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LUBIN’S CONJECTURE FOR FULL p-ADIC DYNAMICAL SYSTEMS

by

Laurent Berger

Abstract. — We give a short proof of a conjecture of Lubin concerning certain families of
p-adic power series that commute under composition. We prove that if the family is full (large
enough), there exists a Lubin-Tate formal group such that all the power series in the family are
endomorphisms of this group. The proof uses ramification theory and some p-adic Hodge theory.

Résumé. — (La conjecture de Lubin pour les systèmes dynamiques p-adiques pleins) Nous
donnons une démonstration courte d’une conjecture de Lubin concernant certaines familles de
séries formelles p-adiques qui commutent pour la composition. Nous montrons que si la famille
est pleine (assez grosse), il existe un groupe formel de Lubin-Tate tel que toutes les séries de
la famille sont des endomorphismes de ce groupe. La démonstration utilise la théorie de la
ramification et un peu de théorie de Hodge p-adique.

Introduction

Let K be a finite extension of Qp, and let OK be its ring of integers. In [5], Lubin studied
p-adic dynamical systems, namely families of elements of T · OK [[T ]] that commute under
composition, and remarked that “experimental evidence seems to suggest that for an invertible
series to commute with a noninvertible series, there must be a formal group somehow in the
background”. This observation has motivated the work of a number of people (Hsia, Laubie,
Li, Movaheddi, Salinier, Sarkis, Specter, ...) who proved various results in that direction. The
purpose of this note is to give a proof of a special case of the above observation, which is
referred to as “Lubin’s conjecture” in §3.1 of [7]. Let us consider a family F of commuting
power series F (T ) ∈ T · OK [[T ]]. We say that such a family is full if for all α ∈ OK there
exists Fα(T ) ∈ F such that F ′α(0) = α and if wideg(Fπ(T )) = q, where wideg(F (T )) denotes
the Weierstrass degree of F (T ), π is any uniformizer of OK and q is the cardinality of the
residue field of OK .

Mathematical subject classification (2010). — 11S82, 11S15, 11S20, 11S31, 13F25, 13F35, 14F30.
Key words and phrases. — p-adic dynamical system, Lubin-Tate formal group, p-adic Hodge theory.
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Theorem. — If F is a full family of commuting power series, there exists a Lubin-Tate
formal group G such that Fα(T ) ∈ End(G) for all α ∈ OK .

This result already appears as Theorem 2 of [4]. Our proof is however considerably shorter
than that of ibid., and does not use the theory of the field of norms. It is very similar to that
of the main result of [8], which treats the case K = Qp. The main ingredients are ramification
theory and some p-adic Hodge theory. In order to simplify the use of p-adic Hodge theory,
we assume that K is a Galois extension of Qp.

1. p-adic dynamical systems

In this note, we consider a set F = {Fα(T )}α∈OK of power series Fα(T ) ∈ T ·OK [[T ]] such that
F ′α(0) = α and Fα ◦Fβ(T ) = Fβ ◦Fα(T ) whenever α, β ∈ OK . Recall that π is a uniformizer
of OK , and that q is the cardinality of the residue field k of OK . If F (T ) is a power series
and n > 0, we denote by F ◦n(T ) the n-th fold iteration F ◦ · · · ◦F (T ). If F (T ) has an inverse
for the composition, this definition extends to n ∈ Z. Recall that the Weierstrass degree
wideg(F (T )) of F (T ) =

∑+∞
i=1 fiT

i ∈ T · OK [[T ]] is the smallest integer i such that fi ∈ O×K .
By the Weierstrass preparation theorem, if wideg(F ) 6= +∞, then F has wideg(F ) zeroes in
mCp .

Proposition 1.1. — There exists a power series G(T ) ∈ T ·k[[T ]] and an integer d > 1 such
that G′(0) ∈ k× and Fπ(T ) ≡ G(T pd).

