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MODELS OF TORSORS UNDER ELLIPTIC CURVES

by

Kentaro Mitsui

Abstract. — We study the special fibers of the minimal proper regular models of proper
smooth geometrically integral curves of genus one over a complete discrete valuation field. We
classify the configurations of their irreducible components when the residue field is perfect. As
an application, we show the existence of separable closed points of small degree on the original
curves when the residue field is finite. Finally, we extend this result under mild assumptions on
the residue field and the degenerations of their Jacobians.

Résumé. — Nous étudions les fibres spéciales des modèles propres réguliers minimaux de
courbes propres lisses géométriquement intègres de genre un sur un corps de valuation discrète
complet. Nous classifions les configurations de leurs composantes irréductibles quand le corps
résiduel est parfait. En guise d’application, nous montrons l’existence de points fermés séparables
de petit degré des courbes originales quand le corps résiduel est fini. Finalement, nous étendons
ce résultat sous des hypothèses faibles sur le corps résiduel et la dégénérescence de la jacobienne.

1. Introduction

Let K be a complete discrete valuation field. We denote the valuation ring of K by OK , and
the residue field of OK by K. Set C := SpecOK , and C := SpecK. Let EK be a K-elliptic
curve. Choose α ∈ H1(K,EK). We denote the K-torsor under EK corresponding to α by XK .
Then XK is a proper smooth geometrically integral K-curve. For a closed point x on XK , we
denote the residue field of XK at x by k(x). If k(x)/K is separable, then the closed point x
is said to be separable. Take a minimal proper regular C-model X of XK . Set X := X ×C C.
This paper is divided into two parts. We study the geometry of X in the first part (§3) and
separable closed points on XK in the last part (§4).
In the first part, we classify the configurations of the irreducible components of X when
K is perfect (see §3.8 for the dual graphs). The classification generalizes the case where
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80 Models of torsors under elliptic curves

K is algebraically closed, or XK = EK [12, §10.2.1]. If K is algebraically closed, then the
intersection matrix of the irreducible components of X may be described by means of affine
Dynkin diagrams. We obtain the dual graphs of the special fibers of proper regular C-models
of XK by studying birational morphisms between these models. Our classification is based
on the classification of finite quotients of these dual graphs.
In the last part, we show the existence of a separable closed point on XK of small degree.
We denote the degree of a finite field extension l/k by [l : k]. The minimal positive integer
among all degrees of zero-cycles on XK is called the index of XK , and denoted by I(XK).
Note that the equality

I(XK) = gcd{[k(x) : K] | x is a closed point on XK}
holds. In particular, for any closed point x on XK , the relation I(XK) | [k(x) : K] holds.

Theorem 1.1. — We use the same notation as above. Then there exists a separable closed
point x on XK such that [k(x) : K] = I(XK).

In the proof of the above theorem, we use the classification in the first part when K is finite,
i.e., K is a local field (Remark 4.2). The order of α in the abelian group H1(K,EK) is called
the period of XK , and denoted by P (α). We denote the Brauer group of a field k by Br(k).
If Br(K) = 0, or K is finite, then P (α) = I(XK) ([11, §1, Thms. 1 and 3] and [15, p. 283,
Cor.]). As a corollary, we obtain the following.

Corollary 1.2. — We use the same notation as above. Assume that Br(K) = 0, or K is
finite. Then there exists a separable closed point x on XK such that [k(x) : K] = P (α).

Remark 1.3. — Assume that K is perfect. Then Br(K) = 0 if and only if Br(K) = 0, and
there does not exist a non-trivial cyclic extension of K [16, XII.3, Thm. 2].

A global field is a finite extension of Q or k(t) where k is a finite field. When K is replaced by
a global field, a statement analogous to the above corollary does not hold (Example 4.3). The
conclusion of the above corollary does not hold in general whenK is not finite (Example 4.17).
However, we prove Theorem 1.6 below in the case where EK has good reduction or toric
reduction (Definition 4.1).

Definition 1.4. — A field k is said to be WC-trivial for elliptic curves if H1(l, El) = 0 for
any finite separable field extension l/k and any l-elliptic curve El.

Example 1.5. — A field k is WC-trivial for elliptic curves in the following cases:

1. k is separably closed;

2. k is finite [9, Thm. 1];

3. k is pseudo-algebraically closed [4, 11.2.5], e.g., k is an infinite algebraic field extension
of a finite field.

Theorem 1.6. — We use the same notation as above. Assume that K is perfect and WC-
trivial for elliptic curves, and that, for any finite field extension K

′
/K, there does not exist

a Galois extension of K ′ with Galois group (Z/2Z) × (Z/2Z). Suppose that EK has good
reduction or toric reduction. Then there exists a separable closed point x on XK such that
[k(x) : K] = P (α).
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Kentaro Mitsui 81

Example 1.7. — Assume that K is an algebraic field extension of a finite field. Then the
assumptions on K in Theorem 1.6 are satisfied (Example 1.5). If K is not algebraically closed,
then Br(K) 6= 0 (Remark 1.3).

2. Notation and Convention

We denote the cardinality of a finite set S by |S|, and the trivial group by 1. For n ∈ Z>0,
we denote the cyclic group of order n by Zn, the dihedral group of order 2n by D2n, the
alternative group of degree n by An, and the symmetric group of degree n by Sn.
Let k be a field. For a Galois extension l/k, we denote the Galois group of l/k by Gl/k. A
k-curve is a separated k-scheme of finite type of pure dimension one. Let Y be a proper k-
scheme. For a coherent OY -module F on Y , the Euler–Poincaré characteristic of F is defined
as ∑

i≥0
(−1)i dimkH

i(Y,F) ,

and denoted by χk(F). Take the normalization Ỹ of Y . Set H̃0(Y ) := H0(Ỹ ,O
Ỹ

), and
h̃0(Y ) := dimk H̃

0(Y ). Assume that Y is a k-curve. The arithmetic genus of Y is defined as
1− χk(OY ), and denoted by pa(Y ). When Y is a smooth geometrically integral k-curve, the
arithmetic genus of Y is called the genus of Y , and denoted by g(Y ). For a line bundle L on
Y , the degree of L is defined as χk(L)− χk(OY ), and denoted by degk L [12, 7.3.29].
Let Z be a scheme. We denote the reduction of Z by Zred, the regular locus of Z by Zreg, and
the non-regular locus of Z by Zsing. Let Y be a Z-scheme with structure morphism g : Y → Z.
We denote the group of Z-automorphisms of Y by Aut(Y/Z). For a Z-scheme S = Spec k,
we set Y (k) := HomZ(S, Y ). We denote the union of images of Y (k) by the same notation.
Let Z ′ be a closed subscheme of Z with closed immersion h : Z ′ → Z. We denote the closed
subscheme Z ′ ×Z Y of Y given by the base change of h via g by g−1(Z ′).
We use the notation K, OK , K, C, and C introduced in §1. Set CK := SpecK.

3. Classification of Special Fibers

3.1. Special Fibers. — Let XK be a proper regular K-curve. Take a proper regular C-
model fX : X → C of XK . Set X := f−1

X (C). Then we have the canonical isomorphisms
XK

∼= X ×C CK and X ∼= X ×C C, and the diagram of schemes and morphisms with
Cartesian squares

XK

ιXK //

fXK

��

X

fX

��

X
ι
Xoo

f
X
��

CK
ιCK // C C

ι
Coo

where the upper horizontal arrows are the first projections, the left and right vertical arrows
are the second projections, and the left and right lower horizontal arrows are the canonical
open and closed immersions, respectively. We may regard X as a divisor on X.

Definition 3.1. — A divisor D on X is said to be vertical if the support of D is contained
in that of X. We denote the set of vertical prime divisors on X by P (X). Let D1 be a divisor
on X, and D2 be a vertical divisor on X. We denote the intersection number of D1 and D2
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82 Models of torsors under elliptic curves

by D1 ·D2 [12, 9.1.12]. Set P (2)(X) := {Q ⊂ P (X) | |Q| = 2}. Take a = {Γ1,Γ2} ∈ P (2)(X).
We denote the closed subscheme (Γ1 ×X Γ2)red of X by

⋂
a. For s ∈

⋂
a, we define the

intersection number of a at s by
i(a, s) := dimK OX,s/(OX,s(−Γ1) +OX,s(−Γ2)) .

Remark 3.2. — If 0 < D2 ≤ X, then D1 · D2 = degK OX(D1)|D2 [12, 9.1.12(d)]. If
D2 ∈ P (X), then D1 · D2 = degK τ

∗OX(D1), where τ : D̃2 → X is the composite of the
normalization D̃2 → D2 of D2 and the canonical closed immersion D2 → X [12, 9.1.14].

Remark 3.3. — For any a = {Γ1,Γ2} ∈ P (2)(X), the equality Γ1 · Γ2 =
∑
s∈

⋂
a i(a, s)

holds [12, 9.1.1 and 9.1.12(a)].

Definition 3.4. — We denote the open subscheme (Xred)reg of Xred by R(X), and the
closed subscheme (Xred)sing of X equipped with the reduced structure by S(X). We write
X =

∑
Γ∈P (X) n(Γ)Γ, where n(Γ) ∈ Z>0. For Γ ∈ P (X), the integer n(Γ) is called the

multiplicity of Γ in X. We set m(X) := gcd{n(Γ) | Γ ∈ P (X)}. The integer m(X) is called
the multiplicity of X. For Γ ∈ P (X), we set m(Γ) := n(Γ)/m(X).

Remark 3.5. — Since Xred is a proper K-curve, the set S(X) is finite.

Set P := P (X), P (2) := P (2)(X), S := S(X), and m := m(X).

3.2. Dual Graphs. —We introduce a graph that describes the multiplicities and intersec-
tion numbers of the elements of P . We give examples in §3.3.

Definition 3.6. — The special fiberX is said to be of integral type if the following condition
is satisfied:

0. any Γ ∈ P is geometrically integral over K.

We abbreviate strongly normal crossing to snc. The special fiberX is said to be of fundamental
type if X is of integral type and satisfies the following conditions:

1. any Γ ∈ P is regular;

2. X is a snc divisor;

3. S ⊂ X(K).

Remark 3.7. — Assume that K is algebraically closed. Then X is of integral type, and
Condition 1 is satisfied. We set

L1(X) :=
⋃

Γ∈P
Γsing , and L2(X) := {x ∈ X(K) | X is not snc at x} .

