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A PARTIAL BOMBIERI-VINOGRADOV THEOREM WITH
EXPLICIT CONSTANTS

by

Alisa Sedunova

Abstract. — In this paper we improve the result of [1] with getting (log x)% instead of (log :c)%
In particular we obtain a better version of Vaughan’s inequality by applying the explicit variant

of an inequality connected to the Mo6bius function from [5].

Résumé. — (Aspects explicites d’un théoréme de Bombieri—Vinogradov) Dans cet article, nous
améliorons un résultat de [1] en remplacant le (log x)% par un (log x)%. En particulier, nous
obtenons une version améliorée de I'inégalité de Vaughan en appliquant une version explicite

d’une inégalité dans [5] liée & la fonction de Mdébius.

1. Introduction

For integer number a and ¢ > 1, let

U(riga) = Y An),

n<x
n=a mod q

where A(n) is the von Mangoldt function. The Bombieri-Vinogradov theorem is an estimate
for the error terms in the prime number theorem for arithmetic progressions averaged over

all ¢ < z1/2,
Theorem 1.1 (Bombieri—Vinogradov). — Let A be a given positive number and @ <
% where B = B(A), then
max max |Y(y,q,a) — ——| K4 ——p-
42Q *SYST (0,91 ©(q) (log z)4

The implied constant in this theorem is not effective, since we have to take care of characters,
associated with those ¢ that have small prime factors. The main result of this paper is
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102 A partial Bombieri—Vinogradov theorem with explicit constants

Theorem 1.2 (Bombieri—Vinogradov theorem with explicit constants). — Let z >
4,1 <1 <Q<L 23 . Let also l(q) denote the least prime divisor of q. Define F(z,Q,Q1) by

14
F(z,Q,Q1) = e + 493%@ + 15:1:§Q% + Azs log Q

Q1 Q1
Then
max max 1/1(3/;(1,@)—M < e1F(z,Q,Q1)(logx)?,
o 2<yse 87 ©(q)
(a)>Q1

where c; = 42.2.

Previously the best result obtained by these methods in the literature is due to Akbary,
Hambrook (see [1, Theorem 1.3]), where they proved that under assumptions of Theorem 1.2
we have.

max max (Y(y;q,a) — ¥ly) < ch(x,Q,Ql)(logx)%,
e 2<y<zx (=1 QO(Q)
l(e)>Qq

where F'(z,Q, Q1) is defined by
4 «Q
Q1 Q1

Here we reduce this power to (log x)% by applying an explicit version for an upper bound for

b =Y p(d),

d<v
d|k

F(r,Q,Q1) = 4 423Q 4+ 1825Q3 + 5a log

where u(d) is Mobius function, V' is a given number. This version can be found in [5, Chap-
ter 6], namely we have

Lemma 1.3 (Helfgott [5]). — There exists a constant L < 0.441, such that for V large
enough we have

> bkl? =Y(L+0%(C)) + O*(V?),

k<Y

where C' = 0.000023 and O*(xz) means that it is less in absolute value than x.

This Lemma is a variant of the sum considered in [3], where it is shown that

p(dy)p(dz)
i Dey ged(dy, da)

tends to a positive constant as Y — oo. It is also suggested without proving that L can be
about 0.440729.

Notice, that by sharpening the inequality in Lemma 1.3 we will not be able to reduce the
power of log x, since the upper bound is optimal there, so by these methods the power % is the
best possible. Going further seems to be a hard problem which involves among simpler things
a very careful analysis of the logarithmic mean of Mo6bius function twisted by a Dirichlet
character.
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1

Corollary 1.4. — Let Q = )B , where B > . Then Theorem 1.2 gives us the following
bound
14x
lo
( @) (log 2)

Remark. — It would be very good for applications to get (logz)? in Theorem 1.2, however
it seems impossible to get by present methods.

max Hlai( ¥(y; q,a) — %‘ <c

NI~

+ 19z (log x) B) .

1(q)>Q1

Corollary 1.5. — Define

:ZI and m(x;q,a) = Z 1.

p<z p<z
p=a modq

Then Theorem 1.2 under the same assumptions can be also formulated for w(x) and w(x;q,a):

N a —Ly) C X O ZL'%
7(y; 4, 0) gD(q)\< 2F(z,Q,Q1)(logz)?,

max Imax

2<y< a
<@ YT (@9)=1
(q)>Qq

2c1

where co = 1 + Tog 2"

Proof of Corollary 1.5 is exactly the same as in [1], we just have to change the power of log.
The key tool for the proof of Theorem 1.2 is Vaughan’s identity, which we have to get in an
explicit version for our goal. Define

X) =Y Aln)x(n)

n<y

the twisted summatory function for the von Mangoldt function A and a Dirichlet character
x modulo g. One of two main results of this paper is

Proposition 1.6 (Vaughan’s inequality in an explicit form). — For x > 4
S L S max (g, )l < co (72 +2Q% +5Q3a% +4Qut) (log )3,
— o(q) = v<e
a<Q x(q)
where @ is any positive real number and Z;(q) means a sum over all primitive characters

x(modgq).

