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THE NUMBER OF LARGE PRIME FACTORS OF INTEGERS AND
NORMAL NUMBERS

by

Jean-Marie De Koninck and Imre Kátai

Abstract. — In a series of papers, we constructed large families of normal numbers using
the concatenation of the values of the largest prime factor P (n), as n runs through particular
sequences of positive integers. A similar approach using the smallest prime factor function also
allowed for the construction of normal numbers. Letting ω(n) stand for the number of distinct
prime factors of the positive integer n, we then showed that the concatenation of the successive
values of |ω(n)− blog log nc| in a fixed base q ≥ 2, as n runs through the integers n ≥ 3, yields
a normal number. Here we prove the following. Let q ≥ 2 be a fixed integer. Given an integer
n ≥ n0 = max(q, 3), let N be the unique positive integer satisfying qN ≤ n < qN+1 and let
h(n, q) stand for the residue modulo q of the number of distinct prime factors of n located in
the interval [log N, N ]. Setting xN := eN , we then create a normal number in base q using the
concatenation of the numbers h(n, q), as n runs through the integers ≥ xn0 .

Résumé. — Dans une série d’articles, nous avons construit de grandes familles de nombres
normaux en utilisant la concaténation des valeurs successives du plus grand facteur premier
P (n), où n parcourt certaines suites d’entiers positifs. Une approche similaire en utilisant la
fonction plus petit facteur premier nous a aussi permis de construire d’autres familles de nombres
normaux. En désignant par ω(n) le nombre de nombres premiers distincts de n, nous avons
montré que la concaténation des valeurs successives de |ω(n) − blog log nc| dans une base fixe
q ≥ 2, où n parcourt les entiers n ≥ 3, donne place à un nombre normal. Ici, nous démontrons
le résultat suivant. Soit q ≥ 2 un entier fixe. Étant donné un entier n ≥ n0 = max(q, 3), soit
N l’unique entier positif satisfaisant qN ≤ n < qN+1 et désignons par h(n, q) le résidu modulo
q du nombre de facteurs premiers distincts de n situés dans l’intervalle [log N, N ]. En posant
xN := eN , nous créons alors un nombre normal dans la base q en utilisant la concaténation des
nombres h(n, q), où n parcourt les entiers ≥ xn0 .

Mathematical subject classification (2010). — 11K16, 11N37, 11N41.
Key words and phrases. — Normal numbers, number of prime factors.
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6 The number of large prime factors of integers and normal numbers

1. Introduction

Given an integer q ≥ 2, we say that an irrational number η is a q-normal number if the
q-ary expansion of η is such that any preassigned sequence of length k ≥ 1, taken within this
expansion, occurs with the expected limiting frequency, namely 1/qk.
Even though constructing specific normal numbers is a very difficult problem, several authors
picked up this challenge. One of the first was Champernowne [2] who, in 1933, showed that
the number made up of the concatenation of the natural numbers, namely the number

0.123456789101112131415161718192021 . . . ,

is normal in base 10. In 1946, Copeland and Erdős [4] proved that the same is true if one
replaces the sequence of natural numbers by the sequence of primes, namely for the number

0.23571113171923293137 . . .

In the same paper, they conjectured that if f(x) is any nonconstant polynomial whose values
at x = 1, 2, 3, . . . are positive integers, then the decimal 0.f(1)f(2)f(3) . . ., where f(n) is
written in base 10, is a normal number. Six years later, Davenport and Erdős [5] proved this
conjecture.
Since then, many others have constructed various families of normal numbers. To name only
a few, let us mention Nakai and Shiokawa [15], Madritsch, Thuswaldner and Tichy [14] and
finally Vandehey [17]. More examples of normal numbers as well as numerous references can
be found in the recent book of Bugeaud [1].
In a series of papers, we also constructed large families of normal numbers using the distribu-
tion of the values of P (n), the largest prime factor function (see [6], [7], [8] and [9]). Recently
in [10], we showed how the concatenation of the successive values of the smallest prime factor
p(n), as n runs through the positive integers, can also yield a normal number. Letting ω(n)
stand for the number of distinct prime factors of the positive integer n, we then showed that
the concatenation of the successive values of |ω(n) − blog lognc| in a fixed base q ≥ 2, as n
runs through the integers n ≥ 3, yields a normal number.
Given an integer N ≥ 1, for each integer n ∈ JN := (eN , eN+1), let qN (n) be the smallest
prime factor of n which is larger than N ; if no such prime factor exists, set qN (n) = 1. Fix an
integer Q ≥ 3 and consider the function f(n) = fQ(n) defined by f(n) = ` if n ≡ ` (mod Q)
with (`,Q) = 1 and by f(n) = ε otherwise, where ε stands for the empty word. Then consider
the sequence (κ(n))n≥3 = (κQ(n))n≥3 defined by κ(n) = f(qN (n)) if n ∈ JN with qN (n) > 1
and by κ(n) = ε if n ∈ JN with qN (n) = 1. Then, given an integer N ≥ 1 and writing
JN = {j1, j2, j3, . . .}, consider the concatenation of the numbers κ(j1), κ(j2), κ(j3), . . ., that
is define