Then Li(X) is a finite set for any i ∈ {1, 2}, and the following statement holds: X is of
fundamental type if and only if Li(X) = ∅ for any i ∈ {1, 2}. Set X0 := X. For i ∈ Z≥0,
we successively take the blowing-up Xi+1 → Xi of Xi along L1(Xi) if L1(Xi) 6= ∅. Then
there exists i1 ∈ Z≥0 such that L1(Xi1) = ∅ (see the proof of [12, 9.2.32]). For i ∈ Z≥i1 , we
successively take the blowing-up Xi+1 → Xi of Xi along L2(Xi) if L2(Xi) 6= ∅. Then there
exists i2 ∈ Z≥i1 such that L2(Xi2) = ∅ (see the proof of [12, 9.2.26]). Moreover, the equality
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Kentaro Mitsui 83

L1(Xi) = ∅ holds for any i ∈ {i0 ∈ Z | i1 ≤ i0 ≤ i2} [12, 9.2.31]. Thus, the special fiber of
Xi2 is of fundamental type.

Definition 3.8. — Assume that X is of integral type. We define the dual graph D of X/m
as a graph consisting of vertices with multiplicities and edges, and satisfying Condition (])
below. We denote the set of vertices of D by V , and the set of edges of D by E. For v ∈ V ,
we denote the multiplicity of v by m(v). For F ⊂ E, we denote the set of vertices connected
to an element of F by V (F ). For e ∈ E, we set V (e) := V ({e}). For W ⊂ V , we denote the
set of edges connected to an element of W by E(W ). For v ∈ V , we set E(v) := E({v}).

Condition (]): there exists a bijection v(•) : P → V such that the following statements hold.
For a ∈ P (2), we set [a] := {e ∈ E | V (e) = v(a)}.

1. For any Γ ∈ P , the equality m(v(Γ)) = m(Γ) holds.

2. The equality E =
⊔
a∈P (2) [a] holds, i.e., the graph D has no loop.

3. For any a = {Γ1,Γ2} ∈ P (2), the equality Γ1 · Γ2 = |[a]| holds.

Vertices. We denote v ∈ V by a circle, and write m(v) at the center of the circle.

Edges. We denote e ∈ E by a line segment.

We denote the automorphism group of D by AutD. Assume that X is of fundamental type.
We define a bijection e(•) : S → E in the following way. Since |

⋂
a| = |[a]| for any a ∈ P (2),

we may choose a bijection
⋂
a → [a] for each a ∈ P (2). Since S =

⊔
a∈P (2)

⋂
a, the union of

these bijections for all elements of P (2) gives a bijection e(•) : S → E.

Remark 3.9. — For any a ∈ P (2), the inequality |
⋂
a| ≤ |[a]| holds (Statement 3 and

Remark 3.3). Moreover, the equality |
⋂
a| = |[a]| holds if and only if i(a, s) = 1 for any

s ∈
⋂
a (see Definition 3.1 for i(a, s)).

3.3. Curves of Genus One and Kodaira Symbols. — In this subsection, we suppose
that K is perfect, XK is a proper smooth geometrically integral K-curve of genus one, and X
is minimal. We denote the Jacobian of XK by EK . Take a minimal proper regular C-model
E of EK . This model is unique up to unique C-isomorphism [12, 9.3.14]. Set E := E ×C C,
and N := |P |.
We denote the (extended) Kodaira symbol of E by TE [12, 10.2.1]. When K is algebraically
closed, we denote the Kodaira symbol of X by mT . Then each TE and T is equal to In
(n ∈ Z≥0), I∗n (n ∈ Z≥0), II, II∗, III, III∗, IV, or IV∗. In general, the symbol TE is equal to
one of the above symbols, In,2 (n ∈ Z≥1), I∗n,2 (n ∈ Z≥0), I∗0,3, or IV2.
When K is algebraically closed, we define a symbol D to denote the dual graph D of X/m
in the following way (Table 1). If N = 1, then we set D := Ã0. Otherwise, we define D
by the type of the affine Dynkin diagram corresponding to the dual graph D (without the
multiplicities): Ãn (n ≥ 1), D̃n (n ≥ 4), or Ẽn (n = 6, 7, or 8).

Publications mathématiques de Besançon – 2017



84 Models of torsors under elliptic curves

D D N AutD T

Ã0 1 1 1 I0, I1, II

Ãn−1
(n ≥ 2) 1 1

1

1 1
n D2n

In
III (n = 2)
IV (n = 3)

D̃n−1
(n ≥ 5)

1

1

1

1
2 2 2 2 n

S4 (n = 5)
D8 (n ≥ 6) I∗n−5

Ẽ6

1

1

2

2
1 2 3 7 S3 IV∗

Ẽ7
123

2

1 2 3 4
8 Z2 III∗

Ẽ8
24

3

1 2 3 4 5 6
9 1 II∗

Table 1. The dual graphs in the case where K is algebraically closed (Definition 3.8).

Remark 3.10. — Assume that K is algebraically closed. Then the following statements
hold:

1. The equality T = TE holds, and m is equal to the order of the element of the abelian
group H1(K,EK) corresponding to XK [13, 6.6].

2. If T = I0, then P = {Γ}, and Γ is a proper smooth C-curve of genus one. Otherwise, for
any Γ ∈ P , the normalization of Γ is C-isomorphic to P1

C
.

3. An element Γ ∈ P is not regular if and only if T = I1 or II. If these equivalent statements
hold, then N = 1.

4. The special fiber X is not of fundamental type if and only if T = I1, II, III, or IV.

5. If P = {Γ}, then Γ · Γ = 0. Otherwise, the equality

Γ1 · Γ2 =
{
−2 if Γ1 = Γ2 ,

0, 1, or 2 otherwise

holds for any Γ1 ∈ P and any Γ2 ∈ P .

3.4. Dual Graphs with Types and Degrees. —We introduce a graph in the case where
X is not necessarily of integral type. In this graph, the vertices have two types (the first
type and the second type), and the vertices and edges have degrees (Remark 3.14). We give
examples in §3.8.
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Definition 3.11. — Let z be a point on a locally Noetherian scheme Z. If the preimage of
z under the normalization of Z consists of one point, then z is said to be unibranch.

Definition 3.12. — We define the dual graph D of X/m (with types and degrees) as a graph
consisting of two types of vertices with multiplicities and degrees and edges with degrees, and
satisfying Condition ([) below. We introduce the notation V , E, m(•), V (•), and E(•) for
D in the same way as in Definition 3.8. For v ∈ V , we denote the degree of v by d(v). For
e ∈ E, we denote the degree of e by d(e). Set S2 :=

⊔
a∈P (2)

⋂
a.

Condition ([): there exist bijections v(•) : P → V and e(•) : S2 → E such that the following
statements hold. For a ∈ P (2), we set [a] := {e ∈ E | V (e) = v(a)}.

1. For any Γ ∈ P , the equalities m(v(Γ)) = m(Γ) and d(v(Γ)) = h̃0(Γ) hold.

2. For any Γ ∈ P , the vertex v(Γ) is of the second type if and only if Γ has a unibranch
singularity.

3. For any a ∈ P (2) and any s ∈
⋂
a ⊂ S2, the equality d(e(s)) = i(a, s) holds (see Defini-

tion 3.1 for i(a, s)).

4. For any a ∈ P (2), the equality e(
⋂
a) = [a] holds.

Vertices. Take v ∈ V .
Case 1 : v is of the first type. If d(v) ≤ 4, then we denote v by a multi-circle whose number
of circles is equal to d(v). In the general case, we denote v by a thick circle, and specify the
degree d(v). Then we denote a vertex of D of the first type of degree 2d(v) by a double thick
circle. We write the multiplicity m(v) of v at the center of the circle.

Case 2 : v is of the second type. We denote v by a multi-square in the same way as in Case
1, where we use squares instead of circles.

Edges. Take e ∈ E. If d(e) ≤ 4, then we denote e by a multi-line segment whose number of
line segments is equal to d(e). In the general case, we denote e by a thick line segment, and
specify the degree d(e). Then we denote an edge of D with degree 2d(e) by a double thick
line segment.

Remark 3.13. — Statement 4 implies that E =
⊔
a∈P (2) [a], i.e., the graph D has no loop.

Statements 3 and 4 imply that
∑
e∈[a] d(e) = Γ1 ·Γ2 for any a = {Γ1,Γ2} ∈ P (2) (Remark 3.3).

Remark 3.14. — If X is of fundamental type, then all vertices are of the first type, all
degrees are equal to one, and the graph (without types and degrees) coincides with that in
Definition 3.8.
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86 Models of torsors under elliptic curves

3.5. Base Change. —Choose an extension K ′/K between complete discrete valuation
fields. We denote the valuation ring of K ′ by OK′ , and the residue field of OK′ by K

′. Set
C ′K := SpecK ′, C ′ := SpecOK′ , and C

′ := SpecK ′. We denote the canonical projection by
πC : C ′ → C, and the canonical homomorphism by rC : Aut(C ′/C)→ Aut(C ′/C).

Remark 3.15. — Since OK′/OK is an extension between complete discrete valuation rings,
the morphism πC is flat. Thus, the following statements are equivalent:

1. πC is regular [7, 6.8.1(iv)];

2. any fiber of πC is geometrically regular [7, 6.7.6];

3. the canonical morphism C
′ → π−1

C (C) is an isomorphism, and both K ′/K and K ′/K are
separable.

Remark 3.16. — If K ′/K is Galois (resp. K ′/K is Galois), then we obtain canonical
isomorphisms Aut(C ′/C) ∼= Aut(C ′K/CK) ∼= GK′/K (resp. Aut(C ′/C) ∼= G

K
′
/K

).

Example 3.17. — The morphism πC is regular (Remark 3.15), the field extension K ′/K
is Galois (Remark 3.16), and the homomorphism rC is surjective in the following cases:

A. OK′ is OK-isomorphic to the completion of the strict Henselization of OK [6, Cor. 5.6];

B. the canonical morphism C
′ → π−1

C (C) is an isomorphism, K ′/K is a Galois extension,
and K ′/K is a separable field extension.

