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Abstract. — We define the general concept of asymptotically good families, and describe them
in the context of curves and codes over finite fields, number fields, and regular graphs.

Résumé. — Nous définissons le concept de familles asymptotiquement exactes et décrivons
celui-ci pour les courbes et les codes sur les corps finis, les corps de nombres et les graphes
réguliers.

1. Introduction

There is a class of optimization problems in various branches of mathematics, including num-
ber theory, algebraic geometry, coding theory, and graph theory, that can be classified under
one rubric, namely that of “asymptotically good families.” In this short article, I sketch some
common characteristics for several specific problems and describe a general framework for all
of them. The larger aim is to encourage and enlarge study of the deep and fruitful analogies
that exist between them, and especially to stimulate further cross-fertilization of ideas and
methods.
A very well-established analogy of this type is that between number fields and function fields of
curves: it has motivated much of the advances in arithmetic and algebraic geometry. Analogies
and other types of connections between codes and graphs have proven to be very fruitful to
both fields as well. Starting in the 1980s, the construction of codes using methods of algebraic
geometry revitalized both coding theory and the study of varieties with extremal properties.
Less well-explored are connections between the theory of number fields and those of graphs
and codes: it is hoped that studying these connections in the context of asymptotically good
families may enrich all these domains of study, for example by bringing to the attention of
researchers in any one of these fields methods and ideas which are natural in one or more of
the others.
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122 Asymptotically Good Families

Especially since it’s quickly done, it will be instructive to give, right from the outset, a
description of the formalization of the concept of asymptotically good families, prior to dis-
cussing the instances which led to the more abstract definition. To begin, we require a context
C = (O,T , τ, α), where O,T are sets and τ, α are maps τ : O → T and α : O → R≥0. Here,
O is the set of objects of interest, T is a paramater space of types of the objects, and α is
the critical invariant measuring the “quality” of the object. The parameter space is usually
a familiar and countable set; for convenience, we will assume that τ is surjective. It goes
without saying that our normalization is such that “good” objects are those of high quality.
What interests us in particular is not any single object of high quality (a “gem”), but an
infinite necklace on which we may hang a sequence of gems. More precisely, a family F in
O is a sequence F1, F2, · · · of pairwise distinct elements of O. We say that F = (Fi)

is isotypic of type t if every member of F has type t, i.e. τ(Fi) = t for all i. We extend
α to families by putting α(F) = lim infi→∞ α(Fi), for F = (F1, F2, · · · ) and say that F is
asymptotically good if α(F) > 0. In the contexts we have in mind, it is typically difficult to
construct asymptotically good families, or at least to do so explicitly.
With these preliminaries in place, we can now define the main object of interest attached to
a context C = (O,T , τ, α), namely the asymptotic envelope function A : T → R≥0 given by

A(t) := sup
F of type t

α(F),

where the limit is taken over all isotypic families of type t. Thus, the map A is induces by τ

and α as in the following diagram.

O
τ

����
��

��
�� α

!!CC
CC

CC
CC

T
A

// R≥0

It is clear that the asymptotic envelope function is a measure not of the quality of individual
objects, but rather of the quality of infinite non-repeating strings of those of a fixed type. We
will say that functions L,U : T → R≥0 are lower, respectively, upper bounds for A in the
context C if

L(t) ≤ A(t) ≤ U(t) for all t ∈ T.

In most cases we will discuss, we will be able to estimate A(t) by upper and lower bounds
but of course would like to have an explicit formula for A(t) itself. Typically, the theory
provides a natural and “decent” upper bound, meaning one that is believed to be sharp.
Interestingly, the source of this upper bound is usually a zeta function known or at least
suspected to satisfy an appropriate Riemann hypothesis. Obtaining lower bounds L(t) involves
the creation of examples with extremal properties, usually from objects carrying inordinately
many symmetries – it is not surprising that automorphic forms are a typical source. What
has been at times a revelation is that automorphic forms are at the root of good lower bounds
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even in contexts that do not at first glance appear to be related to number theory or algebraic
geometry.

2. Some Examples

Now let us introduce the contexts Cff (function fields), Cnf (number fields), Clc (linear codes),
and Crg (regular graphs), by specifying their types, critical invariants etc. and describing the
known lower and upper bounds for their asymptotic envelopes. There are many other contexts
that fit the general framework, for example that of tightly packed lattices in Euclidean space,
but we will treat them elsewhere. Naturally, the reader is encouraged to be on the lookout
for other contexts which fit into the rubric of asymptotically good families!