The goal is to get an explicit version of f(z,Q) by applying an improved version of Pélya—
Vinogradov inequality (see [6]), that will reduce the coefficients of f(z,Q) and then we can
apply Lemma 1.3.

2. Proof of Proposition 1.6

Fix arbitrary real numbers () > 0 and x > 4. In this section, we shall establish Proposition 1.6,
which is the main ingredient in the proof of Theorem 1.2. Here we follow the ideas of [1] and
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104 A partial Bombieri—Vinogradov theorem with explicit constants

applying the results from [5]. The main tool in the proof is the large sieve inequality (see, for
example [4, Lemma 2])

* mo+M mo+M
(2.1) S S| 2 emxm)] SM+QY) 3 faul,
q<Q(‘0 x(q) mzmg—f—l m=mo+1

from which it follows (see [2, Theorem 8.8.3] or [1, Lemma 6.1]) that

(2.2) Z Zmax Z Z ambrx(mn)

v(q n=nq
q<Q X(q m=1mo mn<y

1 1
M 3/ N 3
<es(M'+ QY2 (N'+ Q%2 ( > |am12> ( > rbn|2> L(M,N),
m=mgo n=no
where ¢3 = 2.65, L(M,N) = log(2MN) and M’ = M —mg+ 1, N' = N —ng + 1 are the
number of terms in the sums over m and n respectively. Here the a,,, b, are arbitrary complex
numbers.

2.1. Sieving and Vaughan’s identity. — We reduce to the case 2 < Q < z¥/2. If Q < 1,
then the sum on the left-hand side of (1.6) is empty and we are done. Next, 1 < @ < 2 then
only the ¢ = 1 term exists and we have

> A(n)

nly

< Aol’

(2.3) Z Z max [y, x)| = max
(9

q<Q wvia

which is better than the theorem. As in [1] we use Vaughan’s identity

A(n) = Ai(n) + A2(n) + As(n) + Aa(n),

where
A(n), ifn<U,
A = - A = d)logh,
R P o(n) = 3 ) log
d<v
A3(n) =— > A(m)u(d), M(n)=— > Am) > u(d
m?g;gv m;ng,kgv ddglli/'

Assume y < z, ¢ < @, and x is a character mod ¢q. We use the above decomposition to write

P(y,x) = 51+ 52+ 53 + 54,

si=Y_ Ai(n)x(n)

n<y

where

Let U, V be non-negative functions of = and @ to be set later and denote the contributions
to our main sum by

S—Z 2@ Zmax]sll

<0 plq y<z
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Easily we obtain

> ()Zmax]wyx)]<81+52+53+5‘4
<@ P\ @ ¥=
The heart of the proof of Theorem 1.3 in [1] are the following estimates:

Lemma 2.1 (Akbary, Hambrook [1], Section 7). — We have
Sy < AgUQ?, Sy < (ac T Q%V) (logzV)?, S5 < Sh+ S,
Sy < (2 + Q3U)(logxU)?,
1" C3 11 1 1 _1 2 1 2
Ss < log2 (x+Qx2U2V2 +22Q2xU"2 4 Q :c2) (log2UV)*(log 4x),

3 1
25143 c3
log 2

3
9N 2
(x + QxV_% + 2%QxU_% + Qzl‘%) <log ‘f) ’ (log e3V)(log 4z).

o) — 2U18) < 1.04.

T

Sy

where c3 = 2.65 and Ag = max;~q
Here we improve the estimate for Sy in Lemma 2.1 above.

Lemma 2.2. — Under previous notations we have
3
2z 2
515 g2 (s +28Q3a0E + Qv + Q) logan) (low 7).

Proof. — We estimate Sy contribution with the use of Lemma 1.3. Writing s4 as a dyadic
sum we have

S4=— Z Z Z A(m) Z,u x(mk).