In the following, we assume that πC is regular (Remark 3.15).

Lemma 3.18. — Assume that K ′ is finite over K. Then πC is finite and étale.

Proof. — Since K ′ is finite and separable over K (Remark 3.15), the finiteness of πC follows
from [14, §33, Lem. 1]. Since πC is regular, the morphism πC is étale (Remark 3.15). �

Take the base change fX′ : X ′ → C ′ of fX via πC , and the base change πX : X ′ → X of πC
via fX . Set X ′K := XK ×CK

C ′K , and X ′ := f−1
X′ (C

′). Then we have the followings:

1. the canonical isomorphisms X ′K ∼= X ′ ×C′ C ′K and X ′ ∼= X ′ ×C′ C
′, and the diagram of

schemes and morphisms with Cartesian squares

X ′K

ιX′
K //

fX′
K

��

X ′

fX′

��

X
′ι

X
′

oo

f
X
′

��

C ′K

ιC′
K // C ′ C

′ι
C
′

oo

where the upper horizontal arrows are the first projections, the left and right vertical
arrows are the second projections, and the left and right lower horizontal arrows are the
canonical open and closed immersions, respectively;
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2. for W = C and X, the canonical isomorphisms W ′K ∼= W ′ ×W WK and W ′ ∼= W ′ ×W W ,
and the diagram of schemes and morphisms with Cartesian squares

W ′K

ιW ′
K //

πWK

��

W ′

πW

��

W
′ι

W
′

oo

π
W

��
WK

ιWK // W W
ι
Woo

where the upper horizontal arrows are the first projections, and the left and right vertical
arrows are the second projections.

We have the diagram of groups and homomorphisms with commutative squares

Aut(C ′K/CK)

bK

��

Aut(C ′/C)rCoo rC //

b

��

Aut(C ′/C)

b
��

Aut(X ′K/XK) Aut(X ′/X)rXoo rX // Aut(X ′/X)

where the left horizontal arrows, the right horizontal arrows, and the vertical arrows are
induced by the base changes via ιCK

, ιC , and fX , respectively.

Lemma 3.19. — The C ′-scheme X ′ is a proper regular C ′-scheme.

Proof. — Since X is proper over C, the scheme X ′ is proper over C ′. Since C ′ is regular over
C, and X is regular, the scheme X ′ is regular [7, 6.8.3(iii) and 6.5.2(ii)]. �

Set P ′ := P (X ′), and S′ := S(X ′). We use the following fact [7, 4.6.4].

Lemma 3.20. — Let k be a field, k′ be a separable field extension of k, and Z be a reduced
k-scheme. Then the base change of Z via k′/k is reduced.

Lemma 3.21. — Let k be a field, k′ be a separable field extension of k, and Z be a k-
scheme locally of finite type with structure morphism fZ : Z → Spec k. The field extension
k′/k induces a morphism πk : Spec k′ → Spec k. Take the base change πZ : Z ′ → Z of πk via
fZ . Then there exists a Z ′-isomorphism π−1

Z (Zsing) ∼= Z ′sing.

Proof. — Since π−1
Z (Zsing) is reduced (Lemma 3.20), we have only to show the equality

π−1
Z (Zsing) = Z ′sing for the underlying sets. Thus, the lemma follows from [7, 6.7.4]. �

Lemma 3.22. — For any Γ ∈ P , there exists an X ′-isomorphism π−1
X (Γsing) ∼= (π−1

X (Γ))sing.
Moreover, there exists an X ′-isomorphism π−1

X (S) ∼= S′.

Proof. — Since K ′/K is separable, the canonical morphism X
′
red → Xred ×C C

′ is an iso-
morphism (Lemma 3.20). Thus, the lemma follows from Lemma 3.21. �

Lemma 3.23. — Let k be a field, k′ be a separable field extension of k, and Z be a k-scheme
locally of finite type. Then the normalization of Z commutes with the base change via k′/k,
i.e., the following statement holds. Take the normalization τZ : Z̃ → Z of Z, and the base
change τZ′ : Z̃ ′ → Z ′ of τZ via k′/k. Then τZ′ is a normalization of Z ′.
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Proof. — Set W := Spec k, and W ′ := Spec k′. Since k′/k is separable, the canonical mor-
phism Z ′red → Zred ×W W ′ is an isomorphism (Lemma 3.20). Thus, we may assume that
both Z and Z ′ are reduced. We denote the disjoint union of points of codimension zero on
Z and Z ′ by H and H ′, respectively. Then the normalizations of Z and Z ′ are defined as
the normalizations of Z and Z ′ in H and H ′, respectively. Since k′/k is separable, the ring
l ⊗k k′ is isomorphic to a product of a finite number of fields for any finitely generated field
extension l/k. Thus, we obtain an isomorphism H ×W W ′ ∼= H ′. Since W ′ is regular over W ,
the lemma follows from [7, 6.14.5]. �

Lemma 3.24. — Let k be a field, k′ be a field extension of k, and Z be a proper k-scheme.
We define a k′-scheme by Z ′ := Z ×Spec k Spec k′. Then the following statements hold:

1. H i(Z ′,OZ′) ∼= H i(Z,OZ)⊗k k′ for any i ∈ Z≥0;

2. if k′ is separable over k, then h̃0(Z ′) = h̃0(Z);

3. if Z is geometrically integral over k, then h̃0(Z) = 1.

Proof. — Statement 1 follows from the flat base change theorem of cohomology groups [12,
5.2.27]. Statement 2 follows from Statement 1 and Lemma 3.23. Statement 3 follows from [12,
3.2.14(c) and 3.3.21]. �

For any Γ ∈ P , we may regard π−1
X (Γ) as a Weil divisor on X ′ since πX is flat.

Lemma 3.25. — The following statements hold.

1. For any Γ ∈ P , there exists Q′ ⊂ P ′ such that π−1
X (Γ) =

∑
Γ′∈Q′ Γ′. In particular, the

equality m(X ′) = m(X) holds (Definition 3.4).

2. The equality h̃0(Γ) =
∑

Γ′∈Q′ h̃
0(Γ′) holds.

3. If X ′ is of integral type, then h̃0(Γ) = |Q′|.

Proof. — Since π−1
X (Γ) is reduced (Lemma 3.20), Statement 1 holds. Statement 2 follows from

Statement 1 and Lemma 3.24.2. Statement 3 follows from Statement 2 and Lemma 3.24.3. �

Lemma 3.26. — Assume that X is of integral type. Take Γ ∈ P . Then π−1
X (Γ) ∈ P ′.

Proof. — Since π−1
X (Γ) ∼= Γ ×C C

′, and Γ is geometrically integral over K, the lemma
holds. �

Lemma 3.27. — For any divisor D1 on X and any vertical divisor D2 on X, the equality
D1 ·D2 = π−1

X (D1) · π−1
X (D2) holds.

Proof. — The lemma follows from the Lemma 3.24.1. �

Remark 3.28. — When X is of integral type, the multiplicities and intersection numbers
of the elements of P may be determined by those of P ′ (Lemmas 3.26 and 3.27).

In the following, we study a relationship between the minimalities of the proper regular C-
model X and the proper regular C ′-model X ′ [12, 9.3.21]. Take a canonical divisor KX/C of
X/C [12, 9.1.34]. Set KX′/C′ := π−1

X (KX/C).
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Lemma 3.29. — The following statements hold:

1. KX′/C′ is a canonical divisor of X ′/C ′;

2. if pa(XK) ≥ 1, then the following statements hold:

(a) Γ ∈ P is a (−1)-curve on X [12, 9.3.1] if and only if KX/C · Γ < 0;
(b) the proper regular C-model X is minimal if and only if there does not exist a

(−1)-curve on X.

Proof. — Statements 1, 2a, and 2b follow from [12, 6.4.9(b)], [12, 9.3.10(b)], and [12, 9.2.2],
respectively. �

Proposition 3.30. — Assume that pa(XK) ≥ 1. Then the proper regular C-model X of XK

is minimal if and only if the proper regular C ′-model X ′ of X ′K is minimal.

Proof. — Let us show the if part. Assume that X ′ is minimal. Take E ∈ P . We have only
to show that KX/C · E ≥ 0 (Lemma 3.29). Set E′ := π−1

X (E). Take Q′ ⊂ P ′ so that E′ =∑
Γ′∈Q′ Γ′ (Lemma 3.25.1). Since KX′/C′ · Γ′ ≥ 0 for any Γ′ ∈ Q′ (Lemma 3.29.1 and 2), and

KX/C · E = KX′/C′ · E′ (Lemma 3.27), the inequality KX/C · E ≥ 0 holds, which concludes
the proof of the if part.
Let us show the converse. Suppose that X is minimal, and that X ′ is not minimal. We may
take a (−1)-curve E′ ∈ P ′ on X ′ (Lemma 3.29.2b). We denote πX(E′) with the reduced
structure by E. Then E ∈ P , and E′ ⊂ π−1

X (E). Since KX/C · E ≥ 0 (Lemma 3.29.2), the
inequality KX′/C′ ·E′ ≥ 0 holds [12, 7.1.35 and 7.2.9] (Lemma 3.29.1), which contradicts the
inequality KX′/C′ · E′ < 0 (Lemma 3.29.2a). Thus, the converse holds. �

3.6. Quotients. — In the following subsections, we assume that K ′ introduced in §3.5 is a
finite Galois extension of K. Then both rC and rC are bijective (Lemma 3.18). We denote the
CK-action of GK′/K on C ′K by ρC′K/CK

: GK′/K → Aut(C ′K/CK). Set ρC′/C := r−1
C ◦ ρC′K/CK

,
ρ
C
′
/C

:= rC ◦ ρC′/C , ρX′/X := b ◦ ρC′/C , and ρX′/X := rX ◦ ρX′/X . For W = C, C, CK , X,
X, and XK , we denote the structure morphism of the C-scheme W by fW/C : W → C. Then
the base change of πC via fW/C is equal to πW . Since πW is finite (Lemma 3.18), we may
take a quotient of ρW ′/W in the category of W -schemes, which is a quotient of ρW ′/W in the
category of ringed spaces [3, V.4.1(i)].

