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Abstract. — In a previous article ([DW09]), we studied self-points on elliptic curves of prime
conductors, p. The non-triviality of these points was proved in general using a local argument
and the modular parametrization over the field Qp. In this paper, we focus on the special case of
Neumann-Setzer curves and we give an alternative proof of the non-triviality of self-points using
the complex side of the modular parametrization. To obtain this, we prove several estimates,
which can be used further to get results about Neumann-Setzer curves and their modularity.

Résumé. — Dans un article précédent ([DW09]), nous avons étudié les self-points des courbes
elliptiques de conducteurs premiers, p. La non trivialité de ces points a été établie en général
en utilisant un argument local et la paramétrisation modulaire sur le corps Qp. Dans ce papier,
nous nous concentrons sur le cas particulier des courbes de Neumann-Setzer et nous donnons
une démonstration différente de la non-trivialité des self-points grâce à l’aspect complexe de la
paramétrisation modulaire. Pour cela, nous obtenons plusieurs estimations que nous utilisons
ensuite pour prouver d’autres résultats sur les courbes de Neumann-Setzer et sur leurs aspects
modulaires.

1. Introduction

Let E be an elliptic curve defined over Q of conductor N . We denote by X0(N) the modular
curve of level N , it is well known, from the modularity properties of E, that there exists a
modular parametrization:

ϕ : X0(N) ≻ E

sending the cusp ∞ ∈ X0(N) to the neutral element O of E. A non-cuspidal point y ∈ X0(N)
can be understood as an isomorphism class of pairs (F,C) where F is an elliptic curve and
C is a cyclic subgroup of order N of F . It is a classical and natural problem to study
miscellaneous properties of the points x = ϕ(y) ∈ E whenever y have some specific and
“interesting” description in X0(N).
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70 Some remarks on self-points on elliptic curves

For instance, if y is a cusp in X0(N), the theory of Manin-Drinfeld gives that ϕ(y) is a torsion-
point in E and that its order can be controlled. Modular symbols also allow us to compute
the point ϕ(y) in this case ([Cre97, chapter 2]).
An other example is given by Heegner points. An Heegner point has the form y = (F,C) ∈
X0(N), where F and F/C have complex multiplication by the same order O of an imaginary
quadratic field. The Gross-Zagier theorem ([GZ86]) gives necessary and sufficient conditions
that x = ϕ(y) is a non-torsion point in E(H) where H is some number field associated to
O. The Gross-Zagier theorem has many theoretical and explicit applications. In particular,
in combination with the complex interpretation of Heegner points, it leads to a very efficient
algorithm for computing a generator of the Mordell-Weil group E(Q) whenever E has analytic
rank 1 (for example, [Coh07, chapter 8]).
The images of some other natural points have also been considered (see [Har79], [Kur73],
etc.) with the perspective to study the rank of the E(L) in some infinite Iwasawa extensions
L. A special case of these points are the so-called “self-points” in the title. They were defined
and have also been investigated in [DW09] and [Wut09].

Definition 1.1. — A self-point, PC ∈ E, is a point PC = ϕ(yC) where yC is of the form
yC = (E,C) ∈ X0(N).

Note that there are #P1(Z/NZ) cyclic subgroups, C ⊂ E, of order N . The question of the
rank generated by the self-points (and also by the “higher" self-points) has been studied in
generality in [Wut09]. One of the key ingredient is to determine when the point PC is a
non-torsion point. This can indeed be done in most of the cases by considering the modular
parametrization over the local field Qp where p is some well-chosen prime dividing N .
Whenever the conductor N = p is prime, the local argument is always valid and it can be
shown ([DW09]) that the self-points PC are non-torsion points in E(Q(C)), where Q(C) is
the field of definition of C. This implies that the points (PC)C , where C is running through
the p + 1 cyclic subgroups of order p, generate a group of rank p in E(K) where K is the
compositum of the fields Q(C). Note that the Galois group of K/Q is G ≃ PGL2(Z/pZ).

