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AROUND THE LITTLEWOOD CONJECTURE IN DIOPHANTINE
APPROXIMATION

by

Yann Bugeaud

Abstract. — The Littlewood conjecture in Diophantine approximation claims that

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0

holds for all real numbers α and β, where ‖ · ‖ denotes the distance to the nearest integer. Its
p-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that

inf
q≥1

q · ‖qα‖ · |q|p = 0

holds for every real number α and every prime number p, where | · |p denotes the p-adic absolute
value normalized by |p|p = p−1. We survey the known results on these conjectures and highlight
recent developments.

Résumé. — En approximation diophantienne, la conjecture de Littlewood stipule que tous les
nombres réels α et β vérifient

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0,

où ‖ · ‖ désigne la distance à l’entier le plus proche. Son analogue p-adique, formulé par de
Mathan et Teulié en 2004, affirme que l’égalité

inf
q≥1

q · ‖qα‖ · |q|p = 0

est valable pour tout nombre réel α et tout nombre premier p, où | · |p est la valeur absolue
p-adique normalisée par |p|p = p−1. Nous donnons un survol des résultats connus sur ces
conjectures en insistant sur les développements récents.

A famous open problem in simultaneous Diophantine approximation, called the Littlewood
conjecture, claims that, for every given pair (α, β) of real numbers, we have

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0,

where ‖ · ‖ denotes the distance to the nearest integer. According to Montgomery [27], the
first occurrence of the Littlewood conjecture appeared in 1942 in a paper by Spencer [34], a
student of Littlewood.

2010 Mathematics Subject Classification. — 11J04, 11J13, 11J61.
Key words and phrases. — Simultaneous approximation, Littlewood conjecture.



6 Around the Littlewood conjecture in Diophantine approximation

Since 2000, there has been much activity on and around the Littlewood conjecture, including
the formulation by de Mathan and Teulié [26] of a closely related open problem, called the
mixed Littlewood conjecture. The purpose of the present survey is to highlight recent results
and developments on these questions. We make the choice to state more than twenty theorems
and to give only a single proof.
Section 1 is devoted to the Littlewood conjecture itself, while the mixed and the p-adic (a
special case of the mixed) Littlewood conjectures are addressed in Section 2. The reader
will observe that the state-of-the-art regarding the Littlewood and the p-adic Littlewood
conjectures is essentially the same. The proof of one result from [5] is given in Section 3.
We conclude in Section 4 by mentioning recent results and open questions on inhomogeneous
variations of the Littlewood and the mixed Littlewood conjectures.
The number of papers just appeared, being submitted or in preparation shows that there is
currently a lot of activities on this topic.
Throughout, we assume that the reader is familiar with the theory of continued fractions and
‘almost all’ (or ‘almost every’) always refers to the Lebesgue measure.

1. The Littlewood conjecture

Let α and β be real numbers. Clearly,

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0 (1.1)

always holds when 1, α, β are linearly dependent over the rationals or when α or β has
unbounded partial quotients in its continued fraction expansion. Thus, we may assume that
α and β belong to the set Bad of badly approximable real numbers, where

Bad = {α ∈ R : inf
q≥1

q · ‖qα‖ > 0}.

The set Bad is the set of real numbers whose sequence of partial quotients is bounded. It has
zero Lebesgue measure and full Hausdorff dimension (that is, Hausdorff dimension one).
In 1955 Cassels and Swinnerton-Dyer [14] made the first significant contribution on the
Littlewood conjecture in showing that (1.1) holds when α and β belong to the same cubic
field. Note that it is still not known whether or not cubic real numbers belong to Bad.
Pollingon and Velani [32] showed in 2000 that, for every badly approximable real number α,
there exist uncountably many badly approximable real numbers β such that a strong form
of (1.1) holds for the pair (α, β).

Theorem 1. — For every real number α in Bad, there exists a subset G(α) of Bad with
full Hausdorff dimension such that, for any β in G(α), there exist arbitrarily large integers q
satisfying

q · (log q) · ‖qα‖ · ‖qβ‖ ≤ 1.

For an alternative proof of a slightly weaker form of Theorem 1, together with some additional
interesting results, the reader is referred to [22]; see also Theorem 29 in Section 4.
Einsiedler, Katok, and Lindenstrauss [16] (see also [35]) established that the set of exceptions
to the Littlewood conjecture is very small.
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Y. Bugeaud 7

Theorem 2. — The set of pairs (α, β) of real numbers such that

inf
q≥1

q · ‖qα‖ · ‖qβ‖ > 0

has Hausdorff dimension zero. Furthermore, it is contained in a countable union of compact
sets of box dimension zero.