Lemma 3.31. — The morphism πW is a quotient morphism of ρW ′/W in both the category
of W -schemes and the category of ringed spaces. In particular, the map between underly-
ing topological spaces associated to πW is a quotient map of the action on the underlying
topological space of W ′ induced by ρW ′/W in the category of topological spaces.

Proof. — Since OC is equal to the invariant subring of OC′ with respect to the action induced
by ρC′/C , the caseW = C holds (see the proof of [3, V.4.1]). We denote the constantW -group
scheme induced by the group GK′/K by GW . The W -action GW ×W W ′ →W ′ of GW on W ′
induced by ρW ′/W and the second projection GW ×W W ′ →W ′ induce a W -morphism

ΦW ′/W : GW ×W W ′ // W ′ ×W W ′ , (g, w) � // (g · w,w) .
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Since ρC′/C is free [3, IV.3.2.1], the action ρW ′/W is free. Thus, the morphism ΦW ′/W is
an isomorphism [3, V.4.1(iv)] (see [3, V.2(b)] for the terminology un couple d’équivalence),
which concludes the proof [3, IV.3.3]. �

3.7. Quotients of Dual Graphs. —We take a proper regular C-model X of XK and a
finite Galois extension K ′/K so that X ′ is of fundamental type.

Example 3.32. — Whenever K is perfect, we may always take such X and K ′ in the
following way. Take the completion O′′ of a strict Henselization of OK (Example 3.17.A). We
denote the field of fractions ofO′′ byK ′′, and the residue field ofO′′ byK ′′. Set C ′′ := SpecO′′,
and C

′′ := SpecK ′′. The extension O′′/O induces a morphism η : C ′′ → C. Take the base
change fX′′ : X ′′ → C ′′ of fX via η. Set X ′′0 := X ′′. In the same way as in Remark 3.7, we
take i1 ∈ Z, i2 ∈ Z, and the successive blowing-ups τ ′′i : X ′′i+1 → X ′′i of X ′′i for i ∈ I0, where
we set I0 := {i ∈ Z | 0 ≤ i < i2}. Set X

′′
i2 := X ′′i2 ×C′′ C

′′. Then X ′′i2 is of fundamental type,
and Aut(C ′′/C) acts on X ′′0 . We may show the following statements for any i ∈ I0 by the
induction on i:

1. we denote the center of τ ′′i by T ′′i ; then T ′′i is stable under the action of Aut(C ′′/C);

2. the action of Aut(C ′′/C) on X ′′i lifts to X ′′i+1.

Choose a finite Galois extension K ′/K in K ′′ so that Aut(C ′′/C ′) trivially acts on P (X ′′i2)
and S(X ′′i2). The extension O′′/O′ induces a morphism π′′ : C ′′ → C ′. Set X0 := X, X ′0 := X ′,
and π′0 := πX : X ′0 → X0. Take the base change π′′0 : X ′′0 → X ′0 of π′′ via fX′ . We may show
the following statements for any i ∈ I0 by the induction on i:

3. set ηi := π′i◦π′′i , and Ti := ηi(T ′′i ); we equip Ti with the reduced structure; then η−1
i (Ti) ∼=

T ′′i over X ′′i ;

4. set T ′i := (π′i)−1(Ti); take the blowing-up τi : Xi+1 → Xi of Xi along Ti, the blowing-up
τ ′i : X ′i+1 → X ′i of X ′i along T ′i , and the base change π′i+1 : X̃ ′i+1 → Xi+1 of π′i via τi; then
X̃ ′i+1

∼= X ′i+1 over X ′i;

5. take the base change π′′i+1 : X̃ ′′i+1 → X ′i+1 of π′′i via τ ′i ; then X̃ ′′i+1
∼= X ′′i+1 over X ′′i .

In particular, for any i ∈ I0, the squares in the diagram

X ′′i+1
π′′i+1 //

τ ′′i
��

X ′i+1
π′i+1 //

τ ′i
��

Xi+1

τi

��
X ′′i

π′′i // X ′i
π′i // Xi

are Cartesian, where we identify X̃ ′i+1 and X̃ ′′i+1 with X ′i+1 and X ′′i+1, respectively. Set X
′
i2 :=

X ′i2×C′ C
′. Let us show that X ′i2 satisfies Conditions 0–3 in Definition 3.6. Since Aut(C ′′/C ′)

trivially acts on P (X ′′i2), Condition 0 holds. Moreover, since X ′′i2 is of fundamental type,
Conditions 1 and 2 follow from Lemma 3.22. Since Aut(C ′′/C ′) trivially acts on S(X ′′i2),
Condition 3 holds. Therefore, the special fiber X ′i2 is of fundamental type.
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Remark 3.33. — Since X
′
i2 is of fundamental type, the multiplicities and intersection

numbers of the elements of P (X ′i2) may be determined by those of P (X ′′i2) (Remark 3.28).
Moreover, the projection S(X ′′i2) → S(X ′i2) (Lemma 3.22) induces a bijection between the
underlying sets.

Definition 3.34. — We use the notationD′, AutD′, V ′, E′,m′(•), V ′(•), E′(•), v′(•) : P ′→
V ′, and e′(•) : S′ → E′ for X ′/m introduced in Definition 3.8. We have a homomorphism

χD′ : Aut(X ′/X) // AutD′ .

Set ρD′ := χD′ ◦ ρX′/X , and G := Im ρD′ . For W ′ ⊂ V ′, we denote the orbit of W ′ by O(W ′).
For v′ ∈ V ′, we set O(v′) := O({v′}). For F ′ ⊂ E′, we denote the orbit of F ′ by O(F ′). For
e′ ∈ E′, we set O(e′) := O({e′}). We say that the action fixes the center of e′ ∈ E′ if there
exists g ∈ G that fixes e′ and exchanges the two vertices in V ′(e′).
We define the quotient D of D′ by G as a graph consisting of two types of vertices with
multiplicities and degrees and edges with degrees in the following way. We introduce the
notation V , E, m(•), d(•), V (•), and E(•) for D in the same way as in Definition 3.12.

Vertices. Take an orbit O of a vertex ofD′. Choose v′ ∈ O. The integerm′(v′) does not depend
on the choice of v′. We put a vertex O, and set m(O) := m′(v′), and d(O) := |O|. If the action
does not fix the center of any edge in E′(O), then the vertex O is of the first type. Otherwise,
the vertex O is of the second type. For W ′ ⊂ V ′, we set (W ′) := {O(w′) ∈ V | w′ ∈W ′}.

Edges. Take an orbit O of an edge of D′ with |V ′(O)| = 2. We put an edge O so that
V (O) = V ′(O), and set d(O) := |O|. For F ′ ⊂ E′, we set (F ′) := {O(f ′) ∈ E | f ′ ∈ F ′ and
|V ′(O(f ′))| = 2}.
Set

E′1 := {e′ ∈ E′ | the action fixes the center of e′} ,
and

E′2 := {e′ ∈ E′ | |V ′(e′)| = 2} .
For i ∈ {1, 2}, we set S′i := (e′)−1(E′i). Then the restriction e′i(•) : S′i → E′i of e′(•) to S′i and
E′i is bijective for any i ∈ {1, 2}. We denote the set of unibranch singularities on Xred by S1
(Definition 3.11). Set S2 :=

⋃
a∈P (2)

⋂
a.

Lemma 3.35. — The following statements hold.

1. For any i ∈ {1, 2}, the equality π−1
X (Si) = S′i holds.

2. The equality S1 ∩ S2 = ∅ holds.

3. The canonical morphism
⊔
a∈P (2)

⋂
a→ S2 is an isomorphism.

4. Any s ∈ S2 is a regular point on any Γ ∈ P with s ∈ Γ.

5. The equality S = S1 ∪ S2 holds if and only if any singularity on any Γ ∈ P is unibranch.
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Proof. — Lemma 3.22 gives the equality π−1
X (S) = S′. Choose s′ ∈ S′. Take the two irre-

ducible components Γ′1 and Γ′2 containing s′. Set s := πX(s′). Then the following statements
are equivalent:

1-1. s′ ∈ S′1;

1-2. there exists g ∈ GK′/K such that ρ
X
′
/X

(g) fixes s′ and exchanges Γ′1 and Γ′2;

1-3. s ∈ S1.

Moreover, the following statements are equivalent:

2-1. s′ ∈ S′2;

2-2. the orbit of no element of P ′ contains {Γ′1,Γ′2};

2-3. s ∈ S2.

These equivalences prove the lemma. �

Definition 3.36. — We use the notation introduced in Definition 3.34. Take the quotient
maps qP : P ′ → P and qS : S′2 → S2 of the action ρ

X
′
/X

. The maps qV : V ′ → V , v′ 7→ O(v′)
and qE : E′2 → E, e′ 7→ O(e′) are the quotient maps of the action ρD′ . Moreover, both v′(•)
and e′(•) are equivariant with respect to the actions induced by ρ

X
′
/X

and ρD′ . Thus, there
exist unique maps v(•) : P → V and e(•) : S2 → E such that the squares in the two diagrams

P ′
v′(•) //

qP

��

V ′

qV

��
P

v(•) // V

S′2
e′2(•)

//

qS

��

E′2

qE

��
S2

e(•) // E

are commutative. Since v′(•) and e′(•) are bijective, the maps v(•) and e(•) are bijective.

Theorem 3.37. — We use the notation introduced in Definitions 3.34 and 3.36. Then the
graph D is the dual graph of X/m with types and degrees by v(•) and e(•) (Definition 3.12).

