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Abstract. — The Cohen-Lenstra heuristic for the class groups of real quadratic number fields
is generalized to higher class groups. A “good part” of higher class group is defined. In general
this is a non abelian proper factor group of the higher class group. Properties of the good part
of the second class group of real quadratic fields are described, a probability distribution on the
set of those groups is introduced and proposed as generalization of the Cohen-Lenstra heuristic.
The agreement with number field tables is close.

Résumé. — Les heuristiques de Cohen-Lenstra pour les groupes de classes des corps qua-
dratiques réels sont généralisés à des groupes de classes supérieurs. Nous définissons une partie
« bonne » de ces groupes de classes supérieurs : il s’agit en général d’un groupe non-abélien
facteur propre du groupe des classes supérieurs. En particulier, nous obtenons des propriétés de
la partie « bonne » du deuxième groupe de classes des corps quadratiques réels et nous décri-
vons un modèle probabilistique sur l’ensemble de ces groupes en généralisant les heuristiques de
Cohen-Lenstra. Les résultats numériques obtenues sont convaincants.

1. Introduction

Class groups are interesting objects of algebraic number theory and for a number field K class
field theory gives a number field K1 - the Hilbert class field - such that K1/K is a Galois
extension with group isomorphic to the class group of K. The Galois group of the Hilbert
class field K2 of K1 over K is isomorphic to an extension of the class group of K1 by the class
group of K. This group is called second class group of K and iterating this approach leads to
the higher class groups which are finite and solvable groups. Class groups are also mysterious,
but the (mostly unproven) Cohen-Lenstra heuristic ([C-L], [C-M]) allows to describe the
distribution of class groups in good accordance with number field tables.
The aim of this work is to do the same for the second class groups of real quadratic number
fields as Cohen-Lenstra did for the class groups and it is an application of [C-M]. The
structure is as follows: Chapter 2 defines a good part of higher class groups and in Chapter 3
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50 On the Second Class Group of Real Quadratic Number Fields

properties of the good parts of second class groups of quadratic number fields are explained.
Chapter 4 describes some parts of the Cohen-Lenstra heuristic and gives the new heuristic
for the distribution of the good parts of second class groups of real quadratic number fields
(see Conjectures 12 and 14). The idea is to apply the Cohen-Lenstra heuristic to each step in
the derived series of the good part of the second class group. This procedure should work for
any higher class group of totally real abelian number fields, but in cases different from real
quadratic fields the group theory which is necessary to calculate the Cohen-Lenstra heuristic
becomes difficult and it is also difficult to compute number field tables to compare them with
the heuristic. The last two chapters show how the second class groups of real quadratic number
fields can be calculated. Class group relations reduce their computation to the computation
of class groups of number fields which can be found in the tables from [M1] (with their class
group; these tables are also available in the database at http://www.mathematik.uni-kl.
de/~numberfieldtables).
The following notations are used: Let G be a finite group, A a G-module and n an in-
teger. The module A is a multiplicatively written right module. The n-th Tate coho-
mology group is denoted by Ĥn(G,A), AG := {a ∈ A | ag = a for all g ∈ G} and IGA :={
ag−1 | g ∈ G, a ∈ A

}
. If k is a positive integer, then (n)k :=

∏k
i=1 (1− n−i) and (n)∞ :=∏∞

i=1 (1− n−i). The set of all prime numbers is P. If S is a subset of P and B a finite abelian
group, then ZS denotes the smallest localization of Z in Q such that all elements from S are
units in ZS and BS denotes the largest subgroup of B of order coprime to all elements of S.
If K is a number field, then Cl(K) denotes the class group of K and OK the ring of integers
in K. If L/K is an extension of number fields, then Cl(L/K) is the relative class group of
L/K (the kernel of the norm map: Cl(L)→ Cl(K)).

2. Good Part of Higher Class Groups

If K is a number field the maximal abelian and unramified extension of K (in one fixed
algebraic closure of Q) is called Hilbert class field of K and denoted by K1. The Hilbert
class field K2 of K1 is called second Hilbert class field and so on. One gets a sequence
K ≤ K1 ≤ K2 ≤ · · · of number fields where Ki/K is Galois, unramified and solvable. Since
Cl(K) ∼= Gal(K1/K) one defines Gal(Ki/K) to be the i-th class group of K.

Lemma 1. — ([Su, 2.5.17]) Let A be a finite G-module over a finite group G and N ≤ G

be a normal subgroup such that |N | and |A| are coprime. Define e := 1
|N |
∑

g∈N g. Then
A = AN ⊕ INA is a direct decomposition into G-modules, both summands are the unique
direct complements of each other, INA = A1−e and AN = Ae.

Let L/K be a Galois extension of number fields and N be the maximal subfield of L1 con-
taining L such that (N : L) and (L : K) are coprime. Then N/L is a Galois extension and
Gal(N/L) is a finite Gal(L/K)-module (Gal(L/K) acts by conjugation on Gal(N/L)). Define
the non-central coprime Hilbert class fieldM of L over K to be the fixed field M = NG

by the group G := Gal(N/L)e where e = 1
(L:K)

∑
g∈Gal(L/K) g is a central idempotent of the
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group ring QGal(L/K). Let L be a Galois number field. Then L1,f denotes the non-central
coprime Hilbert class field of L over Q, L2,f denotes the non central coprime Hilbert class
field of L1,f over L, which is also called second non-central coprime Hilbert class field of K.
This approach leads to a sequence L ≤ L1,f ≤ L2,f ≤ L3,f ≤ · · · of number fields.
The group Gal(Li,f/L) is called good part of the i-th class group of L. In general it
is a proper factor group of the i-th class group (see [Bo, Proposition 3.7]). The idea of
its definition is to have a factor group of the i-th class group, where consecutive steps in
the derived series have coprime order and where the i-th step corresponds to a subgroup of
Cl(Li−1,f/Li−2,f ) which is good in the sense of Cohen-Martinet. This also prevents excluded
parts of some step of the derived series to appear later. The whole theory also works if one
excludes some additional primes for the order in some of the steps in the derived series (and
is able to use some more in some others; as long as consecutive steps remain to have coprime
order).

