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REALISABLE CLASSES, STICKELBERGER SUBGROUP AND ITS
BEHAVIOUR UNDER CHANGE OF THE BASE FIELD

by

Andrea Siviero

Abstract. — Let K be an algebraic number field with ring of integers OK and let G be a
finite group. We denote by R(OK [G]) the set of classes in the locally free class group Cl(OK [G])
realisable by rings of integers in tamely ramified G-Galois K-algebras. McCulloh showed that,
for every G, the set R(OK [G]) is contained in the so-called Stickelberger subgroup St(OK [G])
of Cl(OK [G]).
In this paper first we describe the relation between St(OK [G]) and Cl◦(OK [G]), where Cl◦(OK [G])
is the kernel of the morphism Cl(OK [G]) −→ Cl(OK), induced by the augmentation map
OK [G] −→ OK . Then, as an example of computation of St(OK [G]), we show, just using its
definition, that St(Z[G]) is trivial, when G is a cyclic group of order p or a dihedral group of
order 2p, where p is an odd prime number.
Finally we prove that St(OK [G]) has good functorial behaviour under change of the base field.
This has the interesting consequence that, given an algebraic number field L, if N is a tame
Galois L-algebra with Galois group G and St(OK [G]) is known to be trivial for some subfield
K of L, then ON is stably free as an OK [G]-module.

Résumé. — Soient K un corps de nombres d’anneau des entiers OK et G un groupe fini.
On note R(OK [G]) l’ensemble des classes dans le groupe des classes des modules localement
libres Cl(OK [G]) qui peuvent être obtenues par l’anneau des entiers des K-algèbres galoisiennes
modérément ramifiées de groupe de Galois G. McCulloh a prouvé que, pour tout G, l’en-
semble R(OK [G]) est contenu dans le soi-disant sous-groupe de Stickelberger St(OK [G]) dans
Cl(OK [G]).
Dans ce papier d’abord nous nous focalisons sur la relation entre St(OK [G]) et Cl◦(OK [G]),
où Cl◦(OK [G]) est le noyau du morphisme Cl(OK [G]) −→ Cl(OK), induit par l’augmentation
OK [G] −→ OK . Puis, comme exemple de calcul du groupe St(OK [G]), nous montrons, en uti-
lisant sa définition, que St(Z[G]) est trivial si G est soit un groupe cyclique d’ordre p soit un
groupe diédral d’ordre 2p, avec p premier impair.
Enfin, nous montrons la fonctorialité de St(OK [G]) par rapport au changement du corps de
base. Ceci implique que, soit L est un corps de nombres, si N est une L-algèbre galoisienne mo-
dérément ramifiée, de groupe de Galois G, et St(OK [G]) est connu être trivial pour un certain
sous-corps K de L, alors ON est un OK [G]-module stablement libre.

Mathematical subject classification (2010). — 11R33, 11R04, 11R18, 11R29, 11R32, 11R65.
Key words and phrases. — Galois module structure, Realisable classes, Locally free class groups, Fröhlich’s
Hom-description of locally free class groups, Stickelberger’s theorem.
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1. Introduction

Let K be an algebraic number field with ring of integers OK and let G be a finite group.
Given a Galois field extension N/K with Galois group isomorphic to G, we can consider the
ring of integers ON as an OK [G]-module. The classical Noether criterion implies that, when
N/K is tamely ramified, then ON is a locally free OK [G]-module of rank 1 and determines a
class in the locally free class group Cl(OK [G]) (for a precise definition see (1) in Section 2).
Noether’s criterion holds in general for G-Galois K-algebras (a K-algebra N is G-Galois if it
is étale and G acts on the left on N as a group of automorphisms, such that [N : K] = |G| and
NG = K). Hence, as for field extensions, to every tame G-Galois K-algebra we can associate
a class in Cl(OK [G]).
LetKc be a chosen algebraic closure ofK, then it is well-known that, if Ωt

K denotes the Galois
group of the maximal tame extension Kt/K in Kc, then the set of isomorphism classes of
tame G-Galois K-algebras is in bijection with H1(Ωt

K , G) (see [Ser94, Chapter I, §5] for a
precise definition), the first cohomology set of Ωt

K with coefficients in G (where Ωt
K acts

trivially on G). Hence, thanks to Noether’s criterion, we can consider the following morphism
of pointed sets:

R : H1(Ωt
K , G) −→ Cl(OK [G])

[N ] 7−→ [ON ],
where [N ] (resp. [ON ]) denotes the associated class of the G-Galois K-algebra N (resp. ON )
in H1(Ωt

K , G) (resp. Cl(OK [G])).
The set of realisable classes, denoted by R(OK [G]), is defined as the image of R, i.e. it is
the set of all classes in Cl(OK [G]) which can be obtained from the rings of integers of tame
G-Galois K-algebras. The problem of realisable classes consists in the study of the structure
of this set. One of the main question which is still open nowadays is the following:

Question. — Is R(OK [G]) a subgroup of Cl(OK [G])?

Note that R, when not trivial, is not a priori a group homomorphism. Indeed, if G is not
abelian, the domain of R is just a pointed set, but even if G is abelian (and so H1(Ωt

K , G)
is a group), it is not difficult to find an example which explains why R is not a group homo-
morphism (see [Siv13, Appendix]).

When the base field equals Q and G is abelian it follows from a result by Taylor ([Tay81]),
proving a conjecture of Fröhlich, that R(Z[G]) is trivial. By [Tay81], the same holds if K = Q
and G is a non-abelian group with no irreducible symplectic characters. More generally Tay-
lor proved that any element in R(Z[G]) has order at most 2 in Cl(Z[G]).

Over a general number field K, when G is abelian, a positive answer to the previous question
is given by Leon McCulloh in [McC87]. Given a finite group G, he introduced a subgroup
St(OK [G]) of Cl(OK [G]) (the notation used here differs from the original one by McCulloh),
defined in terms of some Stickelberger maps (see Section 2), and he proved the following
result.

Theorem 1.1. — Let G be a finite abelian group. Then, for every algebraic number field K,
we have

R(OK [G]) = St(OK [G]).
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A. Siviero 71

When G is non-abelian, he managed to prove the following inclusion (this is an unpublished
result announced in a talk given in Oberwolfach in February 2002, [McC] - for a detailed
proof of it, see [Siv13, Chapter 2]).

Theorem 1.2. — For every algebraic number field K and finite group G, the inclusion
R(OK [G]) ⊆ St(OK [G]) holds.

The proof of the reverse inclusion is still unknown. Indeed, when G is non-abelian andK 6= Q,
determining if R(OK [G]) forms a subgroup is in general an open problem.
Nevertheless, starting from the inclusion R(OK [G]) ⊆ Cl◦(OK [G]) (where the subgroup
Cl◦(OK [G]) is the kernel of the augmentation map from Cl(OK [G]) to Cl(OK), see Sec-
tion 3), some non-abelian results have been achieved. In particular, it has been proved that
R(OK [G]) = Cl◦(OK [G]) in the following cases: G = D8, the dihedral group of order 8, with
the assumption that the ray class group modulo 4OK of OK has odd order (see [BS05a]); and
G = A4, without any restriction on the base field K (see [BS05b]).
Recently in [BS13], Nigel P. Byott and Bouchaïb Sodaïgui, under the assumption that K
contains a root of unity of prime order p, showed that R(OK [G]) is a subgroup of Cl(OK [G]),
when G is the semidirect product V o C of an elementary abelian group V of order pr by
any non-trivial cyclic group C which acts faithfully on V and makes V into an irreducible
Fp[C]-module (where Fp is the finite field with p elements). This last result contains as a
corollary the main result of [BS05b].
More recently, Adebisi Agboola and Leon McCulloh showed that R(OK [G]) is a subgroup
of Cl(OK [G]) when G is a nilpotent group subject to certain conditions (see [AC15] for the
original preprint and further details).
In the non-abelian context, more has been done in describing a weaker form of R(OK [G]). If
M denotes a maximal order in K[G] containing OK [G], then, as done for R(OK [G]), we can
define R(M) to be the subset in Cl(M) of the classes [M ⊗OK[G] OL], where L runs through
the tame G-Galois algebras over K. The two sets R(M) and R(OK [G]) are linked by the
extension of scalars Ex : Cl(OK [G]) −→ Cl(M) and in fact one has R(M) = Ex(R(OK [G])).
For a complete list of the works on R(M) we refer to [Siv13, Introduction].

