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Abstract. — For an abelian extensions of number fields, we review some basic theory and
formulate the Stark Conjecture in terms of the ‘equivariant’ L-function at s = 0. After surveying
the known cases, we describe some refinements and extensions due to Rubin, Brumer et al. and
results concerning Fitting ideals of class groups. Finally, we summarise some recent work on
minus parts at s = 1.

Résumé (Les Fonctions L Équivariantes en s = 0 et en s = 1). — Après quelques
rappels, nous énonçons la Conjecture de Stark pour une extension abélienne de corps de nombres,
formulée en termes de la fonction L ‘équivariante’ en s = 0. Nous survolons les cas connus
et expliquons certaines conjectures plus fines dues à Rubin, Brumer et al. ainsi que quelques
résultats concernant l’idéal de Fitting du groupe des classes. Enfin, nous résumons certains
travaux récents concernant les parties moins en s = 1.

1. Introduction

This article is is an expanded version of the notes from four lectures given by the author at
the conference ‘Fonctions L et Arithmétique’ in Besançon, in June 2009. It surveys work on
several different conjectures concerning the special values of L-functions attached to characters
of Galois extensions K/k of number fields.
In our presentation – and largely in historical fact – the development of such conjectures
begins with the seminal work of Stark in [St]. We shall, however, consider only the case in
which G = Gal(K/k) is abelian, for which the theory is currently richest. In this context,
we shall work with the equivariant L-function ΘS = ΘS,K/k(s) attached to K/k and a set S
of places of k subject to certain conditions. This simply assembles the usual S-truncated L-
functions for all irreducible characters of G into a single function taking values in the complex
group-ring C[G]. Consequently, the conjectures can be formulated in terms of certain elements
and ideals of group-rings R[G] and ‘arithmetic’ R[G]-modules attached to K etc. Here, R
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130 Equivariant L-Functions at s = 0 and s = 1

is a commutative ring, variously Q (the rationals), Z (the integers), Qp or Zp (the p-adic
rationals or integers, for a prime p). The commutativity of R[G] allows us to use the algebra
of determinants, annihilators, Fitting ideals etc.
In Sections 2 and 3 we briefly review the definitions and theory of the L-functions concerned,
starting with those attached to ray-class characters of k, moving on to characters of G via
class-field theory and hence to the equivariant L-function ΘS mentioned above. More details
of the basic theory can be found in standard books on Algebraic Number Theory such as [La].
See also [Ta, Ch. 0] or [Ma] for some of the more advanced facts. In Section 4 we motivate
and then state the Stark’s basic conjecture in the abelian case, in a formulation due to Rubin.
This concerns the leading Taylor coefficient of ΘS(s) at the point s = 0. (Despite the title,
the latter half of [St] also focusses on s = 0, as does the majority of subsequent work.)
Section 5 briefly reviews the current state of research on the basic abelian conjecture and
its ‘integral’ refinements. Following on from the latter, Section 6 explains the link – via the
Brumer-Stark Conjecture – with Brumer’s conjecture on the annihilation of (the minus-part
of) the class group of K in the case where K is CM and k totally real. The latter is a
conjectural generalisation of Stickelberger’s Theorem. Section 7 tells the story of recent work
attempting to refine the Brumer Conjecture using Fitting ideals of class groups, much of it
due to Greither and Kurihara. The last two sections deal with recent work of the author
concerning the minus-part of ΘS(s) at the point s = 1. The lack of a suitable ‘equivariant
functional equation’ means that there is no simple logical connection with the above-mentioned
work at s = 0. Instead, a fundamental role is played by a certain p-adic logarithmic map
sp which is introduced in Section 8. Finally, in Section 9 we explain two conjectures made
in [So1] and [So2]: the Integrality Conjecture concerning the image Sp of sp in Qp[G] and
the Congruence Conjecture. The latter is a sort of conjectural explicit reciprocity law that
makes a link with the Stark Conjecture in the plus-part at s = 0. We also pose a rather more
tentative ‘Question’ which aims to relate Sp to the issues discussed in Section 7.
This survey will suit readers with little previous knowledge of the subject but leaves much
out. In particular, we shall not touch on the analogous conjectures at integer values of s
different from 0 and 1, nor on Serre’s or Gross’ p-adic conjectures or their extensions. The
function-field case and that of non-abelian G are also hardly mentioned. For more detailed
and/or extensive accounts the reader may consult the sources cited in the text or the four
earlier survey articles in [BPSS] by Dummitt, Flach, Greither and Popescu.

1.1. Basic Notations and Conventions. — In addition to the notations already intro-
duced, N, R and C will denote the natural, real and complex numbers respectively. We shall
denote by Q̄ the algebraic closure of Q in C and also fix an algebraic closure Q̄p of Qp for each
prime number p. A ‘number field’ L is always a finite extension of Q within Q̄. Its abelian
closure in Q̄ is denoted Lab. Let F be any field, l ∈ N and p a prime number. We shall write
µ(F ) (resp. µl(F ), resp. µp∞(F ) ) for the group of all roots of unity (resp. all lth roots of
unity, resp. all p-power roots of unity) in F . When F is omitted it is understood to be Q̄. If
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L is a number field, we shall write WL for the cardinality |µ(L)| of µ(L). Finally, we shall use
the notation χ0 for the trivial character of any finite abelian group.

2. Ray-Class L-Functions

2.1. Basic Definitions. — Let k be a number field with ring of integers Ok, r1 real places
and r2 complex places so that r1 + 2r2 = n := [k : Q]. For our purposes, a cycle for k will be
a formal product f = f0f∞ where f0 is any non-zero ideal of Ok and f∞ is the formal product
of any subset of the real places of k. Thus f can be written uniquely as an infinite product
with only finitely many non-trivial terms:

f = f0f∞ =
∏

p

pnp(f)
∏

v

vnv(f)

Here, p runs through the set of all non-zero, prime ideals of Ok and np(f) = ordp(f0) ∈ Z≥0.
Thus p|f0 if and only if np(f) ≥ 1. Similarly, v runs through real places of k and nv(f) ∈ {0, 1}.
By analogy, ‘v|f∞’ will indicate nv(f) = 1. Let I(k) denote the group of (non-zero) fractional
ideals of k under multiplication and P (k) its subgroup of principal fractional ideals. To each
cycle f for k there corresponds the subgroup If(k) of I(k) consisting of those fractional ideals
prime to f0, and a subgroup Pf(k) of P (k) consisting of the principal ideals possessing a
generator ‘congruent to 1 mod f’:

Pf(k) := {(α) : α ∈ k×, ordp(α− 1) ≥ np ∀ p|f0, ιv(α) > 0 ∀ v|f∞}
where ιv : k → R is the embedding corresponding to the real place v. Clearly, Pf(k) is
contained in If(k) and the quotient If(k)/Pf(k) is, by definition, the ray-class group Clf(k) of
k modulo f. (We shall write [a]f for the image in Clf(k) of any a ∈ If(k).) It is finite and, of
course, abelian, so its characters may be identified with homomorphisms χ : If (k) −→ µ(C)
such that χ((α)) = 1 for all (α) ∈ Pf(k). To any such f and χ we associate a ray-class
L-function Lf(s, χ), initially defined on the set {s ∈ C : ℜ(s) > 1} by

(1) Lf(s, χ) :=
∑

a�Ok
a∈If(k)

χ(a)Na−s =
∏

p prime
p∤f0

(
1− χ(p)Np−s

)−1

(By standard comparisons, the above sum and Euler product converge absolutely to the same
analytic function on this set.)

Example 2.1. — The Dedekind Zeta-Function. Suppose f is trivial i.e. f0 = Ok and f∞
is the empty product, so that Clf(k) = Cl(k), the class group. If also χ is the trivial character
χ0 of Cl(k), then (1) gives Lf(s, χ) =

∑

a�Ok, a6=(0)

Na−s which coincides with the Dedekind zeta

function ζk(s) of k.

Example 2.2. — Ray-Class L-functions for k = Q. Take f to be (f) = fZ for some
f ∈ Z≥1 and f∞ to be ∞, the unique real place of Q. There is then an isomorphism from
(Z/fZ)× to Clf(Q) sending ā to [(a)]f, where a is any positive integer prime to f . Thus a
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132 Equivariant L-Functions at s = 0 and s = 1

character χ of Clf(Q) coincides with a Dirichlet character modulo f and one checks easily
from (1) that Lf(s, χ) is just the corresponding Dirichlet L-function.

2.2. Primitivity and the Functional Equation. — We shall say that one cycle g divides
another f (written g|f) iff np(g) ≤ np(f) for all p (i.e. g0|f0) and nv(g) ≤ nv(f) for all v. In
this case If(k) ⊂ Ig(k) and Pf(k) ⊂ Pg(k) so there is a homomorphism

πf,g : Clf(k) −→ Clg(k)

[a]f 7−→ [a]g

Using weak approximation one can show firstly that πf,g is surjective and secondly that if h
also divides f then ker(πf,g) ker(πf,h) = ker(πf,(g,h)). (Here (g, h) denotes the cycle that is the
h.c.f. of g and h in the obvious sense). It follows that there exists a unique minimal cycle w.r.t.
divisibility, say fχ, such that χ factors through πf,fχ i.e. such that there exists a character χ̂
of Clfχ(k) with χ = χ̂◦πf,fχ . We shall call fχ the conductor of χ and χ̂ the primitive character
associated to χ.

Remark 2.3. — The Idelic Viewpoint. Let Id(k) be the idèle group of k and C(k) :=

Id(k)/k× the idèle-class group. For each cycle f one can use weak approximation to define a
(surjective) homomorphism C(k) → Clf(k). Thus each ray-class character χ modulo f gives
rise to an idèle-class character that is continuous and of finite order. All such characters arise
in this way. Moreover χ1 and χ2 give rise to the same idèle-class character if and only if
χ̂1 = χ̂2.

If χ is primitive (i.e. fχ = f, so χ̂ = χ) we shall write simply L(s, χ) for the ‘primitive L-
function’ Lf(s, χ). If χ is imprimitive then Lf(s, χ) and L(s, χ̂) differ at most by finitely may
Euler factors. More precisely, one clearly has

(2) Lf(s, χ) =

( ∏

p|f
p∤fχ

(
1− χ̂(p)Np−s

))
L(s, χ̂).