Proof. — By Lemma 3.35.3, we may write S2 =
⊔
a∈P (2)

⋂
a. Let us show that State-

ments 1–4 in Definition 3.12 hold for v(•) and e(•). Statement 1 follows from Lemma 3.25.1
and 3. Take Γ ∈ P . Set v := v(Γ). The vertex v is of the second type if and only if there ex-
ists e′ ∈ E′1 such that v ∈ V ′(e′). Thus, Statement 2 follows from the equality π−1

X (S1) = S′1
(Lemma 3.35.1). Let us show Statement 3. Take a ∈ P (2) and s ∈

⋂
a ⊂ S2. Since X

′ is
of fundamental type, the equality |q−1

S (s)| = i(a, s) holds (Lemmas 3.20 and 3.25.1). Since
d(e(s)) = |q−1

E (e(s))| = |q−1
S (s)|, Statement 3 holds. Let us show Statement 4. Take a =

{Γ1,Γ2} ∈ P (2). Set A :=
⋂
a, P ′a := {{Γ′1,Γ′2} ⊂ P ′ | qP (Γ′i) = Γi for any i ∈ {1, 2}}, and

A′ :=
⋃
a′∈P ′a

⋂
a′. Then A = qS(A′), e′2(

⋂
a′) = [a′] for any a′ ∈ P ′a, and

⋃
a′∈P ′a qE([a′]) = [a]

(see Definitions 3.8 and 3.12 for [•]). Thus, the equalities e(A) = e(qS(A′)) = qE(e′2(A′)) = [a]
hold, which proves Statement 4. �
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Example 3.38. — We give examples of parts of D and D′ in several cases. Take a part of
D′0 of D′. We write D′0 on the left-hand side, and its image in D on the right-hand side, where
the multiplicities are omitted for simplicity. We denote the vertices of D′0 by O. Suppose that
the following conditions are satisfied:

1. E′(O) ⊂ E′2 in all cases except (h);

2. there exists v′0 ∈ V ′ such that O = O(v′0).
(a) |O| = 2, and |E′(v′0)| = 1.

(b) |E′(v′0)| = 1.

(c) |O| = 2, |E′(v′0)| = 2, and |E′(v′0)| = 2.

(d) |E′(v′0)| = 2, and |E′(v′0)| = 2.

(e) |O| = 1, |E′(v′0)| = 2, and |E′(v′0)| = 1.

(f) |O| = 1, |E′(v′0)| = 3, and |E′(v′0)| = 1.

(g) |O| = 1, |E′(v′0)| = 4, and |E′(v′0)| = 1.

(h) |E′(v′0)| = 2, |E′(v′0)| = 1, and there exists e′ ∈ E′ such that V ′(e′) = O (in this
case, the action fixes the center of the edge e′).

3.8. Curves of Genus One and Dual Graphs. —We use the notation introduced in
§3.3 and Example 3.32. Set X ′′ := f−1

X′′(C
′′). We denote the Kodaira symbol of X ′′ by mT ′

(see Remark 3.33), the symbol of the dual graph of X ′′/m by D′, the dual graph of X ′i2/m
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by D′, and the birational morphisms by τ : Xi2 → X and τ ′ : X ′i2 → X ′. Set I∗P := {i ∈ Z |
1 ≤ i < N}, and IP := I∗P ∪ {N}. We write P = {Γi}i∈IP

where h̃0(Γi) ≤ h̃0(Γi+1) for any
i ∈ I∗P .
Assume that T ′ = I1, II, III, or IV. Then X = m

∑
Γ∈P Γ (Lemma 3.25.1). We may write

S = {s} and S′ = {s′} (Lemma 3.22). For i ∈ IP , we denote the restriction of τ to the
strict transform of Γi by γi, and set si := γ−1

i (s). We denote the set of prime divisors on X ′i2
contained in the exceptional locus of τ ′ by Pτ ′ . Since the multiplicities of the elements of Pτ ′
in X ′ are different from each other, any element of Pτ ′ is stable under the action of ρ

X
′
/X

.
In the following, we introduce two symbols T and D to denote the type of X/m and the
dual graph D of X/m with types and degrees (Definition 3.12), respectively (Tables 2–7; see
Tables 8 and 9 for the changes from T ′ and D′ to T and D, respectively). We use the following
symbols for T (n ∈ Z≥0, r ∈ Z>0, and r | n):

I0, Irn (n ≥ 1), Irn,2 (n ≥ 1), Irn,2,2 (2r | n > 0), II, III, III2, IV, IV2, IV3,

I∗n, I∗n,2, I∗n,2,2, I∗n,2,3, I∗0,3, I∗n,4, II∗, III∗, III∗2, IV∗, IV∗2, IV∗3.

For each n, we set In := I1
n, In,2 := I1

n,2, and In,2,2 := I1
n,2,2. The symbol D is an analogue to

the symbol of a (twisted) affine Dynkin diagram. The original symbols are the followings:

A(1)
u (u ≥ 1), B(1)

u (u ≥ 3), C(1)
u (u ≥ 2), D(1)

u (u ≥ 4), E(1)
u (6 ≤ u ≤ 8), F (1)

4 , G
(1)
2 ,

B(2)
u (u ≥ 2), C(2)

u (u ≥ 3), BC (2)
u (u ≥ 1), F (2)

4 , G
(3)
2 .

We use the following symbols (r ≥ 1):

A(1)
u,r (u ≥ 0), B(1)

u (u ≥ 3), C(1)
u,r (u ≥ 1), C(1]

u,r (u ≥ 0), C [1]
u,r (u ≥ 0), D(1)

u (u ≥ 4),

E(1)
u (6 ≤ u ≤ 8), F (1)

4 , G
(1)
2 ,

B(2)
u (u ≥ 2), C(2)

u (u ≥ 2), C(2]
u (u ≥ 2), BC (2)

u (u ≥ 1), BC (2]
u (u ≥ 1), F (2)

4 , G
(3)
2 .

For each u, we set A(1)
u := A

(1)
u,1, C

(1)
u := C

(1)
u,1, C

(1]
u := C

(1]
u,1, and C

[1]
u := C

[1]
u,1.

We determine D by Lemmas 3.22, 3.25, and 3.27.

Case 0 : T ′ = I0. The equalities N = 1, h̃0(Γ1) = 1, and S = ∅ hold. We set T := I0, and
D := A

(1)
0 .

Case 1 : T ′ = I1. The equalities N = 1 and h̃0(Γ1) = 1 hold.

A. ρD′ is trivial. The equality |s1| = 2 holds. We set T := I1, and D := A
(1)
0 .

B. otherwise. The equality |s1| = 1 holds. We set T := I1,2, and D := C
(1]
0 .

Case 2 : T ′ = II. The equalities N = 1, h̃0(Γ1) = 1, and |s1| = 1 hold. We set T := II, and
D := C

(1]
0 .
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D D N G T

A
(1)
0

1 1 1 I0, I1

C
(1]
0

1 1 Z2 I1,2
1 1 II

C
(1)
1

1 1 2 1 III
C

(1]
0,2

11 1 Z2 III2

A
(1)
2 1 1

1
3 1 IV

C
(1]
1

1 11 2 Z2 IV2

C
(1]
0,3

111 1 Z3, S3 IV3

Table 2. The dual graphs in Cases 0–4.

Case 3 : T ′ = III. The equality N = 1 or 2 holds. For any i ∈ IP , the equality |si| = 1 holds.

A. N = 2. The equality Γ1 · Γ2 = 2 holds. For any i ∈ {1, 2}, the equality h̃0(Γi) = 1 holds.
We set T := III, and D := C

(1)
1 .

B. N = 1. The equality h̃0(Γ1) = 2 holds. We set T := III2, and D := C
(1]
0,2.

Case 4 : T ′ = IV. The equality N = 1, 2, or 3 holds. For any i ∈ IP , the equality |si| = 1
holds.

A. N = 3. For any {Γ,Γ′} ∈ P (2), the equality Γ · Γ′ = 1 holds. For any i ∈ {1, 2, 3}, the
equality h̃0(Γi) = 1 holds. We set T := IV, and D := A

(1)
2 .

B. N = 2. The equality Γ1 · Γ2 = 2 holds. For any i ∈ {1, 2}, the equality h̃0(Γi) = i holds.
We set T := IV2, and D := C

(1]
1 .

C. N = 1. The equality h̃0(Γ1) = 3 hold. We set T := IV3, and D := C
(1]
0,3.

In the other cases, the special fiber X ′ is of fundamental type. We study these cases by the
method developed in §3.7.
Case 5 : T ′ = In (n ≥ 2). Since AutD′ ∼= D2n, we have an isomorphism G ∼= Zr or D2r, where
r | n. Set u := n/r.

A. G ∼= Zr. The equality N = u holds. For any Γ ∈ P , the equality h̃0(Γ) = r holds. We set
T := Irn, and D := A

(1)
u−1,r.

B. G ∼= D2r. We denote the subset of G consisting of rotations of the cycle D by H. Then
H is a normal subgroup of G, and H ∼= Zr. Set Y := X/H, and G′ := G/H. Then the
special fiber of Y is of type Irn, G′ ∼= Z2, G′ acts on Y , and X ∼= Y/G′. By M we denote
the number of elements of P (Y ) that are fixed by the action of G′. Then M = 0, 1, or 2.
The equality M = 1 holds if and only if u is odd.
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D D N G T

A
(1)
0,n

u = 1
1 1 Zn Inn

A
(1)
u−1,r

u ≥ 2 1 1

1

1 1
u Zr Irn

C
(1]
0,n

u = 1
1 1 D2n Inn,2

C
(1)
u
2 ,r

u ≥ 2
u: even

1 111 11 11 11 u
2 + 1 D2r Irn,2

C
(1]
u−1

2 ,r

u ≥ 3
u: odd

1 1111 11 11 11 u+1
2 D2r Irn,2

C
[1]
0,n

2
u = 2

11 1 Dn I
n
2
n,2,2

C
[1]
u
2−1,r

u ≥ 4
u: even

11 1111 11 11 11 u
2 D2r Irn,2,2

Table 3. The dual graphs in Case 5. The inequality n ≥ 2 holds (if 2 | n,
then C(1]

0,n = C
[1]
0,n

2
). The thick circles, squares, and segments are of degree r.

The double thick circles, squares, and segments are of degree 2r.

(a) M > 0. We set T := Irn,2. If N = 1, then we set D := C
[1]
0,n. If N > 0, and M = 2,

then we set D := C
(1)
u
2 ,r

. Otherwise, we set D := C
(1]
u−1

2 ,r
.

(b) M = 0. In this case, the reduction Xred has two unibranch singularities. We set
T := Irn,2,2. If u = 2, then we set D := C

[1]
0,n

2
or C(1]

0,n. Otherwise, we set D := C
[1]
u
2−1,r.

Case 6 : T ′ = I∗n−5 (n ≥ 5).

