ARITHMETIC OF "UNITS" IN $\mathbb{F}_q[T]$

by

Bruno Anglès & Mohamed Ould Douh

Abstract. — The aim of this note is to study the arithmetic of Taelman's unit module for $A:=\mathbb{F}_q[T]$. This module is the A-module (via the Carlitz module) generated by 1. Let P be a monic irreducible polynomial in A, we show that the "P-adic behaviour" of 1 is connected to some isotypic component of the ideal class group of the integral closure of A in the Pth cyclotomic function field. The results contained in this note are applications of the deep results obtained by L. Taelman in [10].

Résumé. — Soit \mathbb{F}_q un corps fini ayant q éléments et de caractéristique p, $q \geq 3$. Nous montrons que si P est un premier de $\mathbb{F}_q[T]$ de degré d, le p-rang de la composante isotypique associée au caractère de Teichmüller du p-sous-groupe de Sylow des points \mathbb{F}_q-rationnels de la jacobienne du P-ième corps de fonctions cyclotomique est entièrement déterminé par le "comportement P-adique" de 1.

1. Background on the Carlitz module

Let \mathbb{F}_q be a finite field having q elements, $q \geq 3$, and let p be the characteristic of \mathbb{F}_q. Let T be an indeterminate over \mathbb{F}_q, and set: $k:=\mathbb{F}_q(T)$, $A:=\mathbb{F}_q[T]$, $A_+:=\{a \in A, a \text{ monic }\}$. A prime in A will be a monic irreducible polynomial in A. Let ∞ be the unique place of k which is a pole of T, and set: $k_\infty:=\mathbb{F}_q((\frac{1}{T}))$. Let \mathbb{C}_∞ be a completion of an algebraic closure of k_∞, then \mathbb{C}_∞ is algebraically closed and complete and we denote by v_∞ the valuation on \mathbb{C}_∞ normalized such that $v_\infty(T)=-1$. We fix an embedding of an algebraic closure of k in \mathbb{C}_∞, and thus all the finite extensions of k considered in this note will be contained in \mathbb{C}_∞. Let L/k be a finite extension, we denote by:

- $S_\infty(L)$: the set of places of L above ∞, if $w \in S_\infty(L)$ we denote the completion of L at w by L_w and we view L_w as a subfield of \mathbb{C}_∞,
- O_L: the integral closure of A in L,

2000 Mathematics Subject Classification. — 11R58, 11R60.

Key words and phrases. — Arithmétique des corps de fonctions, module de Carlitz, nombres de Bernoulli-Goss.

The authors thank L. Taelman and D. Thakur for fruitful discussions.
• Pic(O_L): the ideal class group of L,
• L∞: the k∞-algebra L ⊗_k k∞, recall that we have a natural isomorphism of k∞-algebras: L∞ ∼= \prod_{w \in S(\infty(L))} L_w.

1.1. The Carlitz exponential. — Set D_0 = 1 and for \(i \geq 1 \), \(D_i = (T^{q^i} - T)D_{i-1}^q \). The Carlitz exponential is defined by:
\[
e_{C}(X) = \sum_{i \geq 0} X^{q^i} \in k[[X]].
\]
Since \(\forall i \geq 0 \), \(v_{\infty}(D_i) = -iq^i \), we deduce that \(e_C \) defines an entire function on \(\mathbb{C}_\infty \) and that \(e_C(\mathbb{C}_\infty) = \mathbb{C}_\infty \). Observe that:
\[
e_C(TX) = Te_C(X) + e_C(X)^q.
\]
Thus, \(\forall a \in A \), there exists a \(\mathbb{F}_q \)-linear polynomial \(\phi_a(X) \in A[X] \) such that \(e_C(aX) = \phi_a(e_C(X)) \). The map \(\phi : A \to \text{End}_{\mathbb{F}_q}(A), \ a \mapsto \phi_a \), is an injective morphism of \(\mathbb{F}_q \)-algebras called the Carlitz module.

Let \(\varepsilon_C = q^{-1}\sqrt{T - T^q} \prod_{j \geq 1} \left(1 - \frac{T^{q^j} - T}{T^{q^{j+1}} - T} \right) \in \mathbb{C}_\infty \). Then by [4] Theorem 3.2.8, we have the following equality in \(\mathbb{C}_\infty[[X]] \):
\[
e_C(X) = X \prod_{\alpha \in \varepsilon_C \cdot A \setminus \{0\}} \left(1 - \frac{X}{\alpha} \right).
\]
Note that \(v_{\infty}(\varepsilon_C) = -\frac{q}{q-1} \). Let \(\log_C(X) \in k[[X]] \) be the formal inverse of \(e_C(X) \), i.e. \(e_C(\log_C(X)) = \log_C(e_C(X)) = X \). Then by [4] page 57, we have:
\[
\log_C(X) = \sum_{i \geq 0} \frac{X^{q^i}}{L_i},
\]
where \(L_0 = 1 \), and for \(i \geq 1 \), \(L_i = (T - T^{q^i})L_{i-1} \). Observe that \(\forall i \geq 0 \), \(v_{\infty}(L_i) = -\frac{q^{i+1} - q}{q - 1} \).