Remark. — The part of Gal((Li,f )1/Li,f ) which is not coprime to (Li,f : Li−1,f ) is excluded
from the considerations as bad part. N. Boston, M. Bush and F. Hajir define a probability
distribution on certain pro-p-groups which should describe the higher p-class field towers of
imaginary quadratic number fields for an odd prime p (see [B-B-H]).

Proposition 2. — Let L be an abelian number field and set L0,f := L and L−1,f := Q. Let
−1 ≤ j < i < k be integers, Gi := Gal(Li,f/Q), Hk := Gal(Lk,f/Lk−1,f )), H0 := G0 and
ei = 1

(Li,f :Li−1,f )

∑
g∈Hi g. Then the following hold:

(a) Li,f/Q is Galois,
(b) Gal(Li+1,f/Li,f )Gal(Li,f/Li−1,f ) = {1},
(c) Ĥn(Gal(Li,f/Lj,f ),Gal(Li+1,f/Li,f )) = {1} for every positive integer n,
(d) the exact sequence of groups

{1} → Gal(Lk,f/Li,f )→ Gal(Lk,f/Lj,f )→ Gal(Li,f/Lj,f )→ {1}
is split,

(e) Gal(Li,f/Lj,f )′ ∼= Gal(Li,f/Lj+1,f ),
(f) ClSi(Li,f/Li−1,f ) = ClSi(Li,f )1−ei ∼= Gal(Li+1,f/Li,f ), where Si is the set of primes di-
viding (Li,f : Li−1,f ),

(g) the central idempotent ei of QGi corresponds to the Q-character 1GiHi .

Proof. — Statement (a) follows by induction and (b) is a consequence of Lemma 1. De-
fine G := Gal(Li+1,f/Li−1,f ) and A := Gal(Li+1,f/Li,f ). Since (G : A) and |A| are
coprime, one has Ĥn(G/A,A) = {1} ([Ne1, Theorem 1.3.16]) for every integer n. By
induction the inf-res-sequence ([Ne1, Theorem 1.4.7]) shows that the Tate cohomology
Ĥn(Gal(Li,f/Lj,f ),Gal(Li+1,f/Li,f )) = {1} for each integer n ≥ 1 which proves (c).
The cohomological version of the Schur-Zassenhaus theorem (see [Su, Chapter 2.7]) and
a short calculation show (d). Let H be a complement of A in G. If x, y ∈ H and
a, b ∈ A, then x−1a−1y−1baxb−1y = ax(y−1)by(x−1). This implies G′ = IGA and therefore
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G′ = A because of Lemma 1. Statement (e) follows by induction. The natural action of
Aut(Li,f ) on OLi,f makes Cl(Li,f ) into a Gal(Li,f/Li−1,f )-module which is isomorphic to the
Gal(Li,f/Li−1,f )-module Gal((Li,f )1/Li,f ) via Artin isomorphism ([Ne1, Theorem 2.1.11]).
Because of [Lem1, Proposition 1] the relative class group ClSi(Li,f/Li−1,f ) can be replaced by
ClSi(Li,f )(1−ei) ∼= Gal(M/Li,f )(1−ei), whereM is the maximal unramified abelian S′i-extension
of Li,f . The definition of Li+1,f implies (f). If N is a normal subgroup of a finite group U and
χ denotes the characteristic function, then 1UN (x) = 1

|N | ·| {g ∈ U | xg ∈ N} | = (U : N)·χ{x∈N}
for all x ∈ U . Therefore Ker(1UN ) = Ker(ϕ) = N for every irreducible CU constituent ϕ of 1UN
and 〈1UN , ϕ〉 = ϕ(1) by Frobenius reciprocity. Theorem 2.12 from [I] shows eUN = 1

N

∑
g∈N g,

if eUN is the central CU -idempotent corresponding to 1UN , which is even from QU . This shows
(g).

Let G be a finite group. Two G-modules A, B are called conjugate, if and only if there is
an automorphism φ ∈ Aut(G) such that B ∼= φA as G-module. The module φA has the same
underlying group as A and g ∈ G acts on φA by a 7→ aφ

−1(g).

Proposition 3. — (see [R] for used methods) Let G and A be finite groups and let A be
abelian. Let M ⊂ Hom(G,Aut(A)) be the subset of all ρ for which {1}×A equals the last non
trivial term in the derived series of G nρ A and Ĥ1(G,A) = {1} and AG = {1} with regard
to the G-module structure on A which is defined by ρ. Then one has:
(a) If ϕ,ψ ∈M , then Gnϕ A ∼= Gnψ A if and only if the G-module structures on A defined
by ϕ and ψ are conjugate.

(b) Let ϕ ∈M and kϕ be the number of isomorphism classes of module structures of G on A
which are conjugate to the G-module structure on A defined by ϕ. Then

kϕ =
|A| · |AutG(A)| · |Aut(G)|

|Aut(Gnϕ A)| .

Proof. — Let ρ, ρ1, ρ2 ∈ Hom(G,Aut(A)). Let Aρ denote the G-module which corresponds
to ρ. The group H := Aut(G) × Aut(A) acts from the left on Hom(G,Aut(A)) by (Φ,Ψ)ρ =

iΨ ◦ ρ ◦ Φ−1, if iΨ denotes the left conjugation with Ψ in Aut(A). Let U denote the normal
subgroup {1} × Aut(A) of H. The U -stabilizer of ρ is AutG(Aρ). The two homomorphisms
ρ1, ρ2 are in the same U -orbit, if and only if Aρ1

∼= Aρ2 as G-modules and they are in the same
H-orbit, if and only if Aρ1 and Aρ2 are conjugate. Therefore the H-orbit of ρ decomposes
under the action of the normal subgroup U ≤ H into kρ orbits of the same length |Aut(A)|

|AutG(Aρ)| .
The following gives another description of the H-orbits:
(i) Let Comp(ρ) be the subset of Aut(G) × Aut(A) consisting of all (Φ,Ψ), such that f :

G nρ A → G nρ A : (g, a) 7→ (Φ−1(g),Ψ−1(a)) is an automorphism. Then Comp(ρ) is the
H-stabilizer of ρ.