The aim of this paper is to focus on the special cases when E are Neumann-Setzer curves and
to show that by considering the modular parametrization ϕ over the complex field C (rather
than Qp) may also provide some results on these points.
In section 2, we will briefly sum up the results in [DW09] about self-points on elliptic curves
of prime conductor.
Neumann-Setzer curves are special curves of prime conductor p and will be described in
section 3.
Then, we will restrict our attention to these curves. In section 4, we will give a precise
description of the modular parametrization over C. This will allow us to study the map ϕ.
In particular, we will obtain an alternative proof that the self-points are non-torsion.
This requires some technical and more or less precise estimates. We will also use them in
order to give additional remarks that are not exactly related to the study of self-points but
that we believe to be interesting nonetheless. In section 5, we will study the growth of the
modular degree of the Neumann-Setzer curves and give an explicit way for computing the
analytic order of the Tate-Shafarevich groups of the Neumann-Setzer curves.
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2. Self-points on elliptic curves of prime conductor

Let E be an elliptic curve defined over Q with prime conductor p. We give here some basic
properties related to the self-points of E, see [DW09] for proofs and more details.
The number field Q(E[p]) obtained by adjoining the coordinates of the p-torsion points of
E to Q is Galois and the Galois group Gal(Q(E[p])/Q) is identified with GL2(Fp) via the
classical Galois representation:

ρ̄p : Gal(Q(E[p])/Q) ≻ GL2(Fp),

which is an isomorphism.
Let C ⊂ E be a cyclic subgroup of order p, then the field Q(C) is the subfield of Q(E[p])
fixed by a Borel subgroup of GL2(Fp) and so it is a primitive non-Galois field of degree
p + 1. From the fact that Q(C) does not contain any non-trivial subfield, we can deduce
that E(Q(C))tors = E(Q)tors.
As C is running through all the p + 1 cyclic subgroups of order p, the fields Q(C) are all
conjugate. Their Galois closure is the field K ⊂ Q(E[p]) and Gal(K/Q) is identified with
PGL2(Fp) via ρ̄p. Since the map ϕ is defined over Q, the self-points inherit of the algebraic
properties of Q(C):

Proposition 2.1. — We have:
– The point PC lies in E(Q(C)).
– The set {PC}C form a single orbit under the action of Gal(K/Q) in E(K).

It follows immediately from this proposition and from E(Q(C))tors = E(Q)tors that if a self-
point PC were a torsion point it would be rational all the other self-points should also be
rational and equal. This is trivially impossible if deg(ϕ) < p+ 1 (see remark 5.1.1 about this
fact). Furthermore, we have that trK/Q PC =

∑
C
PC is a torsion point, so if PC were rational

then PC would be a torsion point.

In [DW09], we proved that this case can not occur since we obtained:

Theorem 2.2. — With the previous notations, we have:
– The self-points PC are of infinite order.
– The p+1 self-points {PC}C generate a rank p group in E(K) and

∑
C
PC is the rational

torsion point ϕ(0) ∈ E(Q).

The first point is proved by considering the p-adic interpretation of ϕ. The second point comes
from a linear argument (using the irreducibility of the Steinberg representation of PGL2(Fp))
and from the first point. This second point is in fact a corollary of the first one. In section
4, we will give a new proof of the first point using the complex interpretation of the modular
parametrization in the case when E is a Neumann-Setzer curve.

3. Neumann-Setzer curves

Let u ∈ Z be an odd integer such that u ≡ 3 (mod 4). Suppose that p = u2+64 is prime. Such
a prime will be called a Neumann-Setzer prime. The Neumann-Setzer curves of conductor p
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are the following two isogenous curves:

Ep : y2 + xy = x3 − u+ 1

4
x2 + 4x− u

Fp : y2 + xy = x3 − u+ 1

4
x2 − x

We will write E and F if the Neumann-Setzer prime is understood. The curves E and F are
isogenous by an isogeny of degree 2.

The discriminant of E is ∆ = −p2 and its j-invariant is −(u2 − 192)3/p2. The 2-division
polynomial of E is given by:

P (x) = (4x− u)(x2 + 4)

The group E(Q) contains a rational 2-torsion point which is given by (u/4,−u/8). The two
other points of order 2 are defined over Q(

√
−1) and are the points ±(2

√
−1,

√
−1).

