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WILD COVERINGS OF BERKOVICH CURVES

by

Michael Temkin

Abstract. — This paper is an extended version of the author’s talk given at the conference
“Non-Archimedean analytic geometry: theory and practice” held in August 2015 at Papeete. It
gives a brief overview of results and methods of recent works [2] and [5] on the structure of wild
coverings of Berkovich curves and its relation to the different and higher ramification theory.

Résumé. — Cet article est une version étendue de l’exposé de l’auteur à la conférence « Non-
Archimedean analytic geometry: theory and practice » tenue à Papeete en août 2015. Il offre
une vue d’ensemble des résultats et des méthodes des travaux récents [2] et [5] sur la structure
des revêtements sauvages des courbes de Berkovich et sa relation avec la théorie de la différente
et de la ramification supérieure.

1. Introduction

The structure of tame morphisms between smooth Berkovich curves is pretty well-known and
it is completely controlled by the simultaneous semistable reduction theorem, see, for example,
[1]. The structure of wild morphisms was for a long time terra incognita, though one should
mention some special results recently obtained by Faber in [3] and [4]. In this project we
obtain a relatively complete description of the combinatorial structure of an arbitrary finite
morphism f : Y → X between smooth Berkovich curves. It is divided into two parts.

1.1. The different function. — In a joint work [2] with A. Cohen and D. Trushin we study
the different function δf : Y hyp → [0, 1] that assigns the different δH(y)/H(f(y)) to a point y of
type 2, 3 or 4. In other words we study the analytic behavior of the most important invariant
that measures wildness of an extension of valued fields, the different. It turns out that δf

controls the minimal semistable model of f , and a balancing condition for the slopes of δf at
a type 2 point y ∈ Y extends the local Riemann–Hurwitz formula to the wild case.

2010 Mathematics Subject Classification. — 14E22, 11S15, 14G22.
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128 Wild coverings of Berkovich curves

1.2. The multiplicity function and radialization. — Both X and Y have canonical
exponential metrics and f is piecewise monomial with respect to them. The behavior of f
as a piecewise monomial function is controlled by the multiplicity function nf that assigns
[H(y) : H(f(y))] to y. This function and the multiplicity loci Nf,≥d = {y ∈ Y | nf (y) ≥
d} are described in [5]. In particular, it is shown that nf is radial with respect to a large
enough skeleton ΓY ⊂ Y . A central player in this study is a profile function φf : Y hyp →
P[0,1] encoding the radii of all sets Nf,≥d around the skeleton, where P[0,1] is the set of
piecewise monomial bijections of [0, 1] onto itself. Furthermore, δf can be retrieved from φf

via composing with a character P[0,1] → [0, 1] and φ is an analytic family of the classical
Herbrand functions.

Acknowledgments. — I would like to thank the organizers of the conference “Non-Archime-
dean analytic geometry: theory and practice”. Also, I am very grateful to the referee for
pointing out various inaccuracies in the first version of the paper.

2. Semistable reduction and tame morphisms

In this section we summarize the relatively well-known properties of curves and morphisms.

2.1. Conventions. —
2.1.1. Ground field. —We work over a fixed algebraically closed non-archimedean analytic
(i.e. real-valued complete) field k with a non-trivial valuation.
2.1.2. Nice curves. — By a nice curve we mean a rig-smooth connected separated compact
k-analytic curve.
2.1.3. Subgraphs. — By a subgraph Γ of a nice curve C we mean a connected topological
subgraph Γ ⊂ C with finitely many vertices and edges such that the set of vertices Γ0

consists of points of C of types 1 and 2 and contains at least one point of type 2.

2.2. Semistable reduction for curves. —
2.2.1. Skeletons of curves. —A subgraph Γ is called a skeleton of C if C \ Γ0 is a disjoint
union of open discs Di and semi-annuli A1, . . . , An (i.e. Ai is either an open annulus or a
punched open disc) and the edges of C are the skeletons of A1, . . . , An. The following skeletal
version of the semistable reduction theorem is easily seen to be equivalent to its classical
versions.

Theorem 2.1. — Any nice curve possesses a skeleton.