So suppose χ is a primitive ray-class character modulo f. We summarise the well-known
‘analytic continuation’ and ‘functional equation’ for L(s, χ). Firstly, L(s, χ) extends to a
meromorphic function on C. This is analytic at s except possibly when s = 1 where it has a
simple pole iff χ = χ0 i.e.

(3) ords=1(Lf(s, χ)) = −δχ,χ0

in Kronecker’s notation. (It follows easily from (2) that exactly the same is true of Lf(s, χ),
even when χ is imprimitive.) Secondly, let a1(χ) (resp. a2(χ)) denote the number of real
places v such that v ∤ f∞ (resp. v|f∞) so that a1(χ) + a2(χ) = r1 and define a completed
L-function

Λ(s, χ) := (|dk|N f0)
s/22r2(1−s)π−(ns+a2(χ))/2Γ(s/2)a1(χ)Γ((1 + s)/2)a2(χ)Γ(s)r2L(s, χ)
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where dk denotes the discriminant of k. (The Γ-factors can be considered as Euler factors at
infinite places.) Then we have an identity of meromorphic functions:

(4) Λ(1 − s, χ) =
i−a2(χ)τ(χ−1)

(N f0)1/2
Λ(s, χ−1)

where χ−1 denotes the inverse character of χ (which has the same conductor) and τ(χ) denotes
the Gauss sum (see e.g. [Ma]. Note that |τ(χ)|2 = N f0 = (−1)a2(χ)τ(χ)τ(χ−1).)

3. The Galois Viewpoint

3.1. Set-Up. — Suppose now that K is a finite, Galois extension of the number field k such
that G := Gal(K/k) is abelian. Class-field theory associates to K/k a cycle f = fK/k with the
following properties:

(i) A real place v of k divides f∞ iff one (hence any) place above v in K is complex.
(ii) A non-zero prime ideal p of Ok divides f0 iff p ramifies in K.
(iii) There is a well-defined homomorphism (the Artin homomorphism)

Clf(k) −→ G

sending [p]f to the Frobenius element of G at p for each non-zero prime ideal p ∤ f0.
Note that fK/k is the unique minimal cycle for k for which the description in (iii) gives a
well-defined homomorphism Clf(k) → G. It is then unique and surjective and the image of
[a]f (for any ideal a prime to f0) will be denoted σa.
Let Ĝ denote the set of all complex irreducible characters of G, i.e. all homomorphisms
χ : G → C×. Composing any such χ with the Artin homomorphism gives rise to a ray-class
character ClfK/k

(k) → C×, also denoted χ. Thus fχ divides fK/k and the two cycles are equal
iff χ is primitive mod fK/k. (In fact fK/k is always the l.c.m. of the set {fχ : χ ∈ Ĝ}.) We
have

LfK/k
(s, χ) :=

∏

p prime
p∤fK/k,0

(
1− χ(σp)Np−s

)−1
=

∏

p6∈Sram

(
1− χ(σp)Np−s

)−1

where Sram = Sram(K/k) denotes the set of (finite) ramified primes in K/k. It is sometimes
convenient to remove further Euler factors from the R.H.S. above. We denote by S∞ = S∞(k)

the set of all infinite places of k and by Smin = Smin(K/k) the set Sram ∪ S∞. For any finite
set S of places containing Smin and any χ ∈ Ĝ, we define the S-truncated L-function to be

(5) LS(s, χ) :=
∏

p6∈S

(
1− χ(σp)Np−s

)−1
=

( ∏

p∈S
p∤fχ

(
1− χ̂(p)Np−s

))
L(s, χ̂)

which clearly has a meromorphic continuation to C. Expanding the first product gives

(6) LS(s, χ) =
∑

a�Ok
(a,S)=1

χ(σa)Na−s =
∑

g∈G
χ(g)ζS(s, g) for ℜ(s) > 1
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134 Equivariant L-Functions at s = 0 and s = 1

where (a, S) = 1 indicates that the ideal a is prime to every p ∈ S and the partial zeta-function
ζS(s, g) is the Dirichlet series

∑
Na−s where a ranges through all such integral ideals with

σa = g. As before, it is convergent for ℜ(s) > 1 for any g ∈ G.

Remark 3.1. — Artin L-Functions. We consider briefly the more general situation where
K/k is Galois but G = Gal(K/k) is not necessarily abelian, where χ is the character of a
d-dimensional complex representation ρ : G → GL(V ) (but possibly d > 1) and where S
is any set of places of k containing S∞ (but not necessarily Sram). In this set-up the Artin
L-function may be defined for ℜ(s) > 1 by generalising the second member of (5):

LS,Artin(s, χ) :=
∏

p6∈S
det(1−Np−sAP)

−1

Here, P is any prime of K above p with inertia group TP ⊂ G say, and AP denotes the
endomorphism of V ρ(TP ) induced by ρ(FrobP(K/k)) (the latter being defined only up to an
element of ρ(TP)). If G is abelian and d = 1 then ρ = χ ∈ Ĝ and it is not hard to show
that LS,Artin(s, χ) agrees with the third member in (5) (which, of course, makes sense even
if Sram 6⊂ S). If G is non-abelian, ρ does not in general give rise to-ray class characters over
k. However, Brauer induction and the formal properties of Artin L-functions allow us to re-
express them in terms of ray-class L-functions for extensions over various intermediate fields
k′ with K ⊃ k′ ⊃ k. For more details of Artin L-functions, the properties they enjoy and for
Stark’s conjectures in the nonabelian case, we refer to [Ta, Chs. 0,1].

3.2. The Equivariant L-Function. — The rest of this article will be concerned exclusively
with the case G abelian and S ⊃ Smin. We can now give three equivalent definitions our basic
object of study, the S-truncated equivariant L-function ΘS(s) = ΘS,K/k(s). Firstly, for K/k,
G and S as above we set

(7) ΘS(s) =
∑

g∈G
ζS(s, g)g

−1

This is a priori a function on {s ∈ C : ℜ(s) > 1} with values in the group-ring C[G]. Each
χ ∈ Ĝ extends C-linearly to a ring homomorphism χ : C[G] → C and (6) gives

(8) χ(ΘS(s)) = LS(s, χ
−1) for every χ ∈ Ĝ.

Character theory implies that equations (8) determine ΘS(s) uniquely so it follows from (5)
that ΘS(s) could also have been defined by the Euler product (in C[G])

(9) ΘS(s) =
∏

p6∈S

(
1− σ−1

p Np−s
)−1

which makes sense and converges for ℜ(s) > 1. Finally, we can invert equations (8) explicitly
to write ΘS(s) in terms of L-functions. Let eχ be the idempotent of C[G] associated to χ ∈ Ĝ,
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i.e. eχ := 1
|G|

∑
g∈G χ(g)g

−1. Character theory and (5) give

(10) ΘS(s) =
∑

χ∈Ĝ
LS(s, χ

−1)eχ =
∑

χ∈Ĝ

( ∏

p∈S
p∤fχ

(
1− χ̂−1(p)Np−s

))
L(s, χ̂−1)eχ

The properties of L(s, χ̂) now show that ΘS extends to a meromorphic function on C that is
analytic except at s = 1 and satisfies (10). The functions ζS(s, g) for g ∈ G therefore possess
similar extensions and equation (3) shows that they all have simple poles at s = 1 with the
same residue, namely 1/|G| times that of LS(s, χ0). Note also that ΘS(s) is R[G]-valued
for s ∈ R>1, by (9). It follows from the meromorphic continuation that it restricts to an
R[G]-valued, analytic function on R \ {1}.
We note two important ‘functorial’ properties of ΘS which follow easily from (9), properties
of the Frobenius and analytic continuation. First, if S′ is a finite set of places containing S
then, clearly

(11) ΘS′,K/k(s) =
∏

p∈S′
p 6∈S

(
1− σ−1

p Np−s
)
ΘS,K/k

Secondly, let K ′ be any intermediate field with K ⊃ K ′ ⊃ k and let πK/K ′ : C[G] →
C[Gal(K ′/k)] be the natural ring homomorphism induced by the restriction homomorphism
G→ Gal(K ′/k). Then

(12) ΘS,K ′/k = πK/K ′ ◦ΘS,K/k

as meromorphic functions on C.
Finally, we point out that there are at least two significant obstacles to obtaining a natural
‘functional equation’ for ΘS(s) by combining (10) with (4). Firstly, the Gauss sums in (4)
depend on χ. Secondly, the parenthesised ‘imprimitivity factor’ on the R.H.S. of (10) not
only depends on χ but may vanish at s = 0 for certain χ. A rather complicated ‘functional
equation’ may nevertheless be constructed along lines suggested in [So1, Rem. 2.3(iii)] by
involving also ΘT,K ′/k(s) for certain intermediate fields K ′ as above and subsets T of S.

4. ΘS at s = 0 and Stark’s Conjecture

4.1. Motivation. — Given K/k and S as above and a certain integer r ≥ 0 depending on
K/k, S, we shall give a formulation of the Basic Abelian Stark Conjecture concerning the rth
Taylor coefficient of ΘS(s) at s = 0. This is very similar to that of Conjecture A′ in [Ru] and
may be motivated by consideration of three elementary examples.