The discriminant of F is ∆ = p and its j-invariant is (u2+48)3/p2. The 2-division polynomial
of F is given by:

P (x) = 4x
(
x2 +

u

4
x− 1

)
.

The points of order 2 of F are:

(0, 0),

(
u+

√
p

8
,−u+

√
p

16

)
and

(
u−√

p

8
,−u−√

p

16

)
.

So that in this case, Q(E[2]) = Q(
√
p).

The curves of prime conductor and, in particular, Neumann-Setzer curves have been studied
by many authors: [Miy73], [Neu71], [Neu73], [Set75], [SW04],... . From these sources
and from [AU96], we have the following theorem (see [DW09], for details):

Theorem 3.1. — Let p = u2 + 64 be a Neumann-Setzer prime with u ≡ 3 (mod 4). Let E
and F be the Neumann-Setzer curves as above.

– We have E(Q) ≃ F (Q) ≃ Z/2Z.
– We have X(E/Q)[2] ≃ X(F/Q)[2] ≃ {0}.
– The local Tamagawa number of E and F at the prime p is cp = 2.
– The curve E is the strong Weil curve in its isogeny class and the Manin constant of E

is equal to 1.
– The modular degree of E is even if and only if u ≡ −1 (mod 8).

Furthermore, if G is an elliptic curve of prime conductor such that G(Q)tors ≃ Z/2Z then G
is a Neumann-Setzer curve.

If E is an elliptic curve of prime conductor which is not a Neumann-Setzer curve then E has
conductor 11, 17, 19, 37 or E(Q)tors is trivial. In the last case, E is the only curve in its
isogeny class (and note that its rank can be positive).

It is not known if there exist infinitely many elliptic curves of prime conductor. Nevertheless,
classical conjectures can be applied for the number of Neumann-Setzer primes.
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Conjecture 3.2. — Let πNS(x) be the number of Neumann-Setzer prime p 6 x and let:

C =
1

2

∏

p prime

(
1− χ(p)

p− 1

)

where χ(·) =
(−4

·
)

is the primitive Dirichlet character modulo 4. As x ≻ ∞, we have:

πNS(x) ∼ C

∫ √
x

2

dt

log t
.

The infinite product defining C is converging but is not absolutely convergent since:

1− χ(p)

p− 1
∼ 1− χ(p)

p

The number C is the Hardy-Littlewood constant of the polynomial x2 + 64 (this is the same
Hardy-Littlewood constant as for the polynomial x2 + 1). One can find in [Coh] how to
compute such constants numerically. In particular, we have:

C ≈ 0.686406731409123004556096348363509434089166546754.

Of course, the conjecture above implies the less precise conjectural estimate πNS(x) ∼
2C

√
x/ log x.

As expected, the comparison of the conjectural estimate with the exact values of the function
πNS(x) for small x is quite convincing.

x 106 1012 1018

πNS(x) 119 53996 34898579

C

∫ √
x

2

dt

log t
≈ 121.19 ≈ 53969.76 ≈ 34903256.44

4. Complex side of Neumann-Setzer curves

We give a description of the analytic point of view of the modular parametrization. We
assume here that p = u2 + 64 is a Neumann-Setzer prime with u ≡ 3 (mod 4). We consider
the Neumann-Setzer curve E = Ep as in the previous section:

E : y2 + xy = x3 − u+ 1

4
x2 + 4x− u.
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4.1. Complex points of E. — It is well known that there exists an analytic isomorphism
between the complex points E(C) of E and C/Λ where

Λ = Zω2 ⊕ Zω1

is the period lattice associated to E. This isomorphism is expressed with the Weierstrass
function and its derivative; we denote it by ℘ so that:

℘ : C/Λ ∼≻ E(C).
Following [Coh93, chapter 7], the numbers ω1 and ω2 can be given by:

(1) ω1 =
2π

p1/4 agm

(
1,

√
1
2

(
1 + u√

p

)) ∈ R

(2) ω2 =
ω1

2
+ i · π

p1/4 agm

(
1,

√
1
2

(
1− u√

p

))

Here agm(·, ·) denotes the classical arithmetic-geometric mean.

