 | 25, 11, 2 | 3 | 2 |
| $W(H_3)$ | 120 | 2 | 3 | 4 | 10, 6, 1 | 3 | 2 |
| | 2^3.3.5 | 3 | 2 | 2 | 10, 2 | 2 | 1 |
| | | 5 | 3 | 3 | 10, 4, 2 | 3 | 1 |
| $W(H_4)$ | 14400 | 2 | 4 | 7 | 34, 24, 9, 1 | 4 | 3 |
| | 2^6.3^2.5^2 | 3 | 3 | 3 | 34, 11, 2 | 3 | 1 |
| | | 5 | 5 | 6 | 34, 20, 11, 4, 2 | 5 | 2 |
| G | $|G|$ | p | $\ell_p(G)$ | $S_p(G)$ | d_0, d_1, d_2, \ldots | $\ell_p(G, 1)$ | $\text{ext}_p^1(G, 1)$ |
|-----|-----|-----|-------------|--------|-----------------|-------------|----------------|
| A_5 | 60 | 2 | 2 | 2 | 5, 1 | 2 | 1 |
| | $2^2.3.5$ | 3 | 2 | 2 | 5, 1 | 2 | 1 |
| | | 5 | 3 | 3 | 5, 2, 1 | 3 | 1 |
| A_6 | 360 | 2 | 3 | 3 | 7, 2, 1 | 3 | 1 |
| | $2^3.3^2.5$ | 3 | 3 | 3 | 7, 2, 1 | 3 | 1 |
| | | 5 | 3 | 3 | 7, 2, 1 | 3 | 1 |
| A_7 | 2520 | 2 | 3 | 3 | 9, 3, 1 | 3 | 1 |
| | $2^3.3^2.5.7$ | 5 | 2 | 2 | 9, 1 | 2 | 1 |
| | | 7 | 3 | 3 | 9, 2, 1 | 3 | 1 |
| A_8 | 20160 | 2 | 4 | 5 | 14, 6, 2, 1 | 4 | 2 |
| | $2^6.3^2.5.7$ | 3 | 3 | 3 | 14, 6, 2 | 3 | 1 |
| | | 5 | 3 | 3 | 14, 3, 1 | 2 | 1 |
| | | 7 | 3 | 3 | 14, 2, 1 | 3 | 1 |
| A_9 | 181440 | 2 | 4 | 5 | 18, 8, 3, 1 | 4 | 2 |
| | $2^6.3^4.5.7$ | 3 | 4 | 6 | 18, 10, 3, 1 | 4 | 3 |
| | | 5 | 3 | 3 | 18, 4, 1 | 2 | 1 |
| | | 7 | 3 | 3 | 14, 2, 1 | 3 | 1 |
| A_{10} | 1814400 | 2 | 5 | 7 | 24, 12, 6, 2, 1 | 5 | 2 |
| | $2^7.3^4.5^2.7$ | 3 | 4 | 6 | 24, 13, 4, 1 | 4 | 3 |
| | | 5 | 3 | 3 | 24, 4, 1 | 3 | 1 |
| | | 7 | 3 | 3 | 24, 3, 1 | 2 | 1 |
| A_{11} | 19958400 | 2 | 5 | 7 | 31, 17, 8, 3, 1 | 5 | 2 |
| | $2^7.3^4.5^2.7.11$ | 3 | 4 | 5 | 31, 16, 6, 1 | 4 | 2 |
| | | 5 | 3 | 3 | 31, 6, 1 | 3 | 1 |
| | | 7 | 3 | 3 | 31, 4, 1 | 2 | 1 |
| | | 11 | 3 | 3 | 31, 2, 1 | 3 | 1 |
| A_{12} | 239500800 | 2 | 6 | 10 | 43, 25, 13, 6, 2, 1 | 6 | 2 |
| | $2^9.3^6.5^2.7.11$ | 3 | 5 | 8 | 43, 22, 9, 2, 1 | 5 | 3 |
| | | 5 | 3 | 3 | 43, 10, 2 | 3 | 1 |
| | | 7 | 3 | 3 | 43, 5, 1 | 2 | 1 |
| | | 11 | 3 | 3 | 43, 2, 1 | 3 | 1 |
| \(G \) | \(| G |\) | \(p \) | \(\ell_p(G) \) | \(S_p(G) \) | \(d_0, d_1, d_2, \ldots \) | \(\ell_p(G, 1) \) | \(\text{ext}_p^1(G, 1) \) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| \(GL(3, 2)\) | 168 | 2 | 3 | 3 | 6, 2, 1 | 3 | 1 |
| & \(2^3 \cdot 3.7 \) | & 3 | 2 | 2 | 6, 1 | 2 | 1 |
| & \(7 \) | & 3 | 3 | 6, 2, 1 | 3 | 1 |
| \(SL(2, 8) \) | 504 | 2 | 2 | 2 | 9, 1 | 2 | 1 |
| & \(2^3 \cdot 3^2.7 \) | & 3 | 5 | 5 | 9, 4, 3, 2, 1 | 5 | 1 |
| & \(7 \) | & 4 | 4 | 9, 3, 2, 1 | 4 | 1 |