Proof. — See (the proof of) theorem 6.3 and corollary 6.2.1 of [5]. �

Proposition 1.2. — There exists a power series LF (T ) ∈ K[[T ]] such that

1. LF (T ) = T + O(T 2);

2. LF (T ) converges on the open unit disk;

3. LF ◦ Fα(T ) = α · LF (T ) for all α ∈ OK .

Proof. — See propositions 1.2 and 2.2 of [5] for the construction of a unique power series
LF (T ) that satisfies (1), (2) and (3) for α a uniformizer of OK . If β ∈ OK \ {0}, then
β−1 ·LF ◦Fβ also satisfies (1), (2) and (3) for α as above, so that LF ◦Fβ(T ) = β ·LF (T ) for
all β ∈ OK . �

The hypothesis that F is full implies that pd = q, so that wideg(Fπ(T )) = q. For n > 1, let
Λn denote the set of u ∈ mCp such that F ◦nπ (u) = 0 and F ◦n−1

π (u) 6= 0 and let Λ∞ = ∪n>1Λn.
Proposition 1.1 implies that F ′π(T )/π is a unit of OK [[T ]], so that the roots of F ◦nπ (T ) are
simple for all n > 1. The set Λn therefore has qn−1(q − 1) elements.
The series Fα(T ) is invertible if α ∈ O×K so that in this case, Fα(z) = 0 if and only if z = 0. If
u ∈ Λn and α ∈ O×K , then F ◦nπ ◦Fα(u) = Fα◦F ◦nπ (u) = 0 and F ◦n−1

π ◦Fα(u) = Fα◦F ◦n−1
π (u) 6=

0 so that the action of Fα(T ) permutes the elements of Λn.
Let Kn = K(Λn), so that Λi ⊂ Kn if i 6 n, and let K∞ = ∪n>1Kn. If α ∈ O×K , let n(α) be
the largest integer n > 0 such that α ∈ 1 + πnOK .

Proposition 1.3. — If n > 1 and u ∈ Λn, then
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1. Fα(u) = u if and only if n(α) > n;

2. If n(α) = n, then wideg(Fα(T )− T ) = qn;

3. Λn = {Fα(u)}α∈O×
K
.

Proof. — If n = 1 and Fα(u) = u, then u is a root of Fα(T ) − T = (α − 1)T + O(T 2),
so that α − 1 ∈ πOK . This implies that {Fα(u)}α∈O×

K
has at least q − 1 distinct elements.

These elements are all roots of Fπ(T )/T , whose wideg is q− 1, so {Fα(u)}α∈O×
K
has precisely

q − 1 elements. These elements all have valuation 1/(q − 1), and if n(α) = 1, the Newton
polygon of Fα(T ) − T starts at the point (1, 1), so that it can have only one segment, and
wideg(Fα(T )− T ) = q. This implies the proposition for n = 1.
Assume now that the proposition holds up to some n > 1 and take u ∈ Λn+1. If n(α) 6 n,
then Fα(T ) − T has at most qn roots by (2), contained in Λ0 ∪ . . . ∪ Λn by (1). Therefore
Fα(u) = u implies n(α) > n+1. The set {Fα(u)}α∈O×

K
therefore has at least qn(q−1) distinct

elements, all of them roots of F ◦n+1
π (T )/F ◦nπ (T ).

This implies that {Fα(u)}α∈O×
K

has exactly qn(q − 1) elements. If n(α) = n+ 1, the Newton
polygon of Fα(T ) − T starts at the point (1, n + 1), with n + 1 segments of height one
and slopes −1/qk(q − 1) with 0 6 k 6 n, so that it reaches the point (qn+1, 0) and hence
wideg(Fα(T )− T ) = qn+1. This implies the proposition for n+ 1. �

Corollary 1.4. — The field K∞ is an abelian totally ramified extension of K, and if g ∈
Gal(K∞/K), there is a unique η(g) ∈ O×K such that g(u) = Fη(g)(u) for all u ∈ Λ∞.
The map η : Gal(K∞/K)→ O×K is an isomorphism.

Proof. — Take u ∈ Λn and α ∈ O×K . As we have seen above, Fα(u) ∈ Λn, so that the map
u 7→ Fα(u) induces a field automorphism of K(u). By (3) of Proposition 1.3, this implies that
Kn = K(u) and that every element of Gal(Kn/K) comes from u 7→ Fα(u) for some α ∈ O×K .
The extension Kn/K is therefore abelian, and so is K∞/K. Since Kn = K(u), the extension
Kn/K is totally ramified, and so is K∞/K.
The map η is surjective because every Fα(T ) gives rise to an automorphism of K∞, and it is
injective because if η(g) = 1, then g(u) = u for all u ∈ Λ∞ so that g = 1. �

In order to prove our main theorem, we study the p-adic periods of η. Corollary 1.4 and local
class field theory imply that the extension K∞/K is attached to a uniformizer $ of OK . Let
χ$ : GK → O×K denote the corresponding Lubin-Tate character.

