
COMPUTING WITH HECKE GRÖSSENCHARACTERS
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Abstract. — We describe how to compute with algebraic Hecke Grössencharacters. We first
describe Dirichlet characters on number field elements, and finite order Hecke characters on
ideals, before passing to the general case. Our primary interest is not directly in the characters
themselves, but rather in their L-functions, and particularly the special values of these. We
avoid the adelic language, since it does not readily lend itself to computer implementation. We
give many numerical examples that have been computed with the Magma computer algebra
system.

Résumé. — Nous montrons comment il est possible d’effectuer des calculs en utilisant les
“Grössencharacters”. Dans un premier temps, on décrit les caractères de Dirichlet des corps
de nombres ainsi que les caractères de Hecke d’ordre fini sur les idéaux, avant de passer au
cas général. Notre principal intérêt n’est pas directement les caractères pour eux-mêmes, mais
plutôt les fonctions L associées, en particulier leurs valeurs spéciales. Nous évitons le langage
adélique puisqu’il n’est pas propre à l’implémentation directe sur machine. Nous donnons de
nombreux exemples numériques calculés avec le système de calcul formel Magma.

1. Introduction

We give a description of how to compute with algebraic Hecke Grössencharacters. Due to the
computational nature of our undertaking, we try to avoid the adelic language as much as pos-
sible, choosing a more explicit phrasing. We start by reviewing Dirichlet characters (on field
elements) and finite order Hecke characters (on ideals), before passing to the Grössencharacter
case. The algorithmic problems of interest include discrete logarithms for residue and ray
class groups (see [12]), and principalisation of ideals when Grössencharacters are introduced.
We also need to be careful about embeddings and choices of extension fields at various places.
Convenient references are Tate’s thesis [23] (though it uses the adelic language), and Chapter
Zero of Schappacher’s book [19].

Key words and phrases. — Hecke Grössencharacters, ray class groups, L-functions, special values.

This paper grew out of a talk given at a CIRM meeting in Luminy in Nov-Dec 2009 on Théorie des nombres
et applications, and the author thanks the organisers for the invitation. An implementation is contained in
version 2.16 of Magma [2]. Thanks also to N. P. Dummigan for sorting out some details in Example 6.1.
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Our end goal is not only to compute with the characters themselves, but also with their
L-functions. The work of Lavrik [14] generalises that of Hecke, and allows us to approximate
any value of an L-function via a “rapidly converging” series, which in practise means that we
need to take about

√
N terms of the L-series, where N is the conductor. We use the Magma

[2] implementation of Dokchitser [6]. As an example, computing the special values L(G, 2)
in §6.1 to hundreds of digits takes only a few seconds.

1.1. Notation. — We let ζk denote an unspecified primitive kth root of unity, and write Na
for the norm of an ideal a. We will often write (say) an expression like p2 = (1 + i) = (e2),
and take this to define e2 = 1 + i. A tensor product with no subscript will be taken to be
over Q.

2. Dirichlet characters

Let K be a number field, and let I be an ideal contained in its ring of integers ZK . Reduction
modulo I yields a ring of residue classes corresponding to ZK/I, and the Dirichlet character
group modulo I is dual to the multiplicative group of units given by

(
ZK/I

)⋆
. We can

decompose this latter group over the prime power factors of I as
(
ZK/I

)⋆ ∼=
∏

pk‖I

(
ZK/p

k
)⋆
,

which will allow us to restrict and induce characters.
We let ΩR

K and ΩC
K be respectively the sets of real and complex infinite places of K. We

can also include characters associated to ramification at real infinite places in ΩR
K . Each real

infinite place ∞ splits the elements x ∈ K⋆ into two cosets depending upon the sign of the
embedding x∞. We let χ∞(x) = sign(x∞) for elements x ∈ K⋆ and places ∞ ∈ ΩR

K , and
note that these χ∞ are multiplicative functions. By abuse of notation, for an ideal I and
set Ω ⊆ ΩR

K , we write (ZK/IΩ)⋆ for the multiplicative group of invertible residue classes. We
thus have (

ZK/IΩ
)⋆ ∼=

∏

pk‖I

(
ZK/p

k
)⋆ ×

∏

∞∈Ω

(
ZK/∞

)⋆
,

and each of the terms in the latter product is isomorphic to Z/2.

2.1. Example. — We consider Dirichlet characters modulo I = (5) for the rational
field K = Q. There are four of these, and since 2 is a primitive root mod 5, we can specify
such a character via its value at 2, that is, χ(2) = ζi4 for some i. Two of these characters are
even (having χ(−1) = +1), and two of them are odd (with χ(−1) = −1).
We can then consider the four additional characters that appear when we take Ω = {∞}
to consist of the infinite place. We now have a character χ∞(x) = sign(x), and its product
with each of the previous four characters yields four new ones. In particular, we obtain four
characters that are even, and thus trivial on the units, and two of these have ∞ in their
conductor, and two do not. Since these are trivial on the units, they will induce characters
on ideals when we consider Hecke characters.
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2.2. Induction and restriction of characters. — In general, we can specify a Dirichlet
character modulo IΩ by giving its image on generators for (ZK/IΩ)⋆. Thus it is easy
to extend (or induce) a character χ to a larger modulus, as we simply note its values on
generators for the new modulus.
The operation of restriction is not quite so easy, but also has more importance as it allows
us to compute the conductor of a Dirichlet character. Given a Dirichlet character χ of
modulus IΩ, we first decompose it into characters modulo prime powers pk‖I and places
in Ω. We restrict to a modulus pk by computing generators for (ZK/p

k)⋆ and requiring
that χp ≡ χ on these, while χp ≡ 1 on generators for

(
ZK/(IΩ/pk)

)⋆
, and together these give

us the desired behavior on IΩ via the Chinese remainder theorem. For infinite places ∞ ∈ Ω,
it suffices simply to take χ∞ as above, though it is also convenient to determine generators
for (ZK/IΩc∞)⋆ where Ωc∞ = Ω\{∞}.
Given a Dirichlet character χ of prime power modulus pk, we then want to compute the
smallest power pl for which it is a character (that is, trivial on 1 + plZK). We can assume
that k ≥ 2 and l ≥ 1, as else the problem is not difficult. We then iteratively let l decrease
from k to 1, and at each step write down generators for the quotient of multiplicative groups
(1+pl−1ZK)
(1+plZK)

and determine if χ is trivial on them. This quotient is isomorphic to the additive

group of Fp
∼= Ffp where Np = pf , and this simplifies the calculation. Upon finding the largest

l for which χ is nontrivial on this quotient, we conclude that the local conductor is pl.