4.2. Complex L-function of E. — We denote by (an)n>1 the coefficients of the L-function
of E:

L(E, s) =
∑

n>1

ann
−s , for ℜ(s) > 3/2.

It is easy to see that the curve E has split multiplicative reduction at p hence ap = 1. From
the modularity of E, the function L(E, s) has an analytic continuation to the whole complex
plane and satisfies a functional equation. The sign of this functional equation is ap = +1 so
we have:

Λ(E, s) :=

(√
p

2π

)s

Γ(s)L(E, s) = Λ(E, 2 − s).

Furthermore, the function f(τ) =
∑

n>1 anq
n with q = e2iπτ is a newform of weight 2 on

Γ0(p). From the theory of Atkin-Lehner, we have:

f (Wpτ) = −pτ2f(τ)

where Wp =

(
0 −1
p 0

)
is the Fricke involution.

4.3. Complex modular parametrization of E. — Let H be the upper half-plane, H =
{τ ∈ C,ℑ(τ) > 0}. The complex points of the space X0(p) can be interpreted as the quotient
of H ∪ Q ∪ {i∞} by the congruences subgroup Γ0(p). Then the modular parametrization of
E factorizes as ϕ = ℘ ◦ φ:

X0(p)
ϕ ≻ E(C)

C/Λ

℘

≻

φ

≻
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where φ is given by the following converging series for τ ∈ X0(p) \ {cusps}:
φ : X0(p) ≻ C/Λ

τ 7−→
∑

n>1

an
n
e2iπnτ

The image of the cusp 0 ∈ X0(p) is a rational torsion point, hence ϕ(0) ∈ E(Q)tors. In fact,
we have:

φ(0) = L(E, 1) = 2
∑

n>1

an
n
e−2πn

√
p ∈ Z

ω1

2
.

So ϕ(0) = k
(
u
4 ,−u

8

)
with k = 0 or k = 1.

Proposition 4.1. — If we assume the truth of Birch and Swinnerton-Dyer conjecture for E
then

ϕ(0) =
(u
4
,−u

8

)
.

Proof. — Indeed, if we assume the Birch and Swinnerton-Dyer conjecture is valid, then we
have:

L(E, 1) =
ω1 · cp

|E(Q)tors|2
|X(E/Q)| = ω1

2
|X(E/Q)|

The result follows from the fact the |X(E/Q)| is odd (if finite) by a theorem of Stein and
Watkins [SW04].

The index of Γ0(p) in SL2(Z) is p+ 1. As a set of representative of SL2(Z) modulo Γ0(p) we
take the matrices:

S0 =

(
1 0
0 1

)
and Sj =

(
0 −1
1 j

)
for j = 1, 2, . . . , p.

Let τ0 ∈ H so that j(τ0) is the j-invariant of E, then the analytic interpretation of the
self-points (E,C) are the p+ 1 points τ0, τ1,...,τp with:

τj = Sjτ0 =
−1

τ + j
for j = 1, 2, . . . , p.

The Hecke operator Tp acts on modular forms of weight 2 on Γ0(p), by definition we have:

Tpf(τ) =
1

p

p∑

j=1

f

(
τ + j

p

)
.

Since the function f is a Hecke eigenform with eigenvalue ap = 1, we also have Tpf(τ) =
apf(τ) = f(τ). Taking the primitive, we deduce:

ϕ(τ) =

p∑

j=1

ϕ

(
τ + j

p

)
.

The constant term in the integration is 0 as it can been seen taking τ = i∞. Furthermore, f
is also an eigenform of the Fricke involution so, ϕ ◦Wp(τ) = −ϕ(τ) + ϕ(0). Hence:

ϕ(τ) = −
p∑

j=1

ϕ

(
Wp

(
τ + j

p

))
+ pϕ(0)
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Remark that in any case pϕ(0) = ϕ(0) and that Wp

(
τ+j
p

)
= Sjτ . So, we have:

Proposition 4.2. — For τ ∈ X0(p), we have:

ϕ(τ) +

p∑

j=1

ϕ(Sjτ) = ϕ(0).

