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MODELS OF TORSORS UNDER ELLIPTIC CURVES

by

Kentaro Mitsui

Abstract. — We study the special fibers of the minimal proper regular models of proper
smooth geometrically integral curves of genus one over a complete discrete valuation field. We
classify the configurations of their irreducible components when the residue field is perfect. As
an application, we show the existence of separable closed points of small degree on the original
curves when the residue field is finite. Finally, we extend this result under mild assumptions on
the residue field and the degenerations of their Jacobians.

Résumé. — Nous étudions les fibres spéciales des modeles propres réguliers minimaux de
courbes propres lisses géométriquement intégres de genre un sur un corps de valuation discréte
complet. Nous classifions les configurations de leurs composantes irréductibles quand le corps
résiduel est parfait. En guise d’application, nous montrons ’existence de points fermés séparables
de petit degré des courbes originales quand le corps résiduel est fini. Finalement, nous étendons
ce résultat sous des hypotheses faibles sur le corps résiduel et la dégénérescence de la jacobienne.

1. Introduction

Let K be a complete discrete valuation field. We denote the valuation ring of K by O, and
the residue field of Ok by K. Set C := Spec Ok, and C := Spec K. Let Ex be a K-elliptic
curve. Choose a € H' (K, E). We denote the K-torsor under Ef corresponding to a by Xp.
Then X is a proper smooth geometrically integral K-curve. For a closed point x on Xg, we
denote the residue field of X at x by k(z). If k(z)/K is separable, then the closed point z
is said to be separable. Take a minimal proper regular C-model X of X. Set X := X x¢o C.
This paper is divided into two parts. We study the geometry of X in the first part (§3) and
separable closed points on X in the last part (§4).

In the first part, we classify the configurations of the irreducible components of X when
K is perfect (see §3.8 for the dual graphs). The classification generalizes the case where
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80 Models of torsors under elliptic curves

K is algebraically closed, or Xx = Eg [12, §10.2.1]. If K is algebraically closed, then the
intersection matrix of the irreducible components of X may be described by means of affine
Dynkin diagrams. We obtain the dual graphs of the special fibers of proper regular C-models
of Xx by studying birational morphisms between these models. Our classification is based
on the classification of finite quotients of these dual graphs.

In the last part, we show the existence of a separable closed point on X of small degree.
We denote the degree of a finite field extension [/k by [l : k]. The minimal positive integer
among all degrees of zero-cycles on X is called the index of Xg, and denoted by I(Xg).
Note that the equality

I(Xg) =ged{[k(z) : K] | x is a closed point on X}
holds. In particular, for any closed point x on X, the relation I(Xg) | [k(z) : K] holds.

Theorem 1.1. — We use the same notation as above. Then there exists a separable closed
point x on X such that [k(x) : K] = I(Xk).

In the proof of the above theorem, we use the classification in the first part when K is finite,
i.e., K is a local field (Remark 4.2). The order of « in the abelian group H!(K, Ex) is called
the period of Xk, and denoted by P(«). We denote the Brauer group of a field k£ by Br(k).
If Br(K) = 0, or K is finite, then P(a) = I[(Xg) ([11, §1, Thms. 1 and 3] and [15, p. 283,
Cor.]). As a corollary, we obtain the following.

Corollary 1.2. — We use the same notation as above. Assume that Br(K) = 0, or K is
finite. Then there exists a separable closed point x on Xy such that [k(x) : K] = P(«).

Remark 1.3. — Assume that K is perfect. Then Br(K) = 0 if and only if Br(K) = 0, and
there does not exist a non-trivial cyclic extension of K [16, XII.3, Thm. 2].

A global field is a finite extension of Q or k(t) where k is a finite field. When K is replaced by
a global field, a statement analogous to the above corollary does not hold (Example 4.3). The
conclusion of the above corollary does not hold in general when K is not finite (Example 4.17).
However, we prove Theorem 1.6 below in the case where Ex has good reduction or toric
reduction (Definition 4.1).

Definition 1.4. — A field k is said to be WC-trivial for elliptic curves if H'(I, E;) = 0 for
any finite separable field extension [/k and any l-elliptic curve Ej.

Ezxample 1.5. — A field k is WC-trivial for elliptic curves in the following cases:
1. k is separably closed;
2. k is finite [9, Thm. 1J;

3. k is pseudo-algebraically closed [4, 11.2.5], e.g., k is an infinite algebraic field extension
of a finite field.

Theorem 1.6. — We use the same notation as above. Assume that K is perfect and WC-
trivial for elliptic curves, and that, for any finite field extension K /K, there does not exist
a Galois extension of K with Galois group (Z)27Z) x (Z)2Z). Suppose that Ex has good

reduction or toric reduction. Then there exists a separable closed point x on Xy such that
[k(z) : K] = P(a).
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Kentaro Mitsui 81

Ezample 1.7. — Assume that K is an algebraic field extension of a finite field. Then the
assumptions on K in Theorem 1.6 are satisfied (Example 1.5). If K is not algebraically closed,
then Br(K) # 0 (Remark 1.3).

2. Notation and Convention

We denote the cardinality of a finite set S by |S|, and the trivial group by 1. For n € Z~,
we denote the cyclic group of order n by Z,, the dihedral group of order 2n by Ds,, the
alternative group of degree n by A,, and the symmetric group of degree n by S5,.
Let k be a field. For a Galois extension //k, we denote the Galois group of I[/k by G/,. A
k-curve is a separated k-scheme of finite type of pure dimension one. Let Y be a proper k-
scheme. For a coherent Oy-module F on Y, the FEuler—Poincaré characteristic of F is defined
as

> (=1)'dimg H(Y, F),

i>0
and denoted by xi(F). Take the normalization Y of Y. Set I;TO(Y) = HO()N/,(%;), and

RO(Y) := dimy HO(Y). Assume that Y is a k-curve. The arithmetic genus of Y is defined as
1 — xx(Oy), and denoted by p,(Y). When Y is a smooth geometrically integral k-curve, the
arithmetic genus of Y is called the genus of Y, and denoted by ¢g(Y"). For a line bundle £ on
Y, the degree of L is defined as xx (L) — xx(Oy), and denoted by deg,, £ [12, 7.3.29].

Let Z be a scheme. We denote the reduction of Z by Z,.q, the regular locus of Z by Z,cg, and
the non-regular locus of Z by Zg,s. Let Y be a Z-scheme with structure morphism g: ¥ — Z.
We denote the group of Z-automorphisms of Y by Aut(Y/Z). For a Z-scheme S = Speck,
we set Y (k) := Homy(S,Y). We denote the union of images of Y (k) by the same notation.
Let Z’' be a closed subscheme of Z with closed immersion h: Z' — Z. We denote the closed
subscheme Z’ xz Y of Y given by the base change of h via g by g~ 1(Z").

We use the notation K, Ok, K, C, and C introduced in §1. Set Cx := Spec K.

3. Classification of Special Fibers

3.1. Special Fibers. — Let Xg be a proper regular K-curve. Take a proper regular C-
model fx: X — C of Xg. Set X := fX (C). Then we have the canonical isomorphisms
Xk & X x¢ Ckg and X & X x¢ C, and the diagram of schemes and morphisms with

Cartesian squares
LXK v

Xg—X <=—

X x
e
LCk

Ok~ 0<C T
where the upper horizontal arrows are the first projections, the left and right vertical arrows

are the second projections, and the left and right lower horizontal arrows are the canonical
open and closed immersions, respectively. We may regard X as a divisor on X.

Definition 3.1. — A divisor D on X is said to be vertical if the support of D is contained
in that of X. We denote the set of vertical prime divisors on X by P(X). Let Dy be a divisor
on X, and Dy be a vertical divisor on X. We denote the intersection number of D1 and Do
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82 Models of torsors under elliptic curves

by Dy - Dy [12, 9.1.12]. Set P®)(X) :={Q C P(X) | |Q| = 2}. Take a = {I'},T2} € PP (X).
We denote the closed subscheme (I'y Xx I'2)req of X by (Na. For s € (Na, we define the
intersection number of a at s by

i(a, s) := dim Ox /(Ox,s(—=I'1) + Ox s(=T2)).

Remark 3.2. — If 0 < Dy < X, then D; - Dy = degzOx(D1)|p, [12, 9.1.12(d)]. If
Dy € P(X), then Dy - Dy = degzz7*Ox(D1), where 7: Dy — X is the composite of the
normalization Dy — Ds of Do and the canonical closed immersion Dy — X [12, 9.1.14].

Remark 3.3. — For any a = {I';,T1} € P®(X), the equality I'y - 'y = Zsenai(a, s)
holds [12, 9.1.1 and 9.1.12(a)].