After a general review of the main definitions and tools, the first aim of this paper is to study
explicitly the relation between St(OK [G]) and Cl◦(OK [G]). In Section 3, we shall prove the
following proposition.

Proposition 1. — For every algebraic number field K and finite group G, the inclusion
St(OK [G]) ⊆ Cl◦(OK [G]) holds.

We shall exhibit an abelian counterexample showing that the reverse inclusion is not in gen-
eral true.

In Section 4 we shall give the first main result of this paper. As an example of computation
of the group St(OK [G]), just using its definition, we shall prove the following theorem.

Theorem 1. — Given a prime number p 6= 2. If G = C2, a cyclic group of order 2, or
G = Cp, a cyclic group of order p or G = Dp, a dihedral group of order 2p, then St(Z[G]) is
trivial.

This result will immediately imply, just using Theorem 1.2, the following corollary.
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Corollary 1. — In the cases of the theorem above, R(Z[G]) is trivial.

Remark 1.3. — For p = 2 we have that D2 is the Klein four group. Also in this case
Theorem 1 holds, thanks to the fact that Cl(Z[D2]) is trivial (cf. [CR87, Corollary 50.17]).

Note that the result of Corollary 1 was already included in the more general result by Taylor
contained in [Tay81]. The proof of Theorem 1 given here does not assume [Tay81], however,
but instead uses the definition of St(Z[G]) and its connection to the classical Stickelberger
theorem.
In the dihedral case, the result of Theorem 1 is genuinely new, since the inclusion R(Z[Dp]) ⊇
St(Z[Dp]) is not known a priori because the dihedral group Dp is not abelian. The result
obtained for the dihedral case is the more interesting one, since in particular it goes in the di-
rection of extending the equality of Theorem 1.1 to non-abelian groups, giving a non-abelian
example where the equality R(Z[G]) = St(Z[G]) holds.

In Section 5 we shall obtain the second main result of this paper concerning the behaviour
of St(OK [G]) under change of the base field K. Namely, if L is an algebraic number field
containing K, considering every OL[G]-module as an OK [G]-module, there is a restriction
map NL/K : Cl(OL[G]) −→ Cl(OK [G]) (see [CR87, §52]). We shall prove the following result.

Theorem 2. — For every finite group G, we have
NL/K(St(OL[G])) ⊆ St(OK [G]).

This will have some nice consequences, such as a new proof of a result by Taylor, contained
in [Tay81], which says that the ring of integers of an abelian tame G-Galois K-algebra is free
(of rank [K : Q]) over Z[G].
A final remark will explain that, if we consider the homomorphism given by extension of the
base field extL/K : Cl(OK [G]) −→ Cl(OL[G]), an analogous result to the previous theorem
holds.

Notation and conventions. — Let K be an algebraic number field and OK its ring of inte-
gers. Given a place p of K, we denote by Kp its completion with respect to the metric defined
by p: if p is a finite place, then Kp is a non-archimedean field which is a finite extension of
Qp (where p is the characteristic of OK/p); if p is an infinite place, then Kp is isomorphic to
R or C.
We choose an algebraic closure Kc (resp. Kc

p) of K (resp. Kp) and let ΩK (resp. ΩKp) denote
the Galois group of Kc/K (resp. Kc

p/Kp).
The symbol Ωnr

K (resp. Ωnr
Kp

) will denote the Galois group of the maximal unramified (at finite
places) extension Knr/K (resp. Knr

p /Kp) in Kc (resp. Kc
p) and Ωt

K (resp. Ωt
Kp

) will be the
Galois group of the maximal tame extension Kt/K (resp. Kt

p/Kp) in Kc (resp. Kc
p). At the

infinite places we take Knr
p = Kt

p = Kc
p .

If p is a finite place, let OK, p be the completion of OK with respect to p (which also coincides
with the ring of integers of the completion Kp) and Oc

K, p the integral closure of OK in Kc
p . If

p is an infinite place, we define OK, p to be Kp.

Let J(K) denote the group of idèles of K, i.e. the restricted direct product of {K×p }p with re-
spect to {O×K, p}p, where p runs through the places of K (both finite and infinite). We consider
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K× diagonally embedded in J(K) and U(OK) will denote the product
∏

pO
×
K, p. Similarly,

given a finite group G, the idèle group J(K[G]) is the restricted direct product of {Kp[G]×}p
with respect to {OK, p[G]×}p, where p runs through the places of K, and U(OK [G]) stands for
the product

∏
pOK, p[G]×. The symbol J(Kc) (resp. U(OcK)) will denote the direct limit of

the idèle groups J(L) (resp. U(OL)), as L runs over all finite Galois extensions ofK insideKc.

When we consider a representative for a class in a class group, we use the brackets [− ] to
denote its class (e.g. [OL] denotes the class in Cl(OK [G]) corresponding to the ring of integers
OL of a tame G-Galois algebra L/K).

Throughout this paper, G will denote a finite group, Gab its abelianization and G its set of
conjugacy classes. Given an element s in G, we denote by s its conjugacy class.
The set of irreducible complex characters of G will be denoted by Irr(G) and RG will stand for
the ring of virtual characters of G, i.e. the ring of Z-linear combinations of elements in Irr(G).

If Y is a group acting on the left on a set X, we denote the action of y ∈ Y on x ∈ X by
the symbol xy (occasionally by y · x); note in particular that (xy)z = xzy. If Y is a group
acting on two groups H and H ′, we denote by HomY (H,H ′) the set of all group homomor-
phisms from H to H ′ fixed by the action of Y ; in other words, let f ∈ Hom(H,H ′), then
f ∈ HomY (H,H ′) if and only if f(hy) = f(h)y, for all y ∈ Y and h ∈ H. If we choose an
embedding of Kc in C, then the absolute Galois group ΩK naturally acts on the left on Irr(G)
by χω(s) = χ(s)ω, where ω ∈ ΩK , χ ∈ Irr(G) and s ∈ G. We extend this action by linearity
to RG. When we have an ΩK-action on a set, we can always consider a ΩKp-action on the
same set, considering ΩKp embedded into ΩK .

Given a rational number a ∈ Q, the symbol bac (resp. {a}) denotes its integer (resp. frac-
tional) part.

2. Review of the main definitions and tools

In this section we briefly recall the main tools needed to describe McCulloh’s results on
realisable classes. We will not focus on any proof in particular, referring to the original works
for more details. We recall from the Introduction that K is an algebraic number field and G
a finite group.

2.1. Locally free class group. — Let M be an OK [G]-lattice (i.e. an OK [G]-module,
finitely generated and projective as OK-module) and let Mp denote the tensor product
OK, p⊗OK M . We say that M is in the genus of OK [G] (or M is a locally free OK [G]-module
of rank 1) if, for every maximal ideal p of OK , there is an isomorphism Mp

∼= OK, p[G]. We
denote by g(OK [G]) the set of all OK [G]-lattices in the genus of OK [G]. Moreover given two
OK [G]-lattices M and N , we say that M is stably isomorphic to N and we denote it by
M ∼=s N , if M ⊕OK [G]n ∼= N ⊕OK [G]n, for some n ≥ 1.

Remark 2.2. — Note that in general M ∼=s N ; M ∼= N (see [Swa62] for an explicit
example). Nevertheless there are many groups G for which two OK [G]-lattices which are stably
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74 Real. classes, Stickel. subgr. and its beh. under change of the base field

isomorphic are isomorphic too (e.g. abelian groups, dihedral groups, groups of odd order). We
refer to [CR87, §51C] for more details.

If now [M ]s denotes the stable isomorphism class of M , we define the set
(1) Cl(OK [G]) := {[M ]s : M ∈ g(OK [G])}
and we call it the locally free class group of OK [G]. Now, on this set, we can define a well-
defined operation. Given [M1]s and [M2]s in Cl(OK [G]), let us set
(2) [M1]s + [M2]s := [M3]s,
where, M3 is an OK [G]-lattice in g(OK [G]) such that M1⊕M2 ∼= OK [G]⊕M3 (the existence
of such an OK [G]-lattice M3 follows from a lemma of Roiter, see [CR81, 31.6]).
As one can see, under this operation, Cl(OK [G]) is an abelian group (see [CR87, §49A] for
more details). Moreover, Jordan–Zassenhaus theorem (see [Rei03, Theorem 26.4]) tells us
that the number of isomorphism classes of OK [G]-lattices in g(OK [G]) is finite, so a fortiori
Cl(OK [G]) is finite.