2. p-adic Hodge theory

Let R be the p-adic completion of lim−→n>1OK [[Xn]] where OK [[Xn]] is seen as a subring of
OK [[Xn+1]] via the identification Xn = Fπ(Xn+1) (this ring is defined in [8], where it is
denoted by A∞). We define an action of GK on R by g(H(Xn)) = H(Fη(g)(Xn)). This is
well-defined since Fπ ◦ Fη(g)(T ) = Fη(g) ◦ Fπ(T ). We have R/πR = lim−→n>1 k[[Xn]].

Lemma 2.1. — The ring R/πR is perfect.
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22 Lubin’s conjecture for full p-adic dynamical systems

Proof. — LetG(T ) be as in Lemma 1.1. The fact thatXn = Fπ(Xn+1) implies thatG◦n(Xn) =
G◦n+1(Xn+1)q. Since G′(0) ∈ k×, we have k[[T ]] = k[[G(T )]] and therefore

R/πR = lim−→
G◦n(Xn)=G◦n+1(Xn+1)q

k[[G◦n(Xn)]]

is perfect. �

Let Ẽ+ = lim←−x 7→xq OCp/π. Choose a sequence {un}n>1 with un ∈ Λn and Fπ(un+1) = un.
This sequence gives rise to a map i : R/πR → Ẽ+, determined by the requirement that
i(Xn) = (G◦1(un), G◦2(un+1), . . .). The definition of the action of GK on R and Corollary 1.4
imply that i is GK-equivariant.

Lemma 2.2. — The map i : R/πR→ Ẽ+ is injective.

Proof. — It is enough to show that i : k[[Xn]] → Ẽ+ is injective. If it was not, there
would be a nonzero polynomial P (T ) ∈ k[T ] such that P (i(Xn)) = 0, and then i(Xn) =
(G◦1(un), G◦2(un+1), . . .) would belong to Fp, which is clearly not the case. �

Let K0 = Qunr
p ∩K and let Ã+ = OK ⊗OK0

W (Ẽ+) (see [2]; note that Ã+ usually denotes
W (Ẽ+), and is denoted by Ainf in ibid.). We have R = OK ⊗OK0

W (R/πR) since R is a
strict π-ring, and by the functoriality of Witt vectors, the map i extends to an injective and
GK-equivariant map i : R → Ã+. We write x instead of i(X1) ∈ Ã+. The GK-equivariance
of i implies that g(x) = Fη(g)(x).
Let B+

cris and BdR be some of Fontaine’s rings of periods. Recall that BdR is a field, that
there is a Frobenius map ϕ on B+

cris, a filtration {FiliBdR}i∈Z on BdR, and an injective
map K ⊗K0 B+

cris → BdR. There is also an action of GK on B+
cris and BdR compatible

with the above structure, and BGK
dR = K. Let ϕq = ϕf on B+

cris, where q = pf , extended
by K-linearity to K ⊗K0 B+

cris. We refer to [2] and [3] for the properties of these objects.
Let Σ = Gal(K/Qp). If τ ∈ Σ, choose a n(τ) ∈ Z>0 such that τ |K0 = ϕn(τ). The map
τ ⊗ ϕn(τ) : K ⊗K0 B+

cris → K ⊗K0 B+
cris is then well-defined and commutes with ϕq and the

action of GK .
We say that a character λ : GK → O×K is crystalline positive if there exists a nonzero
z ∈ K⊗K0 B+

cris such that g(z) = λ(g)·z for all g ∈ GK . The following proposition summarizes
the input that we need from the p-adic Hodge theory of characters.

Proposition 2.3. — A character λ : GK → O×K that factors through Gal(K∞/K) is crys-
talline positive if and only if λ =

∏
τ∈Σ τ ◦ χhτ$ with hτ ∈ Z>0.

If t$ ∈ K ⊗K0 B+
cris is such that g(t$) = χ$(g) · t$ for all g ∈ GK , then t$ ∈ Fil1BdR and

ϕq(t$) = $ · t$.