Furthermore, Lindenstrauss [24] stressed that one may deduce from the techniques of [16] an
explicit, sufficient criterion for a real number α in order that the Littlewood conjecture holds
for every pair (α, β), where β is an arbitrary real number.
To present his result (and also subsequent results given in Section 2), we adopt a point of
view from combinatorics on words. We look at the continued fraction expansion of a given
real number α as an infinite word. For an infinite word w = w1w2 . . . and an integer n ≥ 1,
we denote by p(n,w) the number of distinct blocks of n consecutive letters occurring in w,
that is,

p(n,w) := Card{w`+1 . . . w`+n : ` ≥ 0}.
The function n 7→ p(n,w) is called the complexity function of w. For an irrational real number
α = [a0; a1, a2, . . .], we set

p(n, α) := p(n, a1a2 . . .), n ≥ 1.

Clearly, for positive integers n, n′ we have

p(n+ n′, α) ≤ p(n, α) · p(n′, α).
This inequality implies that the sequence (log p(n, α))n≥1 is subadditive, thus, the sequence
((log p(n, α)/n)n≥1 converges.

Definition 3. — The entropy of a real number α is the quantity

E(α) = lim
n→+∞

log p(n, α)

n
.

It is an easy exercise to show that the set of real numbers α such that E(α) = 0 has Hausdorff
dimension zero.
With the above notation, the result alluded to below Theorem 2 and stated as Theorem 5 in
[24] can be formulated as follows.

Theorem 4. — If the real number α satisfies E(α) > 0, then, for every real number β, we
have

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0.

Theorem 1 is a metrical result and, as such, does not tell us how to associate explicitly to
some given badly approximable number α a badly approximable number β such that 1, α and
β are linearly independent over the integers and (1.1) holds for the pair (α, β). This problem
has been addressed in [1] (see [25] for a weaker previous result).

Theorem 5. — Let ϕ be a positive, non-increasing function defined on the set of positive
integers and satisfying ϕ(1) = 1, limq→+∞ ϕ(q) = 0 and limq→+∞ qϕ(q) = +∞. Given α in
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8 Around the Littlewood conjecture in Diophantine approximation

Bad, there exists an uncountable subset Bϕ(α) of Bad such that, for any β in Bϕ(α), there
exist infinitely many positive integers q with

q · ‖qα‖ · ‖qβ‖ ≤ 1

q · ϕ(q) . (1.2)

In particular, the Littlewood conjecture holds for the pair (α, β) for any β in Bϕ(α). Further-
more, the set Bϕ(α) can be effectively constructed.

The proof of Theorem 5 rests on the theory of continued fractions. For given α and ϕ,
we construct inductively the sequence of partial quotients of a suitable real number β such
that (1.2) holds for the pair (α, β).
Going back to metrical results, the following theorem of Gallagher [19] shows that (1.1) can
be improved for almost all pairs (α, β) of real numbers.

Theorem 6. — Let ψ : Z≥1 → R be a non-negative decreasing function. Then, for almost
every pair (α, β) of real numbers, the inequality

‖qα‖ · ‖qβ‖ ≤ ψ(q)
has infinitely (resp. finitely) many integer solutions q ≥ 1 if the series

∑
q≥1 ψ(q) log q diverges

(resp. converges). In particular, for almost every pair (α, β) of real numbers, we have

inf
q≥2

q · (log q)2 · ‖qα‖ · ‖qβ‖ = 0.

Since we are, at present, not able to confirm nor to deny the Littlewood conjecture, we may
search for pairs (α, β) of real numbers for which there exists a slowly growing function ϕ such
that

lim inf
q→+∞

q · ϕ(q) · ‖qα‖ · ‖qβ‖ > 0. (1.3)

In view of Theorem 6, a first non-trivial step is to show the existence of pairs (α, β) for
which (1.3) holds with the function q 7→ ϕ(q) = (log q)2. This has been done in 2011 in [12],
by means of a method introduced by Peres and Schlag [31]. This result has been subsequently
considerably improved by Badziahin [3], who used an intricate Cantor-type construction to
establish the following theorem.

Theorem 7. — For every real number α in Bad, the set of real numbers β such that

inf
q≥3

q · log q · log log q · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension. In particular, the set of pairs (α, β) of real numbers satisfying

inf
q≥3

q · log q · log log q · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension in R2.