A. n = 5. Since AutD′ ∼= S4, we have an isomorphism G ∼= 1, Z2, Z3, Z4, Z2
2 , S3, D8, A4, or

S4. If N = 5 (resp. N = 4, resp. N = 3, and h̃0(ΓN ) = 2, resp. N = 3, and h̃0(ΓN ) = 3,
resp. N = 2), we set T := I∗0 (resp. I∗0,2, resp. I∗0,2,2 or I∗0,2,3, resp. I∗0,3, resp. I∗0,4), and
D := D

(1)
4 (resp. B(1)

3 , resp. B(2)
2 or C(2)

2 , resp. G(1)
2 , resp. BC (2)

1 ).

B. n ≥ 6. Since AutD′ ∼= D8, we have an isomorphism G ∼= 1, Z2, Z4, Z2
2 , or D8.

(a) N ≥ n − 2. If N = n (resp. N = n − 1, resp. N = n − 2), then we set T := I∗n−5
(resp. I∗n−5,2, resp. I∗n−5,2,2), and D := D

(1)
n−1 (resp. B(1)

n−2, resp. B
(2)
n−3).
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D D N G T

D
(1)
n−1

1

1

1

1
2 2 2 2 n 1 I∗n−5

B
(1)
n−2

1

1
112 2 2 2 n− 1 Z2 I∗n−5,2

B
(2)
2

(= C
(2)
2 )

n = 5
11 2 11 3 Z2, Z2

2
I∗0,2,2
(= I∗0,2,3)

B
(2)
n−3

n ≥ 6
11 112 2 2 2 n− 2 Z2, Z2

2 I∗n−5,2,2

C
(2)
n−1

2
n ≥ 7
n: odd

11

11
222 22 22 22 n+1

2 Z2 I∗n−5,2,3

C
(2]
n
2−1

n: even

11

11
2222 22 22 22 n

2 Z2 I∗n−5,2,3

G
(1)
2

n = 5
111 2 1 3 Z3, S3 I∗0,3

BC (2)
1

n = 5
1111 2 2 Z2

2 , Z4, D8,
A4, S4

I∗0,4

BC (2)
n−3

2
n ≥ 7
n: odd

1111 222 22 22 22 n−1
2 Z2

2 , Z4, D8 I∗n−5,4

BC (2]
n
2−2

n: even
1111 2222 22 22 22 n

2 − 1 Z2
2 , Z4, D8 I∗n−5,4

Table 4. The dual graphs in Case 6. The inequality n ≥ 5 holds.

(b) n/2 ≤ N ≤ n−3. We set T := I∗n−5,2,3. If n is odd, then we set D := C
(2)
n−1

2
. Otherwise,

we set D := C
(2]
n
2−1.

(c) otherwise. We set T := I∗n−5,4. If n is odd, then we set D := BC (2)
n−3

2
. Otherwise, we

set D := BC (2]
n
2−2.

Case 7 : T ′ = IV∗. Since AutD′ ∼= S3, we have an isomorphism G ∼= 1, Z2, Z3, or S3. If
G ∼= 1, then we set T := IV∗, and D := E

(1)
6 . If G ∼= Z2, then we set T := IV∗2, and D := F

(1)
4 .

Otherwise, we set T := IV∗3, and D := G
(3)
2 .
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D D N G T

E
(1)
6

1

1

2

2
1 2 3 7 1 IV∗

F
(1)
4

11221 2 3 5 Z2 IV∗2

G
(3)
2

1112223 3 Z3, S3 IV∗3

Table 5. The dual graphs in Case 7.

D D N G T

E
(1)
7 123

2

1 2 3 4
8 1 III∗

F
(2)
4

2 4 33 22 11 5 Z2 III∗2

Table 6. The dual graphs in Case 8.

D D N G T

E
(1)
8 24

3

1 2 3 4 5 6
9 1 II∗

Table 7. The dual graph in Case 9.

T ′ I0 In (n ≥ 1) II III IV
T I0 Irn, Irn,2, Irn,2,2 II III, III2 IV, IV2, IV3

T ′ I∗n (n ≥ 0) II∗ III∗ IV∗

T I∗n, I∗n,2, I∗n,2,2, I∗n,2,3, I∗0,3 (n = 0), I∗n,4 II∗ III∗, III∗2 IV∗, IV∗2, IV∗3

Table 8. The changes from T ′ to T . The relation r | n holds.

Case 8 : T ′ = III∗. Since AutD′ ∼= Z2, we have an isomorphism G ∼= 1 or Z2. If G ∼= 1, then
we set T := III∗, and D := E

(1)
7 . Otherwise, we set T := III∗2, and D := F

(2)
4 .

Case 9 : T ′ = II∗. Since AutD′ ∼= 1, we have an isomorphism G ∼= 1. We set T := II∗, and
D := E

(1)
8 .
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D′ Ã0 Ãn−1 (n ≥ 2)
D A

(1)
0 , C(1]

0 A
(1)
n
r
−1,r, C

(1)
n
2r
,r, C

(1]
n−r

2r
,r
, C [1]

n
2r
−1,r

D′ D̃n−1 (n ≥ 5)
D D

(1)
n−1, B

(1)
n−2, G

(1)
2 (n = 5), B(2)

n−3, C
(2)
n−1

2
, C(2]

n
2−1, BC

(2)
n−3

2
, BC(2]

n
2−2

D′ Ẽ6 Ẽ7 Ẽ8

D E
(1)
6 , F (1)

4 , G(3)
2 E

(1)
7 , F (2)

4 E
(1)
8

Table 9. The changes from D′ to D. The relation r | n holds.

Lemma 3.39. — Let k be a perfect field, and Z be a k-scheme. Then the following state-
ments hold:

1. Z is reduced if and only if Z is geometrically reduced over k;

2. assume that Z is locally of finite type; then Z is regular if and only if Z is smooth over k.

Proof. — Statements 1 and 2 follow from [7, 4.6.11] and [8, 17.15.2], respectively. �

In the above classification, we obtain the following (Lemmas 3.22, 3.24, and 3.39).

Proposition 3.40. — Take Γ ∈ P and the normalization γ : Γ̃→ Γ of Γ. Then the following
statements hold.

1. If T = I0, then P = {Γ}, and Γ is a proper smooth geometrically integral H̃0(Γ)-curve of
genus one. Otherwise, the normalization of Γ is a proper smooth geometrically integral
H̃0(Γ)-curve of genus zero.

2. If T = Inn (n ≥ 1), then P = {Γ}, |Γsing| = 1, and |γ−1(Γsing)| = 2 (Γsing consists of
one non-unibranch singularity). If T = I

n
2
n,2,2 (2 | n > 0), then P = {Γ}, |Γsing| = 2, and

|γ−1(Γsing)| = 2 (Γsing consists of two unibranch singularities). Otherwise, if Γsing 6= ∅,
then |Γsing| = |γ−1(Γsing)| = 1 (Γsing consists of one unibranch singularity).

4. Separable Closed Points

4.1. Special Fibers, Indices, and Separable Closed Points. —Take a separable clo-
sure Ksep of K. For a field extension K ′/K in Ksep, we set GK′ := GKsep/K′ . Let EK be a
K-elliptic curve.

Definition 4.1. — Take a proper regular C-model fE : E → C of EK . The K-elliptic curve
EK is said to have good reduction if E is smooth over C. The K-elliptic curve EK is said to
have toric reduction if the identity component of the special fiber of the Néron model of EK
is a C-torus. The K-elliptic curve EK is said to have potentially good (resp. potentially toric
reduction) if there exists a finite separable field extension K ′/K such that the K ′-elliptic
curve EK ×K K ′ has good (resp. toric reduction).
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Proof of Theorem 1.1. — Take a minimal proper regular C-model fX : X → C of XK . Set
X := f−1

X (C), and I := I(XK). We may take a divisor D on XK of degree I. The Riemann–
Roch theorem gives the equality

dimK H
0(XK ,OXK

(D)) = I

[12, 7.3.33]. Thus, we may take an effective divisor
∑
y∈S ay[y] of degree I, where S is a finite

set of closed points on XK , ay ∈ Z>0 for any y ∈ S, and [y] is the prime divisor with support
y. Then

∑
y∈S ay[k(y) : K] = I, and I | [k(y) : K] for any y ∈ S. Thus, we may write

S = {z}, and the equalities az = 1 and [k(z) : K] = I hold. We have to show that there exists
a separable closed point x on XK such that [k(x) : K] = I. If K is infinite, then it follows
from [5, 8.4(2) and (3)].
Assume thatK is finite. We use the notation H̃0(Γ), h̃0(Γ), R(X), P (X), and n(Γ) introduced
in §2 and Definition 3.4. Take Γ ∈ P (X), and the normalization γ : Γ̃→ Γ of Γ. We denote the
index of Γreg by I(Γreg) (see §1). Since H̃0(Γ) ⊂ k(x) for any closed point x on Γ̃, the relation
h̃0(Γ) | I(Γreg) holds. For any finite field k and any proper smooth geometrically integral k-
curve Ck of genus zero (resp. of genus one), the inequality |Ck(k)| ≥ 3 (resp. |Ck(k)| ≥ 1) holds
since Ck is k-isomorphic to P1

k (resp. a k-elliptic curve) ([17, II.3.3(a)] and Example 1.5.2).
Thus, Proposition 3.40 shows that Γreg(H̃0(Γ)) 6= ∅, which implies that I(Γreg) | h̃0(Γ).
Therefore, the equality I(Γreg) = h̃0(Γ) holds. Since I = gcdΓ∈P (X){n(Γ) ·I(Γreg)} [5, 8.2(b)],
the equality

I = gcd
Γ∈P (X)

{n(Γ) · h̃0(Γ)}

holds. Thus, by the classification of the special fibers in §3.8, there exists Γ ∈ P (X) such
that n(Γ) · h̃0(Γ) = I, and (Γ∩R(X))(H̃0(Γ)) 6= ∅ (Proposition 3.40). Therefore, the theorem
follows from [5, 8.4(3)]. �

Remark 4.2. — In the above proof, the result in §3.8 is applied in the case where K is
finite.