2.2.2. Combinatorial structure of the curve. — In a sense, a skeleton of a curve provides the
best possible combinatorial description of the curve. In particular, the complement C \ Γ
of a skeleton is a disjoint union of discs and there is a canonical deformational retraction
qΓ : C → Γ.
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2.2.3. Genus. — For any point x ∈ C we define the genus g(x) to be the genus of H̃(x)/k̃ if x is
of type 2 and zero otherwise. The genus of C is then defined to be g(C) = h1(C)+

∑
x∈C g(x);

it is finite and equals to g(C) = h1(Γ)+
∑

v∈Γ0 g(v). This gives the usual genus of an algebraic
curve when C is proper, but g(C) is a meaningful invariant for nice curves with boundary
too.
2.2.4. Exponential metric. — Let A be an open or closed annulus, i.e. A is isomorphic to the
domain in A1

k given by r2 < |t| < r1 or r2 ≤ |t| ≤ r1. The number r(A) = r1/r2 depends
only on A and it is called the radius of A. Given an interval I ⊂ C one defines its radius (or
exponential length) by r(I) = sup

∏n
i=1 r(Ai), where the supremum is taken over all finite sets

of disjoint open annuli Ai ⊆ C such that the skeleton of each Ai lies in I. It turns out that r
defines an exponential metric on C whose singular points are precisely the points of type 1.
In other words, r([a, c]) = r([a, b])r([b, c]) for an interval [a, c] ⊂ C with a point b ∈ [a, c], and
r([a, b]) =∞ if and only if the set {a, b} contains a point of type 1.

Remark 2.2. — 1. If I is the skeleton of A then r(I) = r(A). In fact, this is the main
property of the radius one should check in order to establish all other properties.

2. We prefer to work with the exponential metric in this paper, but one often considers its
logarithm, which is a usual metric. For example, if I is the skeleton of an annulus A then
the length of I is the modulus of A. The classical metric is only canonical up to rescaling
since its definition involves a choice of the base of the logarithm.

2.2.5. Radius parametrization. — If I is closed with an endpoint a of type different from
1 then x 7→ r([a, x])−1 provides the canonical homeomorphism I = [r(I)−1, 1] that we call
radius parametrization of I. Note that I = [0, 1] if and only if the second endpoint is of type 1.

Remark 2.3. — 1. If E is a unit disc with maximal point q then for any point x ∈ E
there exists a unique interval [x, q] and r(x) = r([x, q])−1 is the usual radius function of
the disc.

2. In the same way, any skeleton Γ induces a radius function rΓ : C → [0, 1] that measures
the inverse exponential distance to the skeleton.

2.2.6. Enhanced skeleton. —We naturally enhance a skeleton Γ of a curve to a metric genus
graph in which each vertex is provided with a genus and each edge is provided with a radius
(exponential length).

2.3. Semistable reduction for morphisms. —
2.3.1. Morphisms and metrics. — Let f : Y → X be a non-constant morphism of nice curves.
It is easy to see that f is pm or piecewise monomial in the sense that for each interval I ⊂ Y
the set f(I) is a graph and the map I → f(I) is pm with integral slopes with respect to
the radii parameterizations. Moreover, the multiplicity function nf (see §1.2) is the absolute
value of the degree of f in the sense that nf |I = | deg(f |I)|. Thus, nf completely encodes the
pm (or metric) structure of f .
2.3.2. Skeletons of morphisms. — Let f : Y → X be a generically étale morphism of nice
curves. By a skeleton of f we mean a pair Γ = (ΓY ,ΓX) of skeletons of Y and X such that
ΓY contains the ramification locus Ram(f) and f−1(ΓX) = ΓY (in particular, f−1(Γ0

X) = Γ0
Y ).
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130 Wild coverings of Berkovich curves

2.3.3. Semistable reduction. — It is easy to see that if Γ ⊆ Γ′ are two subgraphs and Γ is a
skeleton then Γ′ is a skeleton. Using this and the semistable reduction for curves one easily
obtains the simultaneous semistable reduction theorem that can also be called semistable
reduction of morphisms.

Theorem 2.4. — Any generically étale morphism between nice curves possesses a
skeleton Γ.

Remark 2.5. — On the complement of a skeleton a morphism reduces to finite étale cov-
erings of open discs by open discs. In general, such a morphism may have a complicated
structure and this is the reason why a skeleton provides a pretty loose control on the mor-
phism.