It remains an open problem to show the existence of pairs (α, β) of real numbers for which
inequality (1.3) holds with the function ϕ : q 7→ log q.
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Y. Bugeaud 9

2. The mixed and the p-adic Littlewood conjectures

In 2004, de Mathan and Teulié [26] proposed a mixed Littlewood conjecture which can be
stated as follows. Let D = (dk)k≥1 be a sequence of integers greater than or equal to 2. Set
e0 = 1 and, for n ≥ 1,

en =
∏

1≤k≤n
dk.

For an integer q, set
wD(q) = sup{n ≥ 0 : q ∈ enZ}

and
|q|D = 1/ewD(q) = inf{1/en : q ∈ enZ}.

When D is the constant sequence equal to p, where p is a prime number, then | · |D is the
usual p-adic value | · |p normalized by |p|p = p−1. In analogy with the Littlewood conjecture,
de Mathan and Teulié formulated the following conjecture.

Conjecture 8. — (Mixed Littlewood Conjecture) For every real number α and every sequence
D as above, we have

inf
q≥1

q · ‖qα‖ · |q|D = 0. (2.1)

Obviously, (2.1) holds if α is rational or has unbounded partial quotients. Thus, we only
consider the case when α is an element of the set Bad defined in Section 1.
By Lemme 3.1 of [26], if (α,D) does not satisfy (2.1), then there exists a real number M such
that all the partial quotients of the real numbers {enα}, n ≥ 0, are less than M . Here and
below, {·} denotes the fractional part function.
De Mathan and Teulié proved that (2.1) and even the stronger statement

lim inf
q→+∞

q · log q · ‖qα‖ · |q|D < +∞

holds for every real quadratic number α, provided that the sequence D is bounded; see [5, 23]
for alternative proofs when D is the constant sequence equal to a prime number, a particular
case which deserves to be highlighted.

Conjecture 9. — (p-adic Littlewood Conjecture) For every real number α and every prime
number p, we have

inf
q≥1

q · ‖qα‖ · |q|p = 0. (2.2)

Einsiedler and Kleinbock [17] showed that a slightly weaker form of the p-adic Littlewood
conjecture, namely Theorem 11 below, can easily be deduced from the following theorem of
Furstenberg [18].

Theorem 10. — Let r and s be multiplicatively independent integers. Then, for every ir-
rational number α, the set of real numbers {αrmsn}, where m and n run through the set of
non-negative integers, is dense in [0, 1].

An alternative proof of Theorem 10 was given by Boshernitzan [8] and is reproduced in the
monograph [13].
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10 Around the Littlewood conjecture in Diophantine approximation

Theorem 11. — Let p1 and p2 be distinct prime numbers. Then,

inf
q≥1

q · ‖qα‖ · |q|p1 · |q|p2 = 0

holds for every real number α.

Bourgain, Lindenstrauss, Michel and Venkatesh [9] established a quantitative version of
Theorem 11.

Theorem 12. — Let p1 and p2 be distinct prime numbers. There exists a positive real number
c such that, for any real number α, we have

inf
q≥16

q · (log log log q)c · ‖qα‖ · |q|p1 · |q|p2 = 0.

Harrap and Haynes [21] managed recently to extend Theorem 11. We quote below their
Corollary 1. For an integer a ≥ 2 and for D being the infinite sequence a, a, . . ., we write | · |a
instead of | · |D.

Theorem 13. — Let a ≥ 2 be an integer and D be a bounded sequence of integers coprime
to a and greater than or equal to 2. Then,

inf
q≥1

q · ‖qα‖ · |q|a · |q|D = 0

holds for every real number α.

The proof of Theorem 13 is a nice combination of ideas from [9, 15] and lower bounds for
linear forms in logarithms of algebraic numbers (Baker’s theory).
Einsiedler and Kleinbock [17] established that the set of possible exceptions to the p-adic
Littlewood conjecture is very small from the metric point of view.

Theorem 14. — Let p be a prime number. The set of real numbers α such that

inf
q≥1

q · ‖qα‖ · |q|p > 0

has Hausdorff dimension zero.

Theorem 14 is the analogue of Theorem 2. Einsiedler and Kleinbock also explained how to
modify their proof to get an analogous result when D is the constant sequence equal to an
integer a ≥ 2 (not necessarily prime).
The analogue of Theorem 4 was very recently proved in [5].

