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A NOTE ON KAWASHIMA FUNCTIONS

by

Shuji Yamamoto

Abstract. —This note is a survey of results on the function Fk(z) introduced by G. Kawashima, and its
applications to the study of multiple zeta values. We stress the viewpoint that the Kawashima function is
a generalization of the digamma function ψ(z), and explain how various formulas for ψ(z) are generalized.
We also discuss briefly the relationship of the results on the Kawashima functions with the recent work
on Kawashima’s MZV relation by M. Kaneko and the author.

Résumé. — (Une note sur les fonctions de Kawashima)L’objet de cette note est de faire une revue
des résultats sur la fonction Fk(z) définie par G. Kawashima et des applications à l’étude des valeurs
de fonctions zêtas multiples. Nous mettons l’accent sur le fait que cette fonction de Kawashima est une
généralisation de la fonction digamma ψ(z) et nous expliquons comment des formules valables pour ψ(z)
se généralisent. Nous survolons également les liens entre les résultats sur les fonctions de G. Kawashima
avec les travaux récents des relations MZV de Kawashima de M. Kaneko et de l’auteur.

1. Introduction

In [3], G. Kawashima introduced a family of special functions Fk(z), where k = (k1, . . . , kr)
is a sequence of positive integers, and proved some remarkable properties of them. As an
application, he obtained a large class of algebraic relations among the multiple zeta values
(MZVs), called Kawashima’s relation. Kawashima’s relation can be used to derive some of
other classes of relations (duality, Ohno’s relation, quasi-derivation relation and cyclic sum
formula; see [3, 6, 7]), and is expected to imply all algebraic relations.
In this note, we survey results on these functions Fk(z), which we call the Kawashima func-
tions, and their connections with MZVs. We stress the viewpoint that the Kawashima function
is a multiple version of the digamma function. Recall that the digamma function ψ(z) is de-
fined as the logarithmic derivative of the gamma function: ψ(z) = d

dz log Γ(z). This is one of
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152 A note on Kawashima functions

the well-studied functions in classical analysis. Here we list some formulas on ψ(z) (γ denotes
the Euler–Mascheroni constant):

– Newton series:

(1.1) ψ(z + 1) = −γ +
∞∑
n=1

(−1)n−1

n

(
z

n

)
.

– Interpolation property: For an integer N ≥ 0,

(1.2) ψ(N + 1) = −γ +
N∑
n=1

1
n
.

– Integral representation:

(1.3) ψ(z + 1) = −γ +
∫ 1

0

1− tz

1− t dt.

– Partial fraction series:

(1.4) ψ(z + 1) = −γ +
∞∑
n=1

( 1
n
− 1
n+ z

)
.

– Taylor series:

(1.5) ψ(z + 1) = −γ +
∞∑
m=1

(−1)m−1ζ(m+ 1)zm.

In Section 2.2, we define the Kawashima function Fk(z) by a Newton series generalizing (1.1).
Then we explain how the formulas (1.2), (1.3) and (1.4) are extended to Fk(z), in Sections 2.3,
2.4 and 2.5 respectively.
The Taylor expansion of Fk(z) at z = 0, which generalizes (1.5), is descirbed in Section 3.2.
In fact, there are three methods to compute the Taylor coefficients, each of which expresses
the coefficients in terms of MZVs (Proposition 3.1, Proposition 3.2 and Corollary 3.5). In Sec-
tion 3.3, we treat another important property of Kawashima functions, the harmonic relation
(Theorem 3.7). Then by combining it with the Taylor series (3.3), we deduce Kawashima’s
algebraic relation for MZVs (Corollary 3.8).
At the Lyon Conference, the author talked on a new proof of Kawashima’s MZV relation
based on the double shuffle relation and the regularization theorem, which is a part of the
work with M. Kaneko [2]. In Section 3.4, we briefly discuss the relationship between this proof
and the results on Kawashima functions presented in Sections 3.2 and 3.3.
Though this is basically an expository article on known results (largely due to Kawashima),
it includes some results which appear in print for the first time; Proposition 2.8, Proposi-
tion 2.11 and Corollary 2.12. On the other hand, we should also note that we leave out some
important works related with Kawashima functions and Kawashima’s MZV relation; par-
ticularly, their q-analogue studied by Takeyama [5], and the generalization of Kawashima’s
relation to ‘interpolated’ MZVs by Tanaka and Wakabayashi [8]. For details, we refer the
reader to their original articles.
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2. Definition and Formulas of the Kawashima function