Remark 2.3. — Given an OK [G]-lattice M , its associated class in Cl(OK [G]) is trivial if
and only if M ∼=s OK [G]. Note that by the previous remark, if G is abelian, dihedral or of
odd order, then this is equivalent to say that M ∼= OK [G].

2.4. Hom-description. — Fröhlich gave a useful description of the locally free class group
Cl(OK [G]) in terms of some ΩK-equivariant homomorphisms. This description is well-known
as the Hom-description of Cl(OK [G]).
Let us consider the determinant map Det : U(OK [G]) −→ Hom ΩK

(RG, J(Kc)), obtained
componentwise by the linear extension of the map on Irr(G) given by Det(a)(χ) = det (Tχ(a)),
where Tχ is a complex representation affording the character χ and det is the usual determi-
nant of a matrix.
The Hom-description of Cl(OK [G]) is given by the following isomorphism

(3) Cl(OK [G]) ∼=
Hom ΩK

(RG, J(Kc))
Hom ΩK

(RG, (Kc)×) ·Det(U(OK [G])) .

Remark 2.5. — For a given class in Cl(OK [G]) to be trivial means that the representative
homomorphism f ∈ Hom ΩK

(RG, J(Kc)), under the previous isomorphism, can be written as
f = gd, where g ∈ Hom ΩK

(
RG, (Kc)×

)
, a global homomorphism fixed by ΩK , and d belongs

to Det (U (OK [G])).

2.6. The map RagK . —Given a character χ ∈ Irr(G), we define a map detχ on the group
G as

detχ(s) = det(Tχ(s)),
where Tχ is, as above, a complex representation associated to χ. Note that detχ can be
considered as a character of G of degree 1 (or equivalently as a character of Gab).
This definition is independent of the choice of the representation Tχ and we can in turn
consider the homomorphism det : RG −→ Irr(Gab) defined by

det

 ∑
χ∈ Irr(G)

aχχ

 =
∏

χ∈ Irr(G)
(detχ)aχ .
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Let AG be the kernel of this map, we shall call it the augmentation kernel. Then we can
consider the following short exact sequence of groups:

(4) 0 // AG
// RG

det // Irr(Gab) // 1.

Remark 2.7. — When the group G is abelian we have an explicit Z-basis of AG. From
the proof of [McC87, Theorem 2.14], if Irr(G) has a basis χ1, . . . , χk, with χi of order ei,
for i = 1, . . . , k and every χ ∈ Irr(G) is written uniquely as χ =

∏k
i=1 χ

ri(χ)
i , where 0 ≤

ri(χ) < ei; a Z-basis of AG is given by the non-zero elements in the collection {eiχi| i =
1, . . . , k} ∪ {χ−

∑k
i=1 ri(χ)χi|χ ∈ Irr(G)}.

For every finite place p of K, applying the functor Hom(−, (Oc
K, p)×) to the short exact

sequence (4), we get the following short exact sequence

1 // Hom
(
Irr(Gab), (Oc

K, p)×) // Hom
(
RG, (Oc

K, p)×) rag
// Hom

(
AG, (Oc

K, p)×) // 1

where the map rag is just the restriction map to the augmentation kernel (this also explains
its name). Now using the local analog of the functor Det, previously defined, we have the
following proposition.

Proposition 2.8. — For every finite place p of K, there is a commutative ΩKp-diagram
(every map preserves the ΩKp-action) of pointed sets with exact rows:

1 // G //

Det
��

Oc
K, p[G]× //

Det
��

Oc
K, p[G]×/G //

D̃et
��

1

1 // Gab // Hom
(
RG, (Oc

K, p)×
) rag

// Hom
(
AG, (Oc

K, p)×
)

// 1

Proof. — If s ∈ G, then Det(s)(χ) = detχ(s). So, from the definition of the map Det and
from the identification of Hom

(
Irr(Gab), (Oc

K, p)×
)

with Gab, the map Det : G −→ Gab

coincides with the natural quotient map G −→ Gab which sends s ∈ G to its associated coset
in G/[G,G]. Thus Det induces a map D̃et : Oc

K, p[G]×/G −→ Hom
(
AG, (Oc

K, p)×
)
, making

the diagram commute. �

Let us define the pointed set

(5) H(OK, p[G]) := (Oc
K, p[G]×/G)ΩKp

Taking now the ΩKp-invariants we deduce the following proposition.

Proposition 2.9. — For every finite place p of K, we have the following commutative
diagram with exact rows:

1 // G //

Det
��

OK, p[G]× //

Det
��

H(OK, p[G]) //

D̃et��

H1(Ωnr
Kp
, G) //

��

1

1 // Gab // Hom ΩKp

(
RG, (Oc

K, p)×) rag
// Hom ΩKp

(
AG, (Oc

K, p)×) // Hom
(

Ωnr
Kp
, Gab

)
// 1 .

Moreover the set D̃et(H(OK, p[G])) is a subgroup of Hom ΩKp

(
AG, (Oc

K, p)×
)
.
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Proof. — The first part of the proposition follows from Proposition 2.8, applying ΩKp-
cohomology. In particular exactness at the top row comes from the fact that any local un-
ramified extension has a normal integral basis generator, while exactness at the bottom row
is a consequence of the fact that the map H1(Ωnr

Kp
, G) −→ Hom(Ωnr

Kp
, Gab), induced by the

natural map from Hom(Ωnr
Kp
, G) to Hom(Ωnr

Kp
, Gab), is surjective as one can check using the

description of Ωnr
Kp

as a procyclic group.
For the second part of the proposition, we observe that, for every finite place p, there is a
one-to-one correspondence between OK, p[G]×\H(OK, p[G]) and H1(Ωnr

Kp
, G). Thus, applying

the map D̃et and using the fact that the map H1(Ωnr
Kp
, G) −→ Hom(Ωnr

Kp
, Gab) is surjective,

we get
rag(Det(OK, p[G]×))\D̃et(H(OK, p[G])) ∼= Hom(Ωnr

Kp
, Gab).

From this and using the fact that Hom(Ωnr
Kp
, Gab) is an abelian group, the group structure

of D̃et(H(OK, p[G])) follows. For more details on this proof we refer to [Siv13, Propositions
2.2.6 and 2.2.7]. �

Now, if we write

(6) U(OK [G]) :=
∏
p

D̃et(H(OK, p[G])) ⊆ Hom ΩK
(AG, J(Kc))

and we define the group

(7) MCl(OK [G]) :=
Hom ΩK

(AG, J(Kc))
Hom ΩK

(AG, (Kc)×) · U(OK [G]) ,

we see that the restriction map rag : Hom ΩK
(RG, J(Kc)) −→ Hom ΩK

(AG, J(Kc)) and Proposi-
tion 2.9, yield a group homomorphism

(8) RagK :
Hom ΩK

(RG, J(Kc))
Hom ΩK

(RG, (Kc)×) ·Det(U(OK [G])) −→
Hom ΩK

(AG, J(Kc))
Hom ΩK

(AG, (Kc)×) · U(OK [G]) .

Using the Hom-description of Cl(OK [G]) (see (3)), this can be written as
RagK : Cl(OK [G]) −→ MCl(OK [G]).

2.10. The Stickelberger map. —We introduce now one of the main ingredient of Mc-
Culloh’s results, the so called Stickelberger map. The original definition of the Stickelberger
map, when G is abelian, is contained in [McC87], while its extension to the non-abelian case
was presented for the first time by McCulloh in a talk given in Oberwolfach in 2002 ([McC]).
Let us start defining the Stickelberger pairing.

We define a Q-pairing 〈−,−〉 : Q⊗Z RG ×Q[G] −→ Q as follows:

? Characters of degree 1: If χ is a character of degree 1 and s ∈ G, 〈χ, s〉 is the rational
number defined by

χ(s) = e2πi〈χ,s〉,

such that 0 ≤ 〈χ, s〉 < 1. This was the original definition contained in [McC87] (in the
abelian case every irreducible character is of dimension 1). If G is abelian, this already
defines, extending it by Q-bilinearity, a Q-pairing 〈−,−〉 : Q⊗Z RG ×Q[G] −→ Q.
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? Characters of higher degree: If χ is a character of degree bigger than 1, then we define
〈χ, s〉 := 〈resG〈s〉 χ, s〉,

where resG〈s〉 χ is the restriction of the character χ to the cyclic group generated by s.
Extending it by Q-bilinearity, we have the required pairing for a generic finite group G.