Theorem 15. — If the real number α satisfies E(α) > 0, then for every prime number p we
have

inf
q≥1

q · ‖qα‖ · |q|p = 0.

Theorem 15 asserts that the complexity function of the continued fraction expansion of every
potential counterexample to the p-adic Littlewood conjecture cannot grow exponentially fast.
We present now various explicit examples of real numbers α in Bad for which (2.2) and
even (2.1) hold. First, we need some classical results and definitions from combinatorics on
words.

Publications mathématiques de Besançon - 2014/1



Y. Bugeaud 11

A well-known result of Morse and Hedlund [28, 29] asserts that p(n,w) ≥ n + 1 for n ≥ 1,
unless w is ultimately periodic (in which case there exists a constant C such that p(n,w) ≤ C
for n ≥ 1). Infinite words w satisfying p(n,w) = n+1 for every n ≥ 1 do exist and are called
Sturmian words. We start with a classical definition (see e.g. [2]).

Definition 16. — An infinite word w is recurrent if every finite block occurring in w occurs
infinitely often.

Classical examples of recurrent infinite words include periodic words, Sturmian words, the
Thue–Morse word, etc.

Theorem 17. — Let (ak)k≥1 be a sequence of positive integers. If there exists an integer
m ≥ 0 such that the infinite word am+1am+2 . . . is recurrent, then, for every sequence D of
integers greater than or equal to 2, the real number α := [0; a1, a2, . . .] satisfies

inf
q≥1

q · ‖qα‖ · |q|D = 0.

The proof of Theorem 17, given in Section 3, is elementary, in the sense that it uses only the
theory of continued fractions.
As a particular case, Theorem 17 asserts that (2.1) holds for every quadratic number α and
every (bounded or unbounded) sequence D of integers greater than or equal to 2.
As shown in [5], Theorem 17 implies a non-trivial lower bound for the complexity function of
the continued fraction expansion of a putative counter-example to (2.1).

Corollary 18. — Let α be a real number such that

lim
n→+∞

p(n, α)− n < +∞.

Then, for every sequence D of integers greater than or equal to 2, we have

inf
q≥1

q · ‖qα‖ · |q|D = 0.

The next corollary of Theorem 17 deals with a special family of infinite recurrent words. A
finite word w1 . . . wn is called a palindrome if wn+1−h = wh for h = 1, . . . , n.

Corollary 19. — Let (ak)k≥1 be a sequence of positive integers. If there exists an increasing
sequence (nj)j≥1 of positive integers such that a1 . . . anj is a palindrome for j ≥ 1, then, for
every sequence D of integers greater than or equal to 2, the real number α := [0; a1, a2, . . .]
satisfies

inf
q≥1

q · ‖qα‖ · |q|D = 0.

To derive Corollary 19 from Theorem 17, it is sufficient to note that, if a1 . . . an and a1 . . . an′
are palindromes with n′ > 2n, then

an′−n+1 . . . an′ = an . . . a1 = a1 . . . an.

The corollary then follows from Theorem 17 applied with m = 0.
The next result asserts that the mixed Littlewood conjecture holds for every prime number
p and every real number α whose sequence of partial quotients contains arbitrarily long
concatenations of a given finite block.
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12 Around the Littlewood conjecture in Diophantine approximation

Theorem 20. — Let α = [a0; a1, a2, . . .] be a real number. Let T ≥ 1 be an integer and
b1, . . . , bT be positive integers. If there exist two sequences (mk)k≥1 and (hk)k≥1 of positive
integers with (hk)k≥1 being unbounded and

amk+j+nT = bj , for every j = 1, . . . , T and every n = 0, . . . , hk − 1,

then, for every prime number p, we have

inf
q≥1

q · ‖qα‖ · |q|p = 0.

The following consequence of Theorem 20 deserves to be pointed out. Let α be a real
number having exactly m distinct partial quotients in its continued fraction expansion. If
E(α) = logm, then for every prime number p we have

inf
q≥1

q · ||qα|| · |q|p = 0.

Clearly, this has been superseded by Theorem 15.
The assumption of Theorem 20 can be restated as follows. To an irrational real number
α := [a0; a1, a2, . . .] we associate the set

Adh(α) := {[0; am, am+1, . . .] : m ≥ 1},
which is the closure of the set composed of the iterates of {α} under the Gauss transformation.
Then, Theorem 20 asserts that the mixed Littlewood conjecture holds for every irrational real
number α such that Adh(α) contains a quadratic number.
In the case of the p-adic Littlewood conjecture, Badziahin [4] established a common extension
to Corollary 18 and Theorem 20.