Therefore \(\log_C \) converges on \(\{ \alpha \in \mathbb{C}_\infty, v_{\infty}(\alpha) > -\frac{q}{q-1} \} \). Furthermore, for \(\alpha \) in \(\mathbb{C}_\infty \) such that \(v_{\infty}(\alpha) > -\frac{q}{q-1} \), we have:
• \(v_{\infty}(e_C(\alpha)) = v_{\infty}(\log_C(\alpha)) = v_{\infty}(\alpha) \),
• \(e_C(\log_C(\alpha)) = \log_C(e_C(\alpha)) = \alpha \).

1.2. Torsion points. — We recall some basic properties of cyclotomic function fields. For a nice introduction to the arithmetic properties of such fields, we refer the reader to [7] Chapter 12. Let \(P \) be a prime of \(A \) of degree \(d \). Set \(\Lambda_P := \{ \alpha \in \mathbb{C}_\infty, \phi_P(\alpha) = 0 \} \). Note that the elements of \(\Lambda_P \) are integral over \(A \), and that \(\Lambda_P \) is a \(A \)-module via \(\phi \) which is isomorphic to \(\frac{A}{PA} \). Set \(\lambda_P = e_C(\frac{\varepsilon_C}{P}) \), then \(\lambda_P \) is a generator of the \(A \)-module \(\Lambda_P \). Let \(K_P = k(\Lambda_P) = k(\lambda_P) \). We have the following properties:
• K_P/k is an abelian extension of degree $q^d - 1$,
• K_P/k is unramified outside P, ∞,
• let $R_P = O_{K_P}$, then $R_P = A[\lambda_P]$,
• if $w \in S_\infty(K_P)$, the completion of K_P at w is equal to $k_\infty(\varepsilon_C)$, in particular the decomposition group at w is equal to the inertia group at w and is isomorphic to \mathbb{F}_q^*,

furthermore $| S_\infty(K_P) | = \frac{q^d - 1}{q - 1}$.

• K_P/k is totally ramified at P and the unique prime ideal of R_P above P is equal to $\lambda_P R_P$.

Let $\Delta = \text{Gal}(K_P/k)$. For $a \in A \setminus PA$, we denote by σ_a the element in Δ such that $\sigma_a(\lambda_P) = \phi_a(\lambda_P)$. The map: $A \setminus PA \to \Delta$, $a \mapsto \sigma_a$ induces an isomorphism of groups:

$$\left(\frac{A \setminus PA}{PA} \right)^* \simeq \Delta.$$

1.3. The unit module and the class module.

Let R be an A-algebra, we denote by $C(R)$ the \mathbb{F}_q-algebra R equipped with the A-module structure induced by ϕ, i.e. $\forall r \in C(R)$, $T.r = \phi_T(r) = Tr + r^q$. For example, the Carlitz exponential induces the following exact sequence of A-modules:

$$0 \to \varepsilon_C A \to C_\infty \to C(C_\infty) \to 0.$$

Let L/K be a finite extension, then B. Poonen has proved in [6] that $C(O_L)$ is not a finitely generated A-module. Recently, L. Taelman has introduced in [8] a natural sub-A-module of $C(O_L)$ which is finitely generated and called the unit module associated to L and ϕ. First note that the Carlitz exponential induces a morphism of A-modules: $L_\infty \to C(L_\infty)$, and the kernel of this map is a free A-module of rank $| \{ w \in S_\infty(L), \varepsilon_C \in L_w \} |$. Now, let us consider the natural map of A-modules induced by the inclusion $C(O_L) \subset C(L_\infty)$:

$$\alpha_L : C(O_L) \to \frac{C(L_\infty)}{\varepsilon_C(L_\infty)}.$$

L. Taelman has proved the following remarkable results ([8], Theorem 1, Corollary 1):

• $U(O_L) := \ker(\alpha_L)$ is a finitely generated A-module of rank $[L : k] - | \{ w \in S_\infty(L), \varepsilon_C \in L_w \} |$,

the A-module (via ϕ) $U(O_L)$ is called the unit module attached to L and ϕ,

• $H(O_L) := \text{coker}(\alpha_L)$ is a finite A-module called the class module associated to L and ϕ.

Set:

$$\zeta_{O_L}(1) := \sum_{I \neq (0)} \frac{1}{\left[\frac{O_L^I}{A} \right]} \in k_\infty,$$

where the sum is taken over the non-zero ideals of O_L, and where for any finite A-module M, $[M]_A$ denotes the monic generator of the Fitting ideal of the finite A-module M. Then, we have the following class number formula ([9], Theorem 1):

$$\zeta_{O_L}(1) = [H(O_L)]_A [O_L : e_C^{-1}(O_L)],$$
where \([O_L : e_{C}^{-1}(O_L)] \in k^*_\infty\) is a kind of regulator (see [9] for more details).

2. The unit module for \(\mathbb{F}_q[T]\)

2.1. Sums of polynomials. — In this paragraph, we recall some computations made by G. Anderson and D. Thakur ([2] pages 183, 184).