In this section, we define the Kawashima function by generalizing the Newton series in (1.1),
and present generalizations of (1.2), (1.3) and (1.4).

2.1. Multiple harmonic sums. — Let k = (k1, . . . , kr) be an index, i.e., a sequence of
positive integers of finite length r. We call |k| := k1 + · · ·+ kr the weight of k. We regard the
sequence of length 0 as an index, the empty index denoted by ∅, though we mainly consider
nonempty indices.
For a nonempty index k = (k1, . . . , kr) and an integer N ≥ 0, we put

s(k, N) =
∑

0<m1<···<mr−1<mr=N

1
mk1

1 · · ·m
kr
r

,

s?(k, N) =
∑

0<m1≤···≤mr−1≤mr=N

1
mk1

1 · · ·m
kr
r

,

S(k, N) =
∑

0<m1<···<mr−1<mr≤N

1
mk1

1 · · ·m
kr
r

=
N∑
n=1

s(k, n),

S?(k, N) =
∑

0<m1≤···≤mr−1≤mr≤N

1
mk1

1 · · ·m
kr
r

=
N∑
n=1

s?(k, n).

In [9], integral representations of s?(k, N) and S?(k, N) are given:

Theorem 2.1. — For a nonempty index k = (k1, . . . , kr), put k = |k| and
A(k) = {k1, k1 + k2, . . . , k1 + · · ·+ kr−1},

∆(k) =
{

(t1, . . . , tk) ∈ (0, 1)k
∣∣∣∣∣ tj > tj+1 if j /∈ A(k),
tj < tj+1 if j ∈ A(k)

}
.

Then we have

s?(k, N) =
∫

∆(k)
ωδ(1)(t1) · · ·ωδ(k−1)(tk−1) tN−1

k dtk,(2.1)

S?(k, N) =
∫

∆(k)
ωδ(1)(t1) · · ·ωδ(k−1)(tk−1)1− tNk

1− tk
dtk,(2.2)

where ω0(t) = dt
t , ω1(t) = dt

1−t and

δ(j) =
{

0 if j /∈ A(k),
1 if j ∈ A(k).

Proof. — The first formula (2.1) is [9, Theorem 1.2], stated in different symbols (in [9], the
inverse order is adopted for the index). The second (2.2) is an immediate consequence of the
first, since

∑N
n=1 t

n−1
k = 1−tNk

1−tk . �

Definition 2.2. — We represent the integral in (2.2) by a labeled Hasse diagram as follows:

S?(k, N) = I

(
•
◦

◦

•
◦

◦

•
◦

◦

•
◦

◦

N

kr kr−1 k2 k1
)
.
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154 A note on Kawashima functions

In general, the symbol I(diagram) means an integral determined by the following rule:

– Each vertex (◦ or •) corresponds to a variable t between 0 and 1.

– Each edge connecting two vertices expresses an inequality t < t′ of corresponding vari-
ables, where the higher vertex in the diagram corresponds to the larger variable.

– For a vertex represented by ◦ (resp. •), we integrate ω0(t) (resp. ω1(t)). The • with the
label N (leftmost in the above diagram) expresses 1−tN

1−t dt instead of ω1(t).

Moreover, we abbreviate the above diagram as

S?(k, N) = I

(
k•N

)
.