2.2.1. Use of Dirichlet characters. — The value of Dirichlet characters is somewhat limited
as they do not have L-functions attached to them unless they are trivial on the units. One
application of them would be to Hilbert modular forms with character.

3. Hecke characters

We now pass to Hecke characters, which are characters on ideals. In particular, a Dirichlet
character only lifts to a Hecke character if it is trivial on all the units of K. We must also
consider characters corresponding to the class group ClK of K.
The ray class group modulo I is defined as the quotient of the ideals of ZK that are coprime
to I by the principal ideals (α) for α ≡ 1 (mod I). We can further include information about
ramification at infinite places by requiring that such an α be positive at places in a set Ω.
Given the standard multiplication operation on ideals, the ray class group is thus

RIΩ =
{a ⊆ ZK , gcd(a,I) = 1}

{(α) : α ≡ 1 (mod I), and α∞ > 0 for all ∞ ∈ Ω} ,

and we have the following diagram:

(1)

1 −−−−→ (ZK/IΩ)⋆ −−−−→ AIΩ −−−−→ ClK −−−−→ 1
∥∥∥

1 −−−−→ UK/IΩ −−−−→ AIΩ −−−−→ RIΩ −−−−→ 1

where AIΩ is a group extension of ClK by (ZK/IΩ)⋆ that we describe more fully below,
and UK is the unit group of K.
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The Hecke character group modulo IΩ will be dual to RIΩ in the above, and as there is a
natural quotient map from RIΩ onto ClK , there will be a natural injection from the Hilbert

character group ĈlK into the Hecke character group. Similarly, though not of as much import,
there is an injection from UK into ZK that yields a quotient map from the Dirichlet character

group modulo IΩ onto the unit characters ÛK/IΩ.

3.1. The group extension AIΩ. — We now say a bit more about the group extension AIΩ.
To construct this, we take representatives ai that generate the class group ClK and are
coprime to I. For each i we let oi be the order of ai in ClK , and we principalise aoii = (ui)
with (ui)∞ > 0 for all ∞ ∈ Ω and take aoii = ui as a relation in AIΩ. We see that ui is
defined only up to units in general, but any ambiguity disappears when we take the quotient
by UK . However, we still do have some choices with the various class group representatives.
The computation of ray class groups is detailed in [12], and eventually reduces to computing
discrete logarithms.

3.2. Dirichlet restriction and Hecke lifting. — We can restrict a Hecke character ψ to
a Dirichlet character χ of the same modulus IΩ in an obvious way, simply by putting χ = ψ
on a set of generators for (ZK/IΩ)⋆. The reverse process lifts a Dirichlet character that is
trivial on all units that are positive at all places in Ω, and yields a Hecke character that is
well-defined up to a Hilbert character.

3.3. Hecke character restriction and extension. — As with the Dirichlet character
case, we often find it convenient to define a Hecke character ψ of modulus IΩ via giving values
on generators for RIΩ. This immediately gives us a method to restrict a Hecke character to
a smaller modulus. When extending a Hecke character, the calculation of relative generators
for the Chinese remainder theorem can be a bit delicate, and it seems easier to work via
extending its Dirichlet restriction to the larger modulus as before and then combine this with
evaluations of ψ on generators of RIΩ (see §3.5).
3.3.1. Lack of Hecke decompositions. — The conductor of a Hecke character is simply the
conductor of its Dirichlet restriction, as the only information lost is that of a Hilbert character,
whose conductor is trivial. There is really no precise idea of a “decomposition” for Hecke
characters, due to the possible interaction of units when restricting the modulus. An easy
example of this phenomenon is to take K = Q(

√
37) and I = (3) and J = (5). Then RI has

order 1 and RJ has order 2, while RIJ is cyclic of order 4. Here we have that both RJ and
RIJ are generated by (

√
37). We see that the units {−1, 6+

√
37} generate the multiplicative

group (ZK/I)⋆, while they form subgroups of indices 2 and 4 respectively when considered
similarly modulo J and IJ .

3.4. Example. — Of the eight Dirichlet characters of Qmodulo (5)∞ given in the previous
example, four of these are trivial on the units, and these lift to Hecke characters. Two of
them have ∞ in their conductor.

3.5. Explicit lifting. — Take K = Q(
√
229) which has class number 3 and I = (7).

Then we have that R̂I ∼= Z/3× Z/3, and we can identify one of these constituents with the
Hilbert characters. We can define ψ by ψ(p3) = ψ(2) = ζ3, though this still leaves ambiguity
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regarding p3 versus its conjugate, and similarly with ζ3. The Dirichlet group modulo I is
cyclic of order 48, and ψ restricts to an element χ of order 3, which can be defined by χ(2) = ζ3
and χ(2 +

√
229) = 1.

We then extend χ to modulus IJ where J = p19 is a prime above 19. The Dirichlet group
here is isomorphic to Z/48 × Z/18, where the element 2 has order 18 while 2 +

√
229 has

order 144, and these generate (this is dependent on choosing J rather than its conjugate).

So we can define the lift of ψ to IJ by ψ(2) = ψ(p3) = ζ3 and ψ(2 +
√
229) = 1.