Example 4.3. — The following statement holds [18, Thm. 2]: for any global field K, any
K-elliptic curve EK , and any P ∈ Z>0, there exists α ∈ H1(K,EK) such that P (α) = P ,
and I(XK) = P (α)2, where XK is the K-torsor under EK corresponding to α. In particular,
for any closed point x on XK , the relation P (α)2 | [k(x) : K] holds.

4.2. Case of Good Reduction. —

Theorem 4.4. — Suppose that K is perfect and WC-trivial for elliptic curves. Assume that
EK has good reduction. Take α ∈ H1(K,EK). Then there exists a separable field extension
L/K of degree P (α) such that α|L = 0.

Proof. — By the induction on P (α), we may assume that P (α) is a prime number. Take the
K-torsor XK under EK corresponding to α, a minimal proper regular C-model fX : X → C
of XK , and the completion O′ of a strict Henselization of OK (Example 3.17.A). We denote
the field of fractions of O′ by K ′. Set C ′ := SpecO′, E′ := E ×C C ′, X ′ := X ×C C ′,
and m′ := P (α|K′). Then E′ and X ′ are minimal proper regular C ′-models of their generic
fibers (Proposition 3.30). Since E′ is smooth over C ′, the Kodaira symbol of the special
fiber of X ′ is equal to m′I0 (Remark 3.10.1). Since K is perfect, the K-scheme Xred is a

Publications mathématiques de Besançon – 2017



Kentaro Mitsui 101

K-torsor under a K-elliptic curve E0 [13, 8.1–8.2]. Moreover, the equality m(X) = m′ holds
(Lemma 3.25.1; see Definition 3.4 for m(X)). Since K is WC-trivial for elliptic curves, there
exists a C-isomorphism Xred ∼= E0. Thus, there exists a separable field extension L/K of
degree m′ such that XK(L) 6= ∅ [5, 8.4(3)], which gives the equality α|L = 0. Since P (α) 6= 1,
the inequality m′ 6= 1 holds. Since P (α) is a prime number, and m′ = P (α|K′) | P (α), the
equality m′ = P (α) holds, which concludes the proof. �

4.3. Case of Toric Reduction. — In this subsection, we use the rigid analytic uniformiza-
tion of EK . Assume that EK has potentially toric reduction. For a K-scheme ZK locally of
finite type, we denote the analytification of ZK by Zan

K . Take the uniformization uK : T an
K →

Ean
K
∼= T an

K /Γan
K of EK , where TK is a K-torus, and ΓK is a K-lattice of TK . The K-lattice ΓK

is associated with a GK-module ΓZ whose underlying group is isomorphic to Z. Let K ′/K
be a field extension in Ksep. For a module M, we denote the GK′-module associated with M
with trivial action of GK′ by MK′ . The K-torus TK (resp. the K-lattice ΓK) is said to split
over K ′ if TK ×K K ′ ∼= Gm,K′ as K ′-group schemes (resp. ΓZ ∼= ZK′ as GK′-modules).
We denote the group of Ksep-automorphisms of the Ksep-group scheme Gm,Ksep by
AutKsep Gm,Ksep . Then AutKsep Gm,Ksep ∼= Z2. Choose an isomorphism φTK

: TK ×K Ksep ∼=
Gm,Ksep between Ksep-group schemes. The action of GK on Ksep induces K-actions ρTK

and
ρGm,K

of GK on TK ×K Ksep and Gm,Ksep , respectively. We define a Ksep-action ρ′TK
: GK →

AutKsep Gm,Ksep of GK on Gm,Ksep by ρ′TK
(g) := φTK

◦ ρTK
(g) ◦ φ−1

TK
◦ ρ−1

Gm,K
(g). Take the

field extension M/K corresponding to Ker ρ′TK
. Then GM/K

∼= 1 or Z2, and M is minimum
among the field extensions of K in Ksep over which TK splits.
Take a Galois extension M ′/K in Ksep so that M ⊂ M ′. Fix an isomorphism TM ∼= Gm.M

betweenM -group schemes, which induces an isomorphism TK(M ′) ∼= (M ′)× between groups.
For g ∈ GM ′/K , we denote the image of a ∈ (M ′)× (resp. a ∈ TK(M ′)) under g by ga
(resp. g · a), and set

e(g) :=
{

1 if the image of g in GM/K is equal to the identity,
−1 otherwise.

Then g · a = gae(g) for any g ∈ GM ′/K and any a ∈ TK(M ′) ∼= (M ′)×. Take a generator q of
ΓZ. Note that the valuation of q is not equal to zero.

Lemma 4.5. — The relation q ∈ K× holds. In particular, the lattice ΓZ splits over M .

Proof. — Set M ′ := Ksep. Take g ∈ GK . Since g · ΓZ = ΓZ, we may take eg ∈ Z so that
g · q = qeg . Since g · q = gqe(g), the equality qeg = gqe(g) holds. Taking the valuations of both
sides, we obtain the equality eg = e(g). Thus, the equality gq = q holds, which concludes the
proof. �

The exact sequence of GK-modules

0 // ΓZ // TK(Ksep) // EK(Ksep) // 0

induces a long exact sequence of abelian groups

H1(K,ΓZ) // H1(K,TK) ũK // H1(K,EK) δK // H2(K,ΓZ) // H2(K,TK) .
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Set ΓQ := ΓZ ⊗ZK
QK , and ΓQ/Z := ΓZ ⊗ZK

(Q/Z)K . Since ΓQ is divisible, the equality
H i(K,ΓQ) = 0 holds for any i ∈ Z>0. Thus, the exact sequence of GK-modules

0 // ΓZ // ΓQ // ΓQ/Z // 0

induces an isomorphism

εiK : H i(K,ΓQ/Z)
∼= // H i+1(K,ΓZ)

for any i ∈ Z>0. We denote the image of g ∈ GK in GM/K by g. Since the action of GM on
ΓQ/Z is trivial (Lemma 4.5), we have a canonical isomorphism

H1(M,ΓQ/Z) ∼= Hom(GM ,ΓQ/Z) .

Thus, the restriction morphism

H1(K,ΓQ/Z) // H1(M,ΓQ/Z)GM/K

induces a homomorphism

ξ : H1(K,ΓQ/Z) // Hom(GM ,ΓQ/Z)GM/K ,

where (g ·ψ)(h) = gψ(g−1hg) for any g ∈ GK , any h ∈ GM , and any ψ ∈ Hom(GM ,ΓQ/Z) [17,
I.2.6].
Take α ∈ H1(K,EK). Put φ := (ξ ◦ (ε1K)−1 ◦ δK)(α), and k := Kerφ. Since g · φ = φ for any
g ∈ GK , the equality g−1kg = k holds for any g ∈ GK . Thus, the subgroup k of GK is normal,
which implies that the field extension L/K corresponding to k is Galois. Therefore, we may
take L as M ′ introduced above. We denote the order of φ in Hom(GM ,ΓQ/Z) by P (φ).

Lemma 4.6. — The field M ′ is a cyclic extension of M of degree P (φ).

Proof. — The lemma follows from the isomorphisms GM/k ∼= Imφ ∼= ZP (φ). �

Proposition 4.7. — The following statements hold:

1. GM ′/M ∼= ZP (φ), and GM/K
∼= 1 or Z2;

2. if P (φ) = 2, and GM/K
∼= Z2, then GM ′/K ∼= Z4 or Z2

2 ;

3. α|M ′ = 0.

Proof. — Statement 1 follows from Lemma 4.6. Statement 2 follows from Statement 1. Since
TK splits over M ′, the equality H1(M ′, TK) = 0 holds, which implies that δM ′ is injective.
The equality φ|M ′ = 0 gives the equality δM ′(α|M ′) = 0. Thus, Statement 3 holds. �

Proposition 4.8. — Assume that 2 6 | P (φ). Then there exists a field extension of K in M ′
of degree P (φ). Moreover, for any field extension K ′/K in M ′ of degree P (φ), the equality
α|K′ = 0 holds.
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Proof. — The first statement follows from Proposition 4.7.1 and Sylow’s theorem. The com-
posite of the restriction homomorphism and the corestriction homomorphism

H1(K ′, EK) // H1(M ′, EK) // H1(K ′, EK)

is equal to the multiplication by [M ′ : K ′] [17, I.2.4]. Thus, the last statement follows from
the facts [M ′ : K ′] = [M : K] | 2 and α|M ′ = 0 (Proposition 4.7.1 and 3). �

Since TK splits over M ′, we have a GM ′/K-equivariant isomorphism EK(M ′) ∼= TK(M ′)/ΓZ.
We denote the image of a ∈ TK(M ′) in EK(M ′) by a. The element α may be represented by
{ag}g∈GM′/K

∈ Z1(GM ′/K , EK(M ′)).

Proposition 4.9. — Assume that GM/K
∼= Z2, and GM ′/K ∼= Z2 or Z4. Then α|M = 0.

Proof. — Take a generator τ of GM ′/K . We may assume that M ′ 6= M , and take e ∈ Z so
that

aτ · τa−1
τ · τ2aτ · τ3a−1

τ = qe .

Taking the valuations of both sides, we obtain the equality e = 0, which implies that
aτ · τa−1

τ · τ2aτ · τ3a−1
τ = 1 .

Thus, we may take β ∈ H1(K,TK) so that α = ũK(β). Since TK splits over M , the equality
H1(M,TK) = 0 holds, which implies that β|M = 0. Therefore, the equality α|M = 0 holds. �

Lemma 4.10. — The trace map Trk′/k : k′ → k is surjective for any Galois extension k′/k
of degree 2.

Proof. — Take a ∈ k. We denote the characteristic of k by pk. If pk 6= 2, then Trk′/k(a/2) = a.
Assume that pk = 2. Take the generator σ of Gk′/k. We may take b ∈ k′ so that σb = b+ 1.
Then Trk′/k(ab) = a, which concludes the proof. �

Lemma 4.11. — Let F be a finite Galois extension of K of degree d. We denote the valu-
ation ring of F by OF , the residue field of OF by F , and the norm map by NF/K : F → K.
Assume that F/K is a Galois extension of degree d, and that both norm map and trace
map of F/K are surjective. Then NF/K(O×F ) = O×K . Moreover, the group K×/NF/K(F×) is
isomorphic to Zd, and generated by the image of a uniformizer of OK .