Definition 3.4. — We denote the open subscheme (Xyed)reg Of Xrea by R(X), and the
closed subscheme (Yred)smg of X equipped with the reduced structure by S(X). We write
X = Yrepx) ()L, where n(T') € Zsg. For T € P(X), the integer n(T) is called the
multiplicity of T in X. We set m(X) := ged{n(T') | T € P(X)}. The integer m(X) is called

the multiplicity of X. For T € P(X), we set m(T) := n(T")/m(X).
Remark 3.5. — Since X oq is a proper K-curve, the set S(X) is finite.
Set P:= P(X), P® := PA)(X), §:= S(X), and m := m(X).

3.2. Dual Graphs. — We introduce a graph that describes the multiplicities and intersec-
tion numbers of the elements of P. We give examples in §3.3.

Definition 3.6. — The special fiber X is said to be of integral type if the following condition
is satisfied:

0. any I' € P is geometrically integral over K.

We abbreviate strongly normal crossing to snc. The special fiber X is said to be of fundamental
type if X is of integral type and satisfies the following conditions:

1. any I' € P is regular;
2. X is a snc divisor;
3. S C X(K).

Remark 3.7. — Assume that K is algebraically closed. Then X is of integral type, and
Condition 1 is satisfied. We set
Li(X) = |J Tsing, and Lo(X):={z € X(K)|X is not snc at z}.
I'epP

Then L;(X) is a finite set for any i € {1,2}, and the following statement holds: X is of
fundamental type if and only if L;(X) = 0 for any i € {1,2}. Set Xy := X. For i € Z>,
we successively take the blowing-up X;11 — X; of X; along Li(X;) if L1(X;) # (. Then
there exists i; € Z>q such that Li(X;,) = 0 (see the proof of [12, 9.2.32]). For i € Z>;,, we
successively take the blowing-up X;11 — X; of X; along Lo(X;) if Ly(X;) # (0. Then there
exists ia € Z>;, such that La(X;,) = 0 (see the proof of [12, 9.2.26]). Moreover, the equality
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L1(X;) = 0 holds for any i € {ig € Z | i1 < ip < ig} [12, 9.2.31]. Thus, the special fiber of
Xi, is of fundamental type.

Definition 3.8. — Assume that X is of integral type. We define the dual graph D of X /m
as a graph consisting of vertices with multiplicities and edges, and satisfying Condition ()
below. We denote the set of vertices of D by V', and the set of edges of D by E. For v € V,
we denote the multiplicity of v by m(v). For F' C E, we denote the set of vertices connected
to an element of F' by V(F). For e € E, we set V(e) := V({e}). For W C V, we denote the
set of edges connected to an element of W by E(W). For v € V, we set E(v) := E({v}).

Condition (f): there exists a bijection v(e): P — V such that the following statements hold.
For a € P®), we set [a] ;== {e € E | V(e) = v(a)}.

1. For any I' € P, the equality m(v(I')) = m(I") holds.
2. The equality E = | |,cpe [a] holds, i.e., the graph D has no loop.
3. For any a = {TI'1,T's} € P?)| the equality I'; - 'y = |[a]| holds.

Vertices. We denote v € V' by a circle, and write m(v) at the center of the circle.
Edges. We denote e € E by a line segment.

We denote the automorphism group of D by Aut D. Assume that X is of fundamental type.
We define a bijection e(e): S — F in the following way. Since | a| = |[a]| for any a € P,
we may choose a bijection (Ja — [a] for each a € P(). Since S = Ll,ep Na, the union of
these bijections for all elements of P(?) gives a bijection e(e): S — E.

Remark 8.9. — For any a € P, the inequality |(a| < |[a]| holds (Statement 3 and
Remark 3.3). Moreover, the equality |(a| = |[a]| holds if and only if i(a,s) = 1 for any
s € Na (see Definition 3.1 for i(a, s)).

3.3. Curves of Genus One and Kodaira Symbols. — In this subsection, we suppose
that K is perfect, X is a proper smooth geometrically integral K-curve of genus one, and X
is minimal. We denote the Jacobian of X by Ek. Take a minimal proper regular C-model
E of E. This model is unique up to unique C-isomorphism [12, 9.3.14]. Set E := E x¢ C,
and N := |P|.

We denote the (extended) Kodaira symbol of E by Tg [12, 10.2.1]. When K is algebraically
closed, we denote the Kodaira symbol of X by mT. Then each Tx and T is equal to I,
(n € Z>o), I, (n € Z>p), 11, IT*, III, IIT*, IV, or IV*. In general, the symbol Tf is equal to
one of the above symbols, 1,2 (n € Z>1), I}, 5 (n € Z>0), I§ 5, or IVa.

When K is algebraically closed, we define a symbol D to denote the dual graph D of X /m
in the following way (Table 1). If N = 1, then we set D := Ay. Otherwise, we define D
by the type of the affine Dynkin diagram corresponding to the dual graph D (without the
multiplicities): A, (n > 1), D, (n >4), or E,, (n =6, 7, or 8).
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D D N AutD T
Ay ©) 1 1 Io, Iy, 11
L,
n Doy, 111 (n = 2)
IV (n = 3)
54 (TL = 5) *
" Ds (n>6) Tns
7 S IV*

®©

Fr 8 Z Ir*
O—0—B—0—B—@—0

B ©)

Ex 9 1 I
O—O——O—6—O—0—0

TABLE 1. The dual graphs in the case where K is algebraically closed (Definition 3.8).

Remark 3.10. — Assume that K is algebraically closed. Then the following statements
hold:

1. The equality T' = T holds, and m is equal to the order of the element of the abelian
group H'(K, E) corresponding to Xy [13, 6.6].

2. If T =1y, then P={T},and I"'is a proper smooth C-curve of genus one. Otherwise, for
any I' € P, the normalization of I' is C-isomorphic to IP%.

3. An element I' € P is not regular if and only if ' = I; or II. If these equivalent statements
hold, then N = 1.

4. The special fiber X is not of fundamental type if and only if T' = Iy, II, III, or IV.

5. If P ={T}, then T - T = 0. Otherwise, the equality
-2 ifI'y =T
Iy Te= bl o
0,1, or 2 otherwise

holds for any I'y € P and any I's € P.

3.4. Dual Graphs with Types and Degrees. — We introduce a graph in the case where
X is not necessarily of integral type. In this graph, the vertices have two types (the first
type and the second type), and the vertices and edges have degrees (Remark 3.14). We give
examples in §3.8.
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Definition 3.11. — Let z be a point on a locally Noetherian scheme Z. If the preimage of
z under the normalization of Z consists of one point, then z is said to be unibranch.

Definition 3.12. — We define the dual graph D of X /m (with types and degrees) as a graph
consisting of two types of vertices with multiplicities and degrees and edges with degrees, and
satisfying Condition (b) below. We introduce the notation V', E, m(e), V(e), and E(e) for
D in the same way as in Definition 3.8. For v € V| we denote the degree of v by d(v). For
e € E, we denote the degree of e by d(e). Set S := | |,cpe) Na.

Condition (b): there exist bijections v(e): P — V and e(e): Sy — E such that the following
statements hold. For a € P?), we set [a] := {e € E | V(e) = v(a)}.

1. For any I' € P, the equalities m(v(T)) = m(T') and d(v(T")) = h°(T") hold.

2. For any I € P, the vertex v(I') is of the second type if and only if I" has a unibranch
singularity.

3. For any a € P® and any s € Na C Sy, the equality d(e(s)) = i(a, s) holds (see Defini-
tion 3.1 for i(a, s)).

4. For any a € P, the equality e(()a) = [a] holds.

Vertices. Take v € V.

Case 1: v is of the first type. If d(v) < 4, then we denote v by a multi-circle whose number
of circles is equal to d(v). In the general case, we denote v by a thick circle, and specify the
degree d(v). Then we denote a vertex of D of the first type of degree 2d(v) by a double thick
circle. We write the multiplicity m(v) of v at the center of the circle.

O 00O o000

Case 2: v is of the second type. We denote v by a multi-square in the same way as in Case
1, where we use squares instead of circles.

0O0O0O oO

Edges. Take e € E. If d(e) < 4, then we denote e by a multi-line segment whose number of
line segments is equal to d(e). In the general case, we denote e by a thick line segment, and
specify the degree d(e). Then we denote an edge of D with degree 2d(e) by a double thick
line segment.

Remark 3.13. — Statement 4 implies that E = | |,cp [a], i.e., the graph D has no loop.
Statements 3 and 4 imply that 3°.c(, d(e) = T'1-T's for any a = {I', 2} € P®) (Remark 3.3).

Remark 3.14. — If X is of fundamental type, then all vertices are of the first type, all
degrees are equal to one, and the graph (without types and degrees) coincides with that in
Definition 3.8.
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3.5. Base Change. — Choose an extension K’/K between complete discrete valuation
fields. We denote the valuation ring of K’ by Ok, and the residue field of O by K'. Set
CY = Spec K', C" := Spec Ok, and C' := Spec K'. We denote the canonical projection by
7c: €' — C, and the canonical homomorphism by 7¢: Aut(C'/C) — Aut(C'/C).