As noted in [9], the integral representations (2.1) and (2.2) imply the following identities,
known as Hoffman’s duality:

Theorem 2.3 ([1, 3]). — Let k∨ be the Hoffman dual of k, i.e., the index characterized by
|k| = |k∨|, A(k)qA(k∨) = {1, 2, . . . , |k| − 1}.

Then we have

s?(k, N) =
N∑
n=1

(−1)n−1s?(k∨, n)
(
N − 1
n− 1

)
,(2.3)

S?(k, N) =
N∑
n=1

(−1)n−1s?(k∨, n)
(
N

n

)
.(2.4)

Proof. — Under the change of variables ti 7→ 1 − ti, ω0(ti) and ω1(ti) are interchanged and
∆(k) maps onto ∆(k∨). Hence the identities follow from

(1− tk)N−1 =
N∑
n=1

(−tk)n−1
(
N − 1
n− 1

)
,

1− (1− tk)N

1− (1− tk)
=

N∑
n=1

(−tk)n−1
(
N

n

)
. �

2.2. Newton series (definition). — Following Kawashima [3], we define the Kawashima
function by a Newton series:

Definition 2.4. — For a nonempty index k, we define the Kawashima function Fk(z) as

(2.5) Fk(z) =
∞∑
n=1

(−1)n−1s?(k∨, n)
(
z

n

)
.

As a convention, we put F∅(z) = 1.

From the Newton series formula for the digamma function (1.1), we see that F1(z) = ψ(z+1)+
γ. Hence the Kawashima function may be viewed as a generalization of (a slight modification
of) the digamma function.
With regard to the convergence of the series (2.5), Kawashima proved:
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Proposition 2.5 ([3, Proposition 5.1]). — Let k be a nonempty index and ρ the last compo-
nent of the Hoffman dual of k. Then the Newton series Fk(z) has the abscissa of convergence
−ρ, i.e., converges uniformly on compact sets in the half plane Re(z) > −ρ, and diverges on
Re(z) < −ρ.

In particular, all Kawashima functions are defined and holomorphic on Re(z) > −1. Hence,
at least, it makes sense to consider the Taylor expansion at z = 0. We present explicit results
in Section 3.2.

Remark 2.6. — If we write k = (k1, . . . , kq, 1, . . . , 1︸ ︷︷ ︸
l

), where kq > 1 or q = 0, then ρ is

given by

ρ =
{
l + 1 if q ≥ 1,
l if q = 0.

In [3, Proposition 5.1], the latter case seems to be missed.

2.3. Interpolation property. —

Proposition 2.7. — For any integer N ≥ 0, we have

(2.6) Fk(N) = S?(k, N).

Conversely, if a Newton series f(z) =
∑∞
n=0 an

(z
n

)
satisfies f(N) = S?(k, N) for all N ≥ 0,

then f(z) coincides with Fk(z) coefficientwise (i.e., an = (−1)n−1s?(k∨, n) hold for all n).

Proof. — The identity (2.6) follows from (2.4). For the second assertion, note the fact that
the identity

f(N) =
N∑
n=0

an

(
N

n

)
determines inductively the coefficients an by the values f(N). �

This characterization of the Kawashima function by its values at non-negative integers plays
an essential role in Kawashima’s proofs of the fraction series expansion (Theorem 2.14) and
the harmonic relation (Theorem 3.7).

2.4. Integral representation. —

Proposition 2.8. — With the same notation as in Theorem 2.1, we have

(2.7) Fk(z) =
∫

∆(k)
ωδ(1)(t1) · · ·ωδ(k−1)(tk−1)1− tzk

1− tk
dtk.

Proof. — Just as in the proof of (2.4), make the change of variables ti 7→ 1− ti and use the
identity

1− (1− tk)z

1− (1− tk)
=
∞∑
n=1

(−tk)n−1
(
z

n

)
. �
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156 A note on Kawashima functions

Remark 2.9. — By the diagram introduced in Definition 2.2, the formula (2.7) is written
as

Fk(z) = I

(
•
◦

◦

•
◦

◦

•
◦

◦

•
◦

◦

z

kr kr−1 k2 k1
)

= I

(
k•z

)
.