Thanks to this pairing, the Stickelberger map ΘG : Q⊗Z RG −→ Q[G] is defined as

ΘG(α) :=
∑
s∈G
〈α, s〉s, for α ∈ Q⊗Z RG.

An important property of AG is given by the following proposition.

Proposition 2.11. — Let α ∈ Q ⊗Z RG, then ΘG(α) ∈ Z[G] ⇐⇒ α ∈ AG. In particular
ΘG induces a homomorphism ΘG : AG −→ Z[G].

Proof. — See [McC, Proposition 1]. �

Up to now we have not considered the ΩK-action. If we let ΩK act trivially on G, it is easy
to see that the Stickelberger map does not preserve the ΩK-action. In order to have such an
invariant property we have to introduce a non-trivial ΩK-action on G.

Definition. — Let m be the exponent of G and let µm be the group of m-th roots of unity.
Restricting ΩK to Gal (K (µm) /K), we consider the map κ : ΩK −→ (Z/mZ)× defined via
the formula ζω = ζκ(ω), for ζ ∈ µm. We denote by G(−1) the group G with an ΩK-action
defined via the inverse of κ:

sω := sκ
−1(ω).

If we take a character χ of degree 1, we have χ(s) ∈ µm and, since χω(s) equals χ (s)ω, we
get

χω(s) = χ (s)ω = χ (s)κ(ω) = χ(sκ(ω)).
By bilinearity, we deduce that, for all α ∈ Q⊗Z RG and for all s ∈ G(−1),

(9) 〈αω, s〉 = 〈α, sκ(ω)〉 = 〈α, sω−1〉.
Applying this to the Stickelberger map, we get

ΘG(αω) =
∑

s∈G(−1)
〈αω, s〉 s =

∑
s∈G(−1)

〈α, sω−1〉 s =
∑

s∈G(−1)
〈α, s〉 sω;

from which we deduce the following proposition.

Proposition 2.12. — The map ΘG : Q⊗ZRG −→ Q[G(−1)] is an ΩK-homomorphism, i.e.
ΘG(αω) = ΘG (α)ω , for all α ∈ Q⊗Z RG and ω ∈ ΩK .

The pairing 〈χ, s〉 just depends on the conjugacy class of s ∈ G and hence ΘG(Q⊗Z RG) ⊆
Z(Q[G]), where Z(Q[G]) is the centre of the group algebra Q[G], with basis the conjugacy
class sum of G. If we denote by G the set of conjugacy classes of G, then the action of ΩK

via κ−1 preserves conjugacy classes and it induces an ΩK-action on Z[G]; we denote this
ΩK-module by Z[G(−1)]. Thus, defining the Stickelberger pairing on the set of conjugacy
classes as

〈χ, s〉 := 〈χ, s〉,
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we denote by ΘG the map, defined by Q-bilinearity as:

ΘG : Q⊗Z RG −→ Q[G](10)
α 7−→

∑
s∈G

〈α, s〉s.

Again we have ΘG(α) ∈ Z[G]⇐⇒ α ∈ AG. Thus, transposing the map ΘG : AG → Z[G(−1)],
we get the ΩK-equivariant homomorphism

Θt
G,K

: Hom
(
Z[G(−1)], (Kc)×

)
−→ Hom

(
AG, (Kc)×

)
.

Hence, if we write (
KΛ

)×
:= Hom ΩK

(
Z[G(−1)], (Kc)×

)
,

Λ× := Hom ΩK

(
Z[G(−1)], (Oc

K)×
)

;

the map Θt
G,K

induces a homomorphism

Θt
G,K

:
(
KΛ

)×
−→ Hom ΩK

(
AG, (Kc)×

)
.

For every place p of K, we get a local analog just replacing K with Kp:

Θt
G,Kp

:
(
KpΛp

)×
−→ Hom ΩKp

(
AG, (Kc

p)×
)
.

Moreover Θt
G,Kp

(Λ×p ) ⊆ Hom ΩKp

(
AG, (Oc

K, p)×
)
. At the infinite places, since we set OK, p =

Kp, we have Λp = KpΛp.
Thus, defining the idèle group J(KΛ) as the restricted product of {(KpΛp)×}p with respect
to {Λ×p }p, the homomorphisms Θt

G,Kp
combine to give an idelic transpose Stickelberger ho-

momorphism:
(11) Θt

G,K
: J(KΛ) −→ Hom ΩK

(AG, J (Kc)) .

Remark 2.13. — We can also define J(KΛ) as Hom ΩK

(
Z[G(−1)], J(Kc)

)
; for details see

[McC87, Remark 6.22].

Remark 2.14. — If G is abelian, we can remove the “bar” from all our notation, since
G = G. In the sequel, if G is abelian, we will adopt this simplification in the notation.

2.15. The Stickelberger subgroup and McCulloh’s results. —We can finally define
the Stickelberger subgroup St(OK [G]) and state McCulloh’s main results on realisable classes.
Thanks to the definitions given in the previous parts, we have the following group homomor-
phisms

Cl(OK [G])
RagK// MCl(OK [G]) J(KΛ),

Θt
G,K

oo

where the map on the right is the natural map given by the composition of the map Θt
G,K

:
J(KΛ) −→ Hom ΩK

(AG, J (Kc)) with the quotient map Hom ΩK
(AG, J(Kc)) −→ MCl(OK [G])

(and we will denote it again by Θt
G,K

).
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Definition. — The Stickelberger subgroup St(OK [G]) is defined as

St(OK [G]) := Rag−1
K

(
Im
(
Θt
G,K

))
.

Remark 2.16. — The description and the notation used for St(OK [G]) do not reflect Mc-
Culloh’s original choice, but they are rather inspired from some later informal notes by A.
Agboola.

Denoting by Rnr(OK [G]), the set of realisable classes obtained from unramified G-Galois
K-algebras, McCulloh’s results then follow (the next theorem is a more detailed version of
Theorem 1.1 and Theorem 1.2 in the Introduction).

Theorem 2.17. — For every finite group G and algebraic number field K, we get

Rnr(OK [G]) ⊆ Ker(RagK),(12)
R(OK [G]) ⊆ St(OK [G]).(13)

Furthermore, when G is abelian, we have

Rnr(OK [G]) = Ker(RagK),(14)
R(OK [G]) = St(OK [G]).(15)

Proof. — The equalities concerning the abelian case are proved in [McC87], while the first
inclusions are claimed in some unpublished notes on two talks given by McCulloh in Oberwol-
fach in 2002 ([McC]) and in Luminy in 2011. For a precise proof of them we refer to [Siv13,
Chapter 2]. �

3. Comparison between St(OK [G]) and Cl◦(OK [G])

The group Cl◦(OK [G]) is defined as the kernel of ε? : Cl(OK [G]) −→ Cl(OK), the group
homomorphism induced by the augmentation map ε : OK [G] −→ OK , which sends an element∑
s∈G ass to

∑
s∈G as. McCulloh proved the following result.

Proposition 3.1. — For every algebraic number field K and finite group G,

R(OK [G]) ⊆ Cl◦(OK [G]).

Proof. — The original proof is contained in [McC77] (see also [McC83]). �

Remark 3.2. — In terms of the Hom-description, we have the following isomorphism

Cl◦(OK [G]) ∼=
Hom◦ΩK (RG, J(Kc))

Hom◦ΩK (RG, (Kc)×) ·Det◦ (U (OK [G])) .

The superscript “ ◦ ” means that we are considering the homomorphisms f such that f(χ0) =
1, where χ0 is the trivial character of G (see [BS05a]).

Considering the inclusion R(OK [G]) ⊆ St(OK [G]) (cf. Theorem 2.17), a natural question
arises: what is the link between the two groups St(OK [G]) and Cl◦(OK [G])? Are they equal?

A first answer to these questions is given by the following result.
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Proposition 1. — For every algebraic number field K and finite group G, we get
St(OK [G]) ⊆ Cl◦(OK [G]).