3.6. L-function and functional equation. — Let ψ be a Hecke character of conduc-
tor cΩ; we take ψ to be primitive so that the conductor and modulus are equal. The L-function
of ψ is given as an Euler product and Dirichlet series (convergent in some half-plane) as

L(ψ, s) =
∏

p

(
1− ψ(p)/Nps

)−1
=
∑

a⊆ZK

ψ(a)

Nas
,

conventionally taking ψ(a) = 0 for ideals a that are not coprime to c.

We define ΓR(s) =
Γ(s/2)

πs/2 and ΓC(s) = ΓR(s)ΓR(s+ 1) = 2 Γ(s)
(2π)s , and write

L∞(ψ, s) =
∏

∞∈ΩC
K

ΓC(s) ·
∏

∞∈ΩR
K

∞6∈Ω

ΓR(s) ·
∏

∞∈ΩR
K

∞∈Ω

ΓR(s + 1).

We then have that the completed L-function has a meromorphic continuation and satisfies

Λ(ψ, s) = ǫψΛ(ψ, 1− s) for some ǫψ with |ǫψ| = 1, where

Λ(ψ, s) = L(ψ, s) ·
(
Nc · |∆K |

)s/2 · L∞(ψ, s).

We can also note we obtain the Dedekind ζ-function for K here by taking ψ to be the trivial
Hecke character – this is the only case where the L-function has a pole.

3.6.1. Root numbers. — We can quote the formula for root numbers from Tate’s thesis [23].
The global root number ǫψ is a product

∏
v ǫv(ψ) of local root numbers, where ǫv(ψ) = +1

when v is finite and neither ψ nor K is ramified at it. We have three cases: v is archimedean,
when ǫv(ψ) = e2πi/4 when v is real archimedean and v ∈ Ω, and else ǫv(ψ) = +1 (see [5,
§5.3]); ψ is unramified at v finite, when ǫv(ψ) = ψ(dv)

−1 where dv is the local different of Kv;
and ψ is ramified at v finite, when we get a Gauss sum for the local character ψv:

ǫv(ψ) =
1√
Ncv

∑

a

ψv(a)e
2πi·tr(a/πe

v),

where a runs over Zv/cv (or its multiplicative group), while πv is a uniformising element
and πev is a generator for the ideal dvcv, and finally the trace includes the canonical maps
Qp → Qp/Zp →֒ Q/Z →֒ R/Z. Note that ǫψ is algebraic, though it is given by a specific
embedding (given by the explicit e2πi in the above, rather than an arbitrary root of unity).
In the case of Hilbert characters, we note that the above reduces to ǫψ = ψ(dK)−1, which leads
to various characterisations. For instance, when we have an integral power-basis ZK = Z[α],
then the global different dK is principal (letting f be a minimal polynomial for α, we have
that dK =

(
f ′(α)

)
in this case), and so ǫψ = +1 for all Hilbert characters. The fact that the

global different is always a square in the class group (see [11, Satz 176]) can also be exploited
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in some cases. An example of a Hilbert character with nontrivial root number is with the
field K = Q( 3

√
175), where the class group has order 3 and the root numbers of the Hilbert

characters are the cube roots of unity. The different here is dK = p33p
2
5p

2
7, with p5 and p7 in

the same ideal class since p25p7 = ( 3
√
175) is principal.

3.6.2. Critical values. — A critical point for a Hecke L-function is an integer n such that
neither L∞(s) nor L∞(1 − s) has a pole at s = n. The L-function of a (primitive) Hecke
character ψ has critical points only when K is totally real and either all or none of the infinite
places are contained in Ω. Writing Q(ψ) for the value-field of ψ, a theorem of Siegel [22] (see
also [4, §1.2]) refines work of Klingen and states that L(ψ,−2k−ǫ) ∈ Q(ψ) for all nonnegative
integers k, where ǫ = 1 when Ω is empty, and ǫ = 0 when Ω contains all the real places.

3.7. L-function example. — We take K = Q(
√
−23) of class number 3, and consider

either of the nontrivial Hilbert characters ψ. Thus any nonprincipal ideal gets mapped
to ζ3 or ζ23 . Using a technique dating back to Hecke made explicit by Lavrik [14] we can
write L(ψ, 1) as a rapidly converging series, and so approximate it as

L(ψ, 1) ≈ 0.368409320715826821111868466629.

Writing S for the (non-Galois) cubic subfield of the Hilbert class field of K, we can note that

ζS(s) = ζQ(s) · L(ψ, s),
and this allows us to use the residue formula for the Dedekind ζ-function to get that L(ψ, 1) =
2π log ǫ√

23
where ǫ is the real root of x3 − x − 1. We could alternatively write L(ψ, s) as the L-

function of a 2-dimensional Artin representation, but do not pursue such avenues herein.

3.8. An example with root numbers and critical values. — Let K = Q(
√
13)

and take ψ to be either nontrivial Hecke character modulo p13. At the bad prime p13
we have that dp13cp13 = (13) = (

√
13)2, and so the root number ǫψ = ǫp13 is just given

by 1√
13

∑
j ψ(j)e

2πi(2j/13) , where the sum is over residues mod 13. This is a root of x12 +
1
13x

6 + 1, and an approximation is

0.711626069061866188779523 ± 0.7025584230735235114677424i.

We compute L(ψ,−1) = 4
13(7− 11ζ3) and L(ψ,−3) = 4

13(3883 − 9491ζ3).
Upon taking ψ to be either Hecke character with conductor p13∞1∞2, the global root number
is approximately

−0.8723658594356627130720628 ± 0.4888535642614028900637261i,

and at p13 we now get ǫp13 as a root of x6 − 1
13x

3 + 1, and we also have a contribution

of i2 = −1 from the two real infinite places. The first two critical values can be computed to
be L(ψ, 0) = 4

13(1 + 4ζ3) and L(ψ,−2) = 12(−4 + 5ζ3).