Example 4.1. — Cyclotomic Fields. We consider the case k = Q and K = Q(ζf ) where
ζf := exp(2πi/f) for some integer f > 2. We may assume w.l.o.g. that f 6≡ 2 (mod 4) so that
fQ(ζf )/Q = f := fZ∞ and and Smin(Q(ζf )/Q) equals Sf := {p prime : p|f} ∪ {∞} which we
take for S. Composing the isomorphism (Z/fZ)× → Clf(Q) of Example 2.2 with the Artin
isomorphism gives the usual isomorphism from (Z/fZ)× to G = Gf := Gal(Q(ζf )/Q) sending
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136 Equivariant L-Functions at s = 0 and s = 1

ā to ga where ga(ζf ) = ζaf for any integer a with (a, f) = 1, and if also a > 0 then σaZ = ga.
It follows that

ζSf
(s, ga) =

∑

n≥1
n≡a mod f

n−s = f sζ(s, a/f) for 0 < a ≤ f , (a, f) = 1 and ℜ(s) > 1

where ζ(s, a/f) donotes the Hurwitz zeta-function (see [Wa, Ch. 4]). The computation of
ζ(0, a/f) in Theorem 4.2 of loc. cit. therefore gives

(13) ΘSf ,Q(ζf )/Q(0) = −
∑

1≤a<f
(a,f)=1

(
a

f
− 1

2

)
g−1
a ∈ Q[Gf ]

Example 4.2. — Real Cyclotomic Fields. Take k = Q, f and other notation as above
but now let K = Q(ζf )

+ = Q(ζf + ζ−1
f ), the maximal real subfield of Q(ζf ). We take

S to be Sf as before. (Note that Sf ⊃ Smin(Q(ζf )
+/Q) with equality unless f = 3 or

4 i.e. Q(ζf )
+ = Q.) Since Gal(Q(ζf )/Q(ζf )

+) = {1, g−1} we have an isomorphism from
(Z/fZ)×/{±1̄} to G = G+

f = Gal(Q(ζf )
+/Q). Thus the map πQ(ζf ),Q(ζf )+ of (12) sends

both ga and gf−a 6= ga to the same element ḡa, say, of G+
f . It follows easily from (13) that

ΘSf ,Q(ζf )+/Q(0) = 0, so we can write

(14) ΘSf ,Q(ζf )+/Q(s) = Θ′
Sf ,Q(ζf )+/Q(0)s +O(s2) as s→ 0

where Θ′
Sf ,Q(ζf )+/Q(0) ∈ R[G]. In fact, we have (see e.g. p. 203, paper IV of [St])

Θ′
Sf ,Q(ζf )+/Q(0) = −1

2

∑

1≤a<f/2
(a,f)=1

log |((1 − ζaf )(1− ζ−a
f ))|ḡ−1

a

= −1

2

∑

g∈G+
f

log |g(εf )|g−1(15)

where εf := (1 − ζf )(1 − ζ−1
f ) ∈ Q(ζf )

+,×. It is well known that εf is a local unit at finite
places not dividing f (in fact at all finite places unless f is a prime power).

We remark that, thanks to (8) and (5), equations (13) and (15) can also be established
character-by-character, using the corresponding formulae for L(s, χ̂) at s = 0, where χ̂ is an
odd or even primitive Dirichlet character of conductor f dividing fZ∞ (cf. Example 2.2).
There are, however, complications when f0 properly divides fZ.

Example 4.3. — The Case K = k. In this case C[G] identifies with C and for any S

containing S∞, equation (9) gives

Θk/k,S(s) =
∏

p∈S\S∞

(1−Np−s)ζk(s)
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Starting from the Analytic Class Number formula for ζk(s) at s = 1 and the functional
equation, it follows (cf [Ta, Cor. I.2.2]) that

(16) Θk/k,S(s) = −hS,kRS,k

Wk
s|S|−1 +O(s|S|) as s→ 0

where hS,k is the cardinality of the S-class group ClS(k) of k and RS,k is the S-regulator of
k, defined as follows. Let US(k) be S-unit group of k (namely the elements of k× which are
local units at all finite places not in S). By Dirichlet’s Theorem, we can choose a Z-basis
ε̄1, . . . , ε̄|S|−1 of US(k)/µ(k) and if we choose also any |S| − 1 places v1, . . . , v|S|−1 in S, then

RS,k :=
∣∣∣det

(
log(||εi||vj )

)|S|−1

i,j=1

∣∣∣ 6= 0, where || · ||vj denotes the normalised absolute value at
vj . Moreover RS,k is easily seen to be independent of the choices and ordering of the εi and
the vj.

Notice that in each of the above examples, there is an integer r ≥ 0 such that ΘS vanishes
to order at least r at s = 0 and, moreover, the coefficient of sr in the Taylor series (denoted
Θ

(r)
S (0) for simplicity) is a Q[G]-multiple of an r×r determinant of ‘G-equivariant logarithms’

of S-units of K (a phrase to be made precise below). Indeed, we can take r to be the
precise order of vanishing in each example – namely 0, 1 and |S| − 1 respectively – provided
we adopt the usual convention that the 0 × 0 determinant equals 1. Stark’s Conjecture
is a precise generalisation of this observation. To formulate it, we first need to calculate
rS(χ) := ords=0(LS(s, χ)) for each character χ ∈ Ĝ. Using (5), the functional equation (4),
the definition of Λ(s, χ), properties of Γ(s) and (3), we find

(17) rS(χ) = |{p ∈ S : p ∤ fχ, χ̂(p) = 1}|+ a1(χ̂) + r2 − δχ,χ0

This can be restated more elegantly as follows. For any place v of k, finite or infinite, we
write Dv for the decomposition subgroup of G at v, thus

Dv :=





Dp(K/k) if v corresponds to a non-zero prime ideal p of Ok,
{1, cv} if v|f∞,K/k is real with complex conjugation cv ∈ G, and
{1} otherwise.

We also say that v splits in K iff Dv = {1}. Using equation (17) one shows easily:

Proposition 4.4. — If χ ∈ Ĝ then rS(χ) = |{v ∈ S : Dv ⊂ ker(χ)}| − δχ,χ0. In particular
rS(χ) = rS(χ

′) whenever χ and χ′ have the same kernel ( i.e. they are Galois-conjugate over
Q) e.g. if χ′ = χ−1.

4.2. The Conjecture. — Let K/k and S be as above and let r ∈ Z≥0. Consider

Hypothesis H(K/k, S, r). — The following conditions are satisfied:

(i) There exist r distinct places v1, . . . , vr ∈ S which split in K.
(ii) |S| ≥ r + 1.
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It is clear from Proposition 4.4 that H(K/k, S, r) implies rS(χ) ≥ r for every χ ∈ Ĝ and
hence, by equation (10), that there exists Θ

(r)
S,K/k(0) ∈ R[G] (unique) such that

(18) ΘS,K/k(s) = Θ
(r)
S,K/k(0)s

r +O(sr+1) as s→ 0

For any place w of K we define the above-mentioned G-equivariant logarithm:

Logw : K× −→ R[G]
x 7−→ ∑

g∈G log(||g(x)||w)g−1

Let S(K) denote the set of places of K lying above those in S. Because it is G-stable, the
group US(K)(K) – which by abuse of notation, we shall denote US(K) – may be regarded
as a finitely generated, multiplicative Z[G]-module (sometimes written additively). Given
w1, . . . , wr ∈ S(K) there is a unique Q[G]-linear map

Regw1,...,wr

S : Q⊗Z
∧r

Z[G] US(K) −→ R[G]

sending a ⊗ (ε1 ∧ . . . ∧ εr) to adet
(
Logwi

(εj)
)r
i,j=1

for any a ∈ Q and ε1, . . . , εr ∈ US(K).
(Note that Z[G] is commutative as G is abelian, so

∧r
Z[G] US(K) is a well-defined Z[G]-

module, written additively. If r = 0 we interpret it as Z[G] and RegS as the natural injection
Q⊗Z[G] → R[G] with image Q[G].) The following is essentially due to H. M. Stark, although
the formulation given is Rubin’s (see Remark 4.10 below).

Conjecture SC(K/k, S, r). — Basic Abelian Stark Conjecture at s = 0

Let K/k, G, S and r be as above and suppose that Hypothesis H(K/k, S, r) is satisfied.
Thus (18) holds and we may choose r distinct places v1, . . . , vr ∈ S splitting in K and a place
wi of K above vi for each i. Then

Θ
(r)
S,K/k(0) = Regw1,...,wr

S (η) for some η ∈ Q⊗∧r
Z[G] US(K)

We shall call any such η a ‘solution of SC(K/k, S, r) w.r.t. w1, . . . , wr’.

Remark 4.5. — More than r Split Places. If r + 1 places in S split in K – and
in particular if K = k – then SC(K/k, S, r) holds. Indeed, Proposition 4.4 implies that
χ(Θ

(r)
S,K/k(0)) = 0 for all χ 6= χ0 and hence by (12) that Θ

(r)
S,K/k(0) = Θ

(r)
S,k/k(0)eχ0 . It follows

from equation (16) of Example 4.3 that 0 is a solution of SC(K/k, S, r) unless |S| = r+ 1 in
which case a solution has the form η := −(hS,k/Wk)|G|−r ⊗ (ε1 ∧ . . . ∧ εr) where ε̄1, . . . , ε̄r is
any Z-basis of US(k)/µ(k) satisfying det

(
log(||εi||vj )

)|S|−1

i,j=1
> 0.

Remark 4.6. — Dependence on the Places wi. The above shows that it suffices to
consider the Basic Conjecture in the case where S contains precisely r splitting places. The
places w1, . . . , wr are then determined up to replacing each wi by giwi for some gi ∈ G (which
changes any putative solution by the action of g1 . . . gr) and re-ordering (which affects only
its sign). Because the dependence of the Conjecture on the choice of w1, . . . , wr is so simple,
one often suppresses it and writes RegS instead of Regw1,...,wr

S .
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Remark 4.7. — Variation of S and K. Suppose that K/k, S and r satisfy the con-
ditions of SC(K/k, S, r) and that η is a solution of the conjecture. If S′ is a finite set
of places containing S then, clearly, H(K/k, S′, r) is satisfied and it follows from (11) that
η′ :=

∏
p∈S′
p 6∈S

(
1− σ−1

p

)
η is a solution of SC(K/k, S′, r). Similarly, if K ′ is an intermediate field

with K ⊃ K ′ ⊃ k and G′ denotes Gal(K ′/k), then H(K ′/k, S, r) is automatically satisfied.
It is then a simple exercise to deduce from (12) that NK/K ′η is a solution of SC(K ′/k, S, r)
(w.r.t. the places of K ′ below w1, . . . , wr) where NK/K ′ denotes the map from Q⊗∧r

Z[G] US(K)

to Q⊗∧r
Z[G′] US(K

′) induced by the norm from US(K) to US(K
′).

Remark 4.8. — It is clearly possible to have rS(χ) ≥ r for all χ ∈ Ĝ even when H(K/k, S, r)

fails. In such a case equation (18) still holds and a corresponding variant of SC(K/k, S, r)

has been formulated and studied in [EP]

4.3. Uniqueness of the Solution. — Suppose that K/k, S and r satisfy the conditions
of SC(K/k, S, r), so in particular rS(χ) ≥ r for all χ ∈ Ĝ. The solution η (if one exists) is not
in general unique but it may be rendered so by insisting that it lie in a certain ‘eigenspace’
of Q⊗∧r

Z[G]US(K). To see this, consider a character χ ∈ Ĝ such that rS(χ) = rS(χ
−1) > r.