2.1. Function Fields of Curves over Finite Fields. — To introduce the context Cff let
O = Off be the set of all extensions K/F(x) where |F| and [K : F(x)] are both finite. In other
words, our objects are function fields of smooth projective geometrically irreducible curves
over a finite field, i.e. transcendence degree 1 fields over finite fields, but note that our curves
come equipped with a particular map to the projective line. The space of types Tff = Q is the
set of all prime powers, i.e. of integers q = pm where p is a prime and m is a positive integer,
and τ(K/F(x)) = τff(K/F(x)) := |F|. Last but not least, we define the critical invariant α by

α(K/Fq(x)) = αff(K/Fq(x)) :=
|N1(K/Fq)|

g(K)
,

where g(K) is the genus of K (or of the curve X corresponding to K) and N1(K/Fq) = |X(Fq)|
is the number of degree 1 primes of K/Fq

, or, what is the same, the number of Fq-rational
points of X. Roughly speaking, the idea is to find curves with many points, as measured
against the genus of the curve. The upper bound for the critical invariant α(K) for an
individual K comes from the Hasse-Weil bound:

N1(K/Fq(x)) ≤ q + 1 + 2g(K)
√
q.

It is a reflection of the fact that the zeta function of K satisfies the Riemann Hypothesis.
When applied to families, this already gives the bound Aff(q) ≤ 2

√
q. Taking this much

further, Serre, Ihara and Drinfeld-Vladut obtained a succession of improvements yielding,
for an asymptotically good family of curves of fixed type q, Uff(q) =

√
q − 1. Via a class-

field tower construction involving a graph argument, Serre (see [S] and [EHKPWZ]) gave a
general lower bound for Aff(q): Lff(q) = C log(q) for a positive absolute constant C. When
m is even, and q = pm ≥ 49, a much better lower bound is obtained by using modular curves,
actually reaching the Drinfeld-Valdut upper bound, thus proving that A(p2k) = pk − 1 if
pk ≥ 7.

2.2. Number Fields. — For the context of number fields Cnf , the set of objects Onf consists
of fields K of finite degree n(K) over Q. The type of a number field is defined to be τ(K) =

r1(K)/n(K); it is the proportion of the embeddings of K into C with image contained in R.
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The space of possible types in this context is T = [0, 1] ∩ Q. As the critical invariant, we
choose the recriprocal logarithmic root discriminant:

αnf(K) :=
n(K)

log |disc(K)| ,

where disc(K) is the absolute discriminant of K and n(K) = [K : Q] is its absolute degree;
for the field Q, we put α(Q) = 0. Under the Generalized Riemann Hypothesis (GRH), we
have a bound due to Stark, Odlyzko and Serre, namely

Anf(t) ≤ U∗(t) := (log(8π) + γ + πt/2)−1.

The “*” is to remind us that this holds under the additional assumption of GRH. There is
an unconditional upper bound as well; see [Od] for more details on these bounds. As for
lower bounds, the only source of good families in Cnf we currently know are nested fields
K0 ( K1 ( · · · which are ramified at finitely many places and shallowly ramified (they
exist by a theorem of Golod and Shafarevich). As a result we do not have an explicit lower
bound L(t), though by [HM], we have A(0) ≥ 1/ log(83) and A(1) ≥ 1/ log(955). Most
researchers believe the upper bound U∗(t) is sharp. Note that U∗(0) ≈ 1/ log(44.7) and
U∗(1) ≈ 1/ log(215.3).

2.3. Linear Codes. — Now consider the context Clc,, with Olc being the set of all linear
codes over finite fields; a general reference is [TV]. Recall that a linear code of length n and
dimension k over Fq is a k-dimensional linear subspace of Fn

q . As in the case of Cff , we define
the type of a linear code C/Fq to be q = pm. We equip Fn

