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Abstract. — We generalize a number of summation formulas involving the K-Bessel function,
due to Ramanujan, Koshliakov, and others.

Résumé. — Nous généralisons des formules sommatoires faisant intervenir les fonctions K de
Bessel, et qui sont dues à Ramanujan, Koshliakov et d’autres.

1. Introduction and Tools

In his notebooks, Ramanujan has given a number of interesting summation formulas involving
the K-Bessel function. These were generalized by Koshliakov and Berndt–Lee–Sohn in [1].
The purpose of the present paper is to give a general framework for these formulas, and to
generalize them. We only give a bare sketch of the proofs.
First, we recall that the K-Bessel function Kν(x) with ν ∈ C and x ∈ R>0 can be defined by
the formula

Kν(x) =
1

2

∫ ∞

0
tν−1e−(x/2)(t+1/t) dt .

Since K−ν = Kν , we will always assume implicitly that Re(ν) ≥ 0. These functions possess
many important properties, but the most important for us will be their behavior as x → ∞,
and to a lesser extent as x → 0: as x → ∞ we have

Kν(x) ∼
( π

2x

)1/2
e−x

(note that the right hand side is independent of ν), and as x → 0 we have Kν(x) ∼
2−ν−1Γ(ν)x−ν when Re(ν) > 0, and K0(x) ∼ − log(x).
Second, we recall that the Riemann zeta function ζ(s) which is usually defined by the series∑

n≥1 n
−s for Re(s) > 1, can be extended to the whole complex plane into a meromorphic

function having a single pole, simple, at s = 1, and satisfies the functional equation Λ(1−s) =
Λ(s), with Λ(s) = π−s/2Γ(s/2)ζ(s).
Third, we recall that σs(n) denotes the sum of the sth powers of the positive divisors of n:
σs(n) =

∑
d|n d

s.
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Fourth, we recall that the real dilogarithm function Li2(x) is defined by Li2(x) = −
∫ x
0 log(|1−

t|)/t dt, so that Li2(x) =
∑

n≥1 x
n/n2 when |x| ≤ 1. This function has many functional

equations, and in particular Li2(x) + Li2(1/x) = C(x)π2/6 − log2(x)/2, where C(x) = 2 for
x > 0 and C(x) = −1 for x < 0, which immediately implies the behavior of Li2(x) when
x → ∞.
Fifth, we define the standard nonholomorphic Eisenstein Series G(τ, s) for Re(s) > 1 and
Im(τ) > 0 by

G(τ, s) =
1

2

∑ ′
(m,n)∈Z2

ys

|mτ + n|2s ,

where
∑ ′

means that the term (m,n) = (0, 0) must be omitted, and τ = x+iy. This function
is invariant (in τ) under the usual action of SL2(Z), in other words it is a nonholomorphic
modular function of weight 0. It is easy to compute its Fourier expansion, which is given by

G(τ, s) = ζ(2s)ys +
π1/2Γ(s− 1/2)

Γ(s)
ζ(2s− 1)y1−s

+ 4y1/2
πs

Γ(s)

∑

n≥1

σ2s−1(n)

ns−1/2
Ks−1/2(2πny) cos(2πnx) .

In particular this expansion shows that G(τ, s) has a meromorphic continuation to the whole
complex s-plane, with a single pole, at s = 1, which is simple with residue π/2 (note that this
is independent of τ), and if we set

G(τ, s) = π−sΓ(s)G(τ, s)

we have the functional equation G(τ, 1− s) = G(τ, s).

2. The First Theorem and Specializations

We implicitly consider that variables such as x, b, and so forth are real and strictly positive,
in particular different from 0.

Theorem 2.1. — We have

Λ(s)(x(1−s)/2 − x(s−1)/2) + 4x1/2
∑

n≥1

σs(n)

ns/2
Ks/2(2πnx)

=Λ(−s)(x−(1+s)/2 − x(1+s)/2) + 4x−1/2
∑

n≥1

σs(n)

ns/2
Ks/2

(
2πn

x

)
.

This immediately follows from the Fourier expansion of G(τ, s).

Corollary 2.2. —

4
∑

n≥1

σs(n)

ns/2
Ks/2

(
2πn

x

)
= 4x

∑

n≥1

σs(n)

ns/2
Ks/2(2πnx)

+ Λ(s)(x1−s/2 − xs/2) + Λ(s + 1)(x1+s/2 − x−s/2) .
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We now specialize to the first few integer values of s.