In particular, if we take τ = τ0, we obtain an other approach in the proof of the second point
of theorem 2.2:

Corollary 4.3. — We have: ∑

C

PC = ϕ(0).

Note that the proof we have just given for the trK/Q PC is clearly analytic compared to the
one given in[DW09]).

4.4. Estimates for ω1 and ω2. — Recall that p = u2 + 64 with u ≡ 3 (mod 4). Hence,
we have p > 73 and:

|u|√
p
=

√
1− 64

p
= 1− 32

p
+O

(
1

p2

)
.

We define x+ and x− by:

x+ =

√
1

2

(
1 +

|u|
p

)

and x− =

√
1

2

(
1− |u|

p

)
.

Proposition 4.4. — With the notations above (in particular p > 73), we have:

1− 7

p
6 agm (1, x+) 6 1

Proof. — Let x = x+, we clearly have that x 6 agm(1, x) 6 1
2(x + 1). We obtain the

proposition by a straight forward study of x in function of p > 73.

For estimating agm(1, x−), we will need the following lemma:

Lemma 4.5. — For x ∈]0, 1], we have:

− log x+
3

2
log 2 6 π

2

1

agm(1, x)
6 − log x+

5

2
log 2

Proof. — We let

g(x) =

∫ π/2

0

dt√
cos2 t+ x2 sin2 t
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so that we have agm(1, x) = π
2 · 1

g(x) . The change of variables t′ = cos t/ sin t gives

g(x) =

∫ ∞

0

dt√
(t2 + 1)(t2 + x2)

.

Now, we split the integral
∫∞
0 as the sum

∫√
x

0 +
∫∞√

x. The change of variables t′ = x/t, for
x > 0, in the latter integral shows that we have

g(x) = 2

∫ √
x

0

dt√
(t2 + 1)(t2 + x2)

.

This gives us the inequalities

2√
1 + x

∫ √
x

0

dt√
t2 + x2

6 g(x) 6 2

∫ √
x

0

dt√
t2 + x2

and, since we have 2
∫ √

x
0

dt√
t2+x2

= − log x+ 2 log(1 +
√
1 + x), the lemma follows from

(
− log x+ 2 log(1 +

√
1 + x)

) 1√
1 + x

6 g(x) 6 − log x+ 2 log(1 +
√
1 + x)

and from a study of the functions on the right and on the left of this inequality.

Proposition 4.6. — We have:

1

π

(
log p+ log

8

25

)
6 1

agm(1, x−)
6 1

π
(log p+ log 2)) .

Proof. — We have log x− = 1
2 log

(
1
2

(
1−

√
1− 64/p

))
and an easy calculation proves that,

for p > 73:
16

p
6 1

2

(
1−

√
1− 64/p

)
6 25

p
.

Hence,

−1

2
log

25

p
6 − log x− 6 −1

2
log

16

p
.

Then, we use lemma 4.5 to conclude.

Corollary 4.7. — Let p = u2 + 64 be a Neumann-Setzer prime with u ≡ 3 (mod 4). If
u > 0, we have:

2π

p1/4
1

1− 4
p

6 ω1 6
2π

p1/4
1

1− 7
p

.

Whereas, if u < 0:

2

p1/4

(
log p+ log

8

25

)
6 ω1 6

2

p1/4
(log p+ log 2)

Proof. — We apply the two propositions above with the definitions of ω1 and ω2 (see equations
(1) and (2)).
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Let remark that in any case (u > 0 or u < 0):

(3) ω1 >
2π

p1/4

4.5. Proof that the self-points are non-torsion. — We can now prove that the self
points are non-torsion using the complex modular parametrization.
It follows from E(Q(C))tors = E(Q)tors that if PC were a torsion point then it would be a
rational torsion point. So, in order to prove that PC is not a torsion point it is sufficient to
prove that φ(τ0) 6= 0 (mod 1

2Λ) for a certain τ0 ∈ H such that j(τ0) is the j-invariant of E.
For that we let τ0 = ω2/ω1 if u > 0 and τ0 = (ω2−ω1)/(2ω2−ω1) if u < 0. In fact, for u < 0,
we have:

τ0 =

(
1 −1
2 −1

)
ω2

ω1
.