q with the Hamming metric,(1) and
let d be the minimum distance between two distinct codewords (elements of C). A code can
be used for communicating through a noisy channel in a way that allows for the correction of
errors that may occur through transmission, at the cost of transmitting at a lower efficiency
rate. We define the quality of a linear code C of dimension k, length n and minimum distance
d to be α(C) = kd/n2. The ratios R(C) = k/n and δ(C) = d/n are known as the rate and
relative distance of C; they both belong to the unit interval. The closer the rate is to 1, the
more efficient the code is, while the closer the relative distance is to 1, the greater its capacity
for error detection and correction. Since the quality of a code is the product of its rate and
its relative distance, a family of codes over Fq is asymptotically good if and only if the rates
and relative distances of its members stay bounded away from 0: this ensures that the codes
are efficient and carry good error-correction capabilities. Thanks to the multiplicity of ways
for deforming one code into another one with slightly different parameters, we have a “higher
resolution” picture of the distribution of asymptotically good families in this context. Namely,
consider the set X consisting of limit points of the set of all (δ(C), R(C)) ∈ [0, 1]2 as C runs
over all linear codes over Fq. Then there is a function ρq(δ) such that for all (δ0, R0) ∈ [0, 1]2,
(δ0, R0) belongs to X if and only if R0 ≤ ρq(δ0). We have explicit upper and lower bounds

ρGV
q (δ) ≤ ρq(δ) ≤ ρJPL

q (δ),

(1)the Hamming distance between two vectors is the number of positions in which they differ
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which we will not specify here, see [TV]. The lower bound is known as the Gilbert-Varshamov
bound, and the upper one as the JPL Bound (its authors worked at the Jet Propulsion
Laboratory). From these explicit functions, one can extract explicit lower and upper bounds
Llc(q) and Ulc(q) for Alc(q).

2.4. Regular Graphs. — Our last context Crg has as its objects Org, the set of connected
finite regular graphs; a general introduction is given in the survey article [HLW], to which we
refer for the results discussed below. Recall that a t-regular graph is a graph whose vertices
all have degree t, i.e. have t edges emanating from them. We define the type of a graph
G = (V,E) ∈ Org to be the degree t of any one of its vertices v ∈ V and suppose t ≥ 3,
thus Trg = Z≥3. Self-loops and multiple edges are allowed for our graphs. If S ⊆ V , we let
∂S be the set of edges from S to its complement V \ S. We will discuss two types of critical
invariants for t-regular graphs. First, we may work with αer(G) = h(G) where h(G) is the
edge expansion ratio of G, defined by

h(G) = min
S⊆V,|S|≤|V |/2

|∂S|
|S| .

Alternatively, the adjacency matrix of G (with rows and columns indexed by V having u, v-
entry equal to the number of edges from u to v) is a real symmetric n by n matrix. Writing its
eigenvalues as t = λ0 ≥ λ1 ≥ . . . ≥ λn ≥ −t, we let λ(G) = λ1(G) be its “second” eigenvalue.
Let us define the “spectral gap” of a t-regular graph G to be αsg(G) = t−λ(G). This quantity
is closely related to h(G) via the Dodziuk/Alon-Milman theorem:

t− λ(G)

2
≤ h(G) ≤

√
2t
√

t− λ(G).

Consequently, a family of t-regular graphs is asymptotically good with respect to the critical
invariant αer if and only if it is good with respect to αsg. Such a family is called a family of
expander graphs. They have many applications in cryptography as well as coding theory, not
to mention other branches of mathematics. Let us work with αsg, the spectral gap from now
on. By a theorem of Alon-Boppana, we have the upper bound

Asg(t) ≤ t− 2
√
t− 1,

i.e. we can take U sg(t) = t− 2
√
t− 1. As in the previous cases, to obtain a lower bound, we

must construct families of t-regular graphs of large spectral gap.
The best we can hope for is such a family which meets the upper bound t−2

√
t− 1. With this

in mind, we say that a graph is t-Ramanujan if it is t-regular and satisfies αsg(G) ≥ t−2
√
t− 1.

(Usually this is stated in the equivalent formulation: λ(G) ≤ 2
√
t− 1). Thus, if t ≥ 3 is an

integer such that a family of t-Ramanujan graphs exist, then Asg(t) = t − 2
√
t− 1. Thanks

to the work of Lubotzky, Phillips, Sarnak, Margulis, Morgenstern ..., it is known that if t− 1

is a prime power, then families of t-Ramanujan graphs exist. The known constructions are
all “automorphic” at root. We also note that a regular graph is t-Ramanujan if and only if its
Ihara zeta function satisfies the Riemann Hypothesis (Cor. 4.5.9 of Lubotzky [L]).
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3. Some Open Questions