Corollary 2.3. — Let as usual d(n) = σ0(n) be the number of divisors of n. We have

γ − log(4πx) + 4
∑

n≥1

d(n)K0

(
2πn

x

)
= x

(
γ − log

(
4π

x

)
+ 4

∑

n≥1

d(n)K0(2πnx)

)
.

Corollary 2.4. — We have

π

12x
+
∑

n≥1

σ(n)

n
e−2πn/x =

π

12
x+

∑

n≥1

σ(n)

n
e−2πnx − log(x)

2
.

Both corollaries follow quite easily from the theorem with s = 0 and s = 1 respectively.
This second corollary is in fact the transformation formula of the logarithm of Dedekind’s eta
function. More precisely:

Corollary 2.5. — Set

L(x) = −πx

12
+
∑

n≥1

log
(
1− e−2πnx

)
,

which is equal to log(η(ix)). We have

L

(
1

x

)
= L(x) +

log(x)

2
.

Corollary 2.6. —

π

6
(1− x) + 4x

∑

n≥1

σ2(n)

n
K1(2πnx) =

ζ(3)

2π

(
1

x
− x2

)
+ 4

∑

n≥1

σ2(n)

n
K1

(
2πn

x

)
.

This is the theorem for s = 2.
For s ≥ 3 odd, we obtain from the theorem formulas which are closely linked to the theory of
Eichler–Shimura of (k−2)-fold integrals of modular forms of weight k, giving pseudo-modular
forms of weight 2− k. For instance, for s = 3 we obtain directly:

Corollary 2.7. —

ζ(3)

2π

(
1

x
− x

)
+ 2

∑

n≥1

σ3(n)

n2

(
1 +

1

2πnx

)
e−2πnx

=
π2

90

(
1

x2
− x2

)
+ 2

∑

n≥1

σ3(n)

n2

(
1 +

x

2πn

)
e−2πn/x .

However, as mentioned above, this is not the point. A consequence is the following:

Corollary 2.8. — Set

H(x) = − π3

180
x3 − π3

72
x+

ζ(3)

2
+
∑

n≥1

σ3(n)

n3
e−2πnx .
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Then H ′′′(x) = −(π3/30)E4(ix), where E4(τ) is the usual holomorphic Eisenstein series of
weight 4, and H satisfies the functional equation

H

(
1

x

)
= − 1

x2
H(x) ,

in other words is a “pseudo-modular form” of weight −2.

This is quite easily proved by integration, except that there is an a priori unknown “constant
of integration”, which in the above corollary is the coefficient of x. To compute this constant
explicitly, we need to compute the asymptotic expansion of both sides, and after some work
we obtain the above formula. As mentioned above, this type of formula exists for all odd
integral values of s, with the series

∑
n≥1(σs(n)/n

s)e−2πnx in the right-hand side.

3. The Second Theorem and Specializations

3.1. Integral Representations. — Note the following integral representations of the sums
that we will consider:

Proposition 3.1. — For x > 0 and all s ∈ C we have∫ ∞

0

dt

ts+1(e2πxt − 1)(e2π/t − 1)
= 2xs/2

∑

n≥1

ns/2σ−s(n)Ks(4π
√
nx) .

Corollary 3.2. — Under the same conditions, for all j ≥ 0 we have
∫ ∞

0

Pj

(
e2πxt

)

ts+1(e2πxt − 1)j+1(e2π/t − 1)
dt = (−1)j2xs/2

∑

n≥1

ns/2+jσ−s−j(n)Ks(4π
√
nx) ,

where Pj(X) is the sequence of polynomials defined by induction by P0(X) = 1 and Pj(X) =
X(X − 1)P ′

j−1(X)− jXPj(X) for j ≥ 1.

Corollary 3.3. — We have
∫ ∞

0

log
(
1− e−2πxt

)

ts+1(e2π/t − 1)
= −2xs/2

∑

n≥1

ns−3/2σ1−s(n)Ks(4π
√
nx) .

These results are proved by replacing Ks by its integral definition, and then integrating several
times.
The main results of this section give formulas for the right hand side of the proposition.