Let \(X, Y\) be two indeterminates over \(k\). We define the polynomial \(\Psi_k(X) \in A[X]\) by the following identity:

\[e_C(X \log C(Y)) = \sum_{k \geq 0} \Psi_k(X) Y^q^k.\]

We have that \(\Psi_0(X) = X\) and for \(k \geq 1\):

\[\Psi_k(X) = \sum_{i=0}^{k} \frac{1}{D_i(Lk-i)^q^i} X^{q^i}.
\]

For \(a = a_0 + a_1 T + \cdots + a_n T^n, a_0, \cdots, a_n \in \mathbb{F}_q\), we have:

\[\phi_a(X) = \sum_{i=0}^{n} [\frac{a_i}{i}] X^{q^i},\]

where \([\frac{a}{i}]\) is an element in \(A\) for \(i = 0, \cdots, n, [\frac{a}{0}] = a\) and \([\frac{a}{n}] = a_n\). But since \(e_C(aX) = \phi_a(e_C(X))\), we deduce that for \(k \geq 1\):

\[\Psi_k(X) = \frac{1}{D_k} \prod_{a \in A(d)} (X - a),\]

where \(A(d)\) is the set of elements in \(A\) of degree strictly less than \(k\). In particular:

\[\Psi_k(X + T^k) = \Psi_k(X) + 1 = \frac{1}{D_k} \prod_{a \in A_{+,k}} (X + a),\]

where \(A_{+,k}\) is the set of monic elements in \(A\) of degree \(k\). Now for \(j \in \mathbb{N}\) and for \(i \in \mathbb{Z}\), set:

\[S_j(i) = \sum_{a \in A_{+,j}} a^i \in k.\]

Note that the derivative of \(\Psi_k(X)\) is equal to \(\frac{1}{T_k}\). Therefore we get:

\[\frac{1}{L_k} \Psi_k(X) + 1 = \sum_{a \in A_{+,k}} \frac{1}{X + a}.\]

Thus:

\[\frac{1}{L_k} \Psi_k(X) + 1 = \sum_{n \geq 0} (-1)^n S_k(-n - 1) X^n.\]

But:

\[\Psi_k(X) \equiv \frac{1}{L_k} X \mod X^q.\]

Therefore:

\[\forall k \geq 0, \text{ for } c \in \{1, \cdots, q - 1\}, S_k(-c) = \frac{1}{L_k^c}.\]
But observe that we also have:
\[
\frac{1}{L_k} \frac{1}{\Psi_k(X) + 1} = \sum_{n \geq 0} (-1)^n S_k(n) X^{-n-1}.
\]
But:
\[
\frac{1}{\Psi_k(X) + 1} \equiv 0 \pmod{X^{-q^k}}.
\]
Therefore:
\[
\forall k \geq 0, \text{ for } i \in \{0, \cdots, q^k - 2\}, S_k(i) = 0.
\]
The Bernoulli-Goss numbers, \(B(i)\) for \(i \in \mathbb{N}\), are elements of \(A\) defined as follows:
- \(B(0) = 1\),
- if \(i \geq 1\) and \(i \not\equiv 0 \pmod{q - 1}\), \(B(i) = \sum_{j \geq 0} S_j(i)\) which is a finite sum by our previous discussion,
- if \(i \geq 1\), \(i \equiv 0 \pmod{q - 1}\), \(B(i) = \sum_{j \geq 0} jS_j(i) \in A\).

We have:

Lemma 2.1. — Let \(P\) be a prime of \(A\) of degree \(d\) and let \(c \in \{2, \cdots, q - 1\}\). Then:
\[
B(q^d - c) \equiv \sum_{k=0}^{d-1} \frac{1}{L_k^{c-1}} \pmod{P}.
\]

Proof. — Note that \(q^d - c\) is not divisible by \(q - 1\) and that \(1 \leq q^d - c < q^d - 1\). Thus:
\[
B(q^d - c) = \sum_{k=0}^{d-1} S_k(q^d - c).
\]
Now, for \(k \in \{0, \cdots, d - 1\}\), we have:
\[
S_k(q^d - c) \equiv S_k(1 - c) \pmod{P}.
\]
The lemma follows by our previous computations.

We will also need some properties of the polynomial \(\Psi_k\):

Lemma 2.2. —
1) Let \(X, Y\) be two indeterminates over \(k\). We have:
\[
\forall k \geq 0, \Psi_k(XY) = \sum_{i=0}^{k} \Psi_i(X) \Psi_{k-i}(Y)^{q^i}.
\]
2) For \(k \geq 0\), we have:
\[
\psi_{k+1}(X) = \frac{\Psi_k(X)^q - \Psi_k(X)}{T^{q^{k+1}} - T}.
\]
Proof. —
1) Recall that we have seen that:
\[\forall a \in A, \phi_a(X) = \sum_{k \geq 0} \Psi_k(a)X^{q^k}. \]

Furthermore, for \(a \in A \):
\[e_C(aX\log C(Y)) = \phi_a(e_C(X\log C(Y))). \]

Thus, for all \(a \in A \):
\[\forall k \geq 0, \Psi_k(aX) = \sum_{i=0}^{k} \Psi_i(a)\Psi_{k-i}(X)^{q^i}. \]

The first assertion of the lemma follows.