Proof. — Let us consider a class c ∈ St(OK [G]) represented in terms of the Hom-description
by f ∈ Hom ΩK

(RG, J(Kc)). In order to prove that c belongs to Cl◦(OK [G]), we need to
show that f(χ0) ∈ K× · U(OK) (see [BS05a, Proposition 2.1]).
Since for every finite group G, the trivial character χ0 belongs to AG, in order to get f(χ0)
we can compute the value of rag(f)(χ0). By the definition of St(OK [G]), we have

rag(f) ∈ Hom ΩK

(
AG, (Kc)×

)
· U(OK [G]) ·Θt

G,K
(J(KΛ)),

so we can split the computation on χ0 into the three components on the right.
Let us compute these values:

? Hom ΩK
(AG, (Kc)×): If we take g ∈ Hom ΩK

(AG, (Kc)×), the fact that it is ΩK-equi-
variant means that, for every ω ∈ ΩK , we have g (χ)ω = g(χω). Thus, when we consider
the value g(χ0), we get that, for every ω ∈ ΩK ,

g (χ0)ω = g(χω0 ) = g(χ0).
Then g(χ0) ∈ K×, since it is fixed by ΩK . So we have shown that every element in the
group Hom ΩK

(AG, (Kc)×) evaluated at χ0 gives a an element in K×.

? U(OK [G]): We look at each place p separately and we compute the values at χ0. By
definition of the map Det and considering an element a :=

∑
s∈G ass ∈ Kc[G], we obtain

Det(a)(χ0) = Tχ0(a) =
∑
s∈G as (where Tχ0 is the trivial representation).

If we take xp ∈ (Oc
K, p[G]×/G)ΩKp represented by ap ∈ Oc

K, p[G]×, we have

D̃et(xp)(χ0) = rag(Det(ap))(χ0) = Det(ap)(χ0).
Now, for every ω ∈ ΩKp , we have aωp = ap · s′, where s′ ∈ G. Thus, applying Tχ0 , we get
Tχ0(ap)ω = Tχ0(ap). Hence, for each p, the element Det(ap)(χ0) belongs to O×K, p. Thus,
every element in U(OK [G]), when evaluated at χ0, gives an element in U(OK).

? Θt
G,K

(J(KΛ)): Given h ∈ J(KΛ), by definition, we have that Θt
G,K

(h)(χ0) equal to
h
(
ΘG (χ0)

)
. Moreover ΘG(χ0) = 0, since χ0(s) = 1 for every s ∈ G. Thus, every element

in Θt
G,K

(J(KΛ)) evaluated at χ0 is trivial.

Combining all together, we can now see that, if we take c ∈ St(OK [G]) and we consider a
representative of it f ∈ Hom ΩK

(RG, J(Kc)), we obtain f(χ0) ∈ K× · U(OK), as we wanted
to prove. �

After this proposition, one may wonder if the reverse inclusion also holds. This is the case for
some groups (e.g. G = A4, see [BS05b]), but is not in general true as the next counterexample
shows.

Counterexample. Given a prime number p, take G = Cp, a cyclic group of order p; then, as
shown in [Rim59], we have Cl(Z[Cp]) ∼= Cl(Z[ζp]), where ζp is a primitive p-th root of unity.
Since Cl(Z) is trivial, we get Cl◦(Z[Cp]) = Cl(Z[Cp]).
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We know that R(Z[Cp]) is trivial and so, by McCulloh’s results, the same is true for St(Z[Cp]).
Thus, just taking a cyclic group Cp, with a prime number p such that the class number of
Cl(Z[ζp]) is not one (e.g. p = 23, see [Was97, Chapter 11]), we have a simple example of a
group G and a number field K for which St(OK [G]) ( Cl◦(OK [G]).

4. Computing the Stickelberger subgroup

In this section we explicitly compute St(OK [G]) in some special cases, just using its algebraic
definition and the classical Stickelberger theorem. In particular, we shall prove the next result,
already announced in the Introduction.

Theorem 1. — Given a prime number p 6= 2. If G = C2, a cyclic group of order 2, or
G = Cp, a cyclic group of order p or G = Dp, a dihedral group of order 2p, then St(Z[G]) is
trivial.

This result, as explained in the Introduction, implies the following corollary.

Corollary 1. — In the cases of the theorem above, R(Z[G]) is trivial.

4.1. The classical Stickelberger theorem. — First, we briefly recall here some annihi-
lation results for class groups.
Let N/Q be a finite abelian extension, by the Kronecker–Weber theorem, N ⊆ Q(ζn) (where
n is assumed to be the minimal integer with this property and ζn is a primitive n-th root of
unity). If H = Gal(N/Q), then it can be viewed as a quotient of (Z/nZ)× and we denote by
σµ, where µ ∈ (Z/nZ)×, both the element of Gal(Q(ζn)/Q) which sends ζn to its µ-th power
and its restriction to N . Then the Stickelberger element of N is defined as

Ψ :=
∑

µ∈ (Z/nZ)×

{
µ

n

}
σ−1
µ ∈ Q[H].

We have the following classical theorem.

Theorem 4.2. — (Stickelberger’s theorem). Let I be a fractional ideal of N , let β ∈ Z[H],
and suppose βΨ ∈ Z[H]. Then (βΨ) · I is principal.

Proof. — [Was97, Theorem 6.10]. �

Another useful relation for ideal classes of cyclotomic extensions is given by the next theorem.

Theorem 4.3. — Let L be the cyclotomic extension Q(ζn), where ζn is a primitive n-th
root of unity, and denote by σµ, for µ ∈ (Z/nZ)×, the automorphism defined above. Let p be
a prime number, such that p - n and let us consider a prime ideal P|p in OL. For positive
integers a, b such that ab(a+ b) 6≡ 0 mod n, let us write

Ψa, b :=
∑

µ∈ (Z/nZ)×

(⌊(a+ b)µ
n

⌋
−
⌊
aµ

n

⌋
−
⌊
bµ

n

⌋)
σ−1
µ .

Then (Ψa, b) ·P is principal. Since any ideal class contains infinitely many primes, this gives
a relation on the ideal class group of Q(ζn).

Proof. — [Lan94, Chapter IV, §4, Theorem 11]. �
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4.4. Background on Cp and Dp. — Let Cp be a cyclic group of order a prime number p
with generator denoted by t and let the group Irr(Cp) be generated by χp, where χp(t) := e

2πi
p .

We denote by χ0 the trivial character (χpp = χ0).
The following result, that we have already used in the counterexample of the previous section,
describes Cl(Z[Cp]) in terms of the class group of the cyclotomic extension Q(ζp) and is due
to D. S. Rim. Using the Hom-description for the class group Cl(Z[Cp]), we can state it in the
following way.

Lemma 4.5. — Let p be a prime number and let ζp be a primitive p-th root of unity. The
following group isomorphism holds:

(16) L : Cl(Z[Cp])
∼=−→ Cl(Z[ζp])

c = [f ] 7−→ [f(χp)] .

Proof. — This is a result contained in [Rim59] and here rewritten in terms of the Hom-de-
scription, after having recalled the idelic representation of the ideal class group

Cl(Z[ζp]) ∼= J (Q(ζp)) /
(
Q(ζp)× · U(Z[ζp])

)
.

Note that the element f , representative of c, belongs to Hom ΩQ

(
RCp , J(Qc)

)
. �

The dihedral group Dp is the group of symmetries of a regular polygon with p sides, including
both rotations and reflections. It has order 2p and it can be represented as

Dp := 〈r, s | rp = s2 = 1, s−1rs = r−1〉.

We will just consider p ≥ 3, note that D2 is the Klein four-group.
If p ≥ 3, the set Irr(Dp) consists of two characters ψ0 and ψ′0 of dimension 1 and (p − 1)/2
characters ψj (with j = 1, . . . , (p − 1)/2) of dimension 2. The character ψ0 is the trivial
character, while ψ′0 sends rk to 1 and srk to −1, for k = 0, . . . , p− 1. The characters ψj , for
j = 1, . . . , (p− 1)/2, are defined as

ψj :

r
k 7−→ 2 cos

(2πjk
p

)
, k = 0, . . . , p− 1 ;

srk 7−→ 0, k = 0, . . . , p− 1.

For Dp an analogous result to Lemma 4.5 follows.

Lemma 4.6. — Let p be an odd prime number and let ζp be as above. The following group
isomorphism holds:

J : Cl(Z[Dp])
∼=−→ Cl(Z(ζp + ζ−1

p ))
[f ] 7−→ [f(ψ1)] .

Proof. — This follows from the Wedderburn decomposition Q[Dp] ∼= Q×Q×M2(Q(ζp+ζ−1
p ))

and the isomorphism Cl(Z[Dp]) ∼= Cl(M) ∼= Cl(Z(ζp + ζ−1
p )), where M denotes a maximal

order in Q[Dp] containing Z[Dp]. See [CR87, Theorem 50.25] for more details. �
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4.7. The Stickelberger map for Cp and Dp. — For every prime number p, in the cyclic

case Cp, it is easy to see that 〈χ0, t
j〉 is equal to 0 and 〈χip, tj〉 =

{
ij

p

}
, for j = 0, . . . , p − 1

and i = 1, . . . , p− 1. Hence

ΘCp :


χ0 7−→ 0 ,

χip 7−→
i

p
t+

{2i
p

}
t2 + · · ·+

{(p− 1)i
p

}
tp−1 , for 1 ≤ i ≤ p− 1.