Example 2.10. — Let us describe the relation between the polygamma function ψ(m)(z) =( d
dz
)m
ψ(z) and the Kawashima function. For m = 0, we already know that F1(z) =

ψ(0)(z + 1) + γ. For m > 0, we have

ψ(m)(z + 1) =
( d

dz

)m ∫ 1

0

1− tz

1− t dt = −
∫ 1

0
(log t)m tz

1− tdt.

Since

(log t)m =
(
−
∫ 1

t

du
u

)m
= (−1)mm!

∫
1>u1>···>um>t

du1
u1
· · · dum

um
,

we have

ψ(m)(z + 1) = (−1)m−1m!
∫

1>u1>···>um>t>0

du1
u1
· · · dum

um

tz

1− tdt

= (−1)mm!
(
Fm+1(z)− ζ(m+ 1)

)
.

Here we use the integral representation (2.7) for Fm+1(z) together with the iterated integral
expression

(2.8) ζ(m+ 1) =
∫

1>u1>···>um>t>0

du1
u1
· · · dum

um

1
1− tdt.

Hence we get

(2.9) Fm+1(z) = (−1)m

m! ψ(m)(z + 1) + ζ(m+ 1)

for integers m > 0. Note that this also holds for m = 0 if we interpret ζ(1) as γ.

2.5. Fraction series. —Here we give two generalizations of (1.4). The first is an inductive
formula:

Proposition 2.11. — Let k = (k1, . . . , kr) be a nonempty index and write k− =
(k1, . . . , kr−1) (when r = 1, k− is the empty index ∅). Then we have

(2.10) Fk(z) =
∞∑
n=1

(
s?(k, n)−

Fk−(n+ z)
(n+ z)kr

)
.
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Proof. — Put k = |k| and k′ = |k−|. Then the tail of the multiple integral (2.7) is written as

dtk′
1− tk′

∫ 1

tk′

dtk′+1
tk′+1

∫ tk′+1

0

dtk′+2
tk′+2

· · ·
∫ tk−2

0

dtk−1
tk−1

∫ tk−1

0

1− tzk
1− tk

dtk

=
∞∑
n=1

dtk′
1− tk′

∫ 1

tk′

dtk′+1
tk′+1

∫ tk′+1

0

dtk′+2
tk′+2

· · ·
∫ tk−2

0

dtk−1
tk−1

∫ tk−1

0
(tn−1
k − tn+z−1

k )dtk

=
∞∑
n=1

dtk′
1− tk′

(1− tnk′
nkr

−
1− tn+z

k′

(n+ z)kr

)
.

Hence the whole integral is equal to
∞∑
n=1

∫
∆(k−)

k′−1∏
j=1

ωδ(j)(tj)
( 1
nkr

1− tnk′
1− tk′

− 1
(n+ z)kr

1− tn+z
k′

1− tk′

)
dtk′

=
∞∑
n=1

(
Fk−(n)
nkr

−
Fk−(n+ z)
(n+ z)kr

)
=
∞∑
n=1

(
s?(k, n)−

Fk−(n+ z)
(n+ z)kr

)
. �

For k = (1), the above formula (2.10) is the same as the formula (1.4) for the digamma
function. See Example 2.15 below.

Corollary 2.12. — With the same notation as in Proposition 2.11, Kawashima functions
satisfy the difference equation

(2.11) Fk(z)− Fk(z − 1) =
Fk−(z)
zkr

.

Proof. — Since both sides are analytic, we may assume that z is real. From Proposition 2.11,
we obtain

Fk(z)− Fk(z − 1) =
Fk−(z)
zkr

− lim
n→∞

Fk−(n+ z)
(n+ z)kr

,

hence the proposition follows from that
Fk−(z)
zkr

→ 0 (z →∞).