Remark 3.15. — Since Ok /Of is an extension between complete discrete valuation rings,
the morphism 7o is flat. Thus, the following statements are equivalent:

1. mc is regular [7, 6.8.1(iv)];
2. any fiber of ¢ is geometrically regular [7, 6.7.6];

3. the canonical morphism C' — 75" (C) is an isomorphism, and both K’/K and K'/K are
separable.

Remark 3.16. — If K'/K is Galois (resp. K /K is Galois), then we obtain canonical
isomorphisms Aut(C’/C) = Aut(Cy /Ck) = Ggr /i (resp. Aut(C'/C) = GF’/?)'

Ezample 3.17. — The morphism 7¢ is regular (Remark 3.15), the field extension K /K
is Galois (Remark 3.16), and the homomorphism 7¢ is surjective in the following cases:

A. Ok is Og-isomorphic to the completion of the strict Henselization of O [6, Cor. 5.6];

B. the canonical morphism C' — 75 (C) is an isomorphism, K’/K is a Galois extension,
and K’ /K is a separable field extension.

In the following, we assume that m¢ is regular (Remark 3.15).
Lemma 3.18. — Assume that K’ is finite over K. Then ¢ is finite and étale.

Proof. — Since K’ is finite and separable over K (Remark 3.15), the finiteness of m¢ follows
from [14, §33, Lem. 1]. Since 7¢ is regular, the morphism 7¢ is étale (Remark 3.15). O

Take the base change fx/: X’ — C’ of fx via m¢, and the base change mx: X’ — X of m¢
via fx. Set X}, = Xg x¢c, C, and X = f;(,l(él) Then we have the followings:

1. the canonical isomorphisms Xy = X’ x¢r C and X' = X' x¢ C', and the diagram of
schemes and morphisms with Cartesian squares

[’X}( L}/ —
X}( S X'<= X

lfx}( lfxf ifxl
/ L=/

el
K C —/
cl —%-0' << C

where the upper horizontal arrows are the first projections, the left and right vertical
arrows are the second projections, and the left and right lower horizontal arrows are the
canonical open and closed immersions, respectively;
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2. for W = C and X, the canonical isomorphisms Wi = W' xy Wi and W' 2 W' x W,
and the diagram of schemes and morphisms with Cartesian squares

LW;( LW/ —
Wi —Sw W

b T

Wy 2

Wy —=W <2 W

where the upper horizontal arrows are the first projections, and the left and right vertical
arrows are the second projections.

We have the diagram of groups and homomorphisms with commutative squares
Aut(Cle /Cr) <2< Aut(C"/C) — = Aut(C"/T)
ibk b lb
Aut(Xh /X re) =2 Aut(X'/X) 5> Aut(X/X)

where the left horizontal arrows, the right horizontal arrows, and the vertical arrows are
induced by the base changes via o, (7, and fx, respectively.

Lemma 8.19. — The C'-scheme X' is a proper reqular C'-scheme.
Proof. — Since X is proper over C, the scheme X’ is proper over C’. Since C’ is regular over
C, and X is regular, the scheme X’ is regular [7, 6.8.3 (iii) and 6.5.2 (ii)]. O

Set P’ := P(X’), and S" := S(X'). We use the following fact [7, 4.6.4].

Lemma 3.20. — Let k be a field, k' be a separable field extension of k, and Z be a reduced
k-scheme. Then the base change of Z wvia k'/k is reduced.

Lemma 3.21. — Let k be a field, k' be a separable field extension of k, and Z be a k-
scheme locally of finite type with structure morphism fz: Z — Speck. The field extension
k' /k induces a morphism my.: Speck’ — Speck. Take the base change wz: Z' — Z of 7y, via
fz. Then there exists a Z'-isomorphism Wzl(ZSing) = Ziing-
Proof. — Since TFEI(ZSjng) is reduced (Lemma 3.20), we have only to show the equality
7, (Zsing) = Zging for the underlying sets. Thus, the lemma follows from [7, 6.7.4]. O

Lemma 3.22. — For anyT € P, there exists an X'-isomorphism 77)_(1 (Csing) = (77)_(—1 (I"))sing -
Moreover, there exists an X'-isomorphism 7y (S) = S'.

Proof. — Since K /K is separable, the canonical morphism Yied — Xred X& C’ is an iso-
morphism (Lemma 3.20). Thus, the lemma follows from Lemma 3.21. O

Lemma 3.23. — Let k be a field, k' be a separable field extension of k, and Z be a k-scheme
locally of finite type. Then the normalization of Z commutes with the base change via k' [k,
i.e., the following statement holds. Take the mormalization Ty : Z > Z of Z, and the base
change 771+ Z' — Z' of 75 via k' /k. Then 14 is a normalization of Z'.
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Proof. — Set W := Speck, and W’ := Speck’. Since k’/k is separable, the canonical mor-
phism Z/ ; — Zyea Xw W' is an isomorphism (Lemma 3.20). Thus, we may assume that
both Z and Z’ are reduced. We denote the disjoint union of points of codimension zero on
Z and Z' by H and H’, respectively. Then the normalizations of Z and Z’ are defined as
the normalizations of Z and Z’ in H and H’, respectively. Since k'/k is separable, the ring
| ®, k' is isomorphic to a product of a finite number of fields for any finitely generated field
extension [/k. Thus, we obtain an isomorphism H xy W' = H’. Since W' is regular over W,
the lemma follows from [7, 6.14.5]. O

Lemma 3.24. — Let k be a field, k' be a field extension of k, and Z be a proper k-scheme.
We define a k'-scheme by Z' := Z Xgpecr, Speck’. Then the following statements hold:

1. H(Z',0z2) 2 H(Z,0z) @ k' for any i € Z>o;
2. if k' is separable over k, then hO(Z') = h%(Z);
3. if Z is geometrically integral over k, then h°(Z) = 1.

Proof. — Statement 1 follows from the flat base change theorem of cohomology groups [12,
5.2.27]. Statement 2 follows from Statement 1 and Lemma 3.23. Statement 3 follows from [12,
3.2.14(c) and 3.3.21]. O

For any T' € P, we may regard 7y (T') as a Weil divisor on X’ since my is flat.

Lemma 3.25. — The following statements hold.

1. For any T € P, there exists Q' C P’ such that ' (T) = Yreq - In particular, the
— —

equality m(X') = m(X) holds (Definition 3.4).
2. The equality h°(T) = e RO(I") holds.
3. If X' is of integral type, then (D) = |Q').

Proof. — Since 3! (T) is reduced (Lemma 3.20), Statement 1 holds. Statement 2 follows from
Statement 1 and Lemma, 3.24.2. Statement 3 follows from Statement 2 and Lemma 3.24.3. [

Lemma 3.26. — Assume that X is of integral type. Take T € P. Then 7y (T') € P'.

Proof. — Since 7 (T') = T Xa C', and T is geometrically integral over K, the lemma
holds. O
Lemma 3.27. — For any divisor D1 on X and any vertical divisor Ds on X, the equality
D1 - Dy = ny'(Dy) - w1y (D2) holds.

Proof. — The lemma follows from the Lemma 3.24.1. O
Remark 3.28. — When X is of integral type, the multiplicities and intersection numbers

of the elements of P may be determined by those of P’ (Lemmas 3.26 and 3.27).

In the following, we study a relationship between the minimalities of the proper regular C-
model X and the proper regular C’-model X’ [12, 9.3.21]. Take a canonical divisor Kx/c of

X/C 12, 9.1.34]. Set Kx/ /o := 7y (Kx/0).
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Lemma 3.29. — The following statements hold:
1. Kxi/cr is a canonical divisor of X'/C';

2. if pa(XK) > 1, then the following statements hold:

(a) T'€ Pis a(—1)-curve on X [12,9.3.1] if and only if Kx;c - T < 0;
(b) the proper regular C-model X is minimal if and only if there does not exist a
(=1)-curve on X.

Proof. — Statements 1, 2a, and 2b follow from [12, 6.4.9 (b)], [12, 9.3.10 (b)], and [12, 9.2.2],
respectively. O

Proposition 3.30. — Assume that p,(Xg) > 1. Then the proper reqular C-model X of Xk
is minimal if and only if the proper regular C'-model X' of X} is minimal.

Proof. — Let us show the if part. Assume that X’ is minimal. Take E € P. We have only
to show that Kx/c - E > 0 (Lemma 3.29). Set E' := 7y (E). Take Q' C P’ so that E' =
Sreg I (Lemma 3.25.1). Since Kx//cr - T > 0 for any I' € Q" (Lemma 3.29.1 and 2), and
Kx/c+E = Kx/cr - E' (Lemma 3.27), the inequality Ky,c - E > 0 holds, which concludes
the proof of the if part.