Equations (18) and (10) and the definition of rS(χ−1) then imply eχΘ
(r)
S (0) = 0. Consequently,

(19) Θ
(r)
S (0) = 1.Θ

(r)
S (0) =

( ∑

χ∈Ĝ
eχ

)
Θ

(r)
S (0) = eS,rΘ

(r)
S (0)

where:
eS,r :=

∑

χ∈Ĝ
rS(χ)≤r

eχ =
∑

χ∈Ĝ
rS(χ)=r

eχ

Although a priori an element of C[G], Prop. 4.4 shows that eS,r actually lies in Q[G] and,
together with a little character theory, it even gives the formula

(20) eS,r =





∏

v∈S\{v1,...,vr}

(
1− |Dv |−1NDv

)
if |S| > r + 1

(
1− |Dv|−1NDv

)
+ eχ0,G if |S| = r + 1 and S \ {v1, . . . , vr} = {v}

where v1, . . . , vr ∈ S split in K and for any finite group H we set NH =
∑

h∈H h ∈ Z[H].
Thus if η is a solution of SC(K/k, S, r) and lies in Q ⊗∧r

Z[G] US(K) then so does eS,rη and
equation (19) gives

RegS(eS,rη) = eS,rRegS(η) = eS,rΘ
(r)
S (0) = Θ

(r)
S (0)

so, in fact, eS,rη is another solution lying in the eS,r-component (or ‘eigenspace’) eS,r(Q ⊗∧r
Z[G] US(K)). Such a solution will be called ‘canonical’. On the other hand, one can use

Dirichlet’s Theorem to show that eS,r(Q ⊗ US(K)) is free of rank r over eS,rQ[G] and then
deduce that RegS is injective on eS,r(Q ⊗∧r

Z[G] US(K)). We conclude:

Proposition 4.9. — SC(K/k, S, r) has a solution if and only if it has a unique canonical
solution.
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The canonical solution of SC(K/k, S, r) will be denoted ηS,K/k or just ηS , if it exists.

Remark 4.10. — Relation with Conjectures of Rubin and Stark. Conjec-
ture SC(K/k, S, r) is equivalent Conjecture A′ of [Ru] whose formulation is very similar
but requires the choice of an auxiliary finite set T of finite places of k, subject to certain
conditions. The choice of T does not affect its veracity, only the value of a putative solution.
It becomes important only for Rubin’s refined, integral (as opposed to ‘basic’) abelian Stark
conjecture. This is his Conjecture B′ which requires that the solution of Conjecture A′ lie
in a certain Z[G]-lattice spanning the eigenspace over Q and depending on T . Some more
details of the relationships between these conjectures can be found in [So2, Remark 2.8], in
a special case.
Stark’s original conjecture was formulated in terms of Artin L-functions of characters of a
Galois extension which is not necessarily abelian. It appears as Conjecture I.5.1 in [Ta].
However, Propositions 2.3 and 2.4 of [Ru] show that in our set-up, Conjecture A′ – and
hence SC(K/k, S, r) – are equivalent to Stark’s conjecture for all characters χ ∈ Ĝ such that
rS(χ) = r.

5. Some Particular Cases of SC(K/k, S, r)

We briefly survey the known cases of the the basic Stark Conjecture and some of its integral
refinements. These will be grouped according to the value of r: 0, 1 or ≥ 2. Let K/k be an
abelian extension with group G and S ⊃ Smin be as above.

5.1. The Case r = 0. — For any suchK/k, S, the HypothesisH(K/k, S, 0) is automatically
satisfied and we shall see that SC(K/k, S, 0) follows from results of Siegel-Klingen. First, the
interpretation of RegS in the case r = 0 (explained above) means that SC(K/k, S, 0) is
equivalent to the statement that ΘS,K/k(0) lies in Q[G] or, indeed, in eS,0Q[G] by (19). We
can assume S = Smin by (11). Now, if S∞ contains a split place then the conjecture holds
(see Remark 4.5). Thus we can assume K is totally complex and k totally real, which forces
|S| > 1. Also, if v ∈ S∞ then Dv = {1, cv} where cv is the complex conjugation associated to
v. Equation (20) shows that cveS,0 = −eS,0 so that cvΘS,K/k(0) = −ΘS,K/k(0) by (19). Thus
ΘS,K/k(0) is fixed by the subgroup H := 〈cv1cv2 : v1, v2 ∈ S∞〉 of G. Equation (12) therefore
allows us to replace K by KH , i.e. we can assume H is trivial and (still) that K is totally
complex. This means that K is of CM-type i.e. cv equals c ∈ G (of order 2) independently of
v ∈ S∞. In this set-up, it follows from work of Siegel [Si] and Klingen (or of Shintani [Sh1,
Cor. to Thm. 1]) that ζSmin

(0, g) ∈ Q for all g ∈ G, and the conjecture follows.
For the rest of this subsection we shall continue to assume that k is totally real, K is CM and
S = Smin. We have seen that c acts by −1 on ΘS,K/k(0) ∈ Q[G] and therefore ΘS,K/k(0) ∈
(1− c)Q[G]. However, in the case of Example 4.1, it is evident from (13) that ΘSf ,Q(ζf )/Q(0)

actually lies in (1− c)W−1
Q(ζf )

Z[Gf ]. (Note that WQ(ζf ) is the l.c.m. of 2 and f .) We can take
this further: let AnnZ[G](µ(K))�Z[G] denote the annihilator of µ(K) as a Z[G]-module (which
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clearly contains WK). In Example 4.1, AnnZ[Gf ](µ(Q(ζf ))) is easily seen to be generated over
Z by the elements b − gb for all integers b such that (b, 2f) = 1. Furthermore, it follows
from (13) that (b− gb)ΘSf ,Q(ζf )/Q(0) has coefficients in Z, so:

AnnZ[Gf ](µ(Q(ζf )))ΘSf ,Q(ζf )/Q(0) = 〈(b− gb)ΘSf ,Q(ζf )/Q(0) : b ∈ Z, (b, 2f) = 1〉Z
⊂ Z[Gf ] ∩ (1− c)Q[Gf ] = (1 − c)Z[Gf ](21)

The second member above is the Stickelberger Ideal of Z[Gf ]. (It differs very slightly from
that of [Wa, §6.2], for example, which is not quite contained in (1 − c)Z[Gf ].) For any K/k
as above, we define the Generalised Stickelberger Ideal

(22) Stick(K/k) := AnnZ[G](µ(K))ΘSmin,K/k(0)

From what we already know, this is a Z[G]-submodule of (1 − c)Q[G]. However a result of
Deligne-Ribet [DR] (and, independently, of Pi. Cassou-Noguès [C-N]) gives the following
generalisation of (21) which may be seen as an ‘integral’ refinement of SC(K/k, Smin, 0).

Theorem 5.1. —
With assumptions and notations as above, Stick(K/k) is contained in (1− c)Z[G].

5.2. The Case r = 1. — Assume Hypothesis H(K/k, S, 1) is satisfied i.e. |S| ≥ 2 and there
exists v1 ∈ S splitting in K. Fix w1 above v1 in S(K). Any element η ∈ Q⊗ Λ1

Z[G]US(K) =

Q⊗ US(k) may be written 1
m ⊗ ε with ε ∈ US(K) and clearly,

η is a solution of SC(K/k, S, 1) ⇐⇒ Θ′
S,K/k(0) =

1

m
Logw1

(ε)

⇐⇒ ζ ′S,K/k(0, g) =
1

m
log ||g(ε)||w1 ∀ g ∈ G(23)

Remark 5.2. — Criterion for the Canonical Solution when r = 1

If |S| > 2 and η = 1
m ⊗ ε is a solution of SC(K/k, S, 1) then it is the canonical solution ηS iff

||ε||w = 1 for all w ∈ S(K) not above v1. If |S| = 2 the italicised condition must be replaced
by ‘||ε||w is independent of w ∈ S(K) above v’ where S \ {v1} = {v}. We leave the proofs of
these statements as an exercise.

Stark gave an integral refinement of SC(K/k, S, 1) as follows.

Conjecture RSC(K/k, S). — Refined Abelian Stark Conjecture for r = 1

Suppose K/k, and S satisfy Hypothesis H(K/k, S, 1). Then SC(K/k, S, 1) holds with canon-
ical solution ηS such that

(i) ηS = 1
WK

⊗ εS for some εS ∈ US(K) (depending on choice of w1) and

(ii) the extension K(ε
1/WK

S )/k is abelian.

The arguments of Remark 4.5 extend to prove the RSC(K/k, S) if S contains a split place
other than v1 e.g. if K = k. This is shown in Prop. 3.1 of [Ta, Ch. IV]. If v1 is an infinite
place, the remaining proven cases of the Refined Conjecture – and indeed of SC(K/k, S, 1) –
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are as follows. For v1 finite, more will be said at the beginning of Section 6 and in both cases,
more details can be found in loc. cit.

(i) k = Q. Here v1 = ∞ and K is a real, absolutely abelian field (w.l.o.g. different from Q)
so that fK/Q = fZ for some f > 4, f 6≡ 2 (mod 4). The Kronecker-Weber Theorem implies
K ⊂ Q(ζf )

+ = Q(ζf + ζ−1
f ). For SC(K/Q, S, 1), we use Remark 4.7 to reduce to the special

case K = Q(ζf )
+, S = Smin(Q(ζf )

+/Q) = Sf for which equation (15) of Example 4.2 shows
that 1

2⊗ε−1
f is a solution of SC(Q(ζf )

+/Q, Sf , 1) with w1 given by the inclusion Q(ζf )
+ →֒ R.

The Refined Conjecture RSC(K/Q, S) can also be reduced to this special case (use Prop. 3.4
and 3.5 of [Ta, Ch. IV]). Remark 5.2 implies that 1

2 ⊗ε−1
f is the canonical solution. Moreover,

WQ(ζf )+ = 2 and one checks that Q(
√
εf ) is contained in Q(ζ4f ) (and even in Q(ζ2f ) if 2|f)

so RSC(Q(ζf )
+, Sf ) holds.