Moreover, from Proposition 2.8, we see that Fk(z) is monotone increasing for z ≥ 0. Therefore,
it suffices to show that

Fk−(N)
Nkr

= s?(k, N)→ 0 (N →∞).
Now we have an estimate

0 ≤ s?(k, N) ≤ s?
(
(1, . . . , 1︸ ︷︷ ︸

r

), N
)

= 1
N

N∑
n=1

s?
(
(1, . . . , 1︸ ︷︷ ︸

r−1

), n
)
,

and the statement is proven by induction on r. �

Note that, from (2.11), it follows that Fk(z) is meromorphically continued to the whole
complex plane.
The second generalization of (1.4), which seems more nontrivial than the first, was given by
Kawashima [4]. To present it, we make some definitions.
For a nonempty index k = (k1, . . . , kr), write

←−k = (kr, . . . , k1).
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158 A note on Kawashima functions

Definition 2.13. — For integers r > 0 and n1, . . . , nr > 0, we put

Pr(n1, . . . , nr; z) = 1
n1 · · ·nr−1(nr + z) ,

P̃r(n1, . . . , nr; z) = 1
n1 · · ·nr−1

( 1
nr
− 1
nr + z

)
.

Then, for a nonempty index k = (k1, . . . , kr) of weight k = |k|, we define

(2.12) Gk(z) =
∑

Pk1(n1, . . . , nk1 ; z)Pk2(nk1+1, . . . , nk1+k2 ; z) · · ·
· Pkr−1(nk1+···+kr−2+1, . . . , nk1+···+kr−1 ; z)
· P̃kr (nk1+···+kr−1+1, . . . , nk; z),

where the sum is taken over all sequences of positive integers n1, . . . , nk satisfying

(2.13)
{
nj < nj+1 if j /∈ A(k),
nj ≤ nj+1 if j ∈ A(k)

(recall that A(k) denotes the set {k1, k1 + k2, . . . , k1 + · · ·+ kr−1}).

For example,

G1,3(z) =
∑

0<n1≤n2<n3<n4

1
(n1 + z)n2n3

( 1
n4
− 1
n4 + z

)
.

By the following theorem, this is equal to F1,1,2(z).

Theorem 2.14 ([4, Theorem 4.4]). — For a nonempty index k, we have

(2.14) Fk(z) = G←−
k∨

(z).

Example 2.15. — Let us consider an index k = (k) of length 1. By (2.10) and (2.14), we
have

Fk(z) =
∞∑
n=1

( 1
nk
− 1

(n+ z)k
)

= G1,...,1︸︷︷︸
k

(z) =
∑

0<n1≤···≤nk

1
(n1 + z) · · · (nk−1 + z)

( 1
nk
− 1
nk + z

)
.

In particular, when k = 1, both expressions coincide with the formula (1.4) for the digamma
function. For k > 1, in contrast, it seems not easy to see that these two expressions are equal.

3. Kawashima’s relation of multiple zeta values

In this section, we discuss the connections of Kawashima functions with multiple zeta values.
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3.1. Notation related to multiple zeta values. —A nonempty index k = (k1, . . . , kr)
is said admissible if kr > 1. For such k, we define the multiple zeta value (MZV) and the
multiple zeta-star value (MZSV) by

ζ(k) =
∑

0<m1<···<mr

1
mk1

1 · · ·m
kr
r

=
∞∑
n=1

s(k, n),(3.1)

ζ?(k) =
∑

0<m1≤···≤mr

1
mk1

1 · · ·m
kr
r

=
∞∑
n=1

s?(k, n).(3.2)

We also regard the empty index ∅ as admissible, and put ζ(∅) = ζ?(∅) = 1.
Let H1 =