Let us show the converse. Suppose that X is minimal, and that X’ is not minimal. We may
take a (—1)-curve E' € P' on X' (Lemma 3.29.2b). We denote wx(E’) with the reduced
structure by E. Then E € P, and E' C 7y (E). Since Kx/c - E > 0 (Lemma 3.29.2), the
inequality Ky cr - E' > 0 holds [12, 7.1.35 and 7.2.9] (Lemma 3.29.1), which contradicts the
inequality Ky cr - E’' < 0 (Lemma 3.29.2a). Thus, the converse holds. O

3.6. Quotients. — In the following subsections, we assume that K’ introduced in §3.5 is a
finite Galois extension of K. Then both r¢ and 7¢ are bijective (Lemma 3.18). We denote the
Cr-action of G/ on Cy by poyjo Gy = Aut(Ck/Ck). Set prjc = 7"5170 POl /Cre»

oo = TC oo, PXI)x = bo pcryc, and Px % = TX O PXI/X- For W =C, C, Ck, X,
X, and X[, we denote the structure morphism of the C-scheme W by Jwyc: W — C. Then
the base change of ¢ via fy /¢ is equal to my . Since Ty is finite (Lemma 3.18), we may
take a quotient of py /- in the category of W-schemes, which is a quotient of pyy /1 in the
category of ringed spaces [3, V.4.1(i)].

Lemma 3.31. — The morphism mw is a quotient morphism of py w in both the category
of W-schemes and the category of ringed spaces. In particular, the map between underly-
ing topological spaces associated to mw s a quotient map of the action on the underlying
topological space of W' induced by pw/w in the category of topological spaces.

Proof. — Since O¢ is equal to the invariant subring of O with respect to the action induced
by pcrjc, the case W = C holds (see the proof of [3, V.4.1]). We denote the constant IW-group
scheme induced by the group G/ /x by Gw. The W-action Gy xw W’ — W' of Gy on W’
induced by py /i and the second projection Gy xw W' — W’ induce a W-morphism

Sy Gw xw W ——= W' xyw W', (g,w) — (g9 w,w).
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Since perjc is free [3, IV.3.2.1], the action pyy/p is free. Thus, the morphism @y y is
an isomorphism [3, V.4.1(iv)] (see [3, V.2(b)] for the terminology un couple d’équivalence),
which concludes the proof [3, IV.3.3]. U

3.7. Quotients of Dual Graphs. — We take a proper regular C-model X of Xg and a
finite Galois extension K’/K so that X' is of fundamental type.

Example 3.32. — Whenever K is perfect, we may always take such X and K’ in the
following way. Take the completion O of a strict Henselization of Ok (Example 3.17.A). We
denote the field of fractions of O” by K”, and the residue field of ©” by K . Set C" := Spec O,
and C" := Spec K. The extension ©”/O induces a morphism 7: C” — C. Take the base
change fx»: X" — C" of fx vian. Set X := X”. In the same way as in Remark 3.7, we
take i1 € Z, ip € Z, and the successive blowing-ups 7;": X;',; — X/’ of X/’ for i € I, where
we set o= {i € Z |0 <i < is}. Set X := X xon C". Then X, is of fundamental type,
and Aut(C”/C) acts on X{J. We may show the following statements for any i € Iy by the
induction on %:

1. we denote the center of 7" by T}'; then T is stable under the action of Aut(C”/C');
2. the action of Aut(C”/C) on X[ lifts to X/ ;.

Choose a finite Galois extension K'/K in K" so that Aut(C"/C’) trivially acts on P(X7))
and S(X})). The extension 0" /0" induces a morphism 7”: C" — C’. Set Xp := X, Xjj := X/,
and 7, := mx: X; — Xo. Take the base change 7(j: Xj — X{ of " via fx,. We may show
the following statements for any ¢ € Iy by the induction on i:

~

3. set n; == mhon!, and T; := n;(T"); we equip T; with the reduced structure; then n; 1 (T}
A n Z// ¢ 77 ¢ nl
17" over X;';

4. set T := (m})~Y(T;); take the blowing-up 7;: X;41 — X; of X; along T}, the blowing-up
7+ X{ 1 — X] of X[ along T}, and the base change m; ;: X ;| — X;;1 of m via 7;; then

Y/ o~y /.
Xis1 = X over Xj;

5. take the base change 7, : )N(Z’ﬁrl — Xj,, of 7 via 7/; then X/, = X' 1 over X/'.
In particular, for any i € Iy, the squares in the diagram

1 /
Tit1 Tit1

1 !
Xt Xit1 Xit1

" / .
\L T; i T; l Ti
" -

T
" i / i )
X! X! X;

are Cartis/ian, where we identii}/r X!, and X/, | with X/, | and X7, , respectively. Set X :=
X, xcr C". Let us show that X, satisfies Conditions 0-3 in Definition 3.6. Since Aut(C”/C")

trivially acts on P(X] ), Condition 0 holds. Moreover, since Y;; is of fundamental type,
Conditions 1 and 2 follow from Lemma 3.22. Since Aut(C”/C’) trivially acts on S(X/),
12

Condition 3 holds. Therefore, the special fiber Y;Q is of fundamental type.
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Remark 3.33. — Since Y;Q is of fundamental type, the multiplicities and intersection
numbers of the elements of P(X],) may be determined by those of P(X])) (Remark 3.28).
Moreover, the projection S(X;) — S(X},) (Lemma 3.22) induces a bijection between the
underlying sets.

Definition 3.34. — We use the notation D', Aut D', V', E', m/(e), V' (e), E'(e), v'(e): P'—
V', and €'(e): §' — E' for X /m introduced in Definition 3.8. We have a homomorphism

Xpr: Aut(X'/X) — Aut D',

Set ppr :== xpr ° P /%00 and G :=Im ppr. For W/ C V' we denote the orbit of W’ by O(W").
For v € V', we set O(v') := O({v'}). For F’ C E’, we denote the orbit of F’ by O(F"). For
e € E', we set O(¢/) := O({€'}). We say that the action fizes the center of ¢ € E’ if there
exists g € G that fixes ¢/ and exchanges the two vertices in V’(e’).

We define the quotient D of D' by G as a graph consisting of two types of vertices with
multiplicities and degrees and edges with degrees in the following way. We introduce the
notation V', E, m(e), d(e), V(e), and E(e) for D in the same way as in Definition 3.12.

Vertices. Take an orbit O of a vertex of D’. Choose v' € O. The integer m’(v) does not depend
on the choice of v'. We put a vertex O, and set m(O) := m/(v’), and d(O) := |O|. If the action
does not fix the center of any edge in E’(O), then the vertex O is of the first type. Otherwise,
the vertex O is of the second type. For W/ C V', we set (W’) := {O(w') € V | w' € W'}.

Edges. Take an orbit O of an edge of D’ with |[V/(O)| = 2. We put an edge O so that
V(0) = V/(0), and set d(O) := |O|. For F' C E', we set (F') :={O(f') € E | f' € F/ and
V'(O(f)] = 2}

Set

1 :={¢’ € E' | the action fixes the center of €'},

and
Ey:={e e E'| [V'(¢/)| = 2}.

For i € {1,2}, we set S} := (¢/)"1(E!). Then the restriction €/(e): S/ — E! of ¢/(e) to S} and
E! is bijective for any i € {1,2}. We denote the set of unibranch singularities on X,eq by Si
(Definition 3.11). Set So := U,cp2 Na.

Lemma 3.35. — The following statements hold.
1. For any i € {1,2}, the equality wy'(S;) = S! holds.
2. The equality S1 N Sy = () holds.
3. The canonical morphism | |,cp2) (a — Sa is an isomorphism.
4. Any s € Sy is a reqular point on any I' € P with s € T.

5. The equality S = S1U Ss holds if and only if any singularity on any I' € P is unibranch.
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Proof. — Lemma 3.22 gives the equality 75 (S) = S’. Choose s’ € S'. Take the two irre-
ducible components I} and T', containing s’. Set s := mx(s’). Then the following statements
are equivalent:

1-1. & € S;

1-2. there exists g € G/ such that p< —(g) fixes s’ and exchanges I'] and T'%;

/X
1-3. s € 5.

Moreover, the following statements are equivalent:
2-1. s’ € SY;
2-2. the orbit of no element of P’ contains {I'},I'};

2-3. s € Ss.

These equivalences prove the lemma. O

Definition 3.36. — We use the notation introduced in Definition 3.34. Take the quotient
maps gp: P’ — P and gg: S5 — S2 of the action pgr . The maps gv: V! — V, o' = O(v')

/X
and qp: F) — E, ¢/ — O(¢’) are the quotient maps of the action pps. Moreover, both v'(e)
and €’(e) are equivariant with respect to the actions induced by Px /% and pps. Thus, there
exist unique maps v(e): P — V and e(e): So — E such that the squares in the two diagrams

pr UL S} ) o
qu ‘qu l‘ZS lQE
v(e) e(e

are commutative. Since v'(e) and ¢/(e) are bijective, the maps v(e) and e(e) are bijective.