| \(SL(3, 3) \) | 5616 | 2 | 5 | 5 | 12, 5, 3, 2, 1 | 5 | 1 |
| & \(2^4 \cdot 3^3.13 \) | & 3 | 3 | 3 | 12, 3, 1 | 3 | 1 |
| & \(13 \) | & 5 | 5 | 12, 4, 3, 2, 1 | 5 | 1 |
| \(SU(3, 3) \) | 6048 | 2 | 6 | 7 | 14, 9, 6, 4, 2, 1 | 6 | 2 |
| & \(2^6 \cdot 3^3.7 \) | & 3 | 3 | 3 | 14, 5, 1 | 3 | 1 |
| & \(7 \) & 3 | 3 | 14, 2, 1 | 3 | 1 |
| \(M_{11} \) | 7920 | 2 | 5 | 5 | 10, 5, 3, 2, 1 | 5 | 1 |
| & \(2^4 \cdot 3^2.5.11 \) | & 3 | 2 | 2 | 10, 2 | 2 | 1 |
| & \(5 \) | & 2 | 2 | 10, 1 | 2 | 1 |
| & \(11 \) | & 3 | 3 | 10, 2, 1 | 3 | 1 |
| \(PSp(4, 3) \) | 25920 | 2 | 4 | 5 | 20, 12, 5, 1 | 4 | 2 |
| & \(2^6 \cdot 3^4.5 \) | & 3 | 5 | 7 | 20, 14, 8, 3, 1 | 5 | 2 |
| & \(5 \) | & 2 | 2 | 20 | 2 | 1 |
| \(M_{12} \) | 95040 | 2 | 4 | 7 | 15, 9, 3, 1 | 4 | 3 |
| & \(2^6 \cdot 3^3.5.11 \) | & 3 | 3 | 3 | 15, 4, 1 | 3 | 1 |
| & \(5 \) | & 2 | 2 | 15, 2 | 2 | 1 |
| & \(11 \) | & 3 | 3 | 15, 2, 1 | 3 | 1 |
| \(J_1 \) | 175560 | 2 | 2 | 2 | 15, 4 | 2 | 1 |
| & \(2^5 \cdot 3^3.5.7.11.19 \) | & 3 | 2 | 2 | 15, 4 | 2 | 1 |
| & \(5 \) | & 3 | 3 | 15, 6, 3 | 3 | 1 |
| & \(7 \) | & 2 | 2 | 15, 1 | 2 | 1 |
| & \(11 \) | & 2 | 2 | 15, 1 | 2 | 1 |
| & \(19 \) | & 4 | 4 | 15, 3, 2, 1 | 4 | 1 |
| \(M_{22} \) | 443520 | 2 | 4 | 5 | 12, 5, 2, 1 | 4 | 2 |
| & \(2^7 \cdot 3^3.5.7.11 \) | & 3 | 2 | 2 | 12, 2 | 2 | 1 |
| & \(5 \) | & 2 | 2 | 12, 1 | 2 | 1 |
| & \(7 \) | & 3 | 3 | 12, 2, 1 | 3 | 1 |
| & \(11 \) | & 3 | 3 | 12, 2, 1 | 3 | 1 |
| \(J_2 \) | 604800 | 2 | 4 | 5 | 21, 11, 3, 1 | 4 | 2 |
| & \(2^7 \cdot 3^3.5^2.7 \) | & 3 | 3 | 3 | 21, 7, 1, | 3 | 1 |
| & \(5 \) | & 5 | 5 | 21, 10, 6, 2, 1 | 5 | 1 |
| & \(7 \) | & 2 | 2 | 21 | 2 | 1 |
| \(HS \) | 44352000 | 2 | 5 | 9 | 24, 15, 8, 3, 1 | 5 | 3 |
| & \(2^9 \cdot 3^3.5^3.7.11 \) | & 3 | 2 | 2 | 24, 5 | 2 | 1 |
| & \(5 \) | & 3 | 4 | 24, 8, 2 | 3 | 2 |
| & \(7 \) | & 2 | 2 | 24, 1 | 2 | 1 |
| & \(11 \) | & 3 | 3 | 24, 2, 1 | 3 | 1 |
| G | $|G|$ | p | $\ell_p(G)$ | $S_p(G)$ | d_0, d_1, d_2, \ldots | $\ell_p(G, 1)$ | $\text{ext}_p^1(G, 1)$ |
|-----|-----|-----|------------|--------|----------------|-------------|------------------|
| $\text{PSL}(2, 2)$ | 6 | 2 | 2 | 2 | 3, 1 | 2 | 1 |
| $\simeq \mathfrak{S}_3$ | 2.3 | 3 | 2 | 2 | 3, 1 | 2 | 1 |
| $\text{PSL}(2, 3)$ | 12 | 2 | 2 | 2 | 4, 1 | 2 | 1 |
| $\simeq \mathfrak{A}_4$ | 2.3.3 | 3 | 3 | 3 | 4, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 4)$ | 60 | 2 | 2 | 2 | 5, 1 | 2 | 1 |