2.3.4. Tame morphisms. —A morphism f between curves is called tame if nf takes values
invertible in k̃ and f is called wild otherwise. A tame étale covering of a disc by a disc is
trivial and a tame étale covering of an annulus by an annulus is isomorphic to the standard
Kummer covering of the form t 7→ tn. So, tame morphisms are controlled by skeletons very
tightly.
2.3.5. Maps of skeletons. —More generally, it is easy to see that an étale covering of an
annulus by an annulus is of the form t 7→

∑∞
i=−∞ ait

i where the series has a single dominant
term adt

d and d > 0. In particular, the map is of degree d on the skeleton. Thus, if Γ is a
skeleton of f : Y → X then the map of graphs ΓY → ΓX is enhanced to a map of metric
genus graphs: to each vertex v ∈ Γ0

Y one associates a multiplicity nv and to each edge e ∈ ΓY

one associates the multiplicity ne such that r(f(e)) = r(e)ne . These multiplicities satisfy the
natural balancing conditions: if f is finite then

∑
v∈f−1(u) nv = deg(f) for any vertex u ∈ Γ0

X

and nv =
∑

e∈f−1(h)∩Br(v) ne for any vertex v ∈ Γ0
Y and an edge h ∈ Br(f(v)) of ΓX , where

Br(v) denotes the set of all edges (or branches) coming out of v.
2.3.6. Local Riemann–Hurwitz. — For a finite tame f one also has the local Riemann–Hurwitz
formulas: for any v ∈ Γ0

Y with u = f(v) one has that

2g(v)− 2− 2nv(g(u)− 1) =
∑

e∈Br(v)
(ne − 1) ,

which is proved by applying the RH formula to H̃(v)/H̃(u). These formulas and the global
genus formula imply the global RH formula when X is proper.

Remark 2.6. — One would like to extend the above formula to the non-tame case, and it
is natural to expect that the local term at e should be equal to the local term at the point
corresponding to e in the classical RH formula (e.g., see §3.1.3 below) of H̃(v)/H̃(f(v)). For
non-tame morphisms two things should be modified, and we will later see that both are dealt
with using the different.

1. If f is not wild at v (i.e. nv ∈ k̃×) but the ramification is wild along an edge e going out
of v then the local term Re at e should be larger than ne − 1. So, one should naturally
interpret Re in terms of the map of k-analytic curves.
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2. If f is wild at v then it often happens that H̃(v)/H̃(f(v)) is inseparable. In this case, there
exists no RH-like formula based on the residue fields, and a new source of information is
needed.

Remark 2.7. — 1. A tame f is split outside of a skeleton and the only restrictions on the
multiplicity function along the skeleton are the balancing conditions and the local RH
formulas.

2. For wild maps the sets Nf,≥d are often huge. For example, for the Kummer map t 7→ tp

from P1
Cp

to itself the set Nf,≥p is the metric neighborhood of [0,∞] of radius |p|1/(p−1).

3. The different function

This section describes the results of [2]. We start with recalling the definition of different and
then list our main results on the different function.

3.1. Different of extensions. —
3.1.1. The definition. — Let L/K be a finite extension of real-valued fields and assume that
either K is discretely valued with perfect residue field or K is of the form H(x), where x is
a point of a nice curve. With the convention that the absolute value of an ideal I ⊆ L◦ is
supc∈I |c|, the different of L/K is defined to be

δL/K = |Ann(ΩL◦/K◦)|

if L/K is separable and δL/K = 0 otherwise.

Remark 3.1. — 1. The different measures wildness of extensions and it is multiplicative
in towers.

2. In the case of discrete valuations one often considers the additive analogue, which is the
length of ΩL◦/K◦ .

3. In general, the different is defined using the zeroth Fitting ideal rather than the annihi-
lator. In our case, the torsion module ΩL◦/K◦ is a subquotient of L◦ so both definitions
agree.

3.1.2. The log different. —The log different δlog
L/K is defined similarly to δL/K but using

the module Ωlog
L◦/K◦ of logarithmic differentials. If K is discretely valued then δlog

L/K =
δL/K |πL|/|πK |, and δlog

L/K = δL/K otherwise.

3.1.3. The RH formula. — If h : Y → X is a finite separable morphism of smooth proper
connected k̃-curves then the classical RH formula is

2g(Y )− 2− 2n(g(X)− 1) =
∑
y∈Y

δy/x =
∑
y∈Y

(δlog
y/x + ny − 1)

where n = deg(h), x = h(y) and δy/x is the (additive) different of k((y))/k((x)) for k((x)) =
Frac(ÔX,x) and k((y)) = Frac(ÔY,y).
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132 Wild coverings of Berkovich curves

3.2. The different function. — Let now f : Y → X be a finite generically étale morphism
of nice k-analytic curves and let δf be the different function introduced in §1.1.
3.2.1. Slopes. —Naturally, δf contains information about the classical different at points of
Y of type 1 and branches of Y at points of type 2. It is retrieved from the slopes (or degrees)
of δf .

Theorem 3.2 ([2, 4.1.8, 4.6.4]). — 1. The different function extends uniquely to a pm
function δf : Y → [0, 1].