(ii) k imaginary quadratic. In this case v1 is the unique (complex) infinite place and
RSC(K/k, S) is proven in the paper IV of [St]. The reader can also refer to the abridged
account given in [Ta, IV.3.9]. Again one reduces to the case where K is a certain ray-class
field for which the canonical solution is given in terms of an elliptic unit and (23) is proven
via the Second Kronecker Limit Formula.

(iii) G is 2-elementary. If G ∼= (Z/2Z)t for some t then SC(K/k, S, r) holds quite generally
for any admissible S and r (see below). Taking r = 1, the Refined Conjecture RSC(K/k, S) is
proven in [Ta, IV.5.5] under the additional assumption that G is generated by the subgroups
Dv for v ∈ S. (This does not require v1 to be infinite.)

As far as the author is aware, the only other cases of SC(K/k, S, 1) proven to date (with v1
infinite) are due to Shintani. In [Sh2], he proves a version of SC(K/k, S, 1) in certain cases
where k is real quadratic and K is a quadratic extension of an absolutely abelian field such
that only one real place v1 of k splits in K.

Remark 5.3. — Construction of Abelian Extensions.
Notice that condition (i) ofRSC(K/k, S) determines εS up to an element of US(K)tor = µ(K).
Furthermore, equation (23) now predicts

(24) ||εS ||g−1w1
= exp(WKζ

′
S,K/k(0, g)) ∀ g ∈ G

Suppose v1 is real. Then so is g−1w1 ∀ g and WK = 2. If we could prove RSC(K/k, S) in
this case then (24) would give a transcendental formula for ±εS ∈ K×. This would thus
lead to a solution of Hilbert’s 12th Problem – the construction of abelian extensions of k
– using special values of derivatives of partial-zeta functions that are intrinsic to k. (Or,
indeed, using ray-class L-functions, via (7) and (10).) If we only assume RSC(K/k, S), one
can still use (24) and the other facts about εS to identify it precisely on a computer. This
leads to a method for the algorithmic construction of certain ray-class fields which has been
implemented in PARI/GP [PARI].
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5.3. The Case r ≥ 2. — For any r, Conjecture SC(K/k, S, r) can be proven under the
following hypothesis extending that of Remark 4.5:

(25) χ ∈ Ĝ, rS(χ) = r ⇒ ord(χ)|2

Indeed, every character of order 1 or 2 satisfies Conjecture I.5.1 of [Ta] for the sameK/k and S.
(This follows from properties of the latter under inflation, induction and addition of characters
and the caseK = k. See for example [Ta, I.7.1 and II.1.1]). As noted in Remark 4.10 it follows
that SC(K/k, S, r) holds whenever (25) does, and in particular whenever G is 2-elementary
(see above). If r ≥ 2, the only proven cases of SC(K/k, S, r) without (25) come by using
induction of characters to ‘raise the base field’ from known cases with r = 1 (see e.g. [Po]).
This applies, for instance, in some cases where when K is abelian over Q and [k : Q] = r.
There exist two integral refinements of SC(K/k, S, r) for r ≥ 2, both generalising
RSC(K/k, S). These are ‘Conjecture B′’ of Rubin mentioned in Remark 4.10 and a
version due to Popescu in [Po] which dispenses with Rubin’s auxiliary sets T . We shall not
give full statements here but note that both imply the following, rather crude generalisation
of condition (i) of RSC(K/k, S): ηS is of the form 1

mWK
⊗ η̃ for some η̃ ∈ ∧r

Z[G]US(K) and
some m ∈ N whose prime factors all divide |G|. (Cases are known in which m 6= 1 is forced.)
Rubin’s and/or Popescu’s refinements were established for |G| = 2 in [Ru], by Sands in
some other cases where G is 2-elementary (see his article in [BPSS]) and by Popescu [Po],
Cooper [Co] and Burns (see below) in other cases by base-raising.

Two other types of evidence support SC(K/k, S, r) and its refinements. Firstly, both Rubin’s
and Popescu’s Conjectures are shown in [Bu] to follow from a particular case of the very
general Equivariant Tamagawa Number Conjecture of Burns and Flach. This was proven
for k = Q and K/Q abelian in [BG] (see also Flach’s article in [BPSS] for the case p = 2).
Since it behaves well under raising the base field, one can even establish Rubin’s and Popescu’s
conjectures for such K, any k ⊂ K and any admissible S and r. Secondly, there is considerable
computational evidence in support of SC(K/k, S, r). We refer to Dummitt’s article in [BPSS]
for a survey concentrating on the case r = 1 (with v1 finite or infinite). Numerical confirmation
of some cases with r = 2, k real quadratic and v1, v2 real is given in [RS1] (along with an
analogous p-adic conjecture) and in [RS2].

6. The Brumer-Stark Conjecture and the Annihilation of Class Groups

For the rest of this article we shall assume that k is totally real, K is of CM-type and
G = Gal(K/k) is abelian with unique complex conjugation denoted c and maximal real
subfield K+ = K〈c〉. This forces |Smin| > 1. To simplify, we shall take S = Smin until further
notice and write Θ for ΘS. Theorem 5.1 implies that WKΘ(0) lies in (1− c)Z[G]. With these
assumptions, and temporarily using a multiplicative notation for Z[G]-actions, we can state
the
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Conjecture BSC(K/k). — Brumer-Stark Conjecture (with S = Smin)
For every fractional ideal a ∈ I(K) there exists γa ∈ K× such that

(i) aWKΘ(0) equals the principal ideal (γa),
(ii) ||γa||w = 1 for all w ∈ S∞(K) and
(iii) the extension K(γ

1/WK
a )/k is abelian.

Note that conditions (i) and (ii) determine γa up to an element of µ(K). Also, property (i)
implies that ||γa||w = 1 for any place w of K above v ∈ Sram, since |Smin| > 1 implies
NDvΘ(0) = 0 (by (19) and (20) with r = 0). In our set-up, BSC(K/k) is therefore equivalent
to the case of Conjecture IV.6.2 of [Ta] with ‘T ’ equal to Smin and this implies all other cases
by Cor. 6.6 ibid..
The explanation of the name ‘Brumer-Stark’ is as follows. Firstly, one can show that
BSC(K/k) holds if and only if it holds with a = P for any prime ideal P above any prime
p of k that splits in K. (This follows from [Ta, Prop. IV.6.4] and the fact that the classes
of such P generate Cl(K).) But Remark 5.2 and the relation Θ′

Smin∪{p}(0) = log(Np)Θ(0)

coming from (11) show that conditions (i)–(iii) with a = P are in fact equivalent to the
statement that 1

WK
⊗ γP is the (canonical) solution of RSC(K/k, Smin ∪ {p}) with w1 = P.

Hence BSC(K/k) is equivalent to these cases of the Refined Stark Conjecture for r = 1.
Secondly, BSC(K/k) clearly implies that WKΘ(0) annihilates Cl(K) as a Z[G]-module, which
had previously been conjectured by Armand Brumer. We can go further. Given any a ∈ I(K),
it follows easily from condition (iii) of BSC(K/k) that for every x ∈ AnnZ[G](µ(K)) there
exists ya,x ∈ K× with γxa = yWK

a,x . It then follows from condition (i) that axWKΘ(0) = (ya,x)
WK

and since xΘ(0) ∈ Z[G] by Thm. 5.1, we must have axΘ(0) = (ya,x). In particular, BSC(K/k)

implies the

Conjecture BC(K/k). — Brumer Conjecture (with S = Smin)
In the above situation Cl(K) is annihilated by the ideal Stick(K/k) ⊂ (1 − c)Z[G] defined
in (22).

Example 6.1. — Brumer and Brumer-Stark Conjectures for k = Q.
In this case, K is an imaginary abelian field and BC(K/Q) is simply Stickelberger’s Theo-
rem. The traditional proof of the latter (see e.g. [Wa]) uses the factorisation of (norms of)
cyclotomic Gauss sums attached to prime ideals P of OK . In fact, if P divides a rational
prime p ∈ Q split in K and the latter is the full cyclotomic field Q(ζf ) (notations as above, so
f |(p−1)) then exactly the same factorisations establish that WQ(ζf )th power of the Gauss sum
is (essentially) the element γP appearing in BSC(Q(ζf )/Q). As explained above, this means
that γP also gives rise to the solution of RSC(Q(ζf )/Q, Sf ∪ {p}) with v1 = p. In this way
one also establishes BSC(K/Q) for arbitrary imaginary abelian K and also RSC(K/Q, S)
for such K and arbitrary S ⊃ Smin containing a finite split place v1.

For arbitrary S′ ⊃ Smin one can make an ‘S′-Brumer Conjecture’ by replacing ΘSmin
(0) with

ΘS′(0) in (22). This is the viewpoint of the excellent article by Greither in [BPSS]. (Of
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course, the S′-version of BC(K/k) is weaker: it follows from our version because of (11).)
One or other version is now known in many cases, thanks to work of Greither and Wiles (see
below) and many others. For a survey, for higher analogues involving Θ(−n) with n ≥ 1 (the
Coates-Sinnott Conjecture) and for precise connections between BSC(K/k) and Rubin’s and
Stark’s Conjectures, we refer to ibid. Our focus now will be on strengthening the annihilation
statement of BC(K/k) in a different direction to that of BSC(K/k).
First, we localise: let p be a prime number and write Cl(K)p for the p-Sylow subgroup of Cl(K)

considered as a module for Rp := Zp[G]. If Stick(K/k)p denotes the Zp-span of Stick(K/k)
inside (1− c)Rp then, clearly, BC(K/k) is equivalent to the following local statement for all
p, which we denote BC(K/k)p:

Cl(K)p is annihilated by Stick(K/k)p

We assume henceforth that p 6= 2 which implies that Rp is a product of rings R+
p × R−

p =:

(1 + c)Rp × (1− c)Rp and, correspondingly, Cl(K)p = Cl(K)+p ⊕Cl(K)−p := (1 + c)Cl(K)p ⊕
(1−c)Cl(K)p. Since Stick(K/k)p is an ideal of R−

p , it automatically annihilates Cl(K)+p which
is isomorphic to Cl(K+)p (since p 6= 2). This means firstly that BC(K/k)p tells us nothing
interesting about the class groups of totally real fields (at least, not directly). Secondly,

(26) BC(K/k)p ⇐⇒ Stick(K/k)p ⊂ AnnR−
p
(Cl(K)−p )