3.2. The Case s /∈ Z. —

Theorem 3.4. — Let s /∈ Z such that Re(s) ≥ 0. For any integer k such that k ≥ ⌊(Re(s)+
1)/2⌋ we have the identity

8πxs/2
∑

n≥1

ns/2σ−s(n)Ks(4π
√
nx) = A(s, x)ζ(s) +B(s, x)ζ(s+ 1)

+
2

sin(πs/2)

( ∑

1≤i≤k

ζ(2i)ζ(2i − s)x2i−1 + x2k+1
∑

n≥1

σ−s(n)
ns−2k − xs−2k

n2 − x2

)
,
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where

A(s, x) =
xs−1

sin(πs/2)
− (2π)1−sΓ(s) and B(s, x) = (2π)−s−1Γ(s+ 1)

2

x
− πxs

cos(πs/2)
.

Remarks.
(1) In the above theorem, if x = n ∈ Z≥1 the expression (ns−2k − xs−2k)/(n2 − x2) is of

course to be interpreted as its limit as x tends to n, in other words as (s/2−k)ns−2k−2.
(2) The condition Re(s) ≥ 0 is not restrictive since the left hand side of the identity is

invariant under the change of s into −s.
(3) Although the theorem is valid when k ≥ ⌊(Re(s)+1)/2⌋, the convergence of the series on

the right hand side is as fast as possible without acceleration only when k ≥ ⌈Re(s)/2⌉,
in other words k ≥ ⌊(Re(s) + 2)/2⌋ if Re(s) /∈ 2Z.

The proof of the theorem involves integrating the formula of the theorem of the preceding
section, and doing a careful extension process to show that it is valid for all s as given.
The specializations of the above theorem to s = 1/2 and s = 3/2 are as follows:

Corollary 3.5. —

2π
∑

n≥1

σ−1/2(n)e
−4π

√
nx = 2x

∑

n≥1

σ−1/2(n)

(n1/2 + x1/2)(n + x)

+

(
1

4πx
− πx1/2

)
ζ(3/2) −

(
π − 1

x1/2

)
ζ(1/2) .

Corollary 3.6. —
∑

n≥1

σ−3/2(n)(4π
√
nx+ 1)e−4π

√
nx = −4x3

∑

n≥1

σ−3/2(n)

(nx1/2 + xn1/2)(n+ x)

+

(
3

8π2x
+ 2πx3/2

)
ζ(5/2) +

(
2x1/2 − 1

2

)
ζ(3/2) +

2π2

3
xζ(1/2) .

3.3. The Case s ∈ 2Z. — As usual, we assume that s ≥ 0. The result corresponding to
s = 2m with m ∈ Z≥1 is as follows:

Theorem 3.7. — Let m ∈ Z≥1. We have the identity

8(−1)m
∑

n≥1

σ2m(n)

nm
K2m(4π

√
nx) =

4

π2


xm+1

∑

n≥1

σ2m(n)

n2m

log(n/x)

n2 − x2
−

∑

1≤i≤m−1

ζ(2i)ζ ′(2i− 2m)x2i−m−1




+
2

π2
xm−1(ζ(2m) log(2πx) + ζ ′(2m)) +

B2m

2mxm

+

(
(−1)m

4(2m)!

(2π)2m+2xm+1
− xm

)
ζ(2m+ 1) .
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Note that by the functional equation, if desired we can replace ζ ′(2i − 2m) by its expression
in terms of ζ(2m+ 1− 2i).
For instance, by simple replacement, for s = 2, in other words for m = 1, we obtain

Corollary 3.8. — We have the identity

−8
∑

n≥1

σ2(n)

n
K2(4π

√
nx) =

4

π2
x2
∑

n≥1

σ2(n)

n2

log(n/x)

n2 − x2

+
1

3

(
log(2πx) +

ζ ′(2)
ζ(2)

)
+

1

12x
−
(

1

2π4x2
+ x

)
ζ(3) .

The result corresponding to s = m = 0 is as follows:

Theorem 3.9. — We have

4
∑

n≥1

d(n)K0(4π
√
nx) =

2x

π2

∑

n≥1

d(n)
log(n/x)

n2 − x2
−
(
γ +

log(x)

2
+

log(2πx1/2)

π2x

)
.

Here again we need to do a careful limiting process.