(ii) ρ1, ρ2 are in the sameH-orbit, if and only if there is an isomorphism f : Gnρ1A→ Gnρ2A

with f({1} ×A) = {1} ×A and f(G× {1}) = G× {1}.
(iii) ϕ,ψ ∈M are in the same H-orbit if and only if Gnϕ A ∼= Gnψ A.
(iv) If ϕ ∈M , then |Comp(ϕ)| · |A| = |Aut(Gnϕ A)|.
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If g, h ∈ G, a, b ∈ A, (Φ,Ψ) ∈ Aut(G) × Aut(A) and f : G × A → G × A : (g, a) 7→
(Φ−1(g),Ψ−1(a)) is a map, then

f(g, a) ·ρ f(h, b) = (Φ−1(g),Ψ−1(a)) ·ρ (Φ−1(h),Ψ−1(b))

= (Φ−1(g · h), ρ(Φ−1(h))(Ψ−1(a)) ·Ψ−1(b))

= (Φ−1(g · h),Ψ−1((Ψ ◦ (ρ ◦ Φ−1)(h) ◦Ψ−1)(a) ·Ψ−1(b)))

= (Φ−1(g · h),Ψ−1((Φ,Ψ)ρ(h)(a) · (b)))
= f((g, a) ·(Φ,Ψ)ρ (h, b))

This calculation implies (i) and (ii). If ϕ,ψ ∈M , then an isomorphism f : GnϕA→ Gnψ A

maps {1} × A to {1} × A and G × {1} to a complement of {1} × A by the assumption on
M . Since Ĥ1(G,A) = {1} theorem 2.8.8 from [Su] implies that f(G × {1}) and G × {1}
are conjugate in G nψ A and statements (iii) and (a) are implied by (ii). This also shows
Aut(G nϕ A) = Comp(ϕ) · i(A), if i : A → Inn(G nϕ A) denotes the homomorphism which
maps a ∈ A to the left conjugation with a in G nϕ A. By assumption AG = {1}. A short
calculation gives Comp(ϕ)∩ i(A) = {1} and |A| = |i(A)| and hence (iv). If ϕ ∈M the size of
its H-orbit equals

|Aut(G)| · |Aut(A)|
|Comp(ϕ)| =

|Aut(G)| · |Aut(A)| · |A|
|Aut(Gnϕ A)| = kϕ ·

|Aut(A)|
|AutG(Aρ)|

.

This implies (b).

Remark. — If L is an abelian number field, then for any integer i > 0 and some
ρ ∈ Hom(Gal(Li−1,f/Q),Aut(Gal(Li,f/Li−1))) by Proposition 2 one has Gal(Li,f/Q) ∼=
Gal(Li−1,f/Q) nρ Gal(Li,f/Li−1) and ρ ∈M according to the notation of Proposition 3.

3. Good Part of Second Class Groups of Real Quadratic Fields

If G is abelian, then DG denotes a group isomorphic to C2 ninv G, where the generator of
C2 acts by inversion on every element of G. The group G is identified as normal subgroup of
DG.
The following lemma is well-known (see [Bo] for a proof for example):

Lemma 4. — Let K1 be the Hilbert class field of a quadratic number field K. Then
Gal(K1/Q) ∼= DCl(K).

Let M denote the set of isomorphism classes of all DG-modules A with the following prop-
erties: G and A are finite abelian groups, |G| is odd, |G| and |A| are coprime and AG = {1}.
The notation (G,A) ∈ M is used for a DG-module A from M. Let G denote the set of
isomorphism classes of all groups G with the following properties: |G| < ∞, G/G′ ∼= C2,
G′′′ = {1} and |G′/G′′| and |G′′| are coprime. If K is a quadratic number field, then
(Gal(K1,f/K),Gal(K2,f/K1,f )) ∈ M and Gal(K2,f/Q) ∈ G by Proposition 2. With the
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proof of this proposition it is easy to see, that for G ∈ G one has G ∼= DG′/G′′ n G′′ and
(G′/G′′, G′′) ∈M.

Lemma 5. — Let A be a DG-module, where A and G are finite abelian groups of coprime
order. Then there is a decomposition

A =
⊕

N≤G
AN

of DG-modules such that N acts trivially on AN and every element of G \N acts fixed point
freely on AN . The AN are unique up to isomorphism and have the properties:
(a) AM =

⊕
M≤N≤GAN for every subgroup M of G.

(b) AN = {1}, if G/N is not cyclic.

Proof. — Since for every g ∈ G the subgroup 〈g〉 is a normal subgroup of DG, the decomposi-
tion A = I〈g〉A⊕A〈g〉 of Lemma 1 is a decomposition of DG-modules. Let A = A1⊕· · ·⊕Ar be
the decomposition of A into indecomposable DG-modules. Then each g ∈ G acts trivially or
fixed point freely on each of these summands. The set of all elements of G which act trivially
on a fixed indecomposable Ai form a subgroup Ni of G. Now set AN to be the sum of all
indecomposable Ai where Ni = N . Then AN is unique up to isomorphism by the theorem of
Krull-Remak. For a subgroup M of G one has AM =

⊕
N≤G(AN )M . If M ⊆ N , then every

element of AN is fixed by every element of M and (AN )M = AN follows. In the other case
there is an m ∈ M \ N , which acts fixed point freely on AN and (AN )M = {1}. Hence it
suffices to consider the subgroups containing M : AM =

⊕
M≤N≤GAN . This shows property

(a). If B 6= {1} is an irreducible G/N -submodule of AN , then B and AN are faithful modules
of the finite abelian group G/N , because every element of G\N acts fixed point freely on AN
and therefore it can not fix a non trivial subgroup B of AN . By the lemma of Schur G/N is
isomorphic to a finite abelian subgroup of the unit group of a skew-field and hence cyclic (see
[Su, 2.5.21]), so property (b) follows.

Remark. — This lemma is a generalization of [Su, 2.5.23] and [C-R, Proposition 4]. The
conclusion of the lemma holds true if one replaces DG by a finite group H such that G ≤ H

and every subgroup of G is a normal subgroup of H, for example H = G or G = Z(H).

Lemma 6. — Let (G,A) ∈M and let ϕ ∈ DG \G be any involution. Then:
(a) If G = 〈σ〉 is cyclic, then A = A〈ϕ〉 ⊕ (A〈ϕ〉)σ.
(b) A = A〈ϕ〉 ⊕K as group, where K ∼= A〈ϕ〉 as subgroup of A.
(c) There is a subgroup M ≤ A such that A = M ⊕Mϕ and M ∼= A〈ϕ〉 (as groups).