Since the matrix above belongs to SL2(Z), we see that in each case the image of yC = (E,C) ∈
X0(p) in C/Λ (for a certain C depending on the sign of u) is given by φ(τ0). It is easy to see
that we have:

τ0 =
1

2
+ i · agm(1, x+)

2 agm(1, x−)
∈ H.

Hence, φ(τ0) is real and we just need to prove that φ(τ0) 6= 0 (mod ω1
2 ).

Theorem 4.8. — With the notations above, we have the following estimates:

−6

p
6 φ(τ0) 6 − 1

10p
.

In particular, φ(τ0) 6= 0, ω1/2 (mod ω1) and PC is a non-torsion point.

Proof. — We let t = ℑ(τ0) and q = e2iπτ0 = −e−2πt. From propositions 4.4 and 4.6, we have:

1

2π

(
1− 7

p

)
log

8p

25
6 t 6 1

2π
log 2p

Hence,
1

2p
6 e−2πt 6

(
25

8p

)1−7/p

.

But, we have
(
25
8p

)1−7/p
6 5/p whenever p > 73. Finally, we obtain that q < 0 and:

(4)
1

2p
6 |q| 6 5

p
.

We have an
n 6 1 (see [GJP+09]) so φ(τ0) = q + ε where:

(5) |ε| 6
∑

n>2

|q|n =
|q|2

1− |q| 6
25

p(p− 5)
.

Then (4) and (5) give the inequality for φ(τ0). We deduce that φ(τ0) 6= 0 and that |φ(τ0)| <
π/p1/4 6 ω1/2 by equation (3).
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In fact, we have proved that:
φ(τ0) = q +O

(
1/p2

)

where the constant is absolute and where q ≍ 1
p . We will use that in the next section.

4.6. Isogeneous self-points. — Let F be the Neumann-Setzer curve that is isogeneous to
E (see section 3). Then, one can consider the point zD = (F,D) ∈ X0(p) where D ⊂ F is
a sub-group of order p. The image QD = ϕ(zD) are also interesting point in E(K). We can
use exactly the same method as before to proof that QD is a non-torsion point for all D. The
question of the independence of the p + 1 points QD and the p + 1 points PC is natural. We
believe that the only relations between those points are given by:

trK/Q PC = trK/QQD = ϕ(0)

This would follow from the fact that if C and D are chosen so that they are defined over the
same field Q(C) then the points PC and QD are independent in E(Q(C)) (see [DW09]).

Let t0 be as in the previous section so that t0 correspond to

(E,C) =

(
C/Zτ0 ⊕ Z, 〈1

p
〉
)

where 〈1p〉 denotes the cyclic sub-group of order p generated by 1/p (mod Zτ0 ⊕ Z). For the
curve F , we can choose the point τ ′0 = 2τ0 corresponding to:

(F,D) =

(
C/Zτ ′0 ⊕ Z, 〈1

p
〉
)

where 〈1p〉 denotes here the cyclic sub-group of order p generated by the point 1/p (mod Zτ ′0⊕
Z). The 2-isogeny between F and E correspond to the map induced by the identity:

C/Zτ ′0 ⊕ Z ≻ C/Zτ0 ⊕ Z

x (mod Zτ ′0 ⊕ Z) 7−→ x (mod Zτ0 ⊕ Z)
since Zτ ′0 ⊕ Z ⊂ Zτ0 ⊕ Z. This 2-isogeny being rational, the point (E,C) and (F,D) are
defined over the same field, E(Q(C)) = E(Q(D)).
We have q′ = e2πτ

′
0 = q2 with q = e2iπτ0 from the previous section. Using the same technique

as in the previous section, we prove that:

φ(τ ′0) = q2 +O

(
1

p4

)

where the implied constant is absolute.