θN := Concat(κ(n) : n ∈ JN ) = 0.κ(j1)κ(j2)κ(j3) . . . .
Then, set αQ := Concat(θN : N = 1, 2, 3, . . .) and let BQ = {`1, `2, . . . , `ϕ(Q)} be the set of
reduced residues modulo Q, where ϕ stands for the Euler function. In [11], we showed that
αQ is a normal sequence over BQ, that is, the real number 0.αQ is a normal number over BQ.
Here we prove the following. Let q ≥ 2 be a fixed integer. Given an integer n ≥ n0 = max(q, 3),
let N be the unique positive integer satisfying qN ≤ n < qN+1 and let h(n, q) stand for the
residue modulo q of the number of distinct prime factors of n located in the interval [logN,N ].
Setting xN := eN , we then create a normal number in base q using the concatenation of the
numbers h(n, q), as n runs through the integers ≥ xn0 .
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2. The main result

Theorem 2.1. — Let q ≥ 2 be a fixed integer. Given an integer n ≥ n0 = max(q, 3), let N
be the unique positive integer satisfying qN ≤ n < qN+1 and let h(n, q) stand for the residue
modulo q of the number of distinct prime factors of n located in the interval [logN,N ]. For
each integer N ≥ 1, set xN := eN . Then, Concat(h(n, q) : xn0 ≤ n ∈ N) is a q-ary normal
sequence.

Proof. — For each integer N ≥ 1, let JN = (xN , xN+1). Further let SN stand for the set of
primes located in the interval [logN,N ] and TN for the product of the primes in SN . Let
n0 = max(q, 3). Given a large integer N , consider the function

(1) f(n) = fN (n) =
∑
p|n

logN≤p≤N

1.

Let us further introduce the following sequences:
UN = Concat (h(n, q) : n ∈ JN ) ,
V∞ = Concat (UN : N ≥ n0) = Concat (h(n, q) : n ≥ xn0) ,
Vx = Concat (h(n, q) : xn0 ≤ n ≤ x) .

Let us set Aq := {0, 1, . . . , q− 1}. If we fix an arbitrary integer r, it is sufficient to prove that
given any particular word w ∈ Arq, the number of occurrences Fw(Vx) of w in Vx satisfies

(2) Fw(Vx) = (1 + o(1)) x
qr

(x→∞).

For each integer r ≥ 1, considering the polynomial
Qr(u) = u(u+ 1) · · · (u+ r − 1).

and letting
ρr(d) = #{u mod d : Qr(u) ≡ 0 mod d},

it is clear that, since N is large,
(3) ρr(p) = r if p ∈ SN .
Observe that it follows from the Turán-Kubilius Inequality (see for instance Theorem 7.1 in
the book of De Koninck and Luca [12]), that for some positive constantC,

(4)
∑
n∈JN

(f(n)− log logN)2 ≤ CeN log logN.

Letting εN = 1/ log log logN , it follows from (4) that

(5) 1
xN

#{n ∈ JN : |f(n)− log logN | > 1
εN

√
log logN} → 0 (N →∞).

This means that in the estimation of Fw(Vx), we may ignore those integers n appearing in
the concatenation h(2, q)h(3, q) . . . h(bxc, q) for which the corresponding f(n) is “far” from
log logN in the sense described in (5).
Let X be a large number. Then there exists a large integer N such that X

e
< xN ≤ X. Letting

L =
]
X

e
,X

]
, we write
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8 The number of large prime factors of integers and normal numbers

L =
]
X

e
, xN

]
∪ ]xN , X] = L1 ∪L2,

say, and λ(Li) for the length of the interval Li for i = 1, 2.
Given an arbitrary function δN which tends to 0 arbitrarily slowly, it is sufficient to consider
those L1 and L2 such that

(6) λ(L1) ≥ δNX and λ(L2) ≥ δNX.