M=2% U<m<z/V V<k<z/M d|k

Lu<M<a/v M<m<eM  mk<y d<v

Using the triangle inequality

Sy < Z Z (L Z Z Z ambrx(mk)|

| M=2e q<Q x(q) "~ U<m§x/V V<k<a/M
sU<M<z/V M<m<2M mk<y

where a,, = A(m), and, as it was defined in the introduction by = 3 g, q<y #(d). Now apply
the large sieve inequality (2.2) to get
Si<es > (M +QYEI(K +QY)301(M)2oa(M)2L(M)

M=2
SU<M<z/V

where
aM)= 3 P M= Y |aw
V<k<z/M U<m<z/V
M<m<2M
and

2
L(M) =log (]\; min (é,QM)) < log4x,
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106 A partial Bombieri—Vinogradov theorem with explicit constants

where M’ and K’ denote the number of terms in the sums over m and k, respectively. From
the definition of M’ and N’ we conclude

M’:min<2M,‘a;> max (M +1,U + 1) < M,

K’:%—(V+1)+1 -

By Chebyshev estimate we have an upper bound

E \

< > A(m)® <y(2M)log2M < 240M log 2M.
m<2M

Thus by Cauchy inequality

1

(24)  Si<csllogdz) Y (M +Q?): (;’} + QQ) * (240M log 2M )3 o (M)3.
%U]g;?z/v

Further
M(M + Q%) (A‘Z + Q2> = Mz + Q%*x + M?Q?* + MQ*

and

1 2x
log2M)2 < | log —
(log2M)z < (ogv)

Using Lemma 1.3 we get

(01 (M))? < —(L+C)— V(L +C)+2V2,

Sk

that implies

1
9\ 3
Si < ea(2A40)2 (v +22Q7aU2 + QaV "2 + Qa7 ) (log dv) (1og {f) D DIt
%U]g;?z/v

Since
log 22
> orsob
M=20 log 2
tu<Mm<a/v
then
3
9r\
5= 1 5 (2A0)% (¢ +22Q3aU ™2 +QaV ™ + Qa2 ) (log da) <log ;) - 0

Combining Lemma 2.2 with results of Lemma 2.1 we get

(2.5) S=> T )Zmax|¢yx)|<C4RxQUVGxVU,
9<Q P\ (g)

Publications mathématiques de Besangon — 2018



A. Sedunova 107

where

c4 = max {AO, @ G (QAO);} = i(2140)%,

log 2’ log 2 log 2
1 1 1
2202 22
Requy =45+ Q% (202 +U) + Q3(U+V) + Qrr 20t oty 4 92
Uz Uz Va2

3
9N 2
G, vu = max {(log zV)2, (log zU)?, (log 2UV)? log 4z, (log 5) ’ log 4x} ,

Now let’s specify U and V. If 3 << 1:%, then U =V = a:%Q_l. Then putting that into
previous expression we get for the factor

Reuy = Ri(z,Q) = 42+ 2Q%% + Qa3 (1427) + Q207 (2423 +1) + 2t
< 4z + 2Q%7 +2Qx6 + Q2at (2 4925 4 1) _

where we used the fact that z© < Qx% and Qx% < Qx%. Working in the same manner with
G and keeping in mind the condition x > 4 we find that

4 3 94 5
Gevu =Gi(z,V,U) < (3 log x) 2logx = — (log z)>2.
32

IfQSx%,WeletU:V:x% and get
Ra(z,Q) = 4z + 2Q233% + QQSU% + 2@21‘% + Q%Q%l‘% + Qx%(Z% +2)
1 9 1 3 2 5 (1
§$<5+22) 1 2Q%7 +2Q225 + Qut (22 +2),
where we used Q%é <z, Q%x% < Q%x% and Q%x% < z. Similarly we get for

>2 (log$)g.

leo

Galz, V,U) < 2(

(=20 10N

Finally, we have in (2.5)

24
S<eci— (7£L‘ + QQQx% + 5Q%x% + 4Ql‘%> (logx)z,
33

ot

as demanded.

3. Proof of Theorem 1.2
Let y > 2,(a,q) = 1. By orthogonality of characters modulo ¢, we have

1 _
V(Y q,a) = @ ; X(a)(y, x)-

Define ¢'(y, x) = ¥(y, x) if x # xo0 and ¥'(y, x) = ¥(y, x) —¥(y) otherwise, xo is the principal
character mod ¢. Then

)N R« W
¥(y,q,a) o0 = 2@ EX:X( ' (y, x)-
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108 A partial Bombieri—Vinogradov theorem with explicit constants

For a character y (mod ¢), we let x* be the primitive character modulo ¢* inducing y. Follow
the way of [1] we obtain

'y x*) = (. x) = ey x) — vy x) = Y (logp) (x*(p*) — x(")).
Py
If p|q then (p¥,¢*) = 1, and hence x*(p¥) = x(p*). If p|q then x(p*) = 0. Therefore
W' (y, x*) — ' (1, x)| < D (logp) < (logy) > 1 < (logqy)*.