Sketch of proof. — If λ : GK → O×K is a crystalline positive character and hτ ∈ Z>0 denotes
the Hodge-Tate weight of λ at τ ∈ Σ, then λ ·

∏
τ∈Σ τ ◦χ−hτ$ is crystalline and has Hodge-Tate

weight zero at all τ ∈ Σ so that it is unramified, and therefore trivial if λ factors through
Gal(K∞/K), since K∞/K is totally ramified.
Let ωE and tE be the elements constructed in §9.2 and §9.3 of [1] (with E = K and πE = $).
We have tE ∈ K ⊗K0 B+

cris and ϕq(tE) = $ · tE and tE ∈ Fil1BdR (proposition 9.10 of
ibid). If g ∈ GK , then (in the notation of ibid and where [ · ]LT denotes the endomorphisms
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of the Lubin-Tate group attached to $) we have g(ωE) = [χ$(g)]LT(ωE) and therefore
g(tE) = g(FE(ωE)) = FE(g(ωE)) = FE ◦ [χ$(g)]LT(ωE) = χ$(g) · FE(ωE) = χ$(g) · tE
since FE is the logarithm of the Lubin-Tate group attached to $. If t$ ∈ K⊗K0 B+

cris is such
that g(t$) = χ$(g) · t$ for all g ∈ GK , then t$/tE ∈ BGK

dR = K, and this implies the rest of
the proposition. �

Recall that LF (T ) ∈ K[[T ]] is the logarithm attached to F . Since LF (T ) converges on the
open unit disk, we can view LF (x) as an element of K ⊗K0 B+

cris.

Proposition 2.4. — The character η : GK → O×K is crystalline positive.

Proof. — If g ∈ GK , then g(LF (x)) = LF (g(x)) = LF (Fη(g)(x)) = η(g) · LF (x). �

Corollary 2.5. — We have LF (x) = β ·
∏
τ∈Σ(τ⊗ϕn(τ))(t$)hτ where hτ ∈ Z>0 and β ∈ K×.

Proof. — This follows from the facts that η =
∏
τ∈Σ τ ◦χhτ$ , that χ$(g) = g(t$)/t$ and that

BGK
dR = K. �

Proposition 2.6. — We have ϕq(LF (x)) = µ · LF (x) for some µ ∈ πOK .

Proof. — Corollary 2.5 and Proposition 2.3 imply the proposition with µ =
∏
τ τ($)hτ , and

not all hτ can be equal to 0 since η 6= 1. �

Corollary 2.7. — We have ϕq(x) = Fµ(x).

Proof. — Proposition 2.6 implies that LF (ϕq(x)) = LF (Fµ(x)). We would like to apply
L◦−1
F (T ) but we have to mind the convergence and need to proceed as follows. Since η is

nontrivial, there is a τ ∈ Σ such that hτ−1 > 1. We have

(τ ⊗ ϕn(τ))(LF (ϕq(x))) = (τ ⊗ ϕn(τ))(LF (Fµ(x)))

in K ⊗K0 B+
cris and hτ−1 > 1 now implies that (τ ⊗ ϕn(τ))(LF (ϕq(x))) is divisible by t$ so

that by Proposition 2.3, it belongs to Fil1BdR. We can then apply Lτ◦−1
F (T ) in BdR and get

that (τ ⊗ϕn(τ))(ϕq(x)) = (τ ⊗ϕn(τ))(Fµ(x)) in BdR. This equality also holds in Ã+, so that
ϕq(x) = Fµ(x). �

Theorem 2.8. — There is a Lubin-Tate formal group G such that Fα(T ) ∈ End(G) for all
α ∈ OK .

Proof. — By Corollary 2.7, we have ϕq(x) = Fµ(x). This implies that Fµ(T ) ≡ T q mod
πOK [[T ]]. The Weierstrass degree of Fµ(T ) is qval(µ) so that val(µ) = 1 and Fµ(T ) is a Lubin-
Tate power series. By [6], there is a Lubin-Tate formal group G such that Fµ(T ) ∈ End(G).
Since Fα(T ) commutes with Fµ(T ), we also have Fα(T ) ∈ End(G) for all α ∈ OK . �

Remark 2.9. — We have µ = $ and η = χ$. Indeed, the extension K∞/K is generated
by the torsion points of G, and is therefore attached to µ by local class field theory, so that
µ = $. This in turn implies that η = χ$.
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