The reason for this is that those n ∈ L1 (resp. n ∈ L2) for which λ(L1) < δNX (resp.
λ(L2) < δNX) are o(x) in number and can therefore be ignored in the proof of (2).
Let us first consider the set L2. We start by observing that any subword taken in the con-
catenation h(n, q)h(n + 1, q) . . . h(n + r − 1, q) is made of co-prime divisors of TN (since no
two members of the sequence h(n, q), h(n+ 1, q), . . . , h(n+ r − 1, q) of r elements may have
a common prime divisor p > logN). So, let d0, d1, . . . , dr−1 be co-prime divisors of TN and
let BN (L2; d0, d1, . . . , dr−1) stand for the number of those n ∈ L2 for which dj | n + j for

j = 0, 1, . . . , r− 1 and such that
(
Qr(n), TN

d0d1 · · · dr−1

)
= 1. We can assume that each of the

dj ’s is squarefree, since the number of those n+j ≤ X for which p2 | n+j for some p > logN
is � X

∑
p>logN

1
p2 = o(X).

In light of (4), we may assume that

(7) ω(dj) ≤ 2 log logN for j = 0, 1, . . . , r − 1.

By using the Eratosthenian sieve (see for instance the book of De Koninck and Luca [12])
and recalling that condition (6) ensures that X − xN is large, we obtain that, as N →∞,

BN (L2; d0, d1, . . . , dr−1) = X − xN
d0d1 · · · dr−1

∏
p|TN/(d0d1···dr−1)

(
1− r

p

)

+o

 xN
d0d1 · · · dr−1

∏
p|TN/(d0d1···dr−1)

(
1− r

p

) .(8)

Letting θN :=
∏
p|TN

(
1− r

p

)
, one can easily see that

(9) θN = (1 + o(1))(log logN)r

(logN)r (N →∞).

Let us also introduce the strongly multiplicative function κ defined on primes p by κ(p) = p−r.
Then, (8) can be written as

(10) BN (L2; d0, d1, . . . , dr−1) = X − xN
κ(d0)κ(d1) · · ·κ(dr−1)θN + o

(
xN

κ(d0)κ(d1) · · ·κ(dr−1)θN
)

as N →∞. For each integer N > ee, let

RN :=
[
log logN −

√
log logN
εN

, log logN +
√

log logN
εN

]
.
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Let `0, `1, . . . , `r−1 be an arbitrary collection of non negative integers < q. Note that there
are qr such collections. Our goal is to count how many times, amongst the integers n ∈ L2,
we have f(n+ j) ≡ `j (mod q) for j = 0, 1, . . . , r−1. In light of (5), we only need to consider
those n ∈ L2 for which

f(n+ j) ∈ RN (j = 0, 1, . . . , r − 1).

Let

(11) S (`0, `1, . . . , `r−1) :=
∑∗

f(dj)≡`j mod q
dj |TN

j=0,1,...,r−1

1
κ(d0)κ(d1) · · ·κ(dr−1) ,

where the star over the sum indicates that the summation runs only on those dj satisfying
f(dj) ∈ RN for j = 0, 1, . . . , r − 1.
From (10), we therefore obtain that

#{n ∈ L2 : f(n+ j) ≡ `j mod q, j = 0, 1, . . . , r − 1}
= (X − xN )θNS (`0, `1, . . . , `r−1) + o (xNθNS (`0, `1, . . . , `r−1))(12)

as N →∞. Let us now introduce the function

η = ηN =
∑
p|TN

1
κ(p) .