Corollary 3.10. —

−4π3x−1/2
∑

n≥1

n1/2d(n)K1(4π
√
nx) =

∑

n≥1

d(n) log(n/x)
n2 + x2

(n2 − x2)2

−
∑

n≥1

d(n)
1

n2 − x2
+

1

4

(
2 log(2πx1/2)− 1

x2
− π2

x

)
.

Simply compute derivatives.

3.4. The Case s ∈ 1+2Z. — Once again we assume that s ≥ 0. The result corresponding
to s = 2m+ 1 with m ∈ Z≥1 is as follows:

Theorem 3.11. — Let m ∈ Z≥1. We have the identity

8π(−1)mx1/2
∑

n≥1

σ2m+1(n)

nm+1/2
K2m+1(4π

√
nx) = −2xm+2

∑

n≥1

σ2m+1(n)

n2m+2(n+ x)

+ 2
∑

1≤i≤m

ζ(2i)ζ(2i − 2m− 1)x2i−m−1

+

(
xm + (−1)m+1 (2m)!

(2π)2mxm

)
ζ(2m+ 1) +

B2m+2

2(m+ 1)xm+1

+ 2xm+1((log(x) + γ)ζ(2m+ 2) + ζ ′(2m+ 2))

The result corresponding to m = 0, in other words to s = 1, is as follows:
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Theorem 3.12. — We have the identity

8πx1/2
∑

n≥1

σ(n)

n1/2
K1(4π

√
nx) = −2x2

∑

n≥1

σ(n)

n2(n+ x)

+ log(2πx) + γ +
1

12x
+ 2x((log(x) + γ)ζ(2) + ζ ′(2)) ,

where as usual σ(n) = σ1(n).

Corollary 3.13. — We have the identities

8π2
∑

n≥1

σ(n)K0(4π
√
nx) =

∑

n≥1

σ(n)

(
1

n2
− 1

(n+ x)2

)

− π2

6
− 1

2x
+

1

24x2
− ((log(x) + γ)ζ(2) + ζ ′(2)) ,

8π3x1/2
∑

n≥1

n1/2σ(n)K1(4π
√
nx) = −x

∑

n≥1

σ(n)

(n+ x)3
+

π2

12
− 1

4x
+

1

24x2
,

and
16π4

∑

n≥1

nσ(n)K0(4π
√
nx) =

∑

n≥1

σ(n)
n− 2x

(n + x)4
− 1

4x2
+

1

12x3
.

3.5. Asymptotics of Sums
∑

n≥1 σ−m(n)f(x/n). — Set Tm(f) =
∑

n≥1 σ−m(n)f(x/n).
A careful study of these sums for a large and useful class of functions f is necessary, so as to
obtain their asymptotic expansions as x → ∞. This is quite nontrivial, and requires several
pages of computations. We only give the results for the functions that we need:
Example 1. f(t) = log(1 + t)− t and m ≥ 2. In that case:

Tm(f)(x) = −ζ(m+ 1)x log(x) + (−ζ ′(m+ 1) + (1− γ)ζ(m+ 1))x

− (ζ(m)/2) log(x)− ζ ′(m)/2− (log(2π)/2)ζ(m) + o(1) .

Example 2. f(t) = log(t) log(|1− t2|) and m ≥ 2. In that case:

Tm(f)(x) = (π2/2)ζ(m+ 1)x− ζ(m) log2(x)− 2(ζ ′(m) + log(2π)ζ(m)) log(x)

− ζ ′′(m)− 2 log(2π)ζ ′(m) + 2ζ ′′(0)ζ(m) + o(1) .

Example 3. f(t) = Li2(t
2) and m ≥ 2. In that case:

Tm(f)(x) = ζ(m) log2(x) + 2(ζ ′(m) + log(2π)ζ(m)) log(x) + ζ ′′(m)

+ 2 log(2π)ζ ′(m)− (2ζ ′′(0) + π2/6)ζ(m) + o(1) .