7. Exact Annihilators and Fitting Ideals

We shall examine first the obvious question of whether one should actually expect equality on
the R.H.S. of (26). There are at least two reasons why this cannot hold in general, the first
being that AnnR−

p
contains |Cl(K)−p | so is of finite index in R−

p but Stick(K/k)p may not be,
essentially because of ‘trivial zeroes’ of Smin-truncated L-functions at s = 0. Indeed, Θ(0) and
hence Stick(K/k)p are killed by (1− c)NDv for any v ∈ Smin (see above) which is a non-zero
element of R−

p whenever c 6∈ Dv. To get around this, we need to enlarge Stick(K/k)p. One
way to do this is to define

(27) S̃tick(K/k)p :=
∑

K⊃K ′⊃k

coresKK ′(Stick(K ′/k)p)

Here, K ′ runs through intermediate (CM) sub-extensions ofK/k and coresKK ′ : Zp[Gal(K ′/k)] →
Zp[G] = Rp is the Zp-linear map sending g′ ∈ Gal(K ′/k) to the sum of its pre-images under
πK/K ′. It is not hard to show that S̃tick(K/k)p is an ideal of finite index in R−

p con-
taining Stick(K/k)p and, moreover, that if BC(K ′/k)p held for every K ′ then one would
have S̃tick(K/k)p ⊂ AnnR−

p
(Cl(K)−p ). Other ‘enlargements’ of Stick(K/k)p appear in the

literature, mostly variants of (27) which agree with S̃tick(K/k)p when p ∤ |G|.
However, one still cannot always have equality for another reason which becomes particularly
clear for [K : k] = 2, when all enlargements coincide with the basic Stick(K/k)p. We explain
briefly, leaving details to the reader. In this case, we can identify R−

p = Zp(1 − c) with Zp
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and evaluate Θ(0) precisely using the Analytic Class Number Formula for ζK(s) and ζk(s).
We get:

(28) If [K : k] = 2 then S̃tick(K/k)p = Stick(K/k)p = (hK/hk)Zp = |Cl(K)−p |Zp

This proves that S̃tick(K/k)p ⊂ AnnR−
p
(Cl(K)−p ) (and hence BC(K/k)p) in this case but

equality clearly holds if and only if Cl(K)−p is a cyclic abelian group. This fails, for example,
when p = 3 and K/k = Q(

√
−974)/Q so that Cl(K)−3 = Cl(K)3 ∼= (Z/3Z)2.

Instead of comparing S̃tick(K/k)p with AnnR−
p
(Cl(K)−p ) – which is generated by the exponent

of Cl(K)−p as an abelian group when [K : k] = 2 – equation (28) suggests that one should in
general compare it with an ideal of R−

p which, in some sense, measures the ‘size’ of Cl(K)−p as
an R−

p -module. The most obvious candidate is the (initial) Fitting ideal FittR−
p
(Cl(K)−p ). We

briefly recall its definition and make some general remarks, referring to [No], the appendix
of [MW] or Greither’s article in [BPSS] for more details. For any finitely generated module
A over a commutative (noetherian) ring R one can choose a presentation

Rs M−→Rt −→ A→ 0

where s, t ∈ N and M is a t×s matrix with coefficients in R. One then defines FittR(A) to be
the ideal of R generated by all t× t minor-determinants of M (which is zero if s < t). It turns
out that this is independent of the choice of s, t and M and that AnnR(A)t ⊂ FittR(A) ⊂
AnnR(A) for any possible t. If A is cyclic over R we can take t = 1 so FittR(A) = AnnR(A).
Now suppose A is finite. If R = Z or Zp one can take s = t and the theory of elementary
divisors gives FittR(A) = |A|R. If R = Zp[H] for a finite abelian group H, then s ≥ t

is forced and FittR(A) contains |A|t so is an ideal of finite index in R. Moreover, one can
show that s = t is possible if and only if A is a cohomologically trivial H-module. In this
case, FittR(A) is clearly principal, generated by det(M). (For a converse, see Prop. 2.2.2 of
Greither’s article in [BPSS]). If p ∤ |H| then A is always cohomologically trivial and Zp[H]

is a product of unramified extensions of Zp corresponding to Q̄p-valued characters of H. One
can decompose everything using such characters so that the Fitting ideal behaves much like
the case R = Zp. If, however, p||H| then the Fitting ideal can be non-principal and is, in
general, a far more subtle invariant.
We are interested in the case H = G where all the above remarks remain true with R = R−

p ,
a direct factor of Zp[G]. In particular, FittR−

p
(Cl(K)−p ) is an ideal of finite index in R−

P ,
contained in AnnR−

p
(Cl(K)−p ) and one can ask:

(29) is S̃tick(K/k)p equal to FittR−
p
(Cl(K)−p )?

Positive answers to this question were obtained by various authors under different hypotheses.
For example, when p ∤ |G|, characters are used to treat the case k = Q in [MW] and
k 6= Q (totally real) in [Wi] (under an additional hypothesis on characters). Without the
assumption p ∤ |G|, three other large classes with k = Q are treated in [Ku1] (using a
different enlargement of Stick(K/k)p) and [Gr1] treats the case in which K/k is ‘nice’ (a
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condition which implies S̃tick(K/k)p = Stick(K/k)p among other things). In each case we can
deduce BC(K/k)p using (26). One should also mention certain ‘higher Stickelberger ideals’
defined by M. Kurihara in the case p ∤ |G| and k totally real. Using characters and Euler
Systems, he shows in [Ku2] how these can give more information on the R−

p -structure of
Cl(K)−p , essentially determining the latter under certain hypotheses.
Nevertheless, in 2006 Greither showed that the Equivariant Tamagawa Number Conjecture
(ETNC) mentioned in Section 5 predicts a result that runs somewhat counter to (29): If A is a
finite Rp-module let us write Â for the Pontrjagin dual HomZ(A,Q/Z) = HomZp(A,Qp/Zp) of
A made into an Rp-module by defining (gf)(a) to be f(ga) for any f ∈ Â, g ∈ G. (This makes
sense because G is abelian and clearly Â− ∼= Â− as R−

p -modules.) Theorem 8.8 of [Gr2] can
now be stated as

Theorem 7.1. — Suppose K/k and p satisfy our current assumptions, that G = Gal(K/k)

and in addition that

(i) µp∞(K) is G-cohomologically trivial and
(ii) the ETNC holds for the pair (K/k, h0(K))

Then SKu(K/k)p = FittR−
p
(Ĉl(K)−p ).

Here, SKu(K/k)p is a variant of S̃tick(K/k)p satisfying

Stick(K/k)p ⊂ SKu(K/k)p ⊂ S̃tick(K/k)p

If p ∤ |G| then on the one hand SKu(K/k)p = S̃tick(K/k)p and on the other, any finite Rp-
module A is isomorphic to Â as an Rp-module. So Thm. 7.1 predicts a positive answer to
question (29) in this case, agreeing with Wiles’ results. However, if p||G| things get decidedly
more complicated. On the one hand one can have SKu(K/k)p 6= S̃tick(K/k)p. On the
other, one can easily construct finite R−

p -modules A with A 6∼= Â. In this case, one still
has FittR−

p
(Â) ⊂ AnnR−

p
(Â) = AnnR−

p
(A) so, in particular, Thm. 7.1 supports BC(K/k)p.

However, FittR−
p
(A) and FittR−

p
(Â) will differ unless a special condition holds, e.g. A is

cohomologically trivial or G is p-cyclic. (The sufficiency of the latter follows from [MW,
Appendix, Prop. 1].)
An explicit counter-example to (29) was finally given by Greither and Kurihara. Taking
p = 3 they found an extension K/k with k = Q(

√
29), µp∞(K) = {1} and G ∼= (Z/2Z) ×

(Z/3Z)2 for which Stick(K/k)p – and a fortiori any enlargement of it – is not contained in
FittR−

p
(Cl(K)−p ). (See [GK, §3.2] for more details, noting that our K is their K1.) In the

function-field case, counter-examples had previously been given by Popescu. We also mention
the recent, unconditional results of [GP] concerning Fitting ideals of duals in the function-field
case. Analogues for number fields may be forthcoming.
In view of Thm. 7.1, it seems reasonable to ask whether one can use ΘS to construct an
ideal related to FittR−

p
(Cl(K)−p ) rather than FittR−

p
(Ĉl(K)−p ). A result of this type is given

in [KM] for k = Q but doesn’t seem to generalise. We shall return to this question in §9.1.
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8. ΘS at s = 1

8.1. Plus- and Minus-Parts. — We maintain the above notations and assumptions on
K/k but once more allow S to contain Smin properly. A character χ ∈ Ĝ is called (totally)
even or odd according as χ(c) = 1 or −1. If R is a commutative ring in which 2 is invertible,
we write e+ and e− respectively for the idempotents 1

2(1 + c) and 1
2(1 − c) of R[G] and

A± for e±A where A is any R[G] module, so A = A+ ⊕ A−. The meromorphic functions
Θ+

S (s) := e+ΘS(s) and Θ−
S (s) := e−ΘS(s) take values in C[G]+ and C[G]− respectively and

ΘS(s) = Θ+
S (s) + Θ−

S (s) =
∑

χ∈Ĝ
χ even

LS(s, χ
−1)eχ +

∑

χ∈Ĝ
χodd

LS(s, χ
−1)eχ

by (10). Now, if χ is even, then Dv ⊂ ker(χ−1) for all v ∈ S∞ so that ords=0(LS(s, χ
−1)) =

rS(χ
−1) ≥ 1 by Prop. 4.4 (for χ = χ0, use |S| ≥ 2). Thus Θ+

S (0) = 0 so that the value
ΘS(0) studied in Sections 6 and 7 is naturally equal to Θ−

S (0). In contrast, equations (3)
and (2) show that ords=1(LS(s, χ

−1)) = −δχ,χ0 for both odd and even χ. Thus, even if we
subtracted the pole due to the trivial character, Θ+

S would still make a non-zero contribution
to the value of ΘS at s = 1 and one, moreover, which we can expect to be of a very different
nature from that of Θ−

S . Indeed, the functional equation (4) for L-functions and the case
r ≥ 1 of SC(K/k, S, r) mean that the former should – in a vague sense – ‘contain non-trivial,
transcendental regulators’. On the other hand, since τ(χ) is always algebraic, one can use the
case r = 0 of SC(K/k, S, r) – i.e. Θ−

S (0) ∈ Q[G]− – and the functional equation to show that
Θ−

S (1) ∈ πnQ̄[G]−, where we recall that n = [k : Q].
In the rest of this article we shall therefore consider only the minus-part Θ−

S (1), follow-
ing [So1], [So2] and [RS2]. More precisely, we shall study

b−S = b−S,K/k := (i/π)nΘ−
S (1)

∗ = (i/π)n lim
s→1

e−ΘS(s)
∗ ∈ Q̄[G]−

where ∗ : C[G] → C[G] is the C-linear involution sending g ∈ G to g−1. The non-vanishing of
the L-functions at s = 1 shows that b−S lies in (Q̄[G]−)× and the limit (with s ∈ R>0) shows
that it has coefficients in inR. We also have have the following more precise algebraicity
result.