While for the dihedral group Dp (with p ≥ 3), first we have to think about the restriction of
the irreducible characters over the cyclic subgroups 〈r〉 (of order p) and 〈srk〉 (of order 2),
for k = 0, . . . , p − 1. We adopt the same notation of the characters of Cp used above for the
characters of 〈r〉 and we denote by φ0, φ

′
0 the trivial and the non-trivial character of 〈srk〉,

respectively. Then, for the characters of dimension 1 we clearly have

resDp〈r〉ψ0 = χ0 resDp〈srk〉ψ0 = φ0

resDp〈r〉ψ
′
0 = χ0 resDp〈srk〉ψ

′
0 = φ′0

while, for the characters of dimension 2, using the inner products and some computations,
we get

resDp〈r〉ψj = χjp + χp−jp , for j = 1, . . . , (p− 1)/2,

and for the subgroups 〈srk〉, where k = 0, . . . , p− 1, we have

resDp〈srk〉ψj = φ0 + φ′0, for j = 1, . . . , (p− 1)/2.

We easily deduce the values of the Stickelberger pairings on the elements of Irr(Dp):

〈ψ0, r
k〉 = 〈ψ0, sr

k〉 = 0, for k = 0, . . . , p− 1,
〈ψ′0, rk〉 = 0, 〈ψ′0, srk〉 = 1/2, for k = 0, . . . , p− 1,

〈ψj , 1〉 = 0, for j = 1, . . . , (p− 1)/2,
〈ψj , rk〉 = 1, for k = 1, . . . , p− 1 and j = 1, . . . , (p− 1)/2,
〈ψj , srk〉 = 1/2, for k = 0, . . . , p− 1 and j = 1, . . . , (p− 1)/2.

We can now consider the Stickelberger map on the conjugacy classes ΘDp
: Q⊗ZRDp → Q[Dp]

(cf. (10)). There are (p+ 3)/2 conjugacy classes of Dp:

{1}, {rk, r−k}, for k = 1, . . . , (p− 1)/2, and {s, sr, sr2, . . . , srp−1};

then, since 〈χ, s〉 was defined as 〈χ, s〉, it is easy to see that we obtain:

ΘDp
:


ψ0 7−→ 0 ,
ψ′0 7−→ 1

2s ,

ψj 7−→
∑(p−1)/2
k=1 rk + 1

2s, for j = 1, . . . , (p− 1)/2.
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4.8. The augmentation kernels ACp and ADp. —As we have already seen in Remark
2.7, we have the following lemma.

Lemma 4.9. — Let p be a prime number, then
AC2 = 〈χ0, 2χ2〉 ,
ACp = 〈χ0, jχp − χjp, pχp〉, for 2 ≤ j ≤ p− 1, with p 6= 2.

An analogous result for the dihedral group Dp follows.

Lemma 4.10. — Let p be an odd prime number, then

ADp = 〈ψ0, 2ψ′0, ψ′0 − ψj〉, for j = 1, . . . , (p− 1)/2.

Proof. — Consider an element α ∈ RDp and write it as

α = α0ψ0 + α′0ψ
′
0 +

(p−1)/2∑
j=1

αjψj .

As det(ψj) = ψ′0, we have

det(α) =
(
ψ′0
)α′0+

∑(p−1)/2
j=1 αj ,

hence, by the definition of ADp ,

α ∈ ADp ⇐⇒ α′0 +
(p−1)/2∑
j=1

αj ≡ 0 mod 2.

Thus, writing

α = α0ψ0 + 2bψ′0 −
(p−1)/2∑
j=1

αj(ψ′0 − ψj),

where b ∈ Z such that α′0 +
∑(p−1)/2
j=1 αj = 2b, we get our claim. �

4.11. The triviality of Θt
Cp,Q and Θt

Dp,Q
. —Once we know the structure of the augmen-

tation kernel ACp , we can apply the classical Stickelberger theorem for the computation of
Θt
Cp,Q

(
Hom ΩQ

(Z[Cp(−1)], J(Qc))
)
, as the following proposition explains.

Proposition 4.12. — For every prime number p,

Θt
Cp,Q

(
Hom ΩQ

(Z[Cp(−1)], J(Qc))
)
⊆ Hom ΩQ

(
ACp ,Q(ζp)× · U (Z[ζp])

)
.

Proof. — The group Hom ΩQ
(Z[Cp(−1)], J(Qc)) is equal to Hom ΩQ

(Z[Cp(−1)], J (Q(ζp)))
(think about the ΩQ-action) and, given an element h ∈ Hom ΩQ

(Z[Cp(−1)], J (Q(ζp))), we
immediately understand that, thanks to the ΩQ-action, it is uniquely determined by h(1)
and h(t) (where t is the chosen generator of Cp). Indeed σ−1

i · t = ti (remember the twist
in the definition of the ΩQ-action on Cp(−1)), where, as before, the automorphism σi ∈
Gal(Q(ζp)/Q) is such that σi(ζp) = ζip, for i = 1, . . . , p − 1. Thus if h(t) = x ∈ J(Q(ζp)),
considering the ΩQ-invariance, we have h(ti) = σ−1

i · x.
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Now, using the description of the Stickelberger map given above, on the generators of ACp

we get

ΘCp :


χ0 7−→ 0 ,
pχp 7−→ t+ 2t2 + · · ·+ (p− 1)tp−1 ,

jχp − χjp 7−→
⌊2j
p

⌋
t2 + · · ·+

⌊(p− 1)j
p

⌋
tp−1 , for 2 ≤ j ≤ p− 1;

where the last line is not considered if p = 2.
We can now compute the transpose of the Stickelberger map (again when p = 2 we just
consider the first two lines) on h ∈ Hom ΩQ

(Z[Cp(−1)], J (Q(ζp))), obtaining

Θt
Cp,Q(h) :


χ0 7−→ 1 ,
pχp 7−→

(∑p−1
i=1 iσ

−1
i

)
· x ,

jχp − χjp 7−→
(∑p−1

i=1

⌊
ij
p

⌋
σ−1
i

)
· x , for 2 ≤ j ≤ p− 1.

Now, using the idelic representation of Cl(Z[ζp]) recalled in the proof of Lemma 4.5, we imme-
diately deduce from Theorem 4.2 that Θt

Cp,Q(h)(pχp) is trivial once considered in Cl(Z[ζp]).
This means that Θt

Cp,Q(h)(pχp) ∈ Q(ζp)× ·U(Z[ζp]), which proves the proposition for p = 2.
When p 6= 2, for the other generators jχp − χjp, we use Theorem 4.3 on the cyclotomic
extension Q(ζp) and we proceed by induction. Starting with j = 2, we get

Θt
Cp,Q(h)(2χp − χ2

p) =

p−1∑
i=1

⌊2i
p

⌋
σ−1
i

 · x
and using Theorem 4.3, with a = b = 1, we get Θt

Cp,Q(h)(2χp − χ2
p) ∈ Q(ζp)× · U(Z[ζp])

(proving the result for p = 3).
For p > 3, let j be a natural number in {2, . . . , p− 1}, denote Θt

Cp,Q(h)(jχp − χjp) by xj and
assume that xj ∈ Q(ζp)× · U(Z[ζp]), then we have

xj+1
xj

=

p−1∑
i=1

(⌊(j + 1)i
p

⌋
−
⌊
ji

p

⌋)
σ−1
i

 · x ,
which belongs to Q(ζp)× · U(Z[ζp]), applying Theorem 4.3 with a = j and b = 1. Thus we
deduce that, if xj ∈ Q(ζp)× · U(Z[ζp]), then xj+1 ∈ Q(ζp)× · U(Z[ζp]), which by induction
concludes the proof. �

We do exactly the same for Dp and an analogous result follows.

Proposition 4.13. — Let p be an odd prime number. Then

Θt
Dp,Q

(
Hom ΩQ

(
Z[Dp(−1)], J(Qc)

))
⊆ Hom ΩQ

(
ADp ,Q(ζp + ζ−1

p )× · U
(
Z[ζp + ζ−1

p ]
))
.