Theorem 3.37. — We use the notation introduced in Definitions 3.34 and 3.36. Then the
graph D s the dual graph of X /m with types and degrees by v(e) and e(e) (Definition 3.12).

Proof. — By Lemma 3.35.3, we may write S = ||,cp@ [1a. Let us show that State-
ments 1-4 in Definition 3.12 hold for v(e) and e(e). Statement 1 follows from Lemma 3.25.1
and 3. Take I" € P. Set v := v(I"). The vertex v is of the second type if and only if there ex-
ists ¢ € E} such that v € V/(¢/). Thus, Statement 2 follows from the equality 73" (S1) = S}
(Lemma 3.35.1). Let us show Statement 3. Take a € P®) and s € Na C Sy. Since X' is
of fundamental type, the equality |g5'(s)| = i(a,s) holds (Lemmas 3.20 and 3.25.1). Since
d(e(s)) = |gg'(e(s))| = |gg'(s)|, Statement 3 holds. Let us show Statement 4. Take a =
(T1,T2} € P®. Set A :=Na, P, := {{I',T%} C P'| ¢qp(T%) =T for any i € {1,2}}, and
A" = Uyep Na'. Then A = gs(4A'), e5(Na’) = [a'] for any o’ € Py, and Uyep: gr(la’]) = [a]
(see Definitions 3.8 and 3.12 for [e]). Thus, the equalities e(A) = e(qs(4")) = qr(e5h(A")) = [d]
hold, which proves Statement 4. O
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Example 3.38. — We give examples of parts of D and D’ in several cases. Take a part of
Dy of D'. We write D, on the left-hand side, and its image in D on the right-hand side, where
the multiplicities are omitted for simplicity. We denote the vertices of D{ by O. Suppose that
the following conditions are satisfied:

1. E'(O) C FE) in all cases except (h);

2. there exists vf, € V' such that O = O(vy).
(a) [O] =2, and |E'(vp)] = 1.

[ - o
(b) |E'(vh)| = 1.
~ O
(c) 0] = 2, |E'(vh)| = 2. and [E7(f)| = 2.
( ------------- — =0
(d) |E'(v)] = 2, and [E7(h)| = 2.

(©) 101 =1, |E(vp)| = 2, and [E(sp)| =1.
(1) 0] = 1, | E'(vh)| = 3, and [E'(oh)| = 1.

< — -

(g) [0l =1, |[E'(vp)| = 4, and [E"(vp)| = 1.

(h) |E'(vy)| = 2, |E'(v]))| = 1, and there exists ¢/ € E’ such that V'(e/) = O (in this
case, the action fixes the center of the edge ¢’).

Y
@)

3.8. Curves of Genus One and Dual Graphs. — We use the notation introduced in
§3.3 and Example 3.32. Set X" = f;(,l, (6//). We denote the Kodaira symbol of X"’ by mT’
(see Remark 3.33), the symbol of the dual graph of X" /m by D', the dual graph of Y; /m
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by D', and the birational morphisms by 7: X;, — X and 7': Xj — X'. Set I}, := {i € Z |
1 <i< N}, and Ip := Ip U{N}. We write P = {I';};cs, where hO(I;) < hO(Diy1) for any
i€ Ip.

Assume that 7" = Iy, II, IIL, or IV. Then X = m> prcp ' (Lemma 3.25.1). We may write
S = {s} and S’ = {s'} (Lemma 3.22). For i € Ip, we denote the restriction of 7 to the
strict transform of I'; by ;, and set s; := ;" 1(s). We denote the set of prime divisors on X{Q
contained in the exceptional locus of 7/ by P,,. Since the multiplicities of the elements of P,/
in X are different from each other, any element of Py is stable under the action of p X

In the following, we introduce two symbols T and D to denote the type of X /m and the
dual graph D of X /m with types and degrees (Definition 3.12), respectively (Tables 2-7; see
Tables 8 and 9 for the changes from 7" and D’ to T and D, respectively). We use the following
symbols for T' (n € Z>q, r € Zso, and r | n):

Lo, I, (n>1), I, (n>1), I,y (2r | n > 0), ILIIL, 1ILy, IV, IV,, IV,
It ;;72, 5o Ty Tg, Toy, 105, TIT%, 10T, IV*, IV, IV3.

For each n, we set I, := I}L, L2 = 171172, and I, 22 1= 1,117272. The symbol D is an analogue to
the symbol of a (twisted) affine Dynkin diagram. The original symbols are the followings:

AD (w > 1), BY (w>3), ¢® (u>2), DY (u>4), EY (6<u<8), IV, ¢V,
B® (u>2), C? (u>3), BCY (u>1), F?, ¢,

AL (u>0), BY (u>3), C!

u,

(u>1), C (u>0), CI (u>0), DV (u>4),
6<u<sg), FY, Gy,
B® (u>2), P (u>2), C? (u>2), BC® (u>1), BCA (u>1), F?,GY.

u

For each u, we set AL Ag}, ot = 0(127 oM = C( ] and O} = Cg]l

u

We determine D by Lemmas 3. 22, 3. 25 and 3.27.

Case 0: T' = Iy. The equalities N = 1, h%(I'1) = 1, and S = 0 hold. We set T" := Iy, and
D .= A(()l).

Case 1: T' = I;. The equalities N = 1 and h°(I';) = 1 hold.
A. pp is trivial. The equality |s;| = 2 holds. We set T':=1;, and D := Aél).

B. otherwise. The equality |s;| = 1 holds. We set T :=1; 2, and D := C’él].

Case 2: T' = II. The equalities N = 1, h%(T';) = 1, and |s1| = 1 hold. We set T := II, and
D= C’él}.
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D D N G T
AN @ 1 1 Io, It
il 1 Zs L2
1 Il
cV =0 2 111
cll 1 Zs 111,
@ A s
C’fl] O=1] 2 Z IV,
cil 1 Z3, S3  1Vs

TABLE 2. The dual graphs in Cases 0-4.

Case 3: T' = II1. The equality N =1 or 2 holds. For any i € Ip, the equality |s;| = 1 holds.

A. N = 2. The equality I'; - T'y = 2 holds. For any i € {1,2}, the equality h°(I';) = 1 holds.
We set T :=1II, and D := C’fl).

B. N = 1. The equality h°(T';) = 2 holds. We set T':= III, and D := C{4.

Case 4: T' = IV. The equality N = 1, 2, or 3 holds. For any i € Ip, the equality |s;| = 1

holds.

A. N = 3. For any {I',T"} € P®, the equality I - I’ = 1 holds. For any i € {1,2,3}, the
equality h%(T;) = 1 holds. We set T := IV, and D := Agl).

B. N = 2. The equality I'; - 'y = 2 holds. For any i € {1,2}, the equality h°(I';) = i holds.
We set T :=IVy, and D := C\".

C. N = 1. The equality A°(T';) = 3 hold. We set T := IV, and D := C{'}.

In the other cases, the special fiber X' is of fundamental type. We study these cases by the
method developed in §3.7.

Case 5: T' =1, (n > 2). Since Aut D’ = Dy, we have an isomorphism G = Z,. or Dy, where
r| n. Set uw:=n/r.

A. G = Z,. The equality N = u holds. For any I" € P, the equality ﬁO(F) = r holds. We set
T:=T, and D := AY

u—1,r"

B. G = Dy,. We denote the subset of G consisting of rotations of the cycle D by H. Then
H is a normal subgroup of G, and H = Z,. Set Y := X/H, and G’ := G/H. Then the
special fiber of Y is of type I!), G' = Zy, G' acts on Y, and X 2 Y/G’. By M we denote
the number of elements of P(Y') that are fixed by the action of G’. Then M =0, 1, or 2.
The equality M = 1 holds if and only if u is odd.
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D D N G T
(1)
Ao,n o 1 ; "
u=1
(1) @
Au—l,r U Zr Ir
u>2 OF=Derreeeee O~
(1]
Con 1 Dy, I,
u = )
oy
Yy 0=00-0=0=0  i+1 b I,
u: even
ctt
W23 O=OFOFOQ=OA™ 0 4l Dy I,
u: odd
C’[l], n
03 1 D, 320
u = .
cll,
w4 [OFOFO-Q@=0HO u Doy Iy,
u: even

TABLE 3. The dual graphs in Case 5. The inequality n > 2 holds (if 2 | n,

then C’(()li = C([)l]ﬂ). The thick circles, squares, and segments are of degree r.
; 2

The double thick circles, squares, and segments are of degree 2r.