Proof. — If G is cyclic, statements (a) and (b) are special cases of [Ho, Theorem 4]. By
Lemma 5 the DG-module A has a direct decomposition of DG-modules such that DG acts
as dihedral group on every summand. Since taking fixed points commutes with direct sums,
the general case of (b) reduces to the cyclic case. The module A decomposes as C2-module
into components of prime power order and cohomology is compatible with direct sums. This
allows the restriction to the following two cases for proving (c):

Publications mathématiques de Besançon - 2013



Maximilian Boy 55

Case 1: 2 - |A|: Because |〈ϕ〉| and |A| are coprime, A has trivial Tate cohomology as 〈ϕ〉-
module and one has A = A〈ϕ〉⊕ I〈ϕ〉A (Lemma 1). The automorphism ϕ of A is trivial on the
first summand and inverts every element of the second summand. Statement (b) implies that
there is an isomorphism of groups f : A〈ϕ〉 → I〈ϕ〉A. SetM := 〈a·f(a)|a ∈ A〈ϕ〉〉. Since 2 - |A|
any element of A is a square a2 · f(b2) with a, b ∈ A〈ϕ〉. One has a · f(a) · (a · f(a))ϕ = a2 and
b · f(b) · (b−1 · f(b−1))ϕ = f(b2) and therefore A = M ·Mϕ. Since |A| = |A〈ϕ〉|2 = |M | · |Mϕ|
one has A = M ⊕Mϕ.
Case 2: A is a 2-group: By (b) A〈ϕ〉 has a group theoretical complement M := K ≤ A which
is isomorphic to A〈ϕ〉. Let x ∈ M ∩Mϕ and suppose x 6= 1. Let 2n denote the order of x.
Then n > 0 and y := x(2n−1) is an element of order 2 such that yϕ · y−1 is contained in M .
But because the order of y is 2 this is also an element of A〈ϕ〉 and so yϕ = y. Since y ∈ M ,
y = 1 follows. This is a contradiction. Because |A| = |M | · |ϕ(M)|, one has A = M ⊕Mϕ.

Proposition 7. — Let K,L be quadratic fields. Then Gal(K2,f/Q) ∼= Gal(L2,f/Q) if and
only if Gal(K2,f/K) ∼= Gal(L2,f/L).

Proof. — Suppose that Gal(K2,f/K) ∼= Gal(L2,f/L) (the other direction is implied by Propo-
sition 2 (e)). Define A := Gal(K2,f/K1,f ), B := Gal(L2,f/L1,f ) and G := Gal(K1,f/K). Then
by Proposition 2 (e) one can choose an isomorphism of groups such that G ∼= Gal(L1,f/L)

and therefore the conjugation with Gal(K1,f/Q) respectively with Gal(L1,f/Q) makes the
abelian groups A and B into DG-modules. By Proposition 3, these modules are conjugate
as G-modules. That means there is an automorphism φ of G such that the modules A and
φB are isomorphic as G-modules. Let x ∈ DG \G be an involution and y be any element of
G. If one defines φ̂ ∈ Aut(DG) by x 7→ x and y 7→ φ(y), then φB is the restriction of the
DG-module φ̂B to G (φ̂ is well defined since the action of x on G is contained in the center of
Aut(G)). It will be shown that A and C := φ̂B are isomorphic as DG-modules:
1. Case: G = 〈g〉 is cyclic: By Lemma 6 one has A = A〈x〉 ⊕ (A〈x〉)g. This is a decomposition
into g + g−1 invariant subgroups which are g + g−1 isomorphic. The same holds true for C.
By the theorem of Krull-Remak there is a g + g−1 invariant isomorphism f : A〈x〉 → C〈x〉.
Define f̂ : A → C by f̂(a · bg) = f(a) · f(b)g for a, b ∈ A〈x〉. By definition f̂ is a g + g−1

invariant isomorphism of abelian groups. The following calculation shows that it is also an
isomorphism of DG-modules. If a, b ∈ A〈x〉, then:

f̂((a · bg)g) = f̂(ag · b(g+g−1)·g−1)

= f̂(b−1 · (a · bg+g−1
)g)

= f(b−1) · f(a · bg+g−1
)g

= f(a)g · f(b)−1 · f(b)g
2+1

= (f(a) · f(b)g)g

= (f̂(a · bg))g
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f̂((a · bg)x) = f̂(a · bg−1
)

= f̂(a · bg+g−1 · b−g)
= f(a) · f(b)g+g

−1 · f(b)−g

= f(a)x · f(b)g·x

= (f̂(a · bg))x

2. Case: Reduction to cyclic case: One can apply case 1 to every summand in the decom-
position described in Lemma 5. Hence A and φ̂B are isomorphic as DG-modules and the
proposition follows from Proposition 3.

In the following the modules from M will be classified. This is not difficult, because these
modules behave like principal indecomposable modules, known from rings with minimal con-
dition.
Let R be a ring and G be a finite group. A finitely generated RG-module is called relatively
hereditary if and only if every module M , which arises from A by taking submodules or
quotients iteratively, is relative projective to {1} (see [Be, Definition 3.6.1]). For finite A
the notion “A is relatively hereditary” is a generalization of “|G| and |A| are coprime” and
it causes that every submodule of A with a group theoretic complement also has a module
theoretic complement ([Be, Proposition 3.6.4]; theorem of Maschke) and that this property
transfers to submodules and factor modules of A.

Lemma 8. — Let (G,A) ∈M. Then the following hold:
(a) If B is a DG-submodule of A, then (G,B), (G,A/B) ∈M.
(b) A is relatively hereditary as DG-module.