Proposition 8.1. — If fK/k ∩ Z = fZ with f ∈ Z>0 then the coefficients of
√
dkb

−
S lie in

both Q(ζf ) and the normal closure of K over Q.

The proof is essentially that of [RS2, Prop. 2]. The latter also contains an integrality result
for the coefficients and assumes that n = 2 and that S is a particular set of places. However,
for the properties we want, the proof adapts immediately to our more general situation since√
dkb

−
S equals

√
dka

−,∗
K/k,S = dke

−∏
q∈S\Smin

(1−Nq−1σq)ΦK/k(0)
∗, where undefined notations

are as in ibid. and [So2, eq. (9)].

8.2. A p-adic Logarithmic Map. — Let p 6= 2 be a prime number as before, and hence-
forth take S = Sp(k)∪Smin where Sp(F ) denotes the set of places dividing p in a number field
F . We sometimes drop S from the notation. Fixing an embedding j : Q̄ → Q̄p, we may apply
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it to the coefficients of b− to get j(b−) ∈ Q̄p[G]
−. We shall use this to construct a p-adic map

sK/k,p on (an exterior power of) the p-semilocal units of K.
For each P ∈ Sp(K), letKP denote the completion ofK at P (containing K). Let OKP

denote
its ring of valuation integers and let Kp denote the product

∏
P∈Sp(K)KP with the product

topology. The diagonal map K → Kp extends Qp-linearly to a ring isomorphism K⊗Qp
∼= Kp

which we regard as an identification. The natural action of G on K therefore gives rise to an
action (by continuous ring automorphisms) on Kp which ‘mixes up’ the factors KP. We write
U1(Kp) for

∏
P∈Sp(K) U

1(KP) ⊂ K×
p where U1(KP) denotes the group of principal units of

KP, i.e. 1 +POKP
. The multiplicative Z-action on U1(Kp) extends by continuity to Zp so

we may regard U1(Kp) as a module for Rp = Zp[G]. Now, every τ ∈ Gal(Q̄/Q) gives rise to a
ring homomorphism (j ◦ τ)⊗ 1 : Kp → Q̄p. We write simply jτ for its restriction to U1(Kp).
This map factors through the projection onto U1(KP) (where P is determined by j ◦ τ) and
takes values in the disc {x ∈ Q̄p : |x − 1|p < 1} on which the p-adic logarithm logp, defined
by the usual power-series, converges. We may therefore define a ‘p-semilocal, G-equivariant
logarithm’, Logτ,p, by

Logτ,p : U1(Kp) −→ Q̄p[G]

u 7−→ ∑
g∈G logp(jτ(gu))g

−1

(compare with Logw of Section 4). It is continuous and Z[G]-linear, so Rp-linear. Now fix a
choice τ1, . . . , τn of left-coset representatives of Gal(Q̄/k) in Gal(Q̄/Q). This gives a unique
Rp-linear p-semilocal regulator

Regp = Regτ1,...,τnp :
∧n

Rp
U1(Kp) −→ Q̄p[G]

sending u1 ∧ . . . ∧ un to det
(
Logτi,p(uj)

)n
i,j=1

. Finally, we make the

Definition 8.2. — Let sp = sτ1,...,τnK/k,p be the Rp-linear map

sp :
∧n

Rp
U1(Kp) −→ Q̄p[G]

−

θ 7−→ j(b−)Regp(θ)

and let Sp = SK/k,p be its image in Q̄p[G]
−.

Of course, sp factors through the projection e− onto
∧n

Rp
U1(Kp)

−. In particular, it van-
ishes on

∧n
Rp
U1(Kp)

+. Also, changing the choice and ordering of τ1, . . . , τn only multiplies
Regτ1,...,τnp , and hence sK/k,p, by ±g for some g ∈ G, so has no effect on SK/k,p. The following
is proved in [So2, Props. 2.16, 2.17] using results of [So1].

Proposition 8.3. — With notations as above,

(i) sp is independent of j and takes values in Qp[G]
−.

(ii) Sp is a fractional ideal of Qp[G]
−, that is, a finitely generated Zp-submodule spanning

Qp[G]
− over Qp.

(iii) ker(sp) ∩
∧n

Rp
U1(Kp)

− is precisely the Zp-torsion submodule of
∧n

Rp
U1(Kp)

−.
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Example 8.4. — The Case K/k = Q(ζpt)/Q for t ≥ 1. In this case S = {∞, p} and
Sp(K) = {P} where P := (1− ζpt) is totally ramified over p. Thus j induces an isomorphism
Kp = KP → Qp(j(ζpt)) which we treat as an identification, allowing us also to identify
G = Gal(KP/Qp) with Gal(Qp(j(ζpt))/Qp). From now on, we suppress j and write ζ for ζpt,
identified with j(ζpt). Computing Θ−(1) directly (see e.g. [So2, Lemma 7.1]) we find

b− = e−
1

pt

∑

g∈G
g

(
ζ

1− ζ

)
g

Now take τ1 to be 1 ∈ Gal(Q̄/Q) so that Logτ1,p(u) becomes simply
∑

h∈G logp(hu)h
−1 for

any u ∈ U1(Kp) = U1(Qp(ζ)). Since n = 1, this coincides with Regp(u). Therefore, assuming
w.l.o.g. that u ∈ U1(Kp)

− and multiplying out, we get

(30) sp(u) = b−Regp(u) =
1

pt

( ∑

h′∈G
h′
( ζ

1− ζ

)
h′
)(∑

h∈G
logp(hu)h

−1
)
=

∑

g∈G
a(g(u))g−1

where, for any v ∈ U1(Qp(ζ)) we have set

a(v) :=
1

pt
TrQp(ζ)/Qp

(
ζ

1− ζ
logp(v)

)

To take this example further, we observe that the coefficient a(v) appears in the explicit reci-
procity law of Artin and Hasse (see [AH]). More precisely, the reciprocity map of local class
field theory sends any α ∈ K×

P = Qp(ζ)
× to an element sα = sα,KP/Qp

, say, of Gal(Kab
P /KP)

where Kab
P denotes a given abelian closure. If β also lies in K×

P then any ptth root β1/pt lies
in Kab

P because K, hence KP, contains the ptth roots of unity. For our purposes the Hilbert
symbol (α, β)KP ,pt can therefore be defined as sα(β1/p

t
)/β1/p

t , a ptth root of unity in K de-
pending only on α and β. Now if v lies in U1(Qp(ζ)) and a(v) is as above, the Artin-Hasse
law states firstly that a(v) ∈ Zp and secondly that

(31) (1− ζ, v)KP ,pt = ζ−a(v)

The first fact implies sp(u) ∈ Zp[G] for all u ∈ U1(Kp)
−, in other words

(32) SQ(ζpt )/Q,p ⊂ R−
p

Finally, we note that in this example, results of [Iw] allow one to calculate Sp exactly. Indeed,
it is shown in [So3] that

SQ(ζpt )/Q,p = Stick(Q(ζpt)/Q)p

where Stick(Q(ζpt)/Q)p is as in Section 6. One can also show Stick(Q(ζpt)/Q)p =

FittR−
p
(Cl(Q(ζpt))

−
p ), using [Ku1, Thm. 0.5] for example. Thus we get

(33) SQ(ζpt )/Q,p = FittR−
p
(Cl(Q(ζpt))

−
p )

We now consider some possible generalisations of equations (31), (32) and (33).
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9. Conjectures at s = 1

We maintain the notations and assumptions on K/k, p and S introduced in §8.2.

9.1. The Ideal Sp: Integrality and Fitting Ideals. — The following generalisation of
(32) was conjectured in [So1], [So2]

Conjecture IC(K/k, p). — Integrality Conjecture (with S = Sp(k) ∪ Smin)
In the above situation, SK/k,p is contained in R−

p .

We summarise the current evidence for this conjecture. First, it is proven in [So1] whenever
p is unramified in K and also whenever p splits completely in k. The latter case is consider-
ably harder than the former and requires a minor auxiliary condition. Next, the conjecture
is established in [So2] whenever p ∤ |G|. Results of A. Jones in [Jo] imply that a somewhat
stronger statement than IC(K/k, p) follows from a certain case of the ETNC (see below).
Since the latter is known whenever K is abelian over Q, the conjecture is then proven uncon-
ditionally. (For a direct proof in this case, not using the ETNC but imposing a mild condition
if k 6= Q, see [So2, Sec. 8].) Finally, as a by-product of the computations in [RS2] (see below)
one gets actual proofs of IC(K/k, p) in a dozen cases not otherwise covered, all with k real
quadratic and p = 3 or 5.
We now assume that IC(K/k, p) holds and ask what might replace the finer statement (33) in
the general case. The results of Jones mentioned above show that if the ETNC holds (so, in
particular, if K is absolutely abelian) then S(K/k)p is contained in FittR−

p
(Clm(K)−p ) where

Clm(K) is a certain ray-class group. For more details and an unconditional result when p ∤ |G|,
we refer to [So2], §4.2, §4.3 and Remark 6.2. The latter hints that the appearance of Clm(K)

– rather than its quotient Cl(K) – is explained by the imprimitivity of the L-functions making
up Θ−

S (1). This does not lead to trivial zeroes as it does at s = 0 but still suggests enlarging
S(K/k)p to S̃(K/k)p, say, using intermediate fields as in (27). The above-mentioned results
then prompt the

Question. — Does one have S̃(K/k)p = FittR−
p
(Cl(K)−p ) whenever µp∞(K) = µp∞(Kp)

−?