(a) M > 0. We set T := I, ,. If N = 1, then we set D := Ch). If N > 0, and M = 2,
then we set D := OV Otherwise, we set D := C',(ul,]l
’ 2

U ..
bl T

,T
(b) M = 0. In this case, the reduction X eq has two unibranch singularities. We set

T:=1 99. If u=2, then we set D := C’mﬂ or C’él,]l. Otherwise, we set D := C’Eﬁl -
1<y 9 ) 2 k]

2
Case 6: T' =1 _- (n>5).

A. n = 5. Since Aut D’ = S, we have an isomorphism G = 1, Zs, Z3, Z4, Z3, Ss, Dg, A4, or
Sy. If N =5 (resp. N =4, resp. N = 3, and h°(I'y) = 2, resp. N = 3, and h%(T'y) = 3,
resp. N = 2), we set T := Ijj (resp. I o, resp. Ij o, or Ifj 5 3, resp. Ij 3, resp. Ij 4), and
D := Dil) (resp. B?()l), resp. Béz) or 052), resp. Ggl), resp. BC’%Q)).

B. n > 6. Since Aut D’ = Dg, we have an isomorphism G = 1, Zs, Z4, Z3, or Ds.
(a) N>n—2.If N =n (resp. N =n—1, resp. N = n — 2), then we set T :=I' _.

(resp. I}, _5 9, Tesp. I}, _545), and D := DS_)l (resp. BT(Ll_)27 resp. Bq(f_)?)).
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n =

Bc'?,

71272
n: odd

2
B,

n:. even

D>—@ - @——=QD)
OO ©)
O—0—@ - 0—@=0Q
O«
@/@—@
O
©/@—@

@=0—06—0—0
@=0—0-0—-0

N G

n 1

n—1 ZQ

3 Zy, 73

n—2 o, 72

S aRZ

2 Z2

3 Z3, S3

9 2227 Z47 D87
A47 54

n=l 73, Zy, Dg

~ ‘

-1 Z3, Zs, Ds

*
n—>5,2

*

I0,272
(: 13,2,3)

*
In—5,2,2

*
Inf5,2,3

*
n—>5,2,3
*

153

*
15,4

*
In—5,4

*
In—5,4

TABLE 4. The dual graphs in Case 6. The inequality n > 5 holds.

(b) n/2 < N <n—3.Weset T :=1;_5,3. If nisodd, then we set D := c?, . Otherwise,
2
we set D = C(EQ]_I.
2

(c) otherwise. We set T':= T}, _5 ;. If n is odd, then we set D := BC'?, . Otherwise, we

set D := BC(?]

5

2)

Case 7: T' = IV*. Since Aut D’ = S3, we have an isomorphism G = 1, Zy, Z3, or S3. If
G =1, then we set T := IV*, and D := E". If G 2 Z,, then we set T := IV}, and D := F\".
Otherwise, we set T':= IV3, and D := G§3).
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D D N G T

Eé” O—@—@3! 7 1 v*

Y 0—0—00—0-0 5 Zy V3
o e==0 3 Zs, Ss IV}

TABLE 5. The dual graphs in Case 7.

D D N G T

@
Y 8 1 I
O—2—CC—0—0——0
| O O O O @) 5 Zy 111

TABLE 6. The dual graphs in Case 8.

D D N G T

®
Y 9 1 I
O—O—E—D—C—0—0—®

TABLE 7. The dual graph in Case 9.

T 1] I,(n>1) [II] 1 v
T 1|0, 0, 1, [ 1T 1L L | 1V, 1V, 1V,

T I* (n>0) | I v*
T |1, Ty, oo, Lo, Iig (n=0), I, | 1T [ TIIF, 1L | V¥, IV, IV

TABLE 8. The changes from 7" to T. The relation r | n holds.

Case 8: T' = III*. Since Aut D’ = Z5, we have an isomorphism G = 1 or Zs. If G = 1, then

we set T :=IIT*, and D := Eél). Otherwise, we set T := 111, and D := F4(2).

Case 9: T" = II*. Since Aut D’ = 1, we have an isomorphism G = 1. We set T' := II*, and
D:=EY.
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D/ AO Avn,1 (7’L 2 2)
DAY e AL, eV el bl
) ?77‘ 2 )
D/ ﬁn—l (TL Z 5)
D D1(11217 BT(le27 Ggl) (n = 5)7 Br(LQ—)37 C%, C(%z],la BC%; BC(%Q},Q
D’ E@ E? ES

1 1 3 1 2 1
o [ A7 r 6 (B0, 1P [ 5

TABLE 9. The changes from D’ to D. The relation r | n holds.

Lemma 3.39. — Let k be a perfect field, and Z be a k-scheme. Then the following state-
ments hold:

1. Z is reduced if and only if Z is geometrically reduced over k;
2. assume that Z is locally of finite type; then Z is reqular if and only if Z is smooth over k.

Proof. — Statements 1 and 2 follow from [7, 4.6.11] and [8, 17.15.2], respectively. O
In the above classification, we obtain the following (Lemmas 3.22, 3.24, and 3.39).

Proposition 3.40. — Takel' € P and the normalization ~y: LT of I'. Then the following
statements hold.

1. If T =1y, then P ={T'}, and I is a proper smooth geometrically integral fIO(I’)—cume of
genus one. Otherwise, the normalization of I' is a proper smooth geometrically integral
HO(T')-curve of genus zero.

2. If T =1 (n > 1), then P = {T}, [Tsing| = 1, and |y (Tsing)| = 2 (Dsing consists of
one non-unibranch singularity). If T = 1372,2 (2| n>0), then P ={T'}, |Tsing| = 2, and
|V (Tsing)| = 2 (Tsing consists of two unibranch singularities). Otherwise, if Tsing # 0,
then |Tsing| = |7 (Tsing)| = 1 (Tsing consists of one unibranch singularity).

4. Separable Closed Points

4.1. Special Fibers, Indices, and Separable Closed Points. — Take a separable clo-
sure K5P of K. For a field extension K'/K in K*P, we set Gg/ := Ggser /- Let Ex be a
K-elliptic curve.

Definition 4.1. — Take a proper regular C-model fr: F — C of Ex. The K-elliptic curve
FEx is said to have good reduction if E is smooth over C. The K-elliptic curve Fy is said to
have toric reduction if the identity component of the special fiber of the Néron model of Eg
is a C-torus. The K-elliptic curve E is said to have potentially good (resp. potentially toric
reduction) if there exists a finite separable field extension K’/K such that the K’-elliptic
curve Ex x g K’ has good (resp. toric reduction).
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Proof of Theorem 1.1. — Take a minimal proper regular C-model fx: X — C of Xf. Set
X = fx'(C), and I := I(Xg). We may take a divisor D on Xf of degree I. The Riemann-
Roch theorem gives the equality

dimg H*(Xf, Ox, (D)) =1

[12, 7.3.33]. Thus, we may take an effective divisor 37, cg ay[y] of degree I, where S is a finite
set of closed points on X, a, € Z~o for any y € S, and [y] is the prime divisor with support
y. Then >° cqay[k(y) : K] = I, and I | [k(y) : K] for any y € S. Thus, we may write
S = {z}, and the equalities a, = 1 and [k(z) : K] = I hold. We have to show that there exists
a separable closed point x on Xk such that [k(z) : K| = I. If K is infinite, then it follows
from [5, 8.4(2) and (3)].

Assume that K is finite. We use the notation HO(T"), h%(T'), R(X), P(X), and n(I") introduced
in §2 and Definition 3.4. Take T' € P(X), and the normalization v: T' — I of I. We denote the
index of T'yeg by I(I'veg) (see §1). Since HO(T") C k(z) for any closed point z on T, the relation
RO (') | I(T'+eg) holds. For any finite field k and any proper smooth geometrically integral k-
curve CY, of genus zero (resp. of genus one), the inequality |C (k)| > 3 (resp. |Ck(k)| > 1) holds
since C, is k-isomorphic to P}, (resp. a k-elliptic curve) ([17, I1.3.3(a)] and Example 1.5.2).
Thus, Proposition 3.40 shows that Tyeg(HO(T)) # 0, which implies that I(Tyeg) | RO(ID).
Therefore, the equality I(I'yeg) = h°(T) holds. Since I = gedrepox){n(l) - 1(Treg)} [5, 8.2 (b)),
the equality

I= ged {n()-n(I)}
reP(X)

holds. Thus, by the classification of the special fibers in §3.8, there exists I' € P(X) such
that n(I')-hO(T) = I, and (CNR(X))(HO(T")) # 0 (Proposition 3.40). Therefore, the theorem
follows from [5, 8.4(3)]. O

Remark 4.2. — In the above proof, the result in §3.8 is applied in the case where K is
finite.

Exzample 4.3. — The following statement holds [18, Thm. 2]: for any global field K, any
K-elliptic curve Ex, and any P € Z-q, there exists « € H'(K, Ex) such that P(a) = P,
and I(Xg) = P(a)?, where X is the K-torsor under Ef corresponding to a. In particular,
for any closed point 2 on X, the relation P(a)? | [k(z) : K] holds.