2. The slope of δf at a type 1 point y equals δlog
y/x. In particular, it is positive if and only if

f is wildly ramified at y.

3. If f is tame at a type 2 point y and v is a branch of Y at y then slopev(δf ) = δlog
v/f(v).

Remark 3.3. — This indicates that δf is, in fact, the log different function. This does not
affect its values at the points of Y but gives a better interpretation of formulas involving
differents of discretely valued fields.

3.2.2. The balancing condition. — Slopes of δf at a type 2 point satisfy the balancing condi-
tion of RH type which applies to the case when H̃(y)/H̃(f(y)) is arbitrary.

Theorem 3.4 ([2, 4.5.4]). — If y ∈ Y is of type 2 and x = f(y) then

2g(y)− 2− 2ny(g(x)− 1) =
∑

v∈Br(y)
(− slopev δf + nv − 1) .

In particular, almost all slopes of δf at y equal to ni
y−1, where ni

y is the inseparability degree
of H̃(y)/H̃(f(y)).

Remark 3.5. — The balancing condition 3.4, the formula for slopes at type 1 points, and
the global genus formula imply the global RH formula when Y is proper, and this can also be
extended to the case with boundary. This indicates that the balancing formula is the “right”
generalization of the local RH formula to the wild case.

3.2.3. The method. —The different function is a family of differents, so it is not surprising
that one can describe it using a sheafified version of the definition of δL/K . Namely, one
considers the sheaf Ω�X = O◦Xd(O◦X) which can be informally thought of as a version of
ΩO◦

X/k◦ . Then Ω�Y /f∗Ω�X is a torsion sheaf of k◦-modules whose stalk at y is cyclic with the
absolute value of the annihilator δf (y). Choose a ∈ k◦ with |a| = δf (y). Reductions of Ω�Y
and a−1f∗Ω�X at y induce a non-zero meromorphic map λ : f̃∗Ω

X̃
→ Ω

Ỹ
, where f̃ : Ỹ → X̃

is the map of k̃-curves associated with H̃(y)/H̃(x). Then the balancing condition boils down
to computing the degree of Ω

Ỹ
⊗ f̃∗Ω−1

X̃
using poles and zeros of the section induced by λ.

3.2.4. The different function and the skeletons. — Let ΓY → ΓX be a skeleton of f . It is
natural to encode the balancing condition in the combinatorics of Γ. For this we should first
enhance its structure by including the pm different function δΓ = δf |ΓY

. In addition, one
should check whether for a vertex y ∈ Γ0

Y the skeleton contains all branches v at y which are
δf -non-trivial, i.e. satisfy the condition slopev δf 6= nv − 1. It turns out that in this way one
obtains a non-trivial characterization of skeletons.
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Theorem 3.6 ([2, 6.3.4]). — Let ΓX be a skeleton of X and ΓY = f−1(ΓX). Then (ΓY ,ΓX)
is a skeleton of f if and only if Ram(f) ⊆ Γ0

Y and for any point y ∈ ΓY all branches at y
pointing outside of ΓY are δf -trivial.

Remark 3.7. — 1. The behavior of δf completely describes the locus Nf,p when deg(f) =
p. For example, if f maps P1

Cp
to itself by t 7→ tp then the different is minimal and equal

to |p| on [0,∞] and it is trivial outside, i.e. it growths in all directions outside of the
skeleton [0,∞] with slope p − 1. This explains why Nf,p is a metric neighborhood of
radius |p|1/(p−1).

2. Even when the different δf behaves trivially on an interval I = [y, z] its slopes depend
on the multiplicity function. For example, if ny = p then the value of δf (y) determines
δf |I , but if ny = pn then to determine δf |I one should know the points xpn , xpn−1 , . . . , xp2

where nf drops and these points can be pretty arbitrary. In particular, the skeleton of f
does not control the sets Nf,≥d in any reasonable sense.

4. Radialization and the profile function

4.1. Radialization of the sets Nf,≥d. — Let Γ be a skeleton of a nice curve X, qΓ : X → Γ
the retraction, and rΓ : X → [0, 1] the inverse exponential distance from Γ. A closed subset
S ⊆ X is called Γ-radial if there exists a function r : Γ → R≥0 such that S consists of all
points x ∈ X satisfying rΓ(x) ≥ r(qΓ(x)).

Remark 4.1. — It is easy to see that if a skeleton radializes S then any larger skeleton
does so.