2) For all \(a \in A \), we have:
\[\phi_a(TX + X^q) = T\phi_a(X) + \phi_a(X)^q. \]

Thus, for all \(a \in A \):
\[\forall k \geq 0, \psi_{k+1}(a) = \frac{\Psi_k(a)^q - \Psi_k(a)}{T^{q^{k+1}} - T}. \]

\[\square \]

Lemma 2.3. — Let \(P \) be a prime of \(A \) of degree \(d \). We have:
\[\phi_P(X) = \sum_{k=0}^{d} \left[\frac{P}{k} \right] X^{q^k}, \]
where \(\left[\frac{P}{0} \right] = P \) and \(\left[\frac{P}{d} \right] = 1 \). Then, for \(k = 0, \ldots, d - 1 \), \(P \) divides \(\left[\frac{P}{k} \right] \) and:
\[\left[\frac{P}{k} \right] P \equiv \frac{1}{T_k} \pmod{P}. \]

Proof. — Since \(\left[\frac{P}{k} \right] = \Psi_k(P) \), the lemma follows from the second assertion of Lemma 2.2. \[\square \]

If we combine Lemma 2.1 and Lemma 2.3, we get:

Corollary 2.4. — Let \(P \) be a prime of \(A \) of degree \(d \). Then:
\[\phi_{P^{-1}}(1) \equiv PB(q^d - 2) \pmod{P^2}. \]

Remark 2.5. — D. Thakur has informed the authors that the congruence in Corollary 2.4 was already observed by him in \([11]\).
2.2. The unit module for $\mathbb{F}_{q^n}[T]$. — Set $k_n = \mathbb{F}_{q^n}(T)$ and $A_n = \mathbb{F}_{q^n}[T]$. In this paragraph we will determine $U(A_n)$ and $H(A_n)$. We have:

$$k_{n,\infty} = k_n \otimes_k k_\infty = \mathbb{F}_{q^n}(\frac{1}{T}).$$

Let φ be the Frobenius of $\mathbb{F}_{q^n}/\mathbb{F}_q$, recall that k_n/k is a cyclic extension of degree n and its Galois group is generated by φ. Set $G = \text{Gal}(k_n/k)$ and let $\alpha \in \mathbb{F}_{q^n}$ which generates a normal basis of $\mathbb{F}_{q^n}/\mathbb{F}_q$. Then A_n is a free $A[G]$-module of rank one generated by α. Note that:

$$k_n,\infty = A_n \oplus \frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]].$$

By the results of Paragraph 1.1:

$$\log_C(\alpha) \in \mathbb{F}_{q^n}[[\frac{1}{T}]]^*,$$

and:

$$e_C \left(\frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]] \right) = \frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]].$$

Now:

$$k_{n,\infty} = \bigoplus_{i=0}^{n-1} k_\infty \log_C(\alpha^q^i).$$

Thus:

$$k_{n,\infty} = \frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]] \oplus \bigoplus_{i=0}^{n-1} A \log_C(\alpha^q^i).$$

Let $\mathcal{S}_n(A)$ be the sub-A-module of $C(A_n)$ generated by \mathbb{F}_{q^n}, then $\mathcal{S}_n(A)$ is a free A-module of rank n generated by $\{\alpha, \alpha^q, \cdots, \alpha^{q^n-1}\}$. We have:

$$e_C(k_{n,\infty}) = \mathcal{S}_n(A) \oplus \frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]].$$

Thus:

$$U(A_n) = A_n \cap e_C(k_{n,\infty}) = \mathcal{S}_n(A),$$

and:

$$H(A_n) = \frac{C(k_{n,\infty})}{C(A_n) + e_C(k_{n,\infty})} = \{0\}.$$

In particular, for $n = 1$, we get $U(A) = \mathcal{S}_1(A) = \text{the free A-module of rank one generated (via ϕ) by 1 and $H(A) = \{0\}}$.

Let $F \in k_\infty[G]$ be defined by:

$$F = \sum_{i=0}^{n-1} \left(\sum_{j \equiv i \pmod{n}} \frac{1}{L_j} \right) \varphi^i.$$

Then:

$$e_C^{-1}(A_n) = \bigoplus_{i=0}^{n-1} A \log_C(\alpha^q^i) = FA_n.$$
Write \(n = mp^\ell \), where \(\ell \geq 0 \) and \(m \not\equiv 0 \pmod{p} \). Let \(\mu_m = \{ x \in \mathbb{C}_\infty, x^m = 1 \} \) which is a cyclic group of order \(m \). Then we can compute Taelman’s regulator (just calculate the "determinant" of \(F \)):

\[
[A_n : e_C^{-1}(A_n)] = \left((-1)^{m-1} \prod_{\zeta \in \mu_m} \left(\sum_{i=0}^{n-1} \left(\sum_{j \equiv i \pmod{n}} \frac{1}{L_j} \right) \zeta^i \right) \right)^{\ell^p}.
\]