4.2. Case of Good Reduction. —

Theorem 4.4. — Suppose that K is perfect and WC-trivial for elliptic curves. Assume that
Er has good reduction. Take o € H' (K, Ex). Then there exists a separable field extension
L/K of degree P(«) such that o], = 0.

Proof. — By the induction on P(«), we may assume that P(«) is a prime number. Take the
K-torsor Xy under Fx corresponding to «, a minimal proper regular C-model fx: X — C
of Xk, and the completion O’ of a strict Henselization of Ok (Example 3.17.A). We denote
the field of fractions of O@" by K'. Set C' := SpecO’, E' := E x¢c C', X' := X x¢ (',
and m' := P(«a|gs). Then E' and X’ are minimal proper regular C’-models of their generic
fibers (Proposition 3.30). Since E’ is smooth over C’, the Kodaira symbol of the special
fiber of X’ is equal to m'ly (Remark 3.10.1). Since K is perfect, the K-scheme X, q is a
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K-torsor under a K-elliptic curve Eq [13, 8.1-8.2]. Moreover, the equality m(X) = m/ holds
(Lemma 3.25.1; see Definition 3.4 for m(X)). Since K is WC-trivial for elliptic curves, there
exists a C-isomorphism X, oq = Eg. Thus, there exists a separable field extension L/K of
degree m’ such that X (L) # 0 [5, 8.4(3)], which gives the equality |, = 0. Since P(a) # 1,
the inequality m’ # 1 holds. Since P(«) is a prime number, and m’ = P(«a|g/) | P(a), the
equality m’ = P(«) holds, which concludes the proof. O

4.3. Case of Toric Reduction. — In this subsection, we use the rigid analytic uniformiza-
tion of Fx. Assume that Fx has potentially toric reduction. For a K-scheme Zg locally of
finite type, we denote the analytification of Zx by Z%". Take the uniformization ug : Th" —
E3r =T )T9 of Ex, where Tk is a K-torus, and I'i is a K-lattice of Tx. The K-lattice I'
is associated with a G g-module I'z, whose underlying group is isomorphic to Z. Let K'/K
be a field extension in K*°P. For a module M, we denote the G g/-module associated with M
with trivial action of G+ by M. The K-torus Tk (resp. the K-lattice I'k) is said to split
over K" if Tk x g K' = Gy, g as K'-group schemes (resp. I'z = Zg as G gr-modules).

We denote the group of K®P-automorphisms of the K®P-group scheme G, gser by
Authep Gmstep. Then Authep Gmstep = Zg. Choose an isomorphism ngK: TK XK K35°P =
G, kser between K*P-group schemes. The action of G on K®® induces K-actions p7,, and
PG i of G on Tk x  K*P and G, gser, respectively. We define a K*°P-action pifK G —
Aut gser Gy gser of G on Gy, gser by p’TK (9) == o1y © pryc(g) © gb}}l( o pé}n’K(g). Take the
field extension M /K corresponding to Ker p’TK. Then Gy & 1 or Zz, and M is minimum

among the field extensions of K in K*P over which Ty splits.
Take a Galois extension M’'/K in K5P so that M C M’. Fix an isomorphism Ty = G, s

~Y

between M-group schemes, which induces an isomorphism Tk (M') = (M’)* between groups.
For g € Gy, we denote the image of a € (M')* (resp. a € Tx(M')) under g by ga
(resp. g - a), and set

(9) {1 if the image of g in G/ is equal to the identity,
e(g) :=

—1 otherwise.
Then g - a = ga®¥ for any g € G/ and any a € T (M') = (M')*. Take a generator ¢ of
I'z. Note that the valuation of ¢ is not equal to zero.

Lemma 4.5. — The relation ¢ € K* holds. In particular, the lattice Ty, splits over M.

Proof. — Set M' := K®P. Take g € Gk. Since g -I'y = I'z, we may take e, € Z so that
g-q=q%. Since g-q = gq¢9, the equality ¢° = gq¢9 holds. Taking the valuations of both
sides, we obtain the equality e, = e(g). Thus, the equality gg = ¢ holds, which concludes the
proof. O

The exact sequence of G g-modules
0 ——TIy —— T (K*P) —— Ex(K*P) —0

induces a long exact sequence of abelian groups

HY(K,Tp) —= H' (K, Ti) —%~ HY(K, Bx) —%~ H2(K,Tz) —= H>(K, Tk).
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Set Tg = I'z ®z, Qk, and gz = 'z ®z, (Q/Z)k. Since I'g is divisible, the equality
H{(K, I'g) = 0 holds for any i € Z~¢. Thus, the exact sequence of G'x-modules

induces an isomorphism
che: H(K,Dgz) — H™(K,Ty)

for any i € Z~¢. We denote the image of g € Gk in G/ by g. Since the action of Gy on
Lg/z is trivial (Lemma 4.5), we have a canonical isomorphism

H'(M,Tg/z) = Hom(Ga,Tgyz)-
Thus, the restriction morphism
HY(K,Tqyz) —= H'(M,Tqyz) M/
induces a homomorphism
& HYK,Tg/z) —= Hom(Gpy, Tgyz) M/

where (g-1)(h) = gv (g9~ 'hg) for any g € Gk, any h € Gy, and any ¢ € Hom(Gyy, Tgyz) [17,
1.2.6].

Take a € HY(K, Ex). Put ¢ := (o (ek) 7L 0 dk) (), and € := Ker ¢. Since g - ¢ = ¢ for any
g € Gk, the equality g~ g = € holds for any g € G . Thus, the subgroup £ of G is normal,
which implies that the field extension L/K corresponding to ¢ is Galois. Therefore, we may
take L as M’ introduced above. We denote the order of ¢ in Hom (G, Tg/z) by P(9).

Lemma 4.6. — The field M’ is a cyclic extension of M of degree P (o).
Proof. — The lemma follows from the isomorphisms G/ /€ = Im ¢ = Zp(4). g
Proposition 4.7. — The following statements hold:

L Gy = Zpgy, and G =1 or Za;

2. if P(¢) =2, and G/ = Za, then Gyp g = Zy or Z2;

3. alyr =0.
Proof. — Statement 1 follows from Lemma 4.6. Statement 2 follows from Statement 1. Since
Tk splits over M’, the equality H'(M’,Tx) = 0 holds, which implies that &y, is injective.
The equality ¢y = 0 gives the equality dpp (cr|asr) = 0. Thus, Statement 3 holds. O
Proposition 4.8. — Assume that 2 | P(¢). Then there exists a field extension of K in M’

of degree P(¢). Moreover, for any field extension K'/K in M’ of degree P(¢), the equality
algr =0 holds.
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Proof. — The first statement follows from Proposition 4.7.1 and Sylow’s theorem. The com-
posite of the restriction homomorphism and the corestriction homomorphism

HY(K' Ex) — H'(M', Ex) — HY(K', Eg)

is equal to the multiplication by [M’ : K'] [17, 1.2.4]. Thus, the last statement follows from
the facts [M': K'| = [M : K] | 2 and a|p; = 0 (Proposition 4.7.1 and 3). O

Since Tk splits over M’, we have a Gy, g-equivariant isomorphism Ef (M') = T (M')/T'z.
We denote the image of a € Tk (M') in Ex(M') by @. The element o may be represented by
{@g}gern e € ZNG i, Exc(M)).

Proposition 4.9. — Assume that Gy = Za, and Gy = Za or Zy. Then afy = 0.

Proof. — Take a generator T of Gy . We may assume that M' # M, and take e € Z so
that

ar -Ta;t - m?ar - m3a;t = ¢°.
Taking the valuations of both sides, we obtain the equality e = 0, which implies that

aT-Ta;l-TQaT-TSa;lzl.

Thus, we may take 8 € H'(K,Tx) so that a = ux(8). Since Tk splits over M, the equality
HY(M, Tk) = 0 holds, which implies that 3|y, = 0. Therefore, the equality a|p; = 0 holds. [

Lemma 4.10. — The trace map Try k' — k is surjective for any Galois extension k' /k
of degree 2.

Proof. — Take a € k. We denote the characteristic of k by py. If py # 2, then Try /1(a/2) = a.
Assume that py = 2. Take the generator o of G}/ /.. We may take b € k' so that ob = b+ 1.
Then Tryy 1, (ab) = a, which concludes the proof. O

Lemma 4.11. — Let F be a finite Galois extension of K of degree d. We denote the valu-
ation ring of F by Op, the residue field of Or by F, and the norm map by Np/g: F— K.
Assume that F/K is a Galois extension of degree d, and that both morm map and trace
map of F/K are surjective. Then N x(Op) = Oj. Moreover, the group K* /Np/(F*) is
isomorphic to Zg, and generated by the image of a uniformizer of Ok .