Proof. — We denote the maximal ideal of OK and OF by mK and mF , respectively. Let
us consider the diagram of abelian groups with commutative squares and horizontal exact
sequences

1 // 1 + mF
//

��

O×F //

��

F
× //

��

1

1 // 1 + mK
// O×K // K

× // 1
where the vertical arrows are the norm maps. We denote the norm map and the trace map of
F/K by NF/K and TrF/K , respectively. Take a uniformizer π of OK . Then π is a uniformizer
of OF since [F : K] = d = [F : K]. For i ∈ Z>0, the isomorphism OK → mi

K , a 7→ aπi

induces an isomorphism φi : K → mi
K/m

i+1
K . For any a ∈ OF and any i ∈ Z>0, the equality

NF/K(1 + aπi) ≡ 1 + φi(TrF/K a) mod mi+1
K
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holds, where a is the image of a in F . Thus, since TrF/K is surjective, the left vertical arrow
is surjective. Since NF/K is surjective, the right vertical arrow is surjective. Therefore, the
middle vertical arrow is surjective.
Let us consider the diagram of abelian groups with commutative squares and horizontal exact
sequences

1 // O×F //

��

F× //

��

Z //

��

1

1 // O×K // K× // Z // 1
where the left and middle vertical arrows are the norm maps, the right vertical arrow is the
multiplication by d, and the third horizontal arrows are the valuations. Since the left vertical
arrow is surjective, the cokernel of the middle arrow is isomorphic to that of the right vertical
arrow, which concludes the proof. �

Proposition 4.12. — Assume that the following conditions are satisfied:

1. EK has toric reduction;

2. K is perfect;

3. there does not exist a Galois extension of K with Galois group Z2
2 ;

4. the norm map of F/K is surjective for any Galois extension F/K of degree 2;

5. GM ′/K ∼= Z2
2 ;

6. P (α) = 2.

Then there exists a field extension K ′/K in M ′ of degree 2 such that α|K′ = 0.

Proof. — Condition 5 implies that GM ′/M ∼= Z2, and GM/K
∼= Z2 (Proposition 4.7.1). More-

over, we may write GM ′/K = {e, τ1, τ2, τ3}, where e is the identity, and τ3 is the generator of
GM ′/M . For i ∈ {1, 2, 3}, we set ai := aτi , denote the subgroup generated by τi by Gi, and
denote the fixed subfield of Gi by Ki. Then K3 = M . For any a ∈ TK(M ′), the equalities
τ1 · a = τ1a

−1, τ2 · a = τ2a
−1, and τ3 · a = τ3a hold.

Take i ∈ {1, 2}. We may take ei ∈ Z so that
ai · τia−1

i = qei .

Taking the valuations of both sides, we obtain the equality ei = 0, which implies that ai ∈ K×i .
We denote the norm map by Ni : (M ′)× → K×i , and the image of K×i and ImNi in EK(M ′)
by Zi and Bi, respectively. Set Hi := Zi/Bi. Since the homomorphisms

Z1(Gi, EK(M ′)) // Zi , (bg)g∈Gi

� // bτi

and
B1(Gi, EK(M ′)) // Bi , (bg)g∈Gi

� // bτi

are bijective, the homomorphism

H1(Gi, EK(M ′)) // Hi , (bg)g∈Gi

� // b̃τi
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is bijective, where b̃τi is the image of bτi ∈ Zi in Hi.
Since

a1 · τ1a
−1
2 ≡ a3 ≡ a2 · τ2a

−1
1 mod ΓZ ,

the equalities
a1 · τ2a1 ≡ a2 · τ1a2 mod ΓZ

and
a2

3 ≡ a1 · τ2a
−1
1 · a2 · τ1a

−1
2 ≡ a1 · τ3a

−1
1 · a2 · τ3a

−1
2 mod ΓZ

hold. For i ∈ {1, 2}, we set bτi := a2
i ·(a1 ·τia1)−1. We set be := 1, bτ3 := a2

3 ·(a1 ·τ3a
−1
1 )−1, and

a := a2. Then bτ1 = 1, bτ2 ≡ a ·τ1a
−1, bτ3 ≡ a ·τ3a

−1, and the cohomology class of (bg)g∈GM′/K

is equal to 2α. By Condition 6, we may take b ∈ M ′ so that b · τ1b ≡ 1, b · τ2b ≡ a · τ1a
−1,

and b · τ3b
−1 ≡ a · τ3a

−1. The last equality implies that we may take e3 ∈ Z so that

a · b−1 = τ3(a · b−1) · qe3 .

Taking the valuations of both sides, we obtain the equality e3 = 0. Thus, we may take c ∈M
so that a = bc. Since N1b ≡ 1, the equality N1a ≡ N1c holds.
We may assume that α|Ki 6= 0 for any i ∈ {1, 2}. Then ai 6∈ Bi for any i ∈ {1, 2}, which
implies that ai 6∈ ImNi for any i ∈ {1, 2}. By v : (M ′)× → Z we denote the valuation of M ′
with Im v = Z. Condition 1 implies that M is unramified over K, which implies that M ′ is
unramified over Ki for any i ∈ {1, 2}. Thus, Condition 4 implies that ImNi = v−1(2Z)∩K×i
(Lemmas 4.10 and 4.11), which implies that v(ai) ∈ 1+2Z, and v(N1a) ∈ 2+4Z. Conditions 2
and 3 imply that v(K×) = 2v(K×i ), which implies that v(M×) = 2v((M ′)×) = 2Z and
v(N1M

×) = 4Z. Since N1a ≡ N1c, v(q) ∈ 2Z, v(N1a) ∈ 2+4Z, and v(N1c) ∈ 4Z, we conclude
that v(q) ∈ 2+4Z. The equality a1 ·τ2a1 ≡ a2 ·τ1a2 shows that 2(v(a1)−v(a2)) ∈ v(q)Z. Since
v(a1)−v(a2) ∈ 2Z, we conclude that v(a1)−v(a2) ∈ v(q)Z. Thus, the equality a3 ≡ a1 ·τ1a

−1
2

implies that v(a3) ∈ v(q)Z.
Since ImN1 = v−1(2Z) ∩K×1 , we may assume that v(a1) = 1. Since ae ≡ 1, v(a1)− v(a2) ∈
v(q)Z, and v(a3) ∈ v(q)Z, we may assume that ae = 1, v(a2) = 1, and v(a3) = 0. For any
g ∈ GM ′/K and any h ∈ GM ′/K , we may take eg,h ∈ Z so that

agh = ag · (g · ah) · qeg,h .

Since v(agh) = v(ag)+v(g·ah), the equality eg,h = 0 holds, which implies that agh = ag ·(g·ah).
Thus, we may take β ∈ H1(K,TK) so that α = ũK(β). Since H1(M,TK) = 0, the equality
β|M = 0 holds. Therefore, the equality α|M = 0 holds, which concludes the proof. �

Example 4.13. — The conclusion of Proposition 4.12 does not hold without Condition 3.
Note that Conditions 1–4 are used only in the last two paragraphs of the above proof. Assume
that there exists a finite Galois extension F/K with GF/K

∼= Z2
2 . Then we may take an

unramified Galois extension M ′/K with GM ′/K ∼= Z2
2 . We way write GM ′/K = {e, τ1, τ2, τ3},

where e is the identity. For i ∈ {1, 2, 3}, we denote the subgroup generated by τi by Gi, and
the fixed subfield of Gi by Ki. Take a uniformizer π of OK . Set M := K3, and q := π4. We
may take a K-torus TK and a K-elliptic curve EK that satisfy the following condtions: TK
does not split over K, TK splits over M , and Ean

K
∼= T an

K /Γan
K , where ΓK is the lattice of TK

induced by {qi | i ∈ Z} ⊂ (Ksep)× ∼= TK(Ksep). Then EK has toric reduction since M is
unramified over K. Set ae := 1, aτ1 := π, aτ2 := π3, aτ3 := π2, and c := {ag}g∈GM′/K

. Then
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c ∈ Z1(GM ′/K , EK(M ′)). We define α ∈ H1(K,EK) as the cohomology class represented by
c. By the above proof, we conclude that P (α) = 2, and α|Ki 6= 0 for any i ∈ {1, 2, 3}.

Theorem 4.14. — Assume that the following conditions are satisfied:

1. EK has toric reduction;

2. K is perfect;

3. for any finite field extension K
′
/K, there does not exist a Galois extension of K ′ with

Galois group Z2
2 ;

4. for any finite field extension K ′/K and any Galois extension F ′/K ′ of degree 2, the norm
map of F ′/K ′ is surjective.

Take α ∈ H1(K,EK). Then there exists a separable field extension L/K of degree P (α) such
that α|L = 0.

Proof. — By the induction on P (α), we may assume that P (α) is a prime number. If P (α) 6=
2, then Proposition 4.8 concludes the proof. Otherwise, by Proposition 4.7, we may assume
that GM/K

∼= Z2, and GM ′/K ∼= Z4 or Z2
2 . Thus, Propositions 4.9 and 4.12 conclude the

proof. �

4.4. Periods and Separable Closed Points. —

Definition 4.15. — A field k is said to be of dimension ≤ 1 if one of the following equivalent
conditions is satisfied [17, II.3.1, Prop. 5]:

1. for any finite separable field extension l/k, the Brauer group of l is trivial;

2. for any finite separable field extension l/k, the norm map of any finite Galois extension
of l is surjective.

We use the following fact (see the proof of [2, Thm. 27]).

Lemma 4.16. — Let k be a field. Assume that k is perfect and WC-trivial for elliptic curves.
Then k is of dimension ≤ 1.

Proof of Theorem 1.6. — Lemma 4.16 implies that K is of dimension ≤ 1. Thus, the theorem
follows from Theorems 4.4 and 4.14. �

Example 4.17. — A field k is said to be quasi-finite if the absolute Galois group of k
is isomorphic to the profinite completion of Z. The WC-triviality for elliptic curves of K
is necessary in Theorem 1.6: there exist a complete discrete valuation field K with perfect
quasi-finite residue field, a K-elliptic curve EK with ordinary good reduction, and a non-
trivial K-torsor XK under EK such that P (XK)2 | [k(x) : K] for any separable closed point
x on XK ([10, §4, p. 678] or [1]).
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