Proof. — Going back to the definition of the ΩQ-action onDp(−1), we see that Stab (s) equals
ΩQ, since s is of order 2, while Stab

(
rk
)

= Gal(Qc/Q(ζp+ζ−1
p )), for all k = 1, . . . , (p−1)/2.

Thus, Hom ΩQ

(
Z[Dp(−1)], J(Qc)

)
is equal to the set Hom ΩQ

(
Z[Dp(−1)], J

(
Q(ζp + ζ−1

p )
))

.

Given h ∈ Hom ΩQ

(
Z[Dp(−1)], J(Qc)

)
, then Θt

Dp,Q
(h) in Hom ΩQ

(
ADp , J(Qc)

)
is defined by

the values it assumes on the set of basis elements of ADp which we studied above. In particular,
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if we denote by x ∈ J(Q) the element h(s) and by y ∈ J(Q(ζp + ζ−1
p )) the element h(r), we

have

Θt
Dp,Q

(h) :


ψ0 7−→ 1 ,

2ψ′0 7−→ x ,
ψ′0 − ψj 7−→ −(

∑
σ∈Gal(Q(ζp+ζ−1

p )/Q) σ) · y, for j = 1, . . . , (p− 1)/2.

where in the last computation we used the fact that Gal(Q(ζp + ζ−1
p )/Q) acts transitively on

the set of conjugacy classes
{
rk
}
k=1, ..., (p−1)/2

.
We see that Θt

Dp,Q
(h)(ψ0) and Θt

Dp,Q
(h)(2ψ′0) are in J(Q) so they can be written as a

product of a global and a unit element (Cl(Z)=1). The same holds for Θt
Dp,Q

(h)(ψ′0 − ψj),
with j = 1, . . . , (p−1)/2, since (

∑
σ∈Gal(Q(ζp+ζ−1

p )/Q) σ) ·y = NQ(ζp+ζ−1
p )/Q(y). This concludes

the proof. �

4.14. Proof of Theorem 1. — Let us consider the isomorphism L, given in Lemma 4.5.
For every ω ∈ ΩQ and c ∈ Cl(Z[Cp]), represented in terms of the Hom-description by
f ∈ Hom ΩQ

(
RCp , J(Qc)

)
, we have:

L(c)ω = [f(χp)]ω = [f(χp)ω] = [f
(
χωp

)
],

where, in the last equality, we use the ΩQ-equivariance of f .
Using again the classical Stickelberger theorem and the isomorphism L between the locally
free class group Cl(Z[Cp]) and the ideal class group Cl(Z[ζp]), we can now prove the following
proposition.

Proposition 4.15. — Let p be a prime number and let f be in Hom ΩQ

(
RCp , J(Qc)

)
, such

that
rag(f) ∈ Hom ΩQ

(
ACp ,Q(ζp)× · U (Z[ζp])

)
.

If c := [f ] ∈ Cl(Z[Cp]), then c is trivial.

Proof. — If p = 2, then Cl(Z[C2]) ∼= Cl(Z) = 1, so there is nothing to prove and in our proof
we can assume p 6= 2. Using the isomorphism L, we have

(17) L(c)p = [f(χp)]p = [f(χp)p]
(a)
= [f(pχp)]

(b)
= [rag(f)(pχp)]

(c)
= 1,

where (a) is given by the fact that f is a homomorphism, (b) follows since pχp ∈ ACp and
(c) is given by hypothesis and thanks to the idelic representation of the ideal class group
Cl(Z[ζp]).
If σj ∈ Gal(Q(ζp)/Q) is such that σj(ζp) = ζjp , for j = 1, . . . , p− 1, we also get

σj · (L(c)) = [f(jχp − (jχp − χjp))] = [f(jχp)][f(jχp − χjp)]−1 (d)
= [f(jχp)] = L(c)j ,

where in (d) we use the fact that jχp − χjp ∈ ACp and the idelic representation of Cl(Z(ζp)).
Once we know the action of σj on L(c), we can apply Stickelberger’s theorem to the element
of Cl (Z[ζp]) given by L(c):

(18) 1 =
p−1∑
j=1

jσ−1
j · (L(c))

(e)
=

p−1∏
j=1

L(c)jj−1 = L(c)p−1,
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where the first equality is exactly Stickelberger’s theorem and (e) is assured by σ−1
j = σj−1 ,

where j−1 is the inverse of j in (Z/pZ)× belonging to {1, . . . , p−1}. Note that the last equality
follows from the fact that jj−1 ≡ 1 mod p and from (17).
Finally, putting together (17) and (18), we have L(c) = 1, which, thanks to the isomorphism
(16), implies the triviality of c in Cl(Z[Cp]). �

Using the isomorphism J given in Lemma 4.6, an analogous result for the dihedral case follows.

Proposition 4.16. — Let p be an odd prime and let f be in Hom ΩQ

(
RDp , J(Qc)

)
, such

that
rag(f) ∈ Hom ΩQ

(
ADp ,Q(ζp + ζ−1

p )× · U
(
Z[ζp + ζ−1

p ]
))
.

If c := [f ] ∈ Cl(Z[Dp]), then c is trivial.

Proof. — Given c ∈ Cl(Z[Dp]) as in the hypothesis, then

J(c) = [f(ψ1)] = [f(ψ′0 − (ψ′0 − ψ1))] = [f(ψ′0)][f(ψ′0 − ψ1)]−1.

Now since ψ′0 − ψ1 is contained in ADp , by hypothesis we have [f(ψ′0 − ψ1)] = 1 and so we
get J(c) = [f(ψ′0)]. Since f(ψ′0) ∈ J(Q), this concludes the proof. �

We can finally prove Theorem 1.
Proof of Theorem 1. We consider the case G = Dp, the Cp case is analogous.
A class c = [f ] ∈ Cl(Z[Dp]) belongs to St(Z[Dp]) if and only if

rag(f) = g · w ·Θt
Dp,Q

(h),

where g is in Hom ΩQ

(
ADp , (Qc)×

)
, w ∈ U(Z[Dp]) ⊆ Hom ΩQ

(
ADp , U(Zc)

)
(see (6) for the

original definition of U(Z[Dp])) and h is in Hom ΩQ

(
Z[Dp(−1)], J

(
Q
(
ζp + ζ−1

p

)))
.

Since
Hom ΩQ

(
ADp , (Qc)×

)
= Hom ΩQ

(
ADp ,Q(ζp + ζ−1

p )×
)

Hom ΩQ

(
ADp , U(Zc)

)
= Hom ΩQ

(
ADp , U(Z[ζp + ζ−1

p ])
)
,

clearly g · w ∈ Hom ΩQ

(
ADp ,Q(ζp + ζ−1

p )× · U
(
Z[ζp + ζ−1

p ]
))

. Thus, using Proposition 4.13
and Proposition 4.16, we finally get that c is trivial, as we wanted to show. �

5. Some functorial properties of St(OK [G])

In this section, we shall study the behaviour of the subgroup St(OK [G]) under change of the
base field.

Given K a subfield of a number field L, as already explained in the Introduction, we have
a restriction map NL/K : Cl(OL[G]) −→ Cl(OK [G]). In terms of the Hom-description it is
expressed by the norm map

NL/K :
Hom ΩL

(RG, J(Qc))
Hom ΩL

(RG, (Qc)×) ·Det(U(OL[G])) −→
Hom ΩK

(RG, J(Qc))
Hom ΩK

(RG, (Qc)×) ·Det(U(OK [G]))
[f ] 7−→ [NL/K(f)]
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where NL/K(f)(α) :=
∏
ω∈ΩK/ΩL f

ω(α) =
∏
ω∈ΩK/ΩL f

(
αω
−1
)ω

(by the definition of the left
ΩQ-action on Hom (RG, J(Qc))), for every α ∈ RG. Instead of taking Kc (resp. Lc) in the
Hom-description of Cl(OK [G]) (resp. Cl(OL[G])), we consider Qc in order to homogenize the
notation (we can do it as L and K are both algebraic extensions of Q - cf. (3)).
From Theorem 2.17, we know that R(OL[G]) (resp. R(OK [G])) is contained in the Stickel-
berger subgroup St(OL[G]) (resp. St(OK [G])), with equality when the group G is abelian.
An interesting question naturally arises: is the Stickelberger subgroup functorial under this
map? Or, more precisely, does the inclusion NL/K(St(OL[G])) ⊆ St(OK [G]) hold?
In this section we are going to give an affirmative answer to this question, which will have
some nice consequences, as explained in the last part.