3.8.1. Relation of root numbers to other Dirichlet characters. — The reader can note that
we get similar root numbers for the classical Dirichlet characters modulo 13. Indeed, we have
two such characters of order 3, but the above root number formula would have e2πi(j/13),
while in our case we have 2j in the exponent.
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Mark Watkins 125

3.9. PARI/GP implementation of Hecke characters. — There is a package of Maciej
Radziejewski that implements Hecke characters in PARI/GP. See [15] for more details.

4. Hecke Grössencharacters

We largely follow Chapter Zero of [19], and we will only deal with algebraic Grössencharacters,
or those of type A0. We let K be a number field, which we will eventually take to be a CM-
field, that is, a totally imaginary quadratic extension of a totally real field.
An∞-typeT is a sequence of integers (nσ) indexed by the embeddings σ ofK. The evaluation
of an ∞-type at an element α ∈ K is given by T(α) =

∏
σ(α

σ)nσ . Note that the norm
is the ∞-type with all components equal to 1, and so we can easily renormalise to have
(say) all the components nonnegative and at least one of them equal to zero. We require
that nσ + nσ = w be constant over all embeddings σ, where here w is called the weight.
For a given modulus IΩ, we consider the set of “coherent” ∞-types modulo IΩ on K that
is, the ∞-types for which T(α) = 1 for all units α ≡ 1 (mod I) with α∞ > 0 for all ∞ ∈ Ω.
Every algebraic Hecke character factors through the relative norm from K to the maximal
CM-subfield of K (see [19, §0.3]), and so unless K contains a CM-field, the only coherent
infinity types will be multiples of the norm. For simplicity we will assume that K is itself
CM from now on, and so Ω is empty (as there are no real places). We can also pair the
embeddings in the ∞-type according to complex conjugacy.
Given a modulus I and a coherent ∞-type T, we then define

(2) G
(
(α)
)
= T(α) =

∏

σ

(ασ)nσ

for all α ≡ 1 (mod I). This defines a Hecke Grössencharacter G up to a finite quotient that
is exactly the Hecke character group for I. Indeed, what we called Hecke characters are often
called “finite order Hecke characters” for this reason. We again conventionally take G(a) = 0

on the ideals a that are not coprime to I. We can also note that G(p) will be of size (Np)w/2

for p that are coprime to I.
In general, the values of G will lie in an extension E/K given by roots of principalisations of
powers of representatives of the class group. Furthermore, twisting by a (finite order) Hecke
character mod I can enlarge the value-field by an additional cyclotomic factor.

4.1. Example. — The typical first examples here are for imaginary quadratic fields of class
number one, and are related to elliptic curves with complex multiplication. For instance, upon
taking K = Q(

√
−1) and I = p32 where p2 is the ramified prime above 2, with T = [1, 0] for

the ∞-type we get a Hecke Grössencharacter whose L-series matches that of the congruent
number curve. The condition α ≡ 1(mod I) can be described in terms of primary generators
in this case.
In this context, we can mention the “canonical” Grössencharacters of Rohrlich [17] for imag-
inary quadratic fields, which are closely related to Hilbert characters.
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5. Implementation of Grössencharacters

We next turn to how compute with Grössencharacters, and this will actually help explain
some technical theoretical points. The implementation of Dirichlet and Hecke characters
needs nothing more than to be able to compute generators for the residue and ray class
groups, and then to be able to compute discrete logs with them. For Grössencharacters we
also need to be able to principalise ideals. We also have a choice of how the extension field is
embedded into C, though such embeddings are permuted by Hilbert characters (see below).

5.1. First method for Grössencharacters. — The most direct method to compute
Grössencharacters modulo I for a coherent ∞-type T of a field K is to write down represen-
tatives ai of a basis for the ray class group RI , and extend K by the roots T(ui)

1/oi where
oi is the order of ai in RI and (ui) = aoii is a principalisation with ui ≡ 1 (mod I). Here

by T(ui)
1/oi we mean a specific choice of root in an extension field.

We concentrate on the principal Grössencharacter G, as the others can be determined via
the finite quotient corresponding to RI . We take G(ai) = T(ui)

1/oi and can compute G on
any ideal b with gcd(b,I) = 1 by using the rule

(3) G(b) = G(b ·
∏

i

avii )/G(
∏

i

avii ).

Here the bi are chosen to make b
∏
i a
vi
i lie in the trivial class of RI , with the value of G on

such classes then determined (after principalisation) by the ∞-type as in (2).
We can note that the choices of ai do not make too much difference. Indeed, if a and b
are in the same class with ao = (ua) and bo = (ub), then K

(
T(ua)

1/o
)
and K

(
T(ub)

1/o
)

are isomorphic fields. This follows because we can write a/b = (t) with t ≡ 1 (mod I), so
that toξ = ua/ub with ξ ≡ 1(mod I) a unit, which yields T(ub) = toT(ξ)T(ua) where T(ξ) =
1, implying the result.
However, there are two problems with this method. The first is that the extension field can
be of quite large degree, and the second is that it is difficult to pass from one modulus to
another.

5.2. Second method for Grössencharacters. — A superior method is to realise the
above “translation” (3) in the class group of K rather than in the ray class group, though
we then need to take care with units.
Given a CM-field K, we choose representatives ai of a basis of the class group. We write oi
for the orders, and (ui) = aoii for principalisations. Given an ∞-type T we then let χT

UK

be a character on the units UK such that χT
UK

(ǫ) = T(ǫ)−1 for all units ǫ ∈ K. We

define the value-field E of K(T) to be the compositum of the Ki = K(T(ui)
1/oi), where we

make specific choices of roots. The value-field of a Grössencharacter G can firstly “twist”
K(T) to use different choices of roots, and additionally can include a cyclotomic extension
corresponding to a nontrivial choice of a finite order Hecke character.
We now introduce the modulus I and let χ be a Dirichlet character modulo I that is a lift
of χT