| $\simeq \text{PSL}(2, 5)$ | 2.3.5 | 3 | 2 | 2 | 5, 1 | 2 | 1 |
| $\simeq \mathfrak{A}_5$ | 5 | 3 | 3 | 5, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 7)$ | 168 | 2 | 3 | 3 | 6, 2, 1 | 3 | 1 |
| | $2.3.7$ | 3 | 2 | 2 | 6, 1 | 2 | 1 |
| | 7 | 3 | 3 | 6, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 8)$ | 504 | 2 | 2 | 2 | 9, 1 | 2 | 1 |
| | $2.3.7.7$ | 3 | 5 | 5 | 9, 4, 3, 2, 1 | 5 | 1 |
| | 7 | 4 | 4 | 9, 3, 2, 1 | 4 | 1 |
| $\text{PSL}(2, 9)$ | 360 | 2 | 3 | 3 | 7, 2, 1 | 3 | 1 |
| $\simeq \mathfrak{A}_6$ | 2.3.5.7 | 3 | 3 | 3 | 7, 2, 1 | 3 | 1 |
| | 5 | 3 | 3 | 7, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 11)$ | 660 | 2 | 2 | 2 | 8, 2 | 2 | 1 |
| | $2.3.5.11$ | 3 | 2 | 2 | 8, 2 | 2 | 1 |
| | 5 | 3 | 3 | 8, 2, 1 | 3 | 1 |
| | 11 | 3 | 3 | 8, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 13)$ | 1092 | 2 | 2 | 2 | 9, 2 | 2 | 1 |
| | $2.3.7.13$ | 3 | 2 | 2 | 9, 2 | 2 | 1 |
| | 7 | 4 | 4 | 9, 3, 2, 1 | 4 | 1 |
| | 13 | 3 | 3 | 9, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 16)$ | 4080 | 2 | 2 | 2 | 17, 1 | 2 | 1 |
| | $2.3.5.17$ | 3 | 3 | 3 | 17, 5, 2 | 2 | 1 |
| | 5 | 5 | 5 | 17, 6, 4, 2, 1 | 3 | 1 |
| | 17 | 9 | 9 | 17, 8, 7, 6, 5, 4, 3, 2, 1 | 9 | 1 |
| $\text{PSL}(2, 17)$ | 2448 | 2 | 5 | 5 | 11, 4, 3, 2, 1 | 5 | 1 |
| | $2.3.5.17$ | 3 | 5 | 5 | 11, 4, 3, 2, 1 | 5 | 1 |
| | 17 | 3 | 3 | 11, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 19)$ | 3420 | 2 | 2 | 2 | 12, 3 | 2 | 1 |
| | $2.3.5.19$ | 3 | 5 | 5 | 12, 4, 3, 2, 1 | 5 | 1 |
| | 5 | 3 | 3 | 12, 4, 2 | 3 | 1 |
| | 19 | 3 | 3 | 12, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 23)$ | 6072 | 2 | 4 | 4 | 14, 5, 3, 1 | 3 | 1 |
| | $2.3.11.23$ | 3 | 3 | 3 | 14, 4, 1 | 2 | 1 |
| | 11 | 6 | 6 | 14, 5, 4, 3, 2, 1 | 6 | 1 |
| | 23 | 3 | 3 | 14, 2, 1 | 3 | 1 |
| $\text{PSL}(2, 25)$ | 7800 | 2 | 4 | 4 | 15, 5, 3, 1 | 3 | 1 |
| | $2.3.5.13$ | 3 | 3 | 3 | 15, 4, 1 | 2 | 1 |
| | 5 | 3 | 3 | 15, 2, 1 | 3 | 1 |
| | 13 | 7 | 7 | 15, 6, 5, 4, 3, 2, 1 | 7 | 1 |
| $\text{PSL}(2, 27)$ | 9828 | 2 | 2 | 2 | 16, 4 | 2 | 1 |
| | $2.3.7.13$ | 3 | 3 | 3 | 16, 2, 1 | 3 | 1 |
| | 7 | 4 | 4 | 16, 6, 4, 2 | 4 | 1 |
| | 13 | 7 | 7 | 16, 6, 5, 4, 3, 2, 1 | 7 | 1 |
References

November 8, 2006

Cédric Bonnafé, CNRS (UMR 6623), Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France • E-mail : bonnaf@math.univ-fcomte.fr

Url : http://www-math.univ-fcomte.fr/pp_Annu/CEDRANGE/