Proof. — For (a) it has to be shown that (A/B)G = {1}. By Lemma 1 one has AG = Ae and
therefore (A/B)G = (A/B)e = (Ae ·B)/B, where e = 1

|G|
∑

g∈G g. Thus (A/B)G = {1}.
It remains to show that A is relatively projective (to {1}) as DG-module: Let ϕ be the
generator of a complement of G in DG. By Lemma 6 there is a subgroup M ≤ A such that
A = M ⊕Mϕ as group. Let f : A → A be the projection on the first summand. Because
of proposition 3.6.4 from [Be], it suffices to show: TrDG{1}(

1
|G| · f) = idA (since (G,A) ∈ M,

the orders |A| and |G| are coprime and multiplication with 1
|G| is a well defined isomorphism;

TrDG{1} is the trace map (see [Be, Definition 3.6.2])). For this let x ∈ A. Then one has:

TrDG{1}

(
1

|G| · f
)

(x) = (
∏

g∈DG
f(xg)g

−1
)

1
|G|

= (
∏

g∈G
(f(xg) · f(xgϕ)ϕ)g

−1
)

1
|G|

= (
∏

g∈G
x)

1
|G| = x.
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The next lemma is a version of “idempotent refinement”. Some parts of the proof are almost
word for word the same as in [Ba, Sätze 3.6, 3.8, 3.9], although these theorems show different
statements.

Lemma 9. — Let G be a finite abelian group of odd order.
(a) Let (G,A) ∈ M. Then A is a finite direct sum of indecomposable DG-modules Ai, with

(G,Ai) ∈M. The DG-modules Ai are (after reordering) unique up to isomorphism.
(b) Let (G,A) ∈M such that A is an indecomposable DG-module. Then there is a prime p not
dividing |G| and integers e and r such that A ∼= (Cpe)

r as group. If F is the Frattini-subgroup
of A, then A/F is an irreducible and projective FpDG-module with (A/F )G = {1}.

(c) If p is a prime not dividing |G|, e an integer and M an irreducible and finite FpDG-module
with MG = {1}, then there is (up to isomorphism) exactly one indecomposable DG-module
A with (G,A) ∈M, |A| = |M |e and A/F ∼= M , where F is the Frattini-subgroup of A.

Proof. — (see [Ba], [Go]) Statement (a) is a consequence of the theorem of Krull-Remak and
Lemma 8 (a).
Assume A to be indecomposable. In lemma 5.2.1 and theorem 5.2.2 [Go] proves A ∼= (Cpe)

r

for suitable prime p and integers e, r under the assumption that |G| has to be coprime to
|A|. Gorenstein [Go] uses the coprimeness assumption just to ensure that submodules with
group theoretic complement also have module theoretic complements. By Lemma 8 (b) the
module A is relative hereditary. This suffices to use Gorenstein’s proofs and it shows that A is
projective as (Z/peZ)G-module since A is free as (Z/peZ)-module. The same argumentation
shows that A/F is a projective FpDG-module and (A/F )G = {1} follows from Lemma 8 (a).
Assume that A/F is not irreducible and hence not indecomposable. Therefore there exist
submodules M,N ≤ A with F ( N and F (M such that A/F = M/F ⊕ N/F . Define the
surjective R-homomorphism τ : A → A/M ∼= (A/F )/(M/F ) ∼= N/F where R := Z/peZG,
the first map is the residue-map and the last two maps are any R-isomorphisms. If i : N → A

is the inclusion, then τ ◦ i : N → N/F is a surjective R-homomorphism. By (b) there exists
an R-homomorphism ϕ : A→ N such that τ ◦ i ◦ϕ = τ . Since τ 6= 0 the Fitting lemma ([Be,
Lemma 1.4.4]) shows that i ◦ϕ is an automorphism of A. This is a contradiction to |N | < |A|
and shows (b).
Set R := (Z/peZ)G and let be 0 6= m ∈M . The R-homomorphism f : R→M : x 7→ m · x is
surjective. If R = A1⊕· · ·⊕An is a decomposition of R into indecomposable R-modules, then
there is a summand (without loss of generality) A1 =: A such that the restriction of f to A
is surjective (because surjective means non zero since M is irreducible). Because MG = {1}
and because of Lemma 1, one has AG = {1} and hence (G,A) ∈ M. Let F be the Frattini-
subgroup of A. Because M is an elementary abelian group F ≤ Ker(f |A) and because A/F
is irreducible by (b), one has F = Ker(f |A), which shows the existence part of (c).
It remains to show the uniqueness part of (c): Let B be an other indecomposable DG-module
with Frattini-subgroup E, (G,B) ∈ M, |B| = |M |e and B/E ∼= M . By (b) one has B ∼=
A ∼= (Cpe)

dimp(A/F ) as groups and A, B are projective R-modules. Let πA : A → A/F

and πB : B → A/F be surjective R-homomorphisms. Then there exist R-homomorphisms
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fA : A → B and fB : B → A such that πA = πB ◦ fA and πB = πA ◦ fB. Therefore
πA ◦ fB ◦ fA = πA and πB ◦ fA ◦ fB = πB. Because πA, πB 6= 0, the Fitting lemma shows that
fA ◦ fB and fB ◦ fA are isomorphisms and hence A ∼= B as G-modules.

Lemma 9 and Lemma 5 reduce the classification of M to the well-known classification (see
[I, Chapters 6, 9]) of the finite faithful FpDn-modules A with ACn = {1} where n is an odd
integer coprime to the prime p (Lemma 10).
Let χ1, χ2 be two characters of irreducible representations of a finite groupG over the algebraic
closure K of a field K. The characters χ1 and χ2 are called Galois conjugate over K if
and only if there is a K-automorphism σ of K such that χ1(g)σ = χ2(g) for all g ∈ G.
Galois conjugacy is an equivalence relation on a set of suitable representatives of irreducible
KG-representations.
If n > 1 is an odd integer and p a prime not dividing n, then the notations

fp,n = mink(p
k ≡ 1(n), k > 0) ·





1

2
, −1 is a power of p mod n

1, otherwise

and rp,n = ϕ(n)
2·fp,n are used in Lemma 10 and in Proposition 11.

Remark. — Let ξ be a primitive n-th root of 1. Then p decomposes in Q(ξ + ξ−1)/Q into
rp,n prime ideals with inertia degree fp,n.

Lemma 10. — Let p be a prime and n > 1 an integer such that 2, p - n. Let

Dn = 〈x, y | x2 = yn = 1, yx = y−1〉
be a dihedral group and let ξ0 = 1, ξ1, . . . , ξn−1 ∈ Fp, with r = n−1

2 and ξ−1
i = ξi+r for

i = 1, . . . , r, be the n-th roots of 1. Let ap be an integer and let Y1, . . . , Yap be a system of
representatives of the irreducible faithful Dn-representations over Fp. Then the following hold:

(a) If p = 2, then 1Fp and Xi = (x 7→
(

0 1

1 0

)
, y 7→

(
ξi 0

0 ξ−1
i

)
) for i ∈ {1, . . . , r} form a

system of representatives of all irreducible Dn-representations over Fp. If p 6= 2, then there
is in addition the irreducible representation (x 7→ −1, y 7→ 1). The Xi with ξi primitive are
the irreducible faithful representations.