UK
. We may try to take χ to be “quasi-minimal” in the sense that we define it as above

for generators of UK/I, and trivial on other factors in the (ZK/I)⋆ decomposition. All
possible lifts will differ by a finite order Hecke character, as the quotient of any two lifts will
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be trivial on the units. We can still have multiple “quasi-minimal” choices for χ – one case
isK = Q(

√
−15) with I = p3p5, where either quadratic character modulo I with χ(−1) = −1

suffices.
It is convenient to choose an lift χ̃ of χ to ÂI (recall diagram (1)), and we choose χ̃(ai, ui) =

χ(ui)
1/oi for some choice of root of unity on the right. Since the group extension is by the

class group, it follows that Hilbert characters will permute these choices of roots.
Given a character-lift χ̃, the resulting “principal” Grössencharacter G modulo I will give
G(ai) = T(ui)

1/oi χ̃(ai, ui) when evaluated at the class group representatives ai, while the
value at a principal ideal (v) will be G

(
(v)
)
= T(v)χ(v). We can compute the value at any

other ideal as with the above translation (3). We have (v) = (ǫv) for any unit ǫ ∈ K, and
can check that we do indeed have

G
(
(ǫv)

)
= T(ǫv)χ(ǫv) = T(ǫ)T(v)χ(ǫ)χ(v) = T(v)χ(v) = G

(
(v)
)
.

We will also want our representatives ai to be coprime to a given ideal I, and will want to
be able to change our chosen representatives in some cases. As an example, we take K =
Q(

√
−23) and suppose we choose p2 as a class group representative for a calculation with

some G3 modulo (3), and p3 for a calculation with some G2 modulo (2). To work with G3G2

we want to convert both G2 and G3 to use a representative that is coprime to 6, say p13. We
achieve this simply via G3(p13) = G3(p13/p2)G3(p2), and similarly with 2 and 3 switched.
We can then compute either G2 or G3 with p13 rather than the original choices of class group
representatives.

5.3. L-function, functional equation. — Attached to a Grössencharacter G we thus
have an ∞-type T, a modulus I, a finite order Hecke character ψ, and a Dirichlet character χ,
though these last two can be combined into the lift χ̃ if desired. The conductor of such a
Grössencharacter is the conductor of the product of χ with the Dirichlet restriction of ψ. The
value-field K(G) is given byK(Tχ,ψ), where hereK(Tχ) is the field generated by the G(ai).

The L-function of a Grössencharacter is defined as
∏

p

(
1 −G(p)/Nps

)−1
, and we note that

L(G, s) = L(G, s) when G(p) = G(p) for all primes p, as conjugate pairs appear together
in the Euler product. The functional equation is of a similar form to that for finite order
Hecke characters, though we now have the completed L-function satisfies Λ(G, s) = ǫG ·
Λ(G, w+1− s). For the Γ-factor, we take each conjugate pair [p, q] in the ∞-type and write
it with p ≤ q (this is permissible via relabelling the embeddings in the conjugate pair), and
each then gives a factor of ΓC

(
s− p

)
. Note that G has the conjugate ∞-type to that of G,

so that it has the same Γ-factors. Assuming that G has been scaled to remove factors of the
norm, the completed Λ-function has a pole precisely when G is the trivial Grössencharacter
of weight 0

5.3.1. Root numbers. — The root number formulæ of above also need to be modified slightly.
At (complex) infinite places v of type [p, q] (again taking p ≤ q) we have ǫv(G) = iq−p

[5, §5.3], while at finite places v where K is ramified but G is not the local root number

is ǫv(G) = G(dv)/Ndv = G̃(dv). Finally, at finite places v where G is ramified the previous
Gauss sum now has ψv replaced by (ψχ)v . There are various useful formulæ relating twists
of L-series, of which we mention that if ψ is finite and gcd(cψ , cG) = 1, then

(4) ǫGψ = ǫG · ǫψ · ψ−1(cG) · G̃−1(cψ).
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5.3.2. Critical values. —
The critical points (for the L-functions) of these Hecke Grössencharacters are those integers n
such that neither L∞(s) nor L∞(w + 1− s) has a pole at s = n. It follows that the critical
points for a Grössencharacter of ∞-type [0, w] are s = 1 . . . w, and in general they are s =
(µ+1) . . . (w−µ) where µ is the largest p amongst the [p, q] conjugate pairs (again taking p ≤ q
in each). For the right half of the critical points, that is, the critical u with u ≥ (w + 1)/2
(for else the root number intervenes), a conjecture of Deligne [5, §2.8, §8] states that there is
a period ω(G) ∈ C such that L(G, u)(2πi)w−u/ω(G) is in the value-field of G, and this is a
theorem of Blasius [1] (refining work of Shimura [21], while Goldstein and Schappacher [7]
handled the case where K is imaginary quadratic).
A more complete statement here can be made by first defining ωT

K for a CM-field K and

∞-type T via periods of an abelian variety (of dimension 1
2 [K : Q]) that has CM by K and

is defined over the Hilbert class field H/K. This is not completely straightforward, as the
periods will naturally lie in H ⊗ C, and we want them in K(G) ⊗ C. After obtaining the
period ωTK , we can then relate it to ω(G) for any G with ∞-type T. We go through this

process in some detail in Example 6.1 below, first following [7, §4] to get an explicit ω
[2,0]
K

in K = Q(
√
−23), and then relating it to a Grössencharacter with this ∞-type and trivial

conductor.
In fact, since we have ωT1

K ωT2
K = ωT1+T2

K , all the ωT
K will be generated by those on a ba-

sis for the ∞-types, namely all ∞-types of weight 1 (that is, all conjugate pairs as [0, 1]
or [1, 0]). This basis has size [K : Q], and can be halved upon considering complex conjuga-
tion, in exact correspondence with the periods from the abelian variety. The multiplication
formula ω(G1G2) = ω(G1)ω(G2) is true up to a determinable factor in K(G) (see [19,
II.1.8.1-3], with multiplicativity of the p, and their relation to the periods), while the effect
of twisting by a finite order Hecke character can also be determined and adds at worst an
abelian extension (see [19, II.3], and note that the last sentence in [9, §4] is incorrect, as
per [19, II.3.4]).
The net result is that L(G, u)(2πi)w−u/ω(G) ∈ K(G), where both L(G, u) and ω(G) are
elements of K(G)⊗C that can be independently computed.