We believe that the points PC and QD are linearly independent in E(Q(C)) but we are not
able to prove it. Nevertheless, if there exists a linear relationship of these points, it would
involve rather large coefficients since:

Theorem 4.9. — With the notations above, suppose that there exist ℓ, m ∈ Z \ {0} such
that:

ℓPC +mQD ∈ E(Q(C))tors

then max(|ℓ|, |m|) ≫ p3/4, where the implied constant is absolute.
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Proof. — Recall that E(Q(C))tors = E(Q)tors, hence if ℓPC +mQD ∈ E(Q(C))tors, we would
have:

ℓφ(τ0) +mφ(τ ′0) ∈
ω1

2
Z.

If ℓφ(τ0) +mφ(τ ′0) = 0 ∈ C then ℓ 6= 0 since φ(τ ′0) does not correspond to a torsion point and
so:

|m|
|ℓ| =

|φ(τ0)|
|φ(τ ′0)|

≫ p ,

and |m| ≫ p.

If ℓφ(τ0) +mφ(τ ′0) = λω1/2 for some λ ∈ Z \ {0} then in this case:

|ℓ|1
p
+ |m| 1

p2
≫ |ℓφ(τ0) +mφ(τ ′0)| >

ω1

2
> 2π

p1/4

so |ℓ| ≫ p3/4 or m ≫ p7/8.

5. Some other consequences

5.1. Growth of the modular degree of Neumann-Setzer curves. — There is an inter-
esting consequence about the degree of the modular parametrization of the optimal Neumann-
Setzer curve E. Indeed, using our estimates for ω1 and ω2, it is not difficult to see that we
have:

vol(E) = ω1 · ℑ(ω2) ∼
2π log(p)√

p
as p = u2 + 64 ≻ ∞.

Furthermore, since the Neumann-Setzer curves are semi-stable, the modular degree is given
by the following formula.

deg(ϕ) =
p L(Sym2 f, 2)

2π vol(E)
.

Where L(Sym2 f, s) is the symmetric-square L-function associated to L(E, s) normalized so
that s = 3/2 is the point of symmetry in the functional equation (let’s remark that the
conductor being square-free, there is no difference between the primitive and the imprimitive
symmetric-square).

Using the classical upper bound L(Sym2 f, 2) ≪ log(p)3 and the deeper lower bound
L(Sym2 f, 2) ≫ 1/ log(p) obtained by Goldfeld, Hoffstein and Lieman [HL94], we deduce:

Theorem 5.1. — Suppose that there are infinitely many Neumann-Setzer primes p then for
the Neumann-Setzer curves E of conductor p we have as p ≻ ∞:

deg(ϕ) ≪ p3/2 log(p)2

deg(ϕ) ≫ p3/2/ log(p)2

Note that the degree of the modular parametrization is “large” because the j-invariants tend
to infinity with p. Indeed, in [Del03]), it is proved that:
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Theorem 5.2. — Let G be an infinite family of semi-stable elliptic curves G defined over Q
with conductor NG such that the j-invariant of G is bounded for all G ∈ G and such that G
are the strong Weil curves in their isogeny classes. If ϕG denotes the modular parametrization
of G, then as NG ≻ ∞:

deg(ϕG) ≪ N
7/6
G (logNG)

3

deg(ϕG) ≫ N
7/6
G / logNG

In this context, the power 3/2 of theorem 5.1 should be compared with the power 3/2 in the
previous estimates.

5.1.1. Remark. — In fact, Watkins [Wat04] gave a very explicit version of the lower bound
L(Sym2 f, 2) ≫ 1/ log p. (He normalized L(Sym2 f, s) so that 1/2 is the point of symmetry.)
Using his work and our estimates we have for a Neumann-Setzer curve E of conductor p:

deg(ϕ) > 0.0006 · p3/2

log(p)2
.

Hence the inequality deg(ϕ) < p+1 never occurs for p > 1.8 · 1012 (but there probably exists
a much smaller value of B such that deg(ϕ) > p+ 1 for all p > B).