(b) The 1-dimensional irreducible representations from (a) are their own Galois conjugacy
class, and two representations Xi and Xj are Galois conjugate, if and only if there is an
integer k such that ξp

k

i = ξ±1
j . Over Fp every Yi is the sum of the representations in a

Galois conjugacy class. Every Galois conjugacy class with a faithful representative occurs
in that way, different Yi belongs to different conjugacy classes and a Yi is faithful, if and
only if every FpG-representation of the conjugacy class belonging to Yi is faithful, if and
only if one FpG-representation of the conjugacy class belonging to Yi is faithful.

(c) The ap non similar irreducible faithful Dn-representations over Fp all have degree 2 · fp,n
and ap = rp,n.
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As consequence one gets the following proposition:

Proposition 11. — (classification of M) Let G be a finite abelian group of odd order. There
is a bijection between the isomorphism classes of indecomposable DG-modules from M and the
set of all tuples (j, U, e, p) where e is a positive integer, p a prime not dividing the order of G,
U a subgroup of G with G/U non trivial and cyclic, n = (G : U) and 1 ≤ j ≤ rp,n such that
the module corresponding to (j, U, e, p) is a faithful DG/U -module and as group isomorphic to
(Cpe)

2·fp,n .

4. Heuristic

As mentioned before the idea for a heuristic of higher class groups is to apply the Cohen-
Lenstra heuristic to every abelian step in the derived series. Therefore in the following some
parts of the Cohen-Lenstra heuristic are explained shortly.
A situation Σ = (G,K0, σ, S, e) consists of a finite group G, a number field K0, a signature
σ and a central idempotent e of QG. The set K(Σ) denotes the set of all number fields K
(contained in one fixed algebraic closure of K0) such that K/K0 has signature σ and is Galois
with group Gal(K/K0) ∼= G. A situation is called good, if K(Σ) is not empty, e is defined
in ZSG, e is orthogonal to 1

|G|
∑

g∈G g and êZ〈p〉G is a maximal order of Z〈p〉 in QG for every
prime p /∈ S and every central irreducible constituent ê of e in QG. Let K be a non empty set
of number fields, A be a finite eZSG-module, χ the characteristic function of any property,
f : K → R any map,

MK(f) := lim
x→∞

∑
K∈K,|dK |≤x f(K)

| {K ∈ K | x ≥ |dK |} |
be the density of f andMΣ(A) :=MK(Σ)(χ{ClS(K/K0)e∼=A}). Densities may not exist, but
the Cohen-Lenstra heuristic (see [C-L] for the idea, [C-M] for details or [Len, Chapter 2]
for a nice introduction) is a conjecture which proposes values forMΣ(A) (and much more),
if Σ is a good situation.

Remark. — The eZSG-module structure on ClS(K/K0)e is just defined up to conjugacy but
the Cohen-Lenstra heuristic gives the same values for all possibilities.

In most situations the Cohen-Lenstra heuristic describesMΣ with a probability distribution;
the following cases are needed here: Let H be a finite non trivial abelian group of odd order,
U1, . . . , Um be the subgroups of H such that H/Ui is non trivial and cyclic, ni := (H : Ui),
ξi a primitive ni-th root of 1, Ki := Q(ξi + ξ−1

i ) and eH = 1− 1
|H|
∑

g∈H g. Define SH to be
the set containing all prime divisors of |H|. Suppose that p ∈ SH decomposes in ri(p) prime
ideals with inertia degree fi(p) in the extension Ki/Q. Set

c2 :=
1

2 · (2)∞
·
∞∏

j=2

ζ(j)−1,
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c2′,H :=
m∏

i=1



∞∏

j=3

ζKi(j)
−1 ·

∏

p∈SH∪{2}

(
(pfi(p))2

(pfi(p))∞

)ri(p)
 .

Then by [C-M, Proposition 3.10]

pr2(A) := c2 ·
1

|A| · |Aut(A)|
defines a probability distribution on the set of the isomorphism classes of finite abelian groups
of odd order and

pr2′,H(A) := cH ·
1

|A| · |AutDH (A)|
defines a probability distribution on the set of isomorphism classes of the finite eHZ(SH∪{2})DH -
modules, because both situations are good situations by proposition 7.1 from [C-M]. In
these cases [C-M, Chapter 6] establishes the two conjectures for the densities MΣ(A) =

pr2′,H(A), if Σ = (DH ,Q, totally real, SH ∪ {2} , eH) and MΣ(A) = pr2(A), if Σ = (C2 =

〈g〉,Q, totally real, {2} , 1−g
2 ).

The notion of a “good situation” in the sense of [C-M] seems not to be complete enough. The
existence of p-th roots of 1 in the base field of a situation seems to influence the distribution
of the p-parts of the class groups of this situation. In the totally real case this affects just the
prime number 2. Methods to deal with these p-parts are described in [M2, Conjecture 2.1].
As special case one has the probability distribution pr2,H on the finite eHZ〈2〉DH -modules and
the conjectureMΣ(A) = pr2,H(A) if A is a is such a module and Σ = (DH ,Q, totally real,P \
{2} , eH). This distribution is defined as follows: Set

c2,H :=

m∏

i=1

∞∏

j=3

(
1 +

fi(2)

2fi(2)·j

)−ri(2)

.

Let A be a finite eHZ〈2〉DH -module, F its Frattini subgroup and li,j the number of indecom-
posable summands of A/F of isomorphism type (j, Ui, 1, 2) (see Proposition 11). Set

r2,H(A) :=
m∏

i=1

ri(2)∏

j=1

2fi(2)· li,j(li,j−1)

2 · fi(2)li,j · (2fi(2))li,j+2

(2fi(2))2
.

Then by [M2]

pr2,H(A) = c2,H · r2,H(A) · 1

|A| · |AutDH (A)| .