Proof. — We denote the maximal ideal of O and Op by mg and mp, respectively. Let

us consider the diagram of abelian groups with commutative squares and horizontal exact
sequences

l——>1+4+mp o5 F 1
1 ——1+4+mg o5 K" 1

where the vertical arrows are the norm maps. We denote the norm map and the trace map of
F/K by N& Jis and Tr s respectively. Take a uniformizer m of Og. Then 7 is a uniformizer

of Op since [F : K] = d = [F : K|. For i € Zsy, the isomorphism Og — mi., a — an’
induces an isomorphism ¢;: K — m%./ m}}H. For any a € Of and any i € Z~, the equality

Np/g(1+ ar’) =1+ ¢1;(Trf/?a) mod m4}!
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holds, where @ is the image of a in F'. Thus, since Tr# Ji is surjective, the left vertical arrow
is surjective. Since Ny fice is surjective, the right vertical arrow is surjective. Therefore, the
middle vertical arrow is surjective.

Let us consider the diagram of abelian groups with commutative squares and horizontal exact
sequences

1 O} F Z 1
1 o) KX Z 1

where the left and middle vertical arrows are the norm maps, the right vertical arrow is the
multiplication by d, and the third horizontal arrows are the valuations. Since the left vertical
arrow is surjective, the cokernel of the middle arrow is isomorphic to that of the right vertical
arrow, which concludes the proof. O

Proposition 4.12. — Assume that the following conditions are satisfied:
1. Ex has toric reduction;
2. K is perfect;
3. there does not exist a Galois extension of K with Galois group Z2;
4. the norm map of F /K is surjective for any Galois extension F /K of degree 2;
5. Garyx = Z3;
6. Pla) = 2.
Then there exists a field extension K'/K in M’ of degree 2 such that o) = 0.

Proof. — Condition 5 implies that Gy /ny = Za, and G/ = Zz (Proposition 4.7.1). More-
over, we may write G/ = {e, 11,72, 73}, where e is the identity, and 73 is the generator of
Guyrym- For i € {1,2,3}, we set a; := a,,, denote the subgroup generated by 7; by G;, and
denote the fixed subfield of G; by K;. Then K3 = M. For any a € Tx(M'), the equalities

T-a=ma"t, m-a=ma"", and 73 - a = T30 hold.

Take ¢ € {1,2}. We may take e; € Z so that
a; - Tiai_l =q“.

Taking the valuations of both sides, we obtain the equality e; = 0, which implies that a; € K/*.
We denote the norm map by N;: (M')* — K/, and the image of K;* and Im N; in Ex (M)
by Z; and B;, respectively. Set H; := Z;/B;. Since the homomorphisms

Zl(GivEK(M,)) — 7, (E)geci 'H'bi‘n

and . .
B Gy, Ex(M')) — Bi, (bg)geq, — br,

are bijective, the homomorphism

HY(Gy, Ex(M")) — H;, (b)gec; — br,
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is bijective, where bNTl is the image of b,, € Z; in H;.
Since
ai -T1a2_1 =ag3 =as- TQCLl_l mod I'z,
the equalities
ai - T = a9 - 7109 mod FZ

and

a% =a; 'Tgal_l -as - 7'1(12_1 = 'T3CL1_1 -ay - 7'3(12_1 mod I'y

hold. For i € {1,2}, we set b,, := a?- (a1 -ma1)" . We set be := 1, by, := a2 (a; ~Tgaf1)_1, and
a:=az. Then b, =1,b,, =a-1a ', by, = a 73071, and the cohomology class of (bQ)QGGM//K
is equal to 2. By Condition 6, we may take b € M’ so that b-mb=1,b-mb=a-1a""',

and b- 130! = a - m3a~!. The last equality implies that we may take e3 € Z so that
a-bl=m(a b7t g%,

Taking the valuations of both sides, we obtain the equality e3 = 0. Thus, we may take c € M
so that a = be. Since N1b = 1, the equality Nia = Nic holds.

We may assume that o|x, # 0 for any ¢ € {1,2}. Then @; ¢ B; for any ¢ € {1,2}, which
implies that a; € Im N; for any i € {1,2}. By v: (M')* — Z we denote the valuation of M’
with Imv = Z. Condition 1 implies that M is unramified over K, which implies that M’ is
unramified over K; for any i € {1,2}. Thus, Condition 4 implies that Im N; = v~ }(2Z) N K
(Lemmas 4.10 and 4.11), which implies that v(a;) € 14+2Z, and v(Nya) € 2+4Z. Conditions 2
and 3 imply that v(K*) = 2v(K;), which implies that v(M*) = 2v((M')*) = 2Z and
v(N1M*) = 4Z. Since Nyja = Nic, v(q) € 2Z, v(Nya) € 2+4Z, and v(Nyc) € 47, we conclude
that v(q) € 2+4Z. The equality a; -70a1 = az-T1a2 shows that 2(v(a;)—v(az)) € v(q)Z. Since
v(ay) —v(az) € 2Z, we conclude that v(a;) —v(az) € v(¢)Z. Thus, the equality a3 = a; - T1a5 "
implies that v(asz) € v(q)Z.

Since Im N7 = v~1(2Z) N K;*, we may assume that v(a1) = 1. Since a. = 1, v(a1) — v(az) €
v(q)Z, and v(a3) € v(q)Z, we may assume that a. = 1, v(az2) = 1, and v(a3) = 0. For any
g € Gypyk and any h € Gy /i, we may take egp € Z so that

agh = ag - (g~ an) - ¢°o".
Since v(agn) = v(ag)+v(g-an), the equality e, , = 0 holds, which implies that agy, = ag-(g-ap).

Thus, we may take 3 € H'(K,Tk) so that a = ug(B). Since H'(M,Tx) = 0, the equality
Blar = 0 holds. Therefore, the equality a|yr = 0 holds, which concludes the proof. O

Example 4.13. — The conclusion of Proposition 4.12 does not hold without Condition 3.
Note that Conditions 14 are used only in the last two paragraphs of the above proof. Assume
that there exists a finite Galois extension F/K with Gx i Z2. Then we may take an
unramified Galois extension M'/K with Gy /x = Z2. We way write Gk = 16,71, 72,73},
where e is the identity. For i € {1,2,3}, we denote the subgroup generated by 7; by G;, and
the fixed subfield of G; by K;. Take a uniformizer 7 of Og. Set M := K3, and ¢ := 7%. We
may take a K-torus Tk and a K-elliptic curve Ex that satisfy the following condtions: Tk
does not split over K, Tk splits over M, and E3* = T8 /T'9?, where I'k is the lattice of Tk
induced by {¢' | i € Z} C (K*P)* = Ty (K"P). Then Ex has toric reduction since M is
unramified over K. Set a := 1, ar, := 7, Gy := 7, ry := 72, and ¢ := {CTQ}QGGM//K‘ Then
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cE Zl(GM//K, Ex(M')). We define o € H'(K, E) as the cohomology class represented by
c. By the above proof, we conclude that P(«) = 2, and a|g, # 0 for any i € {1,2,3}.

Theorem 4.14. — Assume that the following conditions are satisfied:
1. Ex has toric reduction;
2. K is perfect;

3. for any finite field extension ?//K, there does not exist a Galois extension of K with
Galois group Z3;

4. for any finite field extension F,/f and any Galois extension F’/F’ of degree 2, the norm
map of F’/X’ is surjective.

Take o € H' (K, Ex). Then there exists a separable field extension L/K of degree P(a) such
that a|f, = 0.

Proof. — By the induction on P(«a), we may assume that P(«) is a prime number. If P(«) #
2, then Proposition 4.8 concludes the proof. Otherwise, by Proposition 4.7, we may assume
that Gy & Z2, and Gy = Zy or Z32. Thus, Propositions 4.9 and 4.12 conclude the
proof. O

4.4. Periods and Separable Closed Points. —

Definition 4.15. — A field k is said to be of dimension < 1 if one of the following equivalent
conditions is satisfied [17, I11.3.1, Prop. 5]:

1. for any finite separable field extension [/k, the Brauer group of [ is trivial;

2. for any finite separable field extension [/k, the norm map of any finite Galois extension
of [ is surjective.

We use the following fact (see the proof of [2, Thm. 27]).

Lemma 4.16. — Letk be a field. Assume that k is perfect and WC-trivial for elliptic curves.
Then k is of dimension < 1.

Proof of Theorem 1.6. — Lemma 4.16 implies that K is of dimension < 1. Thus, the theorem
follows from Theorems 4.4 and 4.14. O

Example 4.17. — A field k is said to be quasi-finite if the absolute Galois group of k
is isomorphic to the profinite completion of Z. The WC-triviality for elliptic curves of K
is necessary in Theorem 1.6: there exist a complete discrete valuation field K with perfect
quasi-finite residue field, a K-elliptic curve Ex with ordinary good reduction, and a non-
trivial K-torsor X under Ef such that P(Xg)? | [k(x) : K] for any separable closed point
x on Xg ([10, §4, p. 678] or [1]).
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