Thus, Taelman’s class number formula becomes in this case:

\[
\zeta_{A_n}(1) = \left((-1)^{m-1} \prod_{\zeta \in \mu_m} \left(\sum_{i=0}^{n-1} \left(\sum_{j \equiv i \pmod{n}} \frac{1}{L_j} \right) \zeta^i \right) \right)^{\ell^p}.
\]

In particular, we get the following formula already known by Carlitz:

\[
\zeta_A(1) = \log_C(1).
\]

2.3. The \(p \)-adic behavior of "1". — Let \(P \) be a prime of \(A \) of degree \(d \). Let \(\mathbb{C}_P \) be a completion of an algebraic closure of the \(P \)-adic completion of \(k \). Let \(v_P \) be the valuation on \(\mathbb{C}_P \) such that \(v_P(P) = 1 \). For \(x \in \mathbb{R} \), we denote the integer part of \(x \) by \([x]\). Let \(i \in \mathbb{N} \setminus \{0\} \) and observe that \(v_P(T^{q^i} - 1) = 1 \) if \(d \) divides \(i \) and \(v_P(T^{q^i} - 1) = 0 \) otherwise. Therefore:

- for \(i \geq 0 \), \(v_P(L_i) = [i/d] \),
- for \(i \geq 0 \), \(v_P(D_i) = \frac{q^i - q^i - [i/d]d}{q^d - 1} \).

This implies that \(\log_C(\alpha) \) converges for \(\alpha \in \mathbb{C}_P \) such that \(v_P(\alpha) > 0 \), and that \(e_C(\alpha) \) converges for \(\alpha \in \mathbb{C}_P \) such that \(v_P(\alpha) > \frac{1}{q^d - 1} \). Furthermore, for \(\alpha \in \mathbb{C}_P \) such that \(v_P(\alpha) > \frac{1}{q^d - 1} \), we have:

- \(v_P(e_C(\alpha)) = v_P(\log_C(\alpha)) = v_P(\alpha) \),
- \(e_C(\log_C(\alpha)) = \log_C(e_C(\alpha)) = \alpha \).

Lemma 2.6. — Let \(A_P \) be the \(P \)-adic completion of \(A \). There exists \(x \in A_P \) such that \(\phi_P(x) = \phi_{P-1}(1) \) if and only if \(\phi_{P-1}(1) \equiv 0 \pmod{P^2} \).

Proof. — First assume that \(\phi_{P-1}(1) \not\equiv 0 \pmod{P^2} \). By Lemma 2.3, we have that \(v_P(\phi_{P-1}(1)) = 1 \), and therefore \(\phi_P(X) - \phi_{P-1}(1) \in A_P[X] \) is an Eisenstein polynomial. In particular \(\phi_{P-1}(1) \not\equiv \phi_P(A_P) \).

Now, let us assume that \(\phi_{P-1}(1) \equiv 0 \pmod{P^2} \). Then \(v_P(\log_C(\phi_{P-1}(1))) = v_P(\phi_{P-1}(1)) \). Therefore, there exists \(y \in PA_P \) such that:

\[
\log_C(\phi_{P-1}(1)) = Py.
\]

Set \(x = e_C(y) \in PA_P \). We have:

\[
\phi_P(x) = e_C(Py) = e_C(\log_C(\phi_{P-1}(1))) = \phi_{P-1}(1).
\]

Remark 2.7. — Since 1 is an Anderson’s special point for the Carlitz module, the above lemma can also be deduced by Corollary 2.4 and the work of G. Anderson in [1].
3. Hilbert class fields and the unit module for $\mathbb{F}_q[T]$

Let P be a prime of A of degree d. Recall that K_P is the Pth-cyclotomic function field, i.e. the finite extension of k obtained by adjoining to k the Pth-torsion points of the Carlitz module. Let R_P be the integral closure of A in K_P and let Δ be the Galois group of K_P/k. Recall that Δ is a cyclic group of order $q^d - 1$ (see Paragraph 1.2). Recall that the unit module $U(A)$ is the free A-module (via ϕ) generated by 1 (see Paragraph 2.2).

3.1. Kummer theory. — We will need the following lemma:

Lemma 3.1. — The natural morphism of A-modules: $\frac{U(A)}{P.U(A)} \rightarrow \frac{C(K_P)}{P.C(K_P)}$ induced by the inclusion $U(A) \subset C(K_P)$, is an injective map.