The (independent) combination of both probability distributions and conjectures gives the
probability distribution

prH(A) := pr2,H(A2) · pr2′,H(A 6=2) = cH · rH(A) · 1

|A| · |AutDH (A)|
on the set of isomorphism classes of finite eHZSHDH -modules and the conjectureMΣ(A) =

prH(A), if Σ = (DH ,Q, totally real, SH , eH), cH = c2,H · c2′,H , rH(A) = r2,H(A2) and A2

respectively A 6=2 denotes the 2 and 2′ part of A. By setting pr{1}({1}) = c{1} = r{1}({1}) = 1
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and pr{1}(A) = r{1}(A) = 0 for A 6= {1}, this probability distribution can be extended to
H = {1}.
All the conjectures above concern distributions of abelian groups. The following conjecture
allows to give a heuristic for the distribution of good parts of higher class groups:

Conjecture 12. — Let G be a finite abelian group, K the set of all totally real number fields
K with Gal(K/Q) ∼= G (in one fixed algebraic closure of Q), L ∈ K, i a positive integer,
Ĝ := Gal(Li,f/Q) and H the last non trivial term in the derived series of Ĝ. Set K̂ ={
Ki,f | K ∈ K, Gal(Ki,f/Q) ∼= Ĝ

}
, S to be the set of prime divisors of |H|, e = 1− 1

|H|
∑

g∈H g

and Σ = (Ĝ,Q, totally real, S, e). Then

MΣ(A) =MK̂(χ{ClS(K)e∼=A})

for every finite eZSĜ-module A.

For real quadratic number fields this conjecture leads to consider the following probability
distribution:

Lemma 13. — Let G ∈ G, kG be the size of the conjugacy class of G/G′′-module structures
on G′′ which belongs to G according to Proposition 3. Then

prG(G) := kG · pr2(G′/G′′) · prG′/G′′(G
′′)

defines a probability distribution on G and

prG(G) = c2 · cG′/G′′ · rG′/G′′(G′′) ·
1

|Aut(G)| .

Proof. — This is a consequence of Proposition 3 and the definition of G at the beginning of
Chapter 3.

Since for a quadratic number field K, one has Gal(K2,f/Q) ∈ G, Conjecture 12 and the
Cohen-Lenstra heuristic imply the following conjecture (because of Proposition 7 it does not
matter if one consider Gal(K2,f/Q) or Gal(K2,f/K)) :

Conjecture 14. — Let G ∈ G, let K be the set of real quadratic number fields and let the
map f : K → R be defined by f(K) = χ{Gal(K2,f/K)∼=G′}. ThenMK(f) = prG(G).

Example. — Let K be a real quadratic number and G = Gal(K2,f/K). Then according
to the conjecture a proportion 0.7545 real quadratic fields should have trivial G, 0.0213

should have G ∼= A4 and 0.0000263 should have G ∼= SG(576, 8664), where SG denotes the
corresponding SmallGroup from [GAP].
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5. Class Group Relations

This chapter collects some lemmas about relations on class groups which are used in the next
chapter to compute second class groups of real quadratic fields in practice. The class group
relations can all be deduced from the theorems 7.3, 7.6 and 7.8 form [C-M] but for concrete
calculations with real quadratic fields the following approach is easier to use.

Lemma 15. — (see [C-M, Chapter 7]) Let L/K be a Galois extension of number fields with
Galois group G and S the set of primes dividing (L : K).
(a) If H is a subgroup of G, then ClS(LH/K) ∼= ClS(L/K)H .
(b) If K is a quadratic number field, L/K abelian, (L : K) is odd and N is one of the conjugate
subfields of L with (L : N) = 2, then ClS(L/K) ∼= ClS(N)⊕ ClS(N).

Proof. — Statement (a) is well-known (it is Corollaire 7.7 from [C-M] for example). Because
of Lemma 4 one has Gal(L/Q) ∼= DG. Set A := ClS(L/K) and let U be a complement of G
in DG. Proposition 2 (f) and Lemma 1 show that AG = {1} and hence by Lemma 6 one has
A ∼= AU ⊕AU as group. Statement (b) follows from Theorem 7.8 of [C-M].

Lemma 16. — ([Wa, Theorem 1.2]) Let G be a finite group, A a finite G-module of order
coprime to |G| and let aU ∈ Z such that there is a relation

∑
U≤G aU · 1GU = 0 on the induced

principal characters. Then:
⊕

U≤G
(AU )aU ∼= {1} .

The following well-known lemma gives the relations of induced principle characters of abelian
groups. A proof can be found in [Bo, Lemma 3.7].

Lemma 17. — Let G be a finite abelian group with n subgroups. Denote a basis of Qn by
(eM )M , where M ranges over the subgroups of G. Let f denote the linear map of Qn, which
is represented by the matrix ((G : M) · χ{N⊆M} · χ{N cyclic})N,M in this basis and define
K := Ker(f). Here χ is the characteristic function. Then the following is true:
(a) If (aM )M≤G ∈ Qn, then

∑
M≤G aM · 1GM = 0 if and only if (aM ) ∈ K.

(b) Let H1, . . . ,Hr be the subgroups of G for which G/Hi is not cyclic and let V1, . . . , Vr be any
subgroups of G such that there are primes pi with Vi/Hi

∼= Cpi ×Cpi . Let Mi,1, . . . ,Mi,pi+1

be the subgroups of G between Hi and Vi. Define the vectors v1, . . . , vr ∈ Qn by viVi = −pi,
viHi = −1, viMi,j

= 1 for all j = 1, . . . , pi + 1 and viM = 0 for all other subgroups M ≤ G.
Then v1, . . . , vr is a basis of K.

(c) If G is not cyclic, then K contains an element (aM )M with a{1} 6= 0 and aN = 0 for all
{1} 6= N ≤ G with G/N not cyclic.
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6. Tables

Lemma 18. — Let G be a finite abelian group of odd order and N a totally real number field
of degree |G| such that Gal(N̂/Q) ∼= DG. Let K denote the unique quadratic subfield of N̂ .
Then N̂/K is unramified if and only if dN = d

(|G|−1)/2
K .