Theorem 21. — Let α be an irrational real number. If the set Adh(α) contains a real number
α′ satisfying

lim
n→+∞

p(n, α′)− n < +∞,
then

inf
q≥1

q · ||qα|| · |q|p = 0

holds for every prime number p.

Badziahin’s paper [4] contains further new results, which show that the continued fraction
expansion, viewed as an infinite word, of a putative counterexample to the p-adic Littlewood
conjecture must satisfy various strong combinatorial properties.
Metric considerations in the same spirit as in Gallagher’s paper [19] can be found in [11, 7].
We state below Theorem 1 from [11].

Theorem 22. — Let p1, . . . , pk be distinct prime numbers and let ψ : Z≥1 → R be a non-
negative decreasing function. Then, for almost every real number α the inequality

‖qα‖ · |q|p1 · · · |q|pk ≤ ψ(q)
has infinitely (resp. finitely) many integer solutions q if the series

∑

q≥1
(log q)kψ(q)
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Y. Bugeaud 13

diverges (resp. converges). In particular, for almost all real numbers α, we have

inf
q≥2

q · (log q)2 · ‖qα‖ · |q|p = 0,

for every prime number p.

It is proved in [12] that the set of real numbers α in Bad such that, for every prime number
p, we have

inf
q≥2

q · (log q)2 · ‖qα‖ · |q|p > 0

has full Hausdorff dimension. This was considerably improved by Badziahin and Velani [6],
by means of a subtle Cantor-type construction.

Theorem 23. — For every sequence D of integers greater than or equal to 2, the set of real
numbers α such that

inf
q≥3

q · log q · log log q · ‖qα‖ · |q|D > 0

has full Hausdorff dimension. Moreover, if D denotes the sequence (22
n
)n≥1, then the set of

real numbers α such that

inf
q≥16

q · log log q · log log log q · ‖qα‖ · |q|D > 0

has full Hausdorff dimension.

Theorem 23 was proved shortly before Theorem 7.

3. Proof of Theorem 17

Without any loss of generality, we consider real numbers in (0, 1). We associate to every real
irrational number α := [0; a1, a2, . . .] the infinite word a := a1a2 . . . formed by the sequence
of its partial quotients. Set

p−1 = q0 = 1, p0 = q−1 = 0,

and
pn
qn

= [0; a1, . . . , an], for n ≥ 1.

By the theory of continued fractions, we know that
qn
qn−1

= [an; an−1, . . . , a1].

This is one of the key tools of our proof.
For simplicity, we establish Theorem 17 only in the case m = 0.
Assume that the infinite word a1a2 . . . is recurrent. Then, there exists an increasing sequence
of positive integers (nj)j≥1 such that

a1a2 . . . anj is a suffix of a1a2 . . . anj+1 , for j ≥ 1.

Said differently, there are finite words V1, V2, . . . such that

a1a2 . . . anj+1 = Vja1a2 . . . anj , for j ≥ 1.

Actually, these properties are equivalent.
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14 Around the Littlewood conjecture in Diophantine approximation

Let ` ≥ 2 be an integer. Let k ≥ `2 + 1 be an integer. By Dirichlet’s Schubfachprinzip, there
exist integers i, j with 1 ≤ i < j ≤ k such that

qni ≡ qnj (mod `), qni−1 ≡ qnj−1 (mod `)

and j is minimal with this property.
Setting

Q := |qniqnj−1 − qni−1qnj |,
we observe that

` divides Q (3.1)

and that
qni−1
qni

= [0; ani , ani−1, . . . , a1]

is a convergent of
qnj−1
qnj

= [0; anj , anj−1, . . . , a1].

Consequently, we get

0 < Q = qniqnj

∣∣∣
qnj−1
qnj

− qni−1
qni

∣∣∣

≤ qniqnjq
−2
ni

= q−1ni
qnj .

Since
||Qα|| ≤ 2qniq

−1
nj
,

we finally obtain
Q · ||Qα|| ≤ 2. (3.2)

It then follows from (3.1) and (3.2) that

Q · ||Qα|| · |Q|` ≤ 2`−1,

where |Q|` is equal to `−a if `a divides Q but `a+1 does not. Since ` is arbitrary, this proves
Theorem 17 when m = 0.
Exactly the same idea works for m ≥ 1 and there is no extra difficulty, just a little more care
is needed in the various estimates.