5.4. An example. — Let K = Q(
√
−23) and I = p23 be the ramified prime. We consider

the principal Grössencharacter G with ∞-type [1, 0], taking the Dirichlet character χ to be
the quadratic character modulo p23. The lift χ̃ can be taken to be the trivial extension of χ,
as the orders of the class group and unit group are coprime.
We take p2 as our representative for the class group generator, and principalise p32 =

(3+
√−23
2 ) = (u) so that E = K(u1/3). Letting p3 be in the same class as p2 in the class

group, we compute that G(p3) is equal to

G(p3/p
2
2)G(p22) = G

((
5−

√
−23

8

))
u2/3 = −

(
5−

√
−23

8

)
u2/3,

the last step since χ
(
5−

√
−23
8

)
= −1.

If we had chosen a different lift, say χ̃(u) = ζ3, then we would have G(p22) = u2/3ζ23 , which
corresponds to a different embedding for E as an extension of K. We can also note that p2
is only defined up to complex conjugacy.
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5.5. The choice of embedding and Hilbert characters. — We next consider K =
Q(

√
−39) which has cyclic class group of 4, and let ψ be a Hilbert character of order 4

with ψ(p2) = ζ4. Let χ be either of the (imprimitive) quadratic Dirichlet characters with
modulus p3p13 and χ(−1) = −1, and G be the principal Grössencharacter with ∞-type [1, 0].

We take p2 as our representative of class group generator where p42 =
(
5+

√
−39
2

)
= (u). We

note that χ(u) = 1 while χ(−u) = −1, and so take χ̃(p2, u) = 1 and χ̃(p2,−u) = ζ8 for some
primitive 8th root of unity.
Note that twisting G by a Hilbert character merely changes the embedding. Indeed, if we

consider u1/4 as fixed and write Gj for the Grössencharacter for the embedding with ζj4u
1/4

instead of u1/4, we get Gj(p2) = ζj4u
1/4 = ψj(p2)u

1/4 = ψj(p2)G0(p2), and this same cal-
culation passes over to all ideals (via multiplicativity, and triviality of Hilbert characters on
principal ideals), and so we get Gj = ψj ·G0.

The computation for the choice of the lift χ̃ is similar. Upon taking χ̃(p2, u) = ζj4 we get

Gχ̃(p2) = T(u)1/4χ̃(p2, u) = u1/4ζj4 = Gj(p2), with the computation again transferring to all
ideals via translation. The independence (up to embeddings) of the choice of a unit with u

can be verified by noting that the expressions T(u)1/4χ̃(p2, u) and T(−u)1/4χ̃(p2,−u) =

(−1)1/4T(u)1/4ζ8 differ by some 4th root of unity.
We can also note here that while each of the four Hilbert characters has sign +1 in its
functional equation (since ψ(dK) = ψ(p3p13) = +1), two of the Gψj have sign +1 and two
have sign −1. Indeed, using the above formula (4) we have

ǫGψj = ǫG · ǫψj · G̃−1(1) · ψ−j(cG) = ǫG · ψ−j(cG),

and we note that ψ(cG) = −1 (where here cG is either p3 or p13, depending on the choice
of χ).

5.5.1. Caveat. — The above correspondence between Hilbert characters and embeddings
needs to be adjusted slightly when T(ui) is a kth power for some k|oi (with k > 1). For
instance, the principal [3, 0] Grössencharacter for K = Q(

√
−23) has K as its value field, and

twisting by a nontrivial Hilbert character adjoins ζ3.

6. Assorted examples

6.1. Critical values and elliptic curves. —
Let K = Q(

√
−23) and G be a Grössencharacter of ∞-type [2, 0] for the trivial modulus.

There are three twists of G corresponding to Hilbert characters (and/or embeddings, as
above), and we let ψ be a nontrivial Hilbert character. There are a number of field extensions
that arise here. We write E621 for the field defined by β3 − 6β− 3 = 0, so that E = KE621 is
the value-field of G (with a twist by Q(ζ3) when the embedding changes). For the real cubic
subfield H−23 of the Hilbert class field H/K we write α3 − α− 1 = 0.
We obtain that the special values at the edge of the critical strip are, up to permutation,
approximated as:

L(G, 2) ≈ 1.06110583266449728309907405960,

L(Gψ, 2) ≈ 1.23819100212426040400794384795.

L(Gψ2, 2) ≈ 0.670337208665839403747922477472,
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We can compute that

L(G, 2)L(Gψ, 2)L(Gψ2 , 2) =
π3

233
1

3
√
23

22∏

i=1

Γ(i/23)χ(i),

where χ is the quadratic Dirichlet character modulo 23 (see [19, III.1.4]), and can note that

this L-product is also equal to π2

5 L(G
3, 4). For the root number, we compute G(p23) = −23

so that ǫp23(G) = −1; when combined with ǫ∞(G) = i2−0 = −1 this implies that ǫG = +1,
as expected for self-dual G and even weight.

6.1.1. Ratios of the L-values. — The six pairwise ratios of the above L-values lie in the
degree 18 field E621 · Q(

√
69) · H−23, and the cubes of these ratios are all conjugate in

the degree 6 field E621 · Q(
√
69), which is the Galois closure of the cubic field E621, and

is also the maximal real subfield of the Galois closure of the value-field. Indeed, the six
nontrivial L(Gψi, 2)3/L(Gψj , 2)3 ratios are given by the six embeddings of 1/541696 times

(23832
√
69 + 182478)β2 − (79253

√
69 + 221763)β + (−79355

√
69 + 434509).