Here, µp∞(Kp) denotes the R−
p -module

∏
Pµp∞(KP). (The given condition therefore fails,

for instance, whenever µp ⊂ K and |Sp(K+)| > 1 and one would like to relax it.) An obvious
first test is the extension K/Q(

√
29) mentioned in Section 7, for which Greither and Kurihara

showed Stick(K/k)p 6⊂ FittR−
p
(Cl(K)−p ) when p = 3. Unpublished computations of X. Roblot

and the author show that indeed S̃(K/k)p = S(K/k)p = FittR−
p
(Cl(K)−p ) in this case (so

Stick(K/k)p 6⊂ S̃(K/k)p). However the above question is still open even for general abelian K
and k = Q. It is equally possible that some other enlargement of S(K/k)p, perhaps analogous
to SKu(K/k)p, should replace S̃(K/k)p.
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9.2. The Map sp: a Conjectural Explicit Reciprocity Law for ηS. — Continuing to
assume that IC(K/k, p) holds, we now discuss a refinement in a different direction that makes
a connection between sK/k,p in the minus-part and the conjectural solution of SC(K+/k, S, n)

in the plus-part which was discussed in §4 and §5. As motivation, we first take K/k = Q(ζpt)/Q
and reformulate equations (30) and (31) using the notations and conventions of that example.
For any ξ ∈ µpt we write Indpt(ξ) for the unique element x ∈ Z/ptZ such that ζxpt = ξ. Thus
the Hilbert symbol gives rise to a bilinear pairing

(34)
[·, ·]pt : US(K

+)× U1(Kp) −→ (Z/ptZ)[G]
(α, β) 7−→

∑

g∈G
Indpt

(
(α, gβ)KP ,pt

)
g−1

This ‘extends’ naturally so that the first (global) variable may lie in Z(p) ⊗ US(K
+) where

Z(p) denotes the local subring {a/b : a, b ∈ Z, p ∤ b} of Q. Since US(K
+) has no p-torsion,

Z(p) ⊗ US(K
+) injects into Q ⊗ US(K

+). Recall from Example 4.2 and Subsection 5.2 that
the canonical solution of SC(K+/Q, S, 1) in Q⊗ US(K

+) is

ηS,K+/Q =
1

2
⊗ ((1 − ζpt)(1− ζ−1

pt ))−1

where w1 is given by the inclusion K+ →֒ R. (The reader can check that this holds even
if pt = 3 when K+ = Q.) Since p 6= 2 we can therefore regard ηS,K+/Q as an element of
Z(p) ⊗US(K

+) and one checks easily that equations (30) and (31) amount to the congruence

(35) sp(u) = [ηS,K+/Q, u]pt in (Z/ptZ)[G], for all u ∈ U1(Kp)

(Use the fact that (α, β)KP ,pt = 1 if α, β both lie in U1(Kp)
− or in U1(Kp)

+ so, in particular,
both sides of (35) vanish if u ∈ U1(Kp)

+.)
The Congruence Conjecture of [So2] generalises (35) for K/k, p and S as considered in this
section with the additional assumption that µpt ⊂ K for some given t ≥ 1. Thus if α = (αP)P
and β = (βP)P lie in K×

p we can regard (αP, βP)KP ,pt ∈ µpt(KP) as an element of µpt for
each P and define

(α, β)Kp,pt :=
∏

P∈Sp(K)

(αP, βP)KP ,pt =
∏

P∈Sp(K)

(βP, αP)
−1
KP ,pt ∈ µpt

Remark 9.1. — The second equality comes from the skew-symmetry of the Hilbert symbol.
It shows that if α lies in K× (regarded as a subgroup of K×

p by the diagonal embedding) then
(α, β)Kp,pt = (ψβ(α

1/pt)/α1/pt)−1 where α1/pt ∈ Kab and ψβ ∈ Gal(Kab/K) is the image of
β under the composition of the natural embedding K×

p →֒ Id(K) with the global reciprocity
map Id(K) → Gal(Kab/K).

We now take α ∈ US(K
+) and β ∈ U1(Kp) and define [α, β]pt ∈ (Z/ptZ)[G] just as in (34)

but replacing (α, gβ)KP ,pt by (α, gβ)Kp ,pt for each g ∈ G. Let κ̄ denote the homomorphism
Gal(Q̄/Q) → (Z/ptZ)× given by γ(ξ) = ξκ̄(γ) for all ξ ∈ µpt . The restriction of κ̄ to Gal(Q̄/k)
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clearly factors through a homomorphism G → (Z/ptZ)× also denoted κ̄. One checks that
[α, β]pt is (Z-)bilinear and also G-semi-bilinear in the sense that

(36) [gα, hβ]pt = κ̄(g)g−1h[α, β]pt for all α ∈ US(K
+), β ∈ U1(Kp) and g, h ∈ G

Taking g = h = c, one deduces [α, e−β]pt = [α, β]pt . Writing G+ for Gal(K+/k) = G/〈c〉, it
also follows from (36) that there exists a unique pairing

HK/k,pt :
∧n

Z[G+]US(K
+)×∧n

Rp
U1(Kp) −→ (Z/ptZ)[G]−

satisfying HK/k,pt(ε1∧ . . .∧εn, u1∧ . . .∧un) = det
(
[εi, ul]pt

)n
i,l=1

for any ε1, . . . , εn ∈ US(K
+)

and u1, . . . , un ∈ U1(Kp). Note also that HK/k,pt is Rp-linear in the second variable and
factors through the projection e− onto

∧n
Rp
U1(Kp)

−, just like sK/k,p. As before, we extend
it naturally so that the first variable may lie in Z(p) ⊗

∧n
Z[G+] US(K

+).
For each i = 1, . . . , n the restriction of τi to K+ corresponds to real place wi lying above a
distinct place vi of k which splits in K+. Since S ⊃ Sp(k)∪S∞(k) = Sp(k)∪{v1, . . . , vn}, the
hypotheses of Conjecture SC(K+/k, S, n) are satisfied. We shall assume that it holds and has
canonical solution ηS ∈ Q⊗∧n

Z[G+] US(K
+) w.r.t. the choice of places w1, . . . , wn. We would

like to apply HK/k,pt to ηS but for n ≥ 2 we cannot simply treat the latter as an element of
Z(p)⊗

∧n
Z[G+] US(K

+). Indeed, if also p||G+| then the map νS : Z(p)⊗
∧n

Z[G+] US(K
+) → Q⊗∧n

Z[G+] US(K
+) may not be injective. Furthermore, in these circumstances Rubin’s Conjecture

B′ does not imply ηS ∈ im(νS) (see §5.3). To get round this, we define in [So2, § 2.2] a
certain lattice Λ0,S = Λ0,S(K

+/k) ⊂ Q⊗∧n
Q[G+] US(K

+) such that Z(p)Λ0,S contains im(νS),
and also a natural ‘extension’ HK/k,pt (there denoted ‘HK/k,S,n’) of the pairing HK/k,pt to
Z(p)Λ0,S ×∧n

Rp
U1(Kp) such that for each θ ∈ ∧n

Rp
U1(Kp) the diagram

(37) Z(p) ⊗
∧n

Z[G+] US(K
+)

νS

��

HK/k,pt (·,θ)

,,XXXXXXXXXXXXXXXXXXXXXXXXXX

(Z/ptZ)[G]−

Z(p)Λ0,S

HK/k,pt (·,θ)

22fffffffffffffffffffffffffffffff

commutes. (This follows from [So2, eq. (20)]. Note that the vertical map is an isomorphism
whenever p ∤ |G|.) Finally, we show in [So2, Rem. 2.8] that the full version of Rubin’s
Conjecture B′ (for varying auxiliary sets T ) implies that ηS lies in Z(p)Λ0,S (in fact, in
1
2Λ0,S). We can at last state the

Conjecture CC(K/k, pt). — Congruence Conjecture (with S = Sp(k) ∪ Smin)
Suppose that K/k, p and S are as in §8.2 and in addition that

(i) IC(K/k, p) holds,
(ii) µpt ⊂ K for some t ≥ 1,
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(iii) SC(K+/k, S, n) holds and the canonical solution ηS w.r.t. the choice of places
w1, . . . , wn lies in Z(p)Λ0,S.

Then, for all θ ∈ ∧n
Rp
U1(Kp), we have the congruence

(38) sp(θ) = κ̄(τ1 . . . τn)HK/k,pt(ηS , θ) in (Z/ptZ)[G]−

We recall that the choice of the coset representatives τ1, . . . , τn affects both the definition
of sp and of the places w1, . . . , wn, hence of ηS . However, one checks easily that the factor
κ̄(τ1 . . . τn) in (38) makes the Conjecture independent of this choice.
The motivation of both the Integrality and Congruence Conjectures came from the author’s
article in [BPSS] although neither is explicitly mentioned there. Their statements appear first
in [So1] but that of the latter conjecture is rather awkward. An improved formulation appears
in [So2] for any S containing Sp(k) ∪ Smin but it is shown in Prop. 5.4 loc. cit. that this is
implied by the special case S = Sp(k)∪Smin which is all we have given above. We summarise
the current evidence for CC(K/k, pt). Firstly, no connection with the ETNC is known but
in [So2] a generalisation of the Artin-Hasse law due to Coleman is shown to imply the CC in
the case k = Q, and also for K absolutely abelian (but with the same mild condition as for
the IC if k 6= Q). It is also shown that the congruence (38) holds as ‘0 = 0’ whenever p ∤ |G|
and θ is a Zp-torsion element. M. Bovey considered the case k = K+, i.e. |G| = 2. The CC
is then trivial unless |Sp(k)| = 1. In this case conditions (i) and (iii) hold and both the map
sp and the element ηS can be written down in terms of certain S-class-numbers and S-units
of K and k etc. (See Rem. 4.5 for ηS .) Nevertheless, the congruence (38) seems to be new
and unknown. A weakening of it is proven in [Bo]. A variant with p = 2 is also stated and
one congruence or the other is fully numerically verified in over 100 cases. Finally, in the case
where k is real quadratic but K+/Q is not abelian, one cannot usually prove SC(K+/k, 2)

but high-precision computation allows one to identify the solution ηS with virtual certainty.
This was done in [RS2] allowing the verification of IC(K/k, p) and CC(K/k, pt) in nearly 50

such cases with varying p and t = 1 or 2.
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