Proof. — Recall that $K_{P,\infty} = K_P \otimes_k k_\infty$. Let $Tr : K_{P,\infty} \rightarrow k_\infty$ be the trace map. Now let $x \in U(A) \cap P.C(K_P)$. Then there exists $z \in K_P$ such that $\phi_P(z) = x$. Since $e_C(K_{P,\infty})$ is A-divisible, we get that $z \in U(R_P)$. Thus $Tr(z) \in U(A)$. But:

$$-x = \phi_P(Tr(z)).$$

Therefore $x \in P.U(A)$. □

Let $\mathfrak{U} = \{ z \in \mathbb{C}_\infty, \phi_P(z) \in U(A) \}$. Then \mathfrak{U} is an A-module (via ϕ) and $P.\mathfrak{U} = U(A)$. Therefore the multiplication by P gives rise to the following exact sequence of A-modules:

$$0 \rightarrow \Lambda_P \oplus U(A) \rightarrow \mathfrak{U} \rightarrow \frac{U(A)}{P.U(A)} \rightarrow 0.$$

Set $\gamma = e_C(\frac{P^{-1}log_C(1)}{P})$. Then $\gamma \in \mathfrak{U}$. Set $L = K_P(\mathfrak{U})$. By the above exact sequence, we observe that:

$$L = K_P(\gamma).$$

Furthermore L/k is a Galois extension and we set: $G = Gal(L/K_P)$ and $\mathfrak{G} = Gal(L/k)$. Let $\delta \in \Delta$ and select $\tilde{\delta} \in \mathfrak{G}$ such that the restriction of $\tilde{\delta}$ to K_P is equal to δ. Let $g \in G$, then $\tilde{\delta}g\tilde{\delta}^{-1} \in G$ does not depend on the choice of $\tilde{\delta}$. Therefore G is a $\mathbb{F}_p[\Delta]$-module.

Lemma 3.2. — We have a natural isomorphism of $\mathbb{F}_p[\Delta]$-modules:

$$G \simeq \text{Hom}_A \left(\frac{U(A)}{P.U(A)}, \Lambda_P \right).$$

Proof. — Recall that the multiplication by P induces an A-isomorphism:

$$\frac{\mathfrak{U}}{\Lambda_P \oplus U(A)} \simeq \frac{U(A)}{P.U(A)}.$$

For $z \in \mathfrak{U}$ and $g \in G$, set:

$$< z, g > = z - g(z) \in \Lambda_P.$$

One can verify that:

- $\forall z_1, z_2 \in \mathfrak{U}, \forall g \in G, < z_1 + z_2, g >= < z_1, g > + < z_2, g >,$
- $\forall z \in \mathfrak{U}, \forall g_1, g_2 \in G, < z, g_1g_2 >= < z, g_1 > + < z, g_2 >,$
• \(\forall z \in U, \forall a \in A, \forall g \in G, <\phi_a(z), g > = \phi_a(<z, g>) \),
• \(\forall z \in U, \forall g \in G, \forall \delta \in \Delta, <\tilde{\delta}(z), \delta.g > = \delta(<z, g>) \), where \(\tilde{\delta} \in \mathfrak{G} \) is such that its restriction to \(K_P \) is equal to \(\delta \),
• let \(g \in G \) then: \(<z, g > = 0 \) \(\forall z \in U \) if and only if \(g = 1 \).

Let \(z \in U \) be such that \(<z, g > = 0 \) \(\forall g \in G \). Then \(z \in U^G \). Thus \(z \in K_P \) and \(\phi_P(z) \in U(A) \). Thus, by Lemma 3.1, we get \(\phi_P(z) \in P.U(A) \), and therefore \(z \in \Lambda_P \oplus U(A) \).

We deduce from above that \(<.,.> \) induces a non-degenerate and \(\Delta \)-equivariant bilinear map:

\[
\frac{U(A)}{P.U(A)} \times G \rightarrow \Lambda_P.
\]

\[\square \]

3.2. Class groups. — Let \(\omega_P : \Delta \cong (A/PA)^* \) be the cyclotomic character, i.e. \(\forall a \in A \setminus PA, \omega_P(\sigma_a) \equiv a \pmod{P} \). Let \(W = \mathbb{Z}_p[\mu_{q^d-1}] \), and fix \(\rho : A/PA \rightarrow W/pW \) a \(\mathbb{F}_p \)-isomorphism. We still denote by \(\omega_P \) the morphism of groups \(\Delta \cong \mu_{q^d-1} \) which sends \(\sigma_a \) to the unique root of unity congruent to \(\rho(\omega_P(a)) \) modulo \(pW \). Observe that \(\hat{\Delta} := \text{Hom}(\Delta, W^*) \) is a cyclic group of order \(q^d - 1 \) generated by \(\omega_P \). For \(\chi \in \hat{\Delta} \), we set:

• \(e_\chi = \frac{1}{q^d-1} \sum_{\delta \in \Delta} \chi(\delta) \delta^{-1} \in W[\Delta] \),
• \([\chi] = \{ \chi^j, j \geq 0 \} \subset \hat{\Delta} \),
• \(e_{[\chi]} = \sum_{\psi \in [\chi]} e_\psi \in \mathbb{Z}_p[\Delta] \).

Let \(\text{Pic}(R_P) \) be the ideal class group of the Dedekind domain \(R_P \).

Corollary 3.3. — The \(\mathbb{Z}_p[\Delta] \)-module: \(e_{[\omega_P]}(\text{Pic}(R_P) \otimes \mathbb{Z}_p) \) is a cyclic module. Furthermore, it is non trivial if and only if \(B(q^d - 2) \equiv 0 \pmod{P} \).