5.2. Explicit computations of the analytic order of the Tate-Shafarevich groups of
Neumann-Setzer curves. — Throughout this section, we assume the truth of the Birch
and Swinnerton-Dyer conjecture for E. So that we have:

(6) |X(E)| = 2L(E, 1)

ω1

Suppose that we want to compute numerically the values of |X(E)|. Then, we have to
compute numerically the series:

L(E, 1) = 2
∑

n>1

an
n
e−2πn/

√
p.

And we need to truncate the series using sufficiently many coefficient. That means that we
write:

(7)
∑

n>1

an
n
e−2πn/

√
p =

∑

n<N0

an
n
e−2πn/

√
p + Error

and we need to take N0 sufficiently large to be are able to recognize |X(E)| from equation
(6).

Theorem 5.3. — Let η > 0, there exists an explicit K > 0 such that for all Neumann-Setzer
curves of conductor p > K it is sufficient to take

N0 >
1 + η

4π

√
p log p

in equation (7) in order to determine |X(E)|.
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Proof. — Let η > 0, it is well known that there is an absolute constant K0 such that |an| 6
n1/2+η for all n > K0 (this is in fact true for all elliptic curves defined over Q; note that for
η = 1/2 we can take K0 = 1).
We write S =

∑
n<N0

an
n e−2πn/

√
p and ε =

∑
n>N0

an
n e−2πn/

√
p. Hence we have:

1

ω1
(4S − 4|ε|) 6 |X(E)| 6 1

ω1
(4S + 4|ε|).

Since |X(E)| is an odd square, the length of the interval in the inequality above has to be
less than 4 in order to determine |X(E)|. So, we need |ε| < ω1/2 hence, we need:

ε <
π

p1/4
.

Suppose that √
p > K0 then N0 >

√
p and we have:

|ε| 6
∑

n>N0

|an|
n

e−2πn/
√
p 6

∑

n>N0

1

n1/2−η
e−2πn/

√
p

6 1

p
1−2η

4

(
e−2π/

√
p
)N0

(
1− e−2π/

√
p
) 6 1

p
1−2η

4

p1/2

4

(
e−2π/

√
p
)N0

.

(Note that p > 73). The values of N0 is sufficient for the theorem.

In particular, taking η = 1/2, we need to take N0 >
1
8

√
p log p.

Using this, we have computed several values of |X(E)| of Neumann-Setzer curves. We give
here some numerical investigations related to these values. In particular, we consider the
study of the frequencies of |X(E)| that are divisible by the primes q for q = 3, 5, 7, · · ·
(trivially, the case q = 2 is a special one, and there is nothing to say about it). Computing
sufficiently enough values of |X(E)|, we can compare these numerical frequencies with the
heuristics on Tate-Shafarevich groups ([Del01], [Del07]). In this case, the heuristics predict
that, if q is (an odd) prime, the frequency of occurrences of q | |X(E)| should be given by:

f(q) = 1−
∏

k>1

(
1− 1

q2k−1

)
=

1

q
+

1

q3
− 1

q5
+ · · · .

We first computed the values of |X(E)| for the 53996 Neumann-Setzer curves of conductor
p 6 1012. The largest value |X(E)| = 1232 was obtained for p = 974419714193 (u = 987127).
It is worth noting that |X(E)| = 1132 occured for u = 984355 (113 is prime). In fact, except
for q = 97 and q = 109, all the primes q 6 113 divides |X(E)| for at least one Neumann-Setzer
curve E with p 6 1012.

We obtained the following results for the frequency of occurrences of q | |X(E)|:
q 3 5 7 11

Frequency of q | |X(E)| 0.353 0.185 0.118 0.056
f(q) ≈ 0.361 0.207 0.145 0.092
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Expect for p = 3, the numerical values are not so close than the expected ones. Indeed, we
believe that Tate-Shafarevich groups acquire their expected behavior for rather large conduc-
tor. To illustrate this, we also computed the orders of 10000 Tate-Shafarevich groups of the
first Neumann-Setzer curves E having conductor p > 1015. We obtained the following table:

q 3 5 7 11
Frequency of q | |X(E)| 0.368 0.198 0.140 0.084

We should mention that the largest value is |X(E)| = 2992 and that the average value for
these 10000 values of |X| is ≈ 1378.
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