4. Integration of the Formulas for s ∈ Z

We can integrate the results that we have obtained for m ∈ Z. Integration term by term
is trivially justified, but the whole difficulty lies in the determination of the constant of
integration. This is done by comparing the asymptotic expansions of both sides, that of the
right-hand side being obtained thanks to the study mentioned above, and in particular of the
specific examples.
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4.1. The Case s ∈ 2Z, s 6= 0. —

Theorem 4.1. — Let m ∈ Z≥1. We have the identity

4

π
x−m+1/2(−1)m−1

∑

n≥1

σ2m(n)

nm+1/2
K2m−1(4π

√
nx) =

1

π2


∑

n≥1

σ2m(n)

n2m

(
2 log

(x
n

)
log

(∣∣∣∣1−
x2

n2

∣∣∣∣
)
+ Li2

(
x2

n2

)


+ 4
∑

1≤i≤m−1

ζ(2i)ζ ′(2i− 2m)
x2i−2m

2m− 2i

)

+
2

π2
((ζ(2m) log(2π) + ζ ′(2m)) log(x) +

ζ(2m)

2
log2(x))

− B2m

2m(2m− 1)x2m−1
+

(
(−1)m−1 4(2m− 1)!

(2π)2m+2x2m
− x

)
ζ(2m+ 1) + C2m ,

where C2m is a constant given by

C2m = ζ ′′(2m) + 2 log(2π)ζ ′(2m) + (π2/6− 2ζ ′′(0))ζ(2m) .

As mentioned above, the only difficulty is in the computation of C2m, which is done by making
x → ∞ and comparing asymptotic expansions.

4.2. The Case s = 0. —

Theorem 4.2. —

−2

π
x1/2

∑

n≥1

d(n)

n1/2
K1(4π

√
nx)

=
1

2π2

∑

n≥1

d(n)

(
2 log

(x
n

)
log

(∣∣∣∣1−
x2

n2

∣∣∣∣
)
+ Li2

(
x2

n2

))

−
((

γ − 1

2

)
x+

x log(x)

2
+

log(2π)

π2
log(x) +

log2(x)

4π2

)
+ C0

where C0 is an explicit constant which I have not had the time to compute.

4.3. The Case s = 2m+ 1, m ≥ 1. —
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Theorem 4.3. —

4(−1)m+1x−m
∑

n≥1

σ2m+1(n)

nm+1
K2m(4π

√
nx)

= 2
∑

n≥1

σ2m+1(n)

n2m+1

(
log
(
1 +

x

n

)
− x

n

)

+ 2
∑

1≤i≤m

ζ(2i)
ζ(2i− 2m− 1)

2i− 2m− 1
x2i−2m−1

+

(
log(x) + (−1)m

(2m− 1)!

(2π)2mx2m

)
ζ(2m+ 1)− B2m+2

(2m+ 1)(2m+ 2)x2m+1

+ 2(x log(x)ζ(2m+ 2) + x((γ − 1)ζ(2m+ 2) + ζ ′(2m+ 2))) +C2m+1

= −2
∑

n≥1

log(Γ(1 + x/n))

n2m+1

+ 2
∑

1≤i≤m

ζ(2i)
ζ(2i− 2m− 1)

2i− 2m− 1
x2i−2m−1

+

(
log(x) + (−1)m

(2m− 1)!

(2π)2mx2m

)
ζ(2m+ 1)− B2m+2

(2m+ 1)(2m+ 2)x2m+1

+ 2(x log(x)ζ(2m+ 2) + x(−ζ(2m+ 2) + ζ ′(2m+ 2))) + C2m+1

where C2m+1 is a constant given by

C2m+1 = ζ ′(2m+ 1) + log(2π)ζ(2m+ 1) .

4.4. The Case s = 1. —

Theorem 4.4. — We have the identity

−2
∑

n≥1

σ(n)

n
K0(4π

√
nx) =

∑

n≥1

σ(n)

n

(
log
(
1 +

x

n

)
− x

n

)

+
1

4
log2(x) +

log(2π) + γ

2
log(x) + C1 −

1

24x

+
π2

6
x log(x) + x((γ − 1)ζ(2) + ζ ′(2))

where C1 is a constant given by

C1 =
5π2

48
+

log2(2π)

4
+

γ log(2π)

2
− γ2

4
− γ1

=
π2

16
− log2(2π)

4
+

γ log(2π)

2
+

γ2

4
− ζ ′′(0) ,

where γ1 = limN→∞
(∑

1≤n≤N log(n)/n− log2(N)/2
)
.
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For the convenience of the reader, here are some numerical values:

γ1 = −0.0728158454836767248605863758749013191377363383343 · · ·
ζ ′′(0) = −2.0063564559085848512101000267299604381989949101609 · · ·

C1 = 2.39247890056761851538254526825624242310295177862365 · · ·
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