Observe that, as N →∞,

η =
∑

logN≤p≤N

1
p(1− r/p) =

∑
logN≤p≤N

1
p

+O

 ∑
logN≤p≤N

1
p2


= log logN − log log logN + o(1) +O

( 1
logN

)
= log logN − log log logN + o(1).(13)

From the definition (11), one easily sees that

(14) S (`0, `1, . . . , `r−1) = (1 + o(1))
∑

tj≡`j mod q
tj∈RN

ηt0+t1+···+tr−1

t0!t1! · · · tr−1! (N →∞),

where we ignore in the denominator of the summands the factors κ(p)a (with a ≥ 2) since
their contribution is negligible.
Moreover, for t ∈ RN , one can easily establish that

ηt+1

(t+ 1)! = (1 + o(1))η
t

t! (N →∞)

and consequently that, for each j ∈ {0, 1, . . . , r − 1},

(15)
∑

tj≡`j mod q
tj∈RN

ηtj

tj !
= (1 + o(1))1

q

∑
t∈RN

ηt

t! = (1 + o(1))e
η

q
(N →∞).
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10 The number of large prime factors of integers and normal numbers

Using (15) in (14), we obtain that

(16) S (`0, `1, . . . , `r−1) = (1 + o(1))e
ηr

qr
(N →∞).

Combining (12) and (16), we obtain that

#{n ∈ L2 : f(n+ j) ≡ `j mod q, j = 0, 1, . . . , r − 1}

= (X − xN )θN
eηr

qr
+ o

(
xNθN

eηr

qr

)
= X − xN

qr
+ o

(
xN

1
qr

)
(N →∞),(17)

where we used (9) and (13).
Since the first term on the right hand side of (17) does not depend on the particular collection
`0, `1, . . . , `r−1, we may conclude that the frequency of those integers n ∈ L2 for which
f(n + j) ≡ `j (mod q) for j = 0, 1, . . . , r − 1 is the same independently of the choice of
`0, `1, . . . , `r−1.
The case of those n ∈ L1 can be handled in a similar way.
We have thus shown that the number of occurrences of any word w ∈ Arq in h(n, q)h(n +

1, q) . . . h(n+ r − 1, q) as n runs over the bX −X/ec elements of L is (1 + o(1))(X −X/e)
qr

.
Repeating this for each of the intervals]

X

ej+1 ,
X

ej

]
(j = 0, 1, . . . , blog xc),

we obtain that the number of occurrences of w for n ≤ x is (1 + o(1)) x
qr

, as claimed.
The proof of (2) is thus complete and the Theorem is proved.

�

3. Final remarks

First of all, let us first mention that our main result can most likely be generalized in order
that the following statement will be true:

Let a(n) and b(n) be two monotonically increasing sequences of n for n = 1, 2, . . . such
that n/b(n), b(n)/a(n) and a(n) all tend to infinity monotonically as n → ∞. Let
f(n) stand for the number of prime divisors of n located in the interval [a(n), b(n)]
and let h(n, q) be the residue of f(n) modulo q; then, the sequence h(n, q), n = 1, 2, ...,
is a q-ary normal sequence.

Secondly, let us first recall that it was proven by Pillai [16] (with a more general result by
Delange [13]) that the values of ω(n) are equally distributed over the residue classes modulo q
for every integer q ≥ 2, and that the same holds for the function Ω(n), where Ω(n) :=

∑
pα‖n α.

We believe that each of the sequences Concat(ω(n) (mod q) : n ∈ N) and Concat(Ω(n)
(mod q) : n ∈ N) represents a normal sequence for each base q = 2, 3, . . .. However, the proof
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of these statements could be very difficult to obtain. Indeed, in the particular case q = 2,
such a result would imply the famous Chowla conjecture

lim
x→∞

1
x

∑
n≤x

λ(n)λ(n+ a1) · · ·λ(n+ ak) = 0,

where λ(n) := (−1)Ω(n) is known as the Liouville function and where a1, a2, . . . , ak are k
distinct positive integers (see Chowla [3]).

Thirdly, we had previously conjectured that, given any integer q ≥ 2 and letting resq(n) stand
for the residue of n modulo q, it may not be possible to create an infinite sequence of positive
integers n1 < n2 < · · · such that

0.Concat(resq(nj) : j = 1, 2, . . .)
is a q-normal number. However, we now have succeeded in creating such a monotonic sequence.
It goes as follows. Let us define the sequence (mk)k≥1 by

mk = f(k) + k!,
where f is the function defined in (1). In this case, we obtain that

mk+1 −mk = k! · k + f(k + 1)− f(k),
a quantity which is positive for all integers k ≥ 1 provided
(18) f(k + 1)− f(k) > −k! · k,
that is if
(19) f(k) < k! · k.
But since we trivially have

f(k) ≤ ω(k) ≤ 2 log k ≤ k! · k,
then (19) follows and therefore (18) as well.
Hence, in light of Theorem 2.1, if we choose nk = mk, our conjecture is disproved.
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