5.1. Changing the base field for the Stickelberger subgroup. —Using the group
homomorphisms

Cl(OL[G])
RagL // MCl(OL[G]) J(LΛ),

Θt
G, L

oo

we defined St(OL[G]) as Rag−1
L (Im(Θt

G,L
)). Analogously St(OK [G]) is Rag−1

K (Im(Θt
G,K

)).
The norm map NL/K induces the following well-defined group homomorphisms (for which we
will use the same name):

NL/K : MCl(OL[G]) −→ MCl(OK [G]),

NL/K : Hom ΩL

(
Z[G](−1), J(Qc)

)
−→ Hom ΩK

(
Z[G](−1), J(Qc)

)
.

Thus we can prove the next result.

Proposition 5.2. — The following diagram commutes:

Cl(OL[G])
RagL //

NL/K

��

MCl(OL[G])

NL/K

��

Hom ΩL

(
Z[G(−1)], J(Qc)

)Θt
G,L

oo

NL/K

��

Cl(OK [G])
RagK //MCl(OK [G]) Hom ΩK

(
Z[G(−1)], J(Qc)

)
.

Θt
G,K

oo

Proof. — First of all we claim that the following diagram commutes

Cl(OL[G])
RagL //

NL/K

��

MCl(OL[G])

NL/K

��

Cl(OK [G])
RagK //MCl(OK [G]).

Given a homomorphism f ∈ Hom ΩK
(RG, J(Qc)) and α :=

∑
χ∈ Irr(G) aχχ in AG, using the

definition of NL/K , we have

NL/K(RagL(f))(α) =
∏

ω∈ΩK/ΩL

RagL(f)
(
αω
−1)ω

=
∏

ω∈ΩK/ΩL

f
(
αω
−1)ω
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= NL/K(f)(α)
= RagK(NL/K(f))(α)

which proves our claim. From this, we have NL/K(Ker(RagL)) ⊆ Ker(RagK).
We pass now to the proof of the commutativity of the following diagram

(19) MCl(OL[G])

NL/K

��

Hom ΩL

(
Z[G(−1)], J(Qc)

)Θt
G,L

oo

NL/K

��

MCl(OK [G]) Hom ΩK

(
Z[G(−1)], J(Qc)

)
.

Θt
G,K

oo

Given g ∈ Hom ΩL

(
Z[G(−1)], J(Qc)

)
and an element α ∈ AG, we have

Θt
G,K

(NL/K(g))(α) = NL/K(g)

 ∑
s∈G(−1)

〈α, s〉s



=
∏

ω∈ΩK/ΩL

g


 ∑
s∈G(−1)

〈α, s〉s


ω−1

ω

=
∏

ω∈ΩK/ΩL

 ∏
s∈G(−1)

g
(
sω
−1)〈α,s〉

ω

=
∏

ω∈ΩK/ΩL

 ∏
t∈G(−1)

g (t)〈α,t
ω〉


ω

using the fact that every ω acts as an automorphism. On the other side

NL/K(Θt
G,L

(g))(α) =
∏

ω∈ΩK/ΩL

Θt
G,L

(g)
(
αω
−1)ω

=
∏

ω∈ΩK/ΩL

g

 ∑
s∈G(−1)

〈αω−1
, s〉s


ω

=
∏

ω∈ΩK/ΩL

 ∏
s∈G(−1)

g (s)〈α
ω−1

,s〉


ω

=
∏

ω∈ΩK/ΩL

 ∏
s∈G(−1)

g (s)〈α,s
ω〉


ω

where in the last equality we used the relation 〈αω−1
, s〉 = 〈αω−1

, s〉 = 〈α, sω〉 = 〈α, sω〉 =
〈α, sω〉, which one can get using the definition of the action of ω on G(−1), the definition of
the Stickelberger pairing for the set of conjugacy classes and property (9). This proves the
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commutativity of (19).
The previous two diagrams combine to prove that the following diagram commutes

Cl(OL[G])
RagL //

NL/K

��

MCl(OL[G])

NL/K

��

Hom ΩL

(
Z[G(−1)], J(Qc)

)Θt
G,L

oo

NL/K

��

Cl(OK [G])
RagK //MCl(OK [G]) Hom ΩK

(
Z[G(−1)], J(Qc)

)
.

Θt
G,K

oo

�

Thus the following result now easily follows (this is a refined version of Theorem 2 in the
Introduction).

Theorem 5.3. — Given a finite group G and a subfield K of an algebraic number field L,
then

NL/K(Ker(RagL)) ⊆ Ker(RagK),
NL/K(St(OL[G])) ⊆ St(OK [G]).

Proof. — The first inclusion is already included in the proof of Proposition 5.2. For the
second one it is sufficient to have in mind the definition of the Stickelberger subgroup and
use Proposition 5.2. �

A first consequence of Theorem 5.3 in the abelian case follows.

Corollary 5.4. — Let G be a finite abelian group and let K be a subfield of an algebraic
number field L. Then NL/K(Rnr(OL[G])) ⊆ Rnr(OK [G]) and NL/K(R(OL[G])) ⊆ R(OK [G]).

Proof. — This follows from Theorem 5.3 and from the equalities in the abelian case of Theo-
rem 2.17: Rnr(OL[G]) = Ker(RagL) (respectively Rnr(OK [G]) = Ker(RagK)) and R(OL[G]) =
St(OL[G]) (respectively R(OK [G]) = St(OK [G])). �

The following result is valid for every finite group G.

Corollary 5.5. — Let G be a finite group and K be a subfield of an algebraic number field
L, such that St(OK [G]) = 1. Then for every tame G-Galois L-algebra N , its ring of integers
ON is a stably free OK [G]-module.

Proof. — Clear from Theorem 5.3 and from the fact that the class [ON ] in the class group
Cl(OK [G]) is trivial if and only if ON is stably free when seen as an OK [G]-module (cf.
Remark 2.3). �

From this we deduce the two following corollaries which are contained in a more general result
by Taylor ([Tay81]).

Corollary 5.6. — Given an algebraic number field L and an abelian tame G-Galois L-
algebra N , its ring of integers ON is a free Z[G]-module.

Proof. — It follows from Corollary 5.5 with K = Q and from the fact that, since G is
abelian, St(Z[G]) = R(Z[G]) = 1, by [Tay81] and McCulloh’s results. Moreover, note that in
the abelian case to be a stably free Z[G]-module is equivalent to be a free Z[G]-module (see
Remark 2.3). �
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Corollary 5.7. — Let Dp be a dihedral group of order 2p, where p is an odd prime number.
Given a number field L and a tame Dp-Galois L-algebra N , its ring of integers ON is a free
Z[Dp]-module.

Proof. — The proof is a direct consequence of Theorem 1, Corollary 5.5 and the statement
concerning the dihedral groups in Remark 2.3. �

As the following remark explains, an analogous result to Theorem 5.3 holds when we consider
the behaviour of St(OK [G]) under extension of the base field.

Remark 5.8 (Extension of the base field). — Let L be a finite extension of K as
above. There is a homomorphism extL/K : Cl(OK [G]) −→ Cl(OL[G]) obtained considering
the extension of scalars via the tensor product OL⊗OK−. In terms of the Hom-description this
functor is induced by the canonical injection Hom ΩK

(RG, J(Qc)) −→ Hom ΩL
(RG, J(Qc)).

Analogously as before, the following diagram commutes

Cl(OL[G])
RagL //MCl(OL[G]) Hom ΩL

(
Z[G(−1)], J(Qc)

)Θt
G,L

oo

Cl(OK [G])
RagK //

extL/K

OO

MCl(OK [G])

extL/K

OO

Hom ΩK

(
Z[G(−1)], J(Qc)

)
,

Θt
G,K

oo

extL/K

OO

indeed, if f ∈ Hom ΩK
(RG, J(Qc)), g ∈ Hom ΩK

(
Z[G(−1)], J(Qc)

)
, and α ∈ AG, we have

extL/K(RagK)(f)(α) = RagK(f)(α) = RagL(f)(α) = RagL(extL/K)(f)(α),
extL/K(Θt

G,K
)(g)(α) = Θt

G,K
(g)(α) = g(ΘG(α)) = Θt

G,L
(extL/K(g))(α).

From this we deduce the following inclusions
extL/K(Ker(RagK)) ⊆ Ker(RagL),
extL/K(St(OK [G])) ⊆ St(OL[G]).
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