pk <y P\q
Pl

Denote the quantity we want to estimate as

_ _ Y(y)
M= quQ Jmax. (mg;wxl @Z)(y,q,a)(p(q)‘~
(a)>Q1
Since
Y| 1 < 41
U(y,q,a) @(q)‘¢(q)zx:\w(y X)| < (log qy)* =0 ZX:
then
M < Q(log Qx)* + q;g o) 2 B [ (5, X1
I(q)>Q1

We have to take care just of the second term in the inequality above, since the first one is
smaller than the desired bound. It remains to prove

N= 2 <1q>22<y<x|¢ (X < (e1 = DF (e, Q. Qu)(log )™,

<@ ¥
1(q)>Q1

where F'(z,Q, Q1) is the function from Theorem 1.2. A primitive character x* mod ¢* induces
characters of moduli dg* and ¢'(y, x*) = 0 for x principal, we observe

N= ()ZZ2<<WJ9X)|< > ZQIgagx!wyx\Z

<o P\ *<Q Q
153, e x(q*) WS35, x(q*) k<

As it was noted in [1] for z > 0

and as ¢* < Q < z'/2, p(k)p(¢*) < @(kq*) and = > 4, we have
1 5E)y
o <
plka*) — 4p(q*)

log x.

For ¢ > 1 and x primitive character (mod ¢), we know that x is non-principal and ¥(y, x) =
' (y, x). Since we assumed @1 > 1 then we can replace 1'(y, x) by ¥(y, x) inside the internal
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sum for N. Combining it with an expression for N we get

*

N < 2P (0gz) Y ()ZW ) = R

a<Q vlq
(a)>Q1
Thus it remains to show that
4 -1 5
R S MF(m,Q,Ql)(logx)i
5E
Let .
q
R(q) = — = ) max [¥(y,x)|-

gp(q) (@ 2<y<zx
Partial summation gives us
1 *
> —Zzgla<\ ZR —Q—ZR +/ (ZR )
Q1%a<q PO () 2svse @0 4@ g<t

Now we apply Theorem 1.6
3" R(q) < cof(w,Q)(log )3,

q<Q
where f(z,Q) = Tz + 2Q%2% + 5Q225 + 4Qx¢. Then
R dt 5
Y. —= > max [¢ (yx)|<60<AfQQ1 +/ f:rt)(log:r)2
Q1<q<Q #(9) ><(q)2§yS t
where Q) f.Q)
X, T, 1 1
A , = — < — + 2302 + 5;103 2
7@, Q1) 0 3} Q1 Q Q2.
Calculating the integrals gives us
dt
f(a: )— < T + 23:2Q + 1Ox3Q2 + 46 log — @
Q1 t @) Q1
Finally
4(cq ) (1l4x Q 5
N§<+42 +15x3 2+4x610 ) logz)2.
58, \ 0, Q Q 0, (log )

3.1. Proof of Corollary 1.5. — Define two functions

Al A(n)

m= Y ) nd maa) = Y T

2<n<y O8N 52, logn

- n=a(mod q)
Since )
1 m(y2) 1
m(yiq,a) = w(y;q,0) = Y > i< S <27,
2<k< iogy pk<y 2<k S
0g 2 pF=a(mod q) -

where we used the fact that for x > 1(see for example [1, Lemma 3.1])

m(z) < 1.25506——.
log =
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110 A partial Bombieri—Vinogradov theorem with explicit constants

Similarly, 71 (y) — 7(y) < Qy%. Thus by partial summation we obtain the bound

T 1q,a) — Yap(t;q,a) — (T
1 (y:q.0) 1<y)‘:‘w(y q,a) w(y)/w(q)_/ ¥(t;q,a) ;ﬂ( )/‘P(Q)dt‘
v(q) logy 2 tlog?t
1 w(y)‘ 1/1(75)’ < 1 1 >
< . _ t: _ _ .
S Tog? ‘w(y,q,a) o) | T ¥(t;q,a) 20| \log2 ~ Togy
We have
max max |7(y;q,a)— W(y)‘
i<Q ISYST (g9 v(q)
1(g)>Q1
2 w(y)’ 1 1
< max max |Y(y,q,a)— + 222 <1 + )
log2 7 2<y<z a,(aq)=1 ( ) ©(q) ; ©(q)
Uq9)>Q1 Uq9)>Q1
2c1 7 1 1
< F(x,Q,Q1)(logx)2 + 2x2 (1—|—>,
(a)>Qq

where we used Theorem 1.2 to estimate the first summand. For x > 4

1 2
> (1+) < 2P0, Q, Q1) (log ) .
= ©(q)/) log2

(9)>Qq

D=

2z

and we are done.
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