Letting t be this element, it has relative norm 1 in Q(
√
69) we so we can apply Hilbert’s

Theorem 90 [13, Satz 90, §54, Capitel XV, p. 272] to a 3-cycle σ of this S3-extension and get an

element v with σ(v)/v = t. We can further factor v = es for some e ∈ E621 and s ∈ Q(
√
69),

and take

e = (365β2 + 53β + 431) = −(5 + β − β2)9(2− β2)3η21η
3
2

(unique up to Q-scaling), where the first two elements have respective norms 2 and 23, and
the other two are units η1 = −2− β and η2 = 1 + 2β.
The end result of this is that

(
L(Gι, 2)

3
)
ι
≈ e⊗ 0.00059831771559950518493950 ≈ e⊗ z ∈ E621 ⊗R,

where this indicates L(Gι, 2)
3 ≈ ι(e)z for each embedding ι : E621 →֒ R. I do not see how to

remove the cubing here, even if one passes to value-field E = KE621, as no rational multiple
of e is a cube; nor do I see any redoing of the computation with different choices that would
lead to e having a cube root. Indeed, the six nontrivial L(Gψi, 2)/L(Gψj , 2) ratios really do
live in the degree 18 field obtained from adjoining the real subfield H−23 of the Hilbert class
field to the degree 6 value-field.

6.1.2. Periods from an elliptic curve. — The period z of above corresponds to the period
of an elliptic curve C that is defined over the real subfield of the Hilbert class field ([21,

Corollary, Theorem 10]), and this curve can be obtained from the j-invariant j
(
1+

√−23
2

)
=

−53(2+α+α2)3(2+3α)3 as the curve must have complex multiplication byK (see [8, §12] for
more on this). We need to enlarge the places of ramification to include those for K(j)/Q(j)
(see also [18] in this regard), which turns out to be the prime above 23 that is not already
ramified in Q(j). We can get the desired curve by starting with a curve with the given
j-invariant and then twisting away any ramification at undesired places.
We obtain that C is given by

y2 + (1 + α)xy + y = x3 − x2 − (17 + 27α + 12α2)x− (45 + 72α + 61α2),
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and that the real period corresponding to the real embedding of H−23 is approximately given
by ω1 = 0.8174695113021061400156361160297 – as a check, the “imaginary” period differs by
a factor of

√
23 from this, as

(
1 +

√
−23

)
ω1/2. The other periods of C can be approximated

as

ω2 ≈ 1.84329374387271752388216654 ± 0.34697676998110995398120i,

with the lattices being given by
[
ω2,

1+
√
−23
4 ω2

]
and

[
ω2,

−1+
√
−23

4 ω2

]
, and these cor-

respond to the binary quadratic forms 2x2 ∓ xy + 3y2. Upon writing the product
as Ω = ω1ω2ω2 ≈ 2.87595968338354139672, we can re-compute the above product of
L-values as

∏
i L(Gψ

i, 2) ≈ 23
216Ω

2.

6.1.3. Relating the periods. — The above calculation computes the period directly for the
Grössencharacter given by G ◦ NH/K : H → K and via [9, §4.7 (12)] (see also [19, II.1.8.11,

II.1.4.5]) we can relate it to ω(G3) via the formula

ω(G ◦NH/K)

ω(G[H:K])
=

∣∣∣∣∣∣

1 1 1

α ασ (α)σ
2

α2 (α2)σ (α2)σ
2

∣∣∣∣∣∣
= −

√
−23 ∈ K,

where we have used the fact that the factor that comes from the field discriminant (see [19,
II.1.7.12(iv)]) is trivial here (as the field is Q). Since the value-field of G3 is K itself, both
periods on the left are in K ⊗C.
We can also compute that L(G3, 4)(2πi)2 ≈ −5·23

54 Ω2, and in this manner can thus ob-

tain ω(G3) = (a + b
√
−23) ⊗ Ω2 ∈ K ⊗C for some a, b ∈ Q as a direct experimental fact,

independent of the above relation to the Shimura periods. Furthermore, we can compute

that L(G3, 5)(2πi) ≈ 23
√−23
216 Ω2, which shows how the extra factor of i in the 2πi intervenes

when raised to an odd power.

6.1.4. Reduction in periods. — We now proceed as in [7, §4.10-12, §9] to compute the period
for G. We let σ ∈ Gal(H/K) be nontrivial, and take a = p2 as an element with nontrivial
image in the class group. This p2 gives an isogeny C → D for some elliptic curve D, and by
taking σ and p2 properly for Artin reciprocity, we have an isomorphism D → Cσ (where here
C,Cσ,D are taken to mean explicit models). We pullback a Néron differential from Cσ to C
along these maps, and get

Λ(p2) =
1

2
√
−23

(
3 +

√
−23 + (1−

√
−23)α + (7 +

√
−23)α2

)

in (4.10) of [7]. In (4.11), we thus get an element of relative norm 1 given by

Φ(σ) =
1√
−23

(
−8−3 +

√
−23

2
β + 2β2

)
⊗

⊗ 1

4
√
−23

(
−9 + 3

√
−23 + (3− 2

√
−23)α+ (2− 2

√
−23)α2

)

as an element of E ⊗K H. The E-element is a cube root of u2 = −(3 +
√
−23)/2 and the

H-element h satisfies hσ(h)σ(σ(h)) = 1/u2, with p32 = (u2) in K.
As in (4.12) of [7] we then apply Hilbert’s Theorem 90 to find σ(x)/x = Φ(σ) with

23x = (17β2 − 30β − 22)⊗ 1 + (−2β2 + 13β + 8)⊗ α+ (9β2 − 24β − 13)⊗ α2
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and this is in E621 ⊗H−23 (and unique up to elements in E621). This x corresponds to the
[1, 0] ∞-type, and we will square it in the formulæ below to get the desired period for the

[2, 0] ∞-type. We can note(1) that x3 = (η2/η1)
2 ⊗ α2.