4. Inhomogeneous approximation

The Littlewood conjecture and its p-adic analogue can be extended in a natural way to
inhomogeneous approximation.

Problem 24. — Let α, β be real numbers such that 1, α, β are linearly independent over the
rationals. Is it true that, for all real numbers α0, β0, we have

lim inf
q→+∞

q · ‖qα− α0‖ · ‖qβ − β0‖ = 0?

The assumption that 1, α, β are linearly independent over the rationals is clearly necessary.
Shapira [33] established that the answer to Problem 24 is positive for almost all pairs (α, β),
including all pairs (α, β) of cubic real numbers in a same cubic field.
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Y. Bugeaud 15

Theorem 25. — Almost every pair (α, β) of real numbers satisfies

lim inf
q→+∞

q · ‖qα− α0‖ · ‖qβ − β0‖ = 0, (4.1)

for all real numbers α0, β0. Moreover, if 1, α, β forms a basis of a real cubic field, then (4.1)
holds for all real numbers α0, β0.

Gorodnik and Vishe [20] established recently a quantitative version of Theorem 25.

Theorem 26. — There exists a positive constant c such that almost every pair (α, β) of real
numbers satisfies

lim inf
q→+∞

q · (log log log log log q)c · ‖qα− α0‖ · ‖qβ − β0‖ = 0, (4.2)

for all real numbers α0, β0. Moreover, if 1, α, β forms a basis of a real cubic field, then (4.2)
holds for all real numbers α0, β0.

We highlight the following problem, which can be viewed as the p-adic analogue of Problem 24.

Problem 27. — Let p be a prime number. Let α be an irrational real number. Is it true that,
for every integer q0 and every irrational α0, we have

lim inf
q→+∞

q · ‖qα− α0‖ · |q − q0|p = 0? (4.3)

Examples of real numbers α for which (4.3) holds with α0 = 0 are given in [10]. For metrical
results related to Problem 27, see [22].
Gorodnik and Vishe [20] proved the p-adic analogue of their Theorem 26.

Theorem 28. — Let p be a prime number. There exists a positive constant c such that almost
every real number α satisfies

lim inf
q→+∞

q · (log log log log log q)c · ‖qα− α0‖ · |q − q0|p = 0, (4.4)

for every real number α0 and every integer q0. Moreover, every quadratic real number α
satisfies (4.4) for every real number α0 and every integer q0.

Haynes, Jensen and Kristensen [22] have obtained several metrical results related to the
inhomogeneous Littlewood conjecture and its p-adic analogue. One of their results is the
following theorem.

Theorem 29. — Let ε be a positive real number. Let (αi)i≥1 be a countable sequence of badly
approximable numbers. There exists a subset G of Bad with full Hausdorff dimension such
that, for every β in G, every i ≥ 1 and every real number β0, there exist arbitrarily large
integers q satisfying

q · (log q)1/2−ε · ‖qαi‖ · ‖qβ − β0‖ ≤ 1.

In view of Theorem 11, we may ask whether, for some integer d ≥ 3, we have

inf
q≥1

q · ‖qα1‖ · · · ‖qαd‖ = 0,

for all badly approximable real numbers α1, . . . , αd. Except the following result of Peck [30],
nothing more is known on this question than on the Littlewood conjecture.
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16 Around the Littlewood conjecture in Diophantine approximation

Theorem 30. — Let d ≥ 2 be an integer and 1, α1, . . . , αd be a basis of a real number field
of degree d+ 1. Then, we have

lim inf
q→+∞

q · (log q) · ‖qα1‖ · · · ‖qαd‖ < +∞,

thus, in particular,
inf
q≥1

q · ‖qα1‖ · · · ‖qαd‖ = 0.

We do not know whether the algebraic numbers α1, . . . , αd in the statement of Theorem 30 are
badly approximable. Theorem 30 extends and improves the result of Cassels and Swinnerton-
Dyer [14] mentioned in Section 1. The second statements of Theorem 25 and of Theorem 26
can be viewed as inhomogeneous analogues of Theorem 30 when d = 2. This motivates the
following open problem.

Problem 31. — Let d ≥ 3 be an integer and 1, α1, . . . , αd be a basis of a real number field of
degree d+ 1. Is it true that

lim inf
q→+∞

q · ‖qα1 − α′1‖ · · · ‖qαd − α′d‖ = 0

holds for all real numbers α′1, . . . , α
′
d?
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