Proof. — Let 1, a1, . . . , a(|G|−1)/2 denote representatives of the conjugacy classes of DG
contained in G and let ϕ ∈ DG be an involution. If H is a group with subgroup U , one can
use the definition 1HU (x) = 1

|U | · |
{
g ∈ H | g−1xg ∈ U

}
| for all x ∈ H to calculate the table

of character values of DG. From this one gets

1DG{1} + 2 · 1DGDG = 2 · 1DG〈ϕ〉 + 1DGG

by inspection. Proposition 6 and Corollary 1 of [Se] on page 104 show the equation

dN̂/Q · d2
Q/Q = d2

N/Q · dK/Q.
In the totally real case, one does not have to distinguish, between dK/Q and dK and hence one
has dN̂ = d2

N · dK . Since all occurring fields are totally real and dQ = 1, one has the following
equivalences:

N̂/K is unramified ⇐⇒ dN̂ = d
|G|
K ⇐⇒ d2

N · dK = d
|G|
K ⇐⇒ dN = d

|G|−1
2

K .

Let K be a real quadratic number field. The calculation of Gal(K2,f/Q) works roughly as
follows (the details are explained in [Bo, Chapter 5.1]): At first one calculates the class group
of K and searches for the dihedral fields contained in K1,f in the tables [M1] according to
Lemma 18. Their class groups can be found in these tables, too. The three lemmas of the
previous chapter allow the calculation of ClS(L/K1,f ) for all immediate fields L of K2,f/K1,f .
As in the proof of Proposition 2 (f) one can see that ClS(L/K1,f ) is isomorphic to the factor
commutator group of the subgroup of Gal(K2,f/Q) which corresponds to L. Now one can use
[GAP] to look for semidirect products DGal(K1,f/K) n Gal(K2,f/K1,f ) which fulfill the same
properties on commutator factor groups of their subgroups.
This procedure does not always work, because the commutator factor groups of subgroups do
not determine the group uniquely and because the finite tables from [M1] are not complete.
There are two non isomorphic groups U, V from G with U ′/U ′′ ∼= V ′/V ′′ ∼= C5 and U ′′ ∼= V ′′ ∼=
C4

11 for example (see [Bo, Page 28]). The incompleteness of the tables from [M1] restricts
the possibilities for Gal(K1,f/K) to groups with exponent 15 and the possibilities for dK to
some integers smaller then 1018. Nevertheless one can compute the good part of the second
class group for a lot of real quadratic number fields in this way. Some of the results can be
found in the database www.mathematik.uni-kl.de/~numberfieldtables.
Because the conjecture about the distribution of the second class groups of real quadratic
number fields depends on Conjecture 12 and the well tested Cohen-Lenstra heuristic, in the
following just some tables of number field data are given which shall support Conjecture 12.
More evaluations can be found in [Bo, Chapter 5.2].
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LetH be a finite abelian group of odd order. Let K be the set of all totally real number fieldsN
(in a fixed algebraic closure Q of Q) such that (N : Q) = |H| and such that Gal(N̂/Q) ∼= DH ,
if N̂ denotes the Galois closure of N (in Q). Let K1 denote the subset of K of all number fields
N such that N̂ = K1 if K is the quadratic subfield of N̂ and K2 the subset of K containing
all N with N̂ = K1,f but N̂ 6= K1. The set K3 ⊆ K consists of all N where N̂ is unramified
over K and contains the maximal abelian unramified p-extensions for all primes dividing |H|
and where N is not contained in Ki for i < 3. Let K4 denote the subset of K of all N such
that N/K is unramified and N is not contained in Ki for i < 4 and K5 denotes all remaining
fields from K. The column labeled with i in the following tables show the proportion of
certain class groups in the class group distribution of the fields from Ki (by Lemma 15 one
has ClS(N̂/K) ∼= ClS(N)⊕ ClS(N) if S is the set of primes dividing |H|).

dN area number of fields 1 2 3 4 5
up to 108 6246698 0.8271 0.8506 0.8410 0.8432 0.8474

about 108 1000000 0.8196 0.8401 0.8334 0.8357 0.8374

about 109 1000000 0.8103 0.8245 0.8211 0.8241 0.8228

about 1010 1000000 0.8036 0.8136 0.8112 0.8121 0.8112

about 1011 1000000 0.7980 0.8055 0.8033 0.8041 0.8039

about 1012 1000000 0.7937 0.7995 0.7988 0.7966 0.7985

about 1013 1000000 0.7923 0.7963 0.7955 0.7947 0.7945

about 1014 1000000 0.7895 0.7928 0.7917 0.7931 0.7939

about 1015 1000000 0.7875 0.7911 0.7921 0.7906 0.7921

about 1016 1000000 0.7860 0.7893 0.7879 0.7887 0.7888

about 1017 1000000 0.7886 0.7882 0.7892 0.7888 0.7880

Table 1: proportion of totally real S3-fields N of degree 3 with
trivial 2-class group

dN area number of fields 1 2 3 4 5
up to 108 6246698 0.0086 0.0086 0.0085 0.0084 0.0079

about 108 1000000 0.0090 0.0089 0.0089 0.0087 0.0084

about 109 1000000 0.0094 0.0095 0.0102 0.0092 0.0088

about 1010 1000000 0.0095 0.0095 0.0094 0.0097 0.0093

about 1011 1000000 0.0095 0.0095 0.0095 0.0099 0.0097

about 1012 1000000 0.0098 0.0099 0.0092 0.0098 0.0098

about 1013 1000000 0.0096 0.0097 0.0106 0.0096 0.0101

about 1014 1000000 0.0101 0.0100 0.0102 0.0106 0.0098

about 1015 1000000 0.0101 0.0099 0.0097 0.0096 0.0098

about 1016 1000000 0.0094 0.0100 0.0098 0.0105 0.0102

Table 2: proportion of totally real S3-fields N of degree 3 with
6′-class group isomorphic to C5
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dN area number of fields 1 2 3 4 5
about 1017 1000000 0.0097 0.0099 0.0098 0.0100 0.0095

Table 2: proportion of totally real S3-fields N of degree 3 with
6′-class group isomorphic to C5

dN area number of fields 1 2 3 4 5
up to 1016 806309 0.9966 0.9966 0.9966 0.9962 0.9963

1016 to 1018 2019477 0.9962 0.9963 0.9963 0.9960 0.9963

about 1027 833458 0.9963 0.9961 0.9962 0.9959 0.9962

Table 3: proportion of totally real D5-fields N of degree 5

with trivial 10′-class group
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