We see that Theorem 9.1 of [7] says L(G, 2)/(xω)2 ∈ E ⊗ 1 upon choosing the same embed-
ding H →֒ C for both x ∈ E621 ⊗H →֒ E621 ⊗C and the elliptic curve C in the definition
of ω, and [7, §8] explains how to reduce the situation to real subfields.
We embed H−23 →֒ R with ω = ω1 and α ≈ 1.324717957244746025961, and so

(
L(Gι)

)
ι
=

1

24 · 232 (1767 + 165β − 307β2)⊗ (xω1)
2 ∈ E621 ⊗R

when embedding both x and ω into the reals. Finally, we can note that

(
L(Gι)

3
)
ι
=

1

29 · 3(365β
2 + 53β + 431) ⊗ (α2ω3

1

)2 ∈ E621 ⊗R

when embedding α into the reals, with an additional factor of −19 ± 4
√
−23 ∈ K on the

right when using the other embeddings. Indeed, we have that α2ω3
1 = Ω/3 under the real

embedding, with −2Ω/3 on the right with the others, which relates ω(G3) with ω(G)3.

6.2. A vanishing central symmetric-cube value. — This example is mentioned in [16,
§4, Remark 2]. We take K = Q(

√
−59), which has class number 3, and consider the prin-

cipal Grössencharacter G of ∞-type [3, 0] modulo p59 (with χ as the quadratic character).
We see that G will take values in K, and indeed the L-function of G is the same as that
for a rational weight 4 modular form of level 592. The interest of this example is that cen-
tral value L(G, 2) = 0 vanishes even though the sign of the functional equation is even. This
special value can be computed exactly as in [16], among other methods (such as modular sym-
bols), so that the vanishing is known. To the best of my knowledge, the conjectural rephrasing
as the leading term of the Taylor series L′′(G, 2) ≈ 5.752742016791747931531921931 as an
explicit regulator has not yet been achieved, though the works [20] and [3] do construct cycles
in Griffiths groups in similar contexts.
We can note that [24, §6.6.2] gives more examples of such “analytic rank 2 motives” (in
quadratic twist families corresponding to CM elliptic curves over Q), but also indicates (inter
alia) that there is no known degree 2 L-function of (motivic) weight greater than 1 whose
“analytic rank” is more than 2, with a large amount of data computed in the Grössencharacter
case.

6.3. An example over Q(ζ5). — The above examples have all dealt with imaginary
quadratic fields. We now give one over a larger field. In order to deal with∞-types in a reason-
able manner, we will fix embeddings. We first consider the∞-type

(
[3, 0], [1, 2]

)
where the first

(1)This means that x has a square root in this field (note that we have chosen the E-scaling to ensure this, so
the content here is that the H-component is square), but I do not know if this is of import. It could be related
to the fact that Shimura’s periods can also be used with “half-integral” Grössencharacters in some contexts
(for instance, see Remark 1.7(a) of [10] – my understanding is that Shimura’s periods extend to the situation
of an ∞-type such as [ 1

2
,− 1

2
], though I could be mistaken). Also, it becomes tricky to make refined statements

about integrality as the use of Hilbert’s theorem 90 gives us the freedom of an element of E = K(G), though
see [7, §10] for more in this regard.
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pair of (complex conjugate) embeddings sends ζ5 → e2πi(1/5), e2πi(4/5) and the second to ζ5 →
e2πi(2/5), e2πi(3/5). We shall see that this is rather different from the

(
[3, 0], [2, 1]

)
∞-type.

We note T(ζ5) = (e2πi(1/5))3(e2πi(4/5))0(e2πi(2/5))1(e2πi(3/5))2 = (e2πi/5)11, and so any modu-
lus I must afford a Dirichlet character of order 5 for the character χT

UK
to lift. As above,

we are most interested in characters whose ramification is non-disjoint from that of the
field, and so we work with I = p25 where p5 is the totally ramified prime of norm 5. We

note that ǫ = 1 + ζ25 is a unit with T(ǫ) = −e2πi/5, and so take χ of order 10 such

that χ(ζ5) = (e2πi/5)−1 and χ(ǫ) = −(e2πi/5)−1. Since the class group is trivial, we can
compute the principal Grössencharacter G on any ideal directly via principalisation. For
instance, we can write

(11)ZK =
∏

σ

(1− ζ5 − ζ35 )
σ = (t1)(t4)(t2)(t3)

with χ(tj) = (e2πi/5)4j which leads to

G(t1) ≈ 8.2745751406263143974426646 + 35.53211795322830188628510i,

G(t3) ≈ 36.225424859373685602557335 + 4.326499018591243213111138i,

while G(t4) = G(t1) and G(t3) = G(t2).
The functional equation in this case has Γ(s)Γ(s − 1) as the factor for L∞(G, s),
with Λ(G, s) = ǫGΛ(G, 4− s) where ǫG = ǫp5 = +1 can be computed via

4∑

j=1

4∑

k=0

χ(j + ke5)e
2πi·tr((j+ke5)/e55) = 5, with (e5)

5 = (1− ζ5)
5 = p55 = dp5cp5 .

We compute that the central value is given by

L(G, 2) =
1

57/2
Γ(1/5)3Γ(2/5)3

Γ(3/5)2Γ(4/5)2
,

where these exponents could perhaps be derived directly from [19, II.4.1].
If we now follow the same calculation with the

(
[3, 0], [2, 1]

)
∞-type, we find that T(ζ5) =

(e2πi/5)3·1+4·0+2·2+3·1 = 1.
However we still have T(ǫ) = −1 and thus there is no Grössencharacter with trivial modulus.
Instead we take I = p5 and χ of order 2 with χ(ǫ) = −1, and can compute that

L(G, 2) =
π

515/4
Γ(1/5)7/2Γ(3/5)1/2

Γ(4/5)7/2Γ(2/5)1/2
.

Again we have ǫp5 = +1 via the computation
∑

j χ(j)e
2πi·tr(j/e45) =

√
5. The root-number

contribution from infinite places is again i3−0i2−1 = +1.
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