Proof. — Recall that \(H(A) = \{0\} \). Note that the trace map induces a surjective morphism of \(A \)-modules \(H(R_P) \rightarrow H(A) \). Therefore:

\[
H(R_P)^\Delta = \{0\}.
\]

Now, note that, \(\forall \chi \in \hat{\Delta} \), we have an isomorphism of \(W \)-modules:

\[
e_\chi(\text{Cl}^0(K_P) \otimes W) \cong e_{\chi'}(\text{Cl}^0(K_P) \otimes W).
\]

Thus by [3] we get that \(e_{[\omega_P]}(\text{Cl}^0(K_P) \otimes \mathbb{Z}_p) \) is a cyclic \(\mathbb{Z}_p[\Delta] \)-module. Furthermore, by [5], this latter module is non-trivial if and only if \(B(q^d - 2) \equiv 0 \pmod{P} \). We conclude the proof by noting that:

\[
e_{[\omega_P]}(\text{Cl}^0(K_P) \otimes \mathbb{Z}_p) \cong e_{[\omega_P]}(\text{Pic}(R_P) \otimes \mathbb{Z}_p).
\]

\[\square \]

Recall that \(L = K_P(\gamma) \) where \(\gamma = ec \left(\frac{P - 1}{P} \log C(1) \right) \). Since \(\gamma \in O_L \), the derivative of \(\phi_P(X) - \phi_{P-1}(1) \) is equal to \(P \), and \(ec(K_P, \infty) \) is \(A \)-divisible, we conclude that \(L/K_P \) is unramified outside \(P \) and every place of \(K_P \) above \(\infty \) is totally split in \(L/K_P \). Furthermore, by Lemma 2.6:

• if \(\phi_{P-1}(1) \equiv 0 \pmod{P^2} \), \(L/K_P \) is unramified,
• if \(\phi_{P^{-1}}(1) \not\equiv 0 \pmod{P^2} \), \(L/K_P \) is totally ramified at the unique prime of \(R_P \) above \(P \) (see the proof of Lemma 2.6).

Let \(H/K_P \) be the Hilbert class field of \(R_P \), i.e. \(H/K_P \) is the maximal unramified abelian extension of \(K_P \) such that every place in \(S_\infty(K_P) \) is totally split in \(H/K_P \). Then the Artin symbol induces a \(\Delta \)-equivariant isomorphism:

\[
\text{Pic}(R_P) \cong \text{Gal}(H/K_P).
\]

Note that \(e_{[\omega_P]}G = G \), where \(G = \text{Gal}(L/K_P) \). Thus the Artin symbol induces a \(\mathbb{F}_p[\Delta] \)-morphism:

\[
\psi : e_{[\omega_P]} \left(\frac{\text{Pic}(R_P)}{p\text{Pic}(R_P)} \right) \rightarrow \text{Gal}(L \cap H/K_P).
\]

Therefore, by Corollary 3.3 and Lemma 3.2, we get the following result which explains the congruence of Corollary 2.4:

Theorem 3.4. — The morphism of \(\mathbb{F}_p[\Delta] \)-modules induced by the Artin map:

\[
\psi : e_{[\omega_P]} \left(\frac{\text{Pic}(R_P)}{p\text{Pic}(R_P)} \right) \rightarrow \text{Gal}(L \cap H/K_P),
\]

is an isomorphism, where \(L = K_P \left(e_C \left(\frac{P - 1}{P} \log_C(1) \right) \right) \) and \(H \) is the Hilbert class field of \(R_P \).

3.3. Prime decomposition of units.

A natural question arises: are there infinitely many primes \(P \) such that \(\phi_{P^{-1}}(1) \equiv 0 \pmod{P^2} \)? We end this note by some remarks centered around this question.

Lemma 3.5. — Let \(N(d) \) be the number of primes \(P \) of degree \(d \) such that \(\phi_{P^{-1}}(1) \not\equiv 0 \pmod{P^2} \). Then:

\[
N(d) > \frac{1}{d}q^{q-1} - \frac{q}{d(q-1)}q^{d/2}.
\]

Proof. — Let \(N_q(d) \) be the number of primes of degree \(d \). Then:

\[
N_q(d) > \frac{1}{d}q^d - \frac{q}{d(q-1)}q^{d/2}.
\]

Let \(M(d) \) be the number of primes \(P \) of degree \(d \) such that \(\phi_{P^{-1}}(1) \equiv 0 \pmod{P^2} \). Set:

\[
V(d) = \sum_{i=0}^{d-1} \frac{L_{d-1}}{L_i} \in A.
\]

Then \(\deg_T V(d) = q^{d-1} \), and if \(P \) is a prime of degree \(d \), we have by Lemma 2.3 : \(\phi_{P^{-1}}(1) \equiv 0 \pmod{P^2} \) if and only if \(V(d) \equiv 0 \pmod{P} \). Therefore:

\[
M(d) \leq \frac{1}{d}q^{d-1}.
\]
Remark 3.6. — We have:

\[V(2) = 1 + T - T^q. \]

Thus \(V(2) \) is (up to sign) the product of \(q/p \) primes of degree \(p \). Therefore there exist primes \(P \) of degree \(2 \) such that \(\phi_{P-1}(1) \equiv 0 \pmod{P^2} \) if and only if \(p = 2 \), and in this case there are exactly \(q/2 \) such primes.