The analogies sketched above go quite a bit deeper in certain situations. Namely, for some
of the ordered pairs of contexts introduced above, there are known constructions which map
an asymptotically good family F = (F1, F2, . . .) of objects in C to an asymptotically good
family F ′ in C ′, together with an estimate for α(F ′) in terms of α(F).
For example, if C = Cff and C ′ = Clc, then the Goppa construction of algebraic-geometric
codes gave a totally unexpected improvement on the Gilbert-Varshamov lower bound (for
q ≥ 49). It also led indirectly to the determination of Aff(p

m) for all even m. By contrast,
the mapping of certain types of good families from Cnf to Clc by Guruswami [Gu] is not very
well-studied. Another highly important such mapping is from expander graphs to linear codes,
giving the first construction of asymptotically good codes that can be coded and decoded in
linear time.
It’s clear that among the four contexts introduced here, the one about which we know the
least is number fields. It would be highly interesting to find an “automorphic” construction
of asymptotically good families of number fields, or a method for producing them from an
asmptoticaly good family of codes or graphs. Currently, the only known method in the
number field context is the Golod-Shafarevich criterion. Is it possible to adapt the probablistic
methods that have proved so fruitful in other contexts to this setting?
Note also that for number fields, we do not yet have an explicit lower bound Lnf(t) ≤ Anf(t).
It’s reasonable to expect a bound Lnf(t) = ((t−1) log(83)+ t log(955))−1, i.e. to fit a “convex”
function to the two boundary points that we have. However, this seems to be quite out of
reach at the moment, because it involves problems of signatures of units which are quite
mysterious.
The major open problem in the context of regular graphs is clearly: For which t ≥ 3 do
families of t-Ramanujan graphs exist? Hoory, Linial and Wigderson conjecture that families
of t-Ramanujan graphs exist for all t ≥ 3 (Conjecture 5.13 of [HLW]). Thus, they conjecture
that

Asg(t) =? t− 2
√
t− 1 for all t ≥ 3.

The best evidence for this conjecture is probably the theorem of Friedman to the effect that
for any ǫ > 0, fixed t and n tending to infinity, the probability that a random t-regular graph
on n vertices has λ(G) ≤ 2

√
t− 1 + ǫ is 1− on(1).

Both in the case of Cff and Crg, since we know that the upper bound is sharp for a substantial
subset of parameters t ∈ T , it is tempting to believe that it is so for all values of t. There
is a simple, but deep, example in which that turns out not to be the case: namely for the
Shannon capacity of cyclic graphs. To define the context Csc, let Osc = {Cn

t |n ≥ 1, t ≥ 3}
be the set of all n-fold self-products of the cyclic graph Ct on t vertices (say a regular t-gon).
As in the case of regular graphs, we have T = Tsc = Z≥3 and τ(Cn

t ) = t. To introduce the
critical invariant, recall that For a graph G, the independence number of G, int(G), is the
size of a maximal subset of its vertices not joined by any edges. The critical invariant, the
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Shannon capacity, is defined by

αsc(C
n
t ) :=

log2(int(C
n
t ))

n
.

We refer the reader to [AZ] for the information-theoretic motivation of this definition. Shan-
non showed that Asc(t) ≤ t/2 for all t. It is then very easy to show that for even integers t,
Asc(t) = t/2 but Shannon discovered that the computation of Asc(t) for odd t ≥ 5 is highly
non-trivial, and he was unable to determine even A(5). Note that as in the case of Cff , there is
a simple formula for Asc(t) for exactly half of the types, and one could guess that Asc(t) = t/2

for all t ≥ 3. However, it turns out that for odd t ≥ 5,

(t− 1)/2 < Asc(t) ≤
t

1 + (cos(π/t))−1
< t/2.

It is known by a celebrated theorem of Lovasz that the middle inequality above is sharp for
t = 5, but the value of Asc(t) is not known for larger odd t; see [AZ] for more details.
Just as the existence of t-Ramanujan graphs for t 6= pe+1 is unknown, leaving the possibility
that for such t there is a strict inequality Arg(t) < Urg(t) = t− 2

√
t− 1, for q = pm with m

odd, we have
C log(pm) ≤ Aff(p

m) ≤ √
pm − 1,

with the upper bound sharp for even m but not known to be so for odd m. It would be of
great interest to find a single prime p for which we can determine whether Aff(p) =

√
p− 1 is

true or false.
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