Theorem 4.2 ([5, 3.3.7 and 3.3.9]). — If f : Y → X is a finite morphism between nice
curves then there exists a skeleton of Y that radializes the sets Nf,≥d. Moreover, if (ΓY ,ΓX)
is an arbitrary skeleton of f then ΓY radializes these sets in each of the following cases:

1. f is a normal covering (e.g. Galois),

2. f is tame,

3. f is of degree p.

Example 4.3. — It follows from Theorem 3.6 that if f is of degree p then Nf,p is Γ-radial
of radius δ1/(p−1)

f |Γ for any skeleton (Γ,ΓX) of f .

4.1.1. The splitting method. —Many results about extensions of valued fields are proved by
the following splitting method:

1. Prove the result for tame extensions and wild extensions of degree p. Often these cases
are simpler and can be managed by hands.

2. Extend the result to compositions, obtaining the case of Galois extensions.

3. Use some form of descent to deduce the non-normal case.
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134 Wild coverings of Berkovich curves

The splitting method extends to a local-analytic setting because the category of étale covers
of a germ (X,x) of an analytic space at a point is equivalent to the category of étale H(x)-
algebras by a theorem of Berkovich. Theorem 4.2 is proved easily by the splitting method
since the tame case is clear and the degree-p case is controlled by the different by Example 4.3.

4.2. The profile function. —One may wonder if the radii of the sets Nf,pn are reasonable
functions analogous to the different. The answer is yes, but the best way to work with them
is to combine them into a pm function from [0, 1] to itself.
4.2.1. Γ-radial morphisms. — Let f : Y → X be a morphism and Γ = (ΓY ,ΓX) a skeleton of
f . For a point a ∈ Y of type 1 consider the interval I = [a, qΓY

(a)] and identify it with [0, 1]
via the radius parametrization. Similarly, identify f(I) = [f(a), qΓX

(f(a)] with [0, 1]. Then
f |I is interpreted as an element of P[0,1] and we say that f is Γ-radial if f |I = φq depends
only on q = qΓY

(a). In this case we say that φ : ΓY → P[0,1] is the profile function of f .

Remark 4.4. — 1. It is easy to see that f is Γ-radial if and only if all sets Nf,d are
ΓY -radial and then the breaks of φq occur at the radii of the sets Nf,pn .

2. Thus, the radialization theorem implies that any finite morphism is Γ-radial for a large
enough skeleton Γ. In particular, this gives another way to define φq: it is the map f |I
for a generic interval connecting q to a type 1 point.

3. The profile function is a much more convenient invariant than the set of radii of Nf,d,
mainly because it is compatible with compositions of radial morphisms.

4.2.2. Interpretation as Herbrand function. — It turns out that the profile function can be
interpreted using a classical invariant from the theory of valued fields. It is well-known that
for a finite seprable extension l/k of discrete valuation fields with perfect residue fields, the
Herband function φl/k is a multiplicative (with respect to towers of extensions) invariant
which efficiently encodes nearly all information about the wild ramification properties of l/k.
It is shown in [5, §4] that the theory extends to extensions of the form H(y)/H(x), where y, x
are points on k-analytic curves (for an algebraically closed k). The only technical obstacle is
that in the classical theory one crucially uses that the extension of integers is monogeneous
while H(y)◦/H(x)◦ is integral but does not have to be finite. However, it is shown in [5,
4.2.8] that H(y)◦/H(x)◦ is almost monogeneous in the sense that H(y)◦ is a filtered union of
subrings of the form H(x)◦[t], and it is shown in [5, §4.3] that the classical theory extends to
extensions of analytic fields with almost monogeneous extensions of rings of integers.

Theorem 4.5 ([5, 4.5.2]). — If f : Y → X is a generically étale morphism between nice
curves then for any point y ∈ Y of type 2 with x = f(y) the profile function φy coincides with
the Herbrand function φH(y)/H(x) of the extension H(y)/H(x).

Remark 4.6. — 1. The proof is via the splitting method using that for extensions of
degree p the Herbrand function is determined by the different (it has slopes 1 and p and
the break point is determined by the different).

2. The theorem gives a natural geometric interpretation of Herbrand function which works
for all extensions (even inseparable ones) on the equal footing. Note that the classical
Herbrand function is defined first for Galois extensions and then extended to arbitrary
ones by multiplicativity.
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4.2.3. Piecewise monomiality of the profile function. — It is natural to expect that the profile
functions φy should discover a nice global behavior. Indeed, one can easily introduce a notion
of pm functions on Y with values in P[0,1] and the following result holds.

Theorem 4.7 ([5, 3.4.8]). — If f is as above then the family of profile functions φy extends
uniquely to a pm function φ : Y hyp → P[0,1].
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