Set \(H(X) = \sum_{i=0}^{p-1} \frac{1}{i!} X^i \in \mathbb{F}_q[X] \). Let \(S \) be the set of roots of \(H(X) \) in \(\mathbb{C}_\infty \). Note that \(|S| = p - 1 \). Let us suppose that \(S \subset \mathbb{F}_q \). Let \(P \) be a prime of \(A \) such that \(P \) divides \(T^q - T - \alpha \) for some \(\alpha \in \mathbb{F}_q^* \). Observe that such a prime is of degree \(p \). Now, for \(k = 0, \ldots, p - 1 \), we have:

\[L_k \equiv \frac{1}{k!} (-\alpha)^k \pmod{P}. \]

Therefore:

\[V(p) = \sum_{i=0}^{p-1} \frac{L_{p-1}}{L_i} \equiv -\alpha^{p-1} H\left(\frac{-1}{\alpha}\right) \pmod{P}. \]

Thus there exist at least \((p-1)^2/p^2 \) primes \(P \) in \(A \) of degree \(p \) such that \(\phi_{P-1}(1) \equiv 0 \pmod{P^2} \).

Lemma 3.7. — Let \(P \) be a prime of degree \(A \) and let \(n \geq 1 \). We have an isomorphism of \(A \)-modules:

\[C\left(\frac{A}{P^n A}\right) \cong \frac{A}{P^{n-1}(P-1)A}. \]

Proof. — We first treat the case \(n = 1 \). By Lemma 2.3, we have: \(\phi_P(X) \equiv X^{q^d} \pmod{P} \). Therefore \((P - 1)C(A/PA) = \{0\}\). Now let \(Q \in A \) such that \(Q.C(A/PA) = \{0\}\). Then the polynomial \(\phi_Q(X) \pmod{P} \) \(\in (A/PA)[X] \) has \(q^d \) roots in \(A/PA \). Thus \(\deg_T Q \geq d \). This implies that \(C(A/PA) \) is a cyclic \(A \)-module isomorphic to \(A/(P-1)A \).

Now let us assume that \(n \geq 2 \). By Lemma 2.3, we have:

\[\forall a \in PA, \ v_P(\phi_P(a)) = 1 + v_P(a). \]

This implies that \(C(PA/PnA) \) is a cyclic \(A \)-module isomorphic to \(A/P^{n-1}A \) and \(P \) is a generator of this module. The lemma follows from the fact that we have an exact sequence of \(A \)-modules:

\[0 \rightarrow C\left(\frac{PA}{P^n A}\right) \rightarrow C\left(\frac{A}{P^n A}\right) \rightarrow C\left(\frac{A}{PA}\right) \rightarrow 0. \]

We deduce from the above lemma:

Corollary 3.8. — Let \(P \) be a prime of \(A \). Then \(\phi_{P-1}(1) \equiv 0 \pmod{P^2} \) if and only if there exists \(a \in A \setminus PA \) such that \(\phi_a(1) \equiv 0 \pmod{P^2} \).

This latter corollary leads us to the following problem:

Question 3.9. — Let \(b \in A_+ \). Is it true that there exists a prime \(Q \) of \(A \), \(Q \equiv 1 \pmod{b} \), such that \(\phi_Q(1) \) is not squarefree?

A positive answer to that question has the following consequence:
Lemma 3.10. — Assume that for every $b \in A_+$, we have a positive answer to question 1. Then, there exist infinitely many primes P such that $\phi_{P-1} \equiv 0 \pmod{P^2}$.

Proof. — Let S be the set of primes P such that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$. Let us assume that S is finite. Write $S = \{P_1, \cdots, P_s\}$. Set $b = 1 + \prod_{i=1}^{s}(P_i - 1)$ (if $S = \emptyset$, $b = 1$). Let Q be a prime of A such that $\phi_Q(1)$ is not squarefree and $Q \equiv 1 \pmod{b}$. Then there exists a prime P of A such that:

$$\phi_Q(1) \equiv 0 \pmod{P^2}.$$

Since $\phi_P(1) \equiv 1 \pmod{P}$, we have $P \neq Q$ and therefore $Q \in A \setminus PA$. Furthermore, for $i = 1, \cdots, s$, Q is prime to $P_i - 1$. Therefore, by Lemma 3.7, $\phi_Q(1) \not\equiv 0 \pmod{P_i^2}$. Thus $P \not\in S$ which is a contradiction by Corollary 3.8. \qed

References

October 3, 2012

Bruno Anglès, Université de Caen, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France • E-mail: bruno.angles@unicaen.fr

Mohamed Ould Douh, Université de Caen, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France • E-mail: mohamed.douh@unicaen.fr