⊕
k Q·k be the Q-vector space freely generated by all indices k, and H0 the subspace

generated by the admissible indices. There are two Q-bilinear products ∗ and ∗̄, called the
harmonic products, for which ∅ is the unit element and which satisfies

k ∗ l = (k− ∗ l, kr) + (k ∗ l−, ls) + (k− ∗ l−, kr + ls),
k ∗̄ l = (k− ∗̄ l, kr) + (k ∗̄ l−, ls)− (k− ∗̄ l−, kr + ls),

where k = (k1, . . . , kr) and l = (l1, . . . , ls) are any nonempty indices and k− = (k1, . . . , kr−1),
l− = (l1, . . . , ls−1). In the following, we also need another product

k~ l =
(
k− ∗ l−, kr + ls

)
,

defined on the subspace of H1 generated by all nonempty indices.
We extend the map k 7→ s(k, z) to a linear map on H1. That is, for v =

∑
k ak · k ∈ H1, we

put

s(v, z) =
∑

k
ak s(k, z).

The same rule also applies to S(k, N), Fk(z), ζ(k) and so on. Then one can see that

s(v,N)s(w,N) = s(v ~ w,N),
S(v,N)S(w,N) = S(v ∗ w,N), S?(v,N)S?(w,N) = S?(v ∗̄ w,N),

ζ(v)ζ(w) = ζ(v ∗ w), ζ?(v)ζ?(w) = ζ?(v ∗̄ w).

Moreover, we define a linear operator v 7→ v? on H1 by

(k1, . . . , kr)? =
∑

0<j1<···<jq=r

(
k1 + · · ·+ kj1 , kj1+1 + · · ·+ kj2 , . . . , kjq−1+1 + · · ·+ kjq

)
,

so that s?(v,N) = s(v?, N), S?(v,N) = S(v?, N) and ζ?(v) = ζ(v?).
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160 A note on Kawashima functions

3.2. Taylor series. —We give three ways to express the Taylor coefficients of Fk(z) at
z = 0 in terms of MZVs. The first is to substitute(

z

n

)
= z(z − 1)(z − 2) · · · (z − n+ 1)

n!

=
(
z

1 − 1
)(

z

2 − 1
)
· · ·
(

z

n− 1 − 1
)
z

n

=
n∑

m=1

∑
0<a1<···<am=n

(−1)n−mzm

a1 · · · am

=
n∑

m=1
(−1)n−ms

(
(1, . . . , 1︸ ︷︷ ︸

m

), n
)
zm

into the definition (2.5) of Fk(z). The result is:

Proposition 3.1 ([3, Proposition 5.2]). — For any nonempty index k, the Taylor expansion
of Fk(z) at z = 0 is given by

(3.3) Fk(z) =
∞∑
m=1

(−1)m−1ζ
(
(1, . . . , 1︸ ︷︷ ︸

m

)~ (k∨)?
)
zm.

The second method is to differentiate repeatedly the integral representation (2.7) as in the
proof of (2.9). By this method, we obtain the following formula.

Proposition 3.2. — With the same notation as in Theorem 2.1, we put

Am(k) =
∫

∆(k,1,...,1︸︷︷︸
m

)
ωδ(1)(t1) · · ·ωδ(k−1)(tk−1) dtk

1− tk
dtk+1
tk+1

· · · dtk+m
tk+m

= I

 ◦
◦

k•
m

 .
Then we have

(3.4) Fk(z) =
∞∑
m=1

(−1)m−1Am(k)zm.

The third method is based on Theorem 2.14 and a computation of the derivatives of Gk(z)
at z = 0.

Definition 3.3. — Let k = (k1, . . . , kr) be a nonempty index of weight k = |k|. For an
index l = (l1, . . . , lk) of length k, define

(3.5) ζk(l) =
∑ 1

nl11 · · ·n
lk
k

where the sum is taken just as in the definition of Gk(z), i.e., over all sequences of positive
integers n1, . . . , nk satisfying (2.13).
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Proposition 3.4 ([4, Proposition 5.2]). — For a nonempty index k = (k1, . . . , kr) and an
integer m ≥ 1, put

Cm(k) =
∑

l1,...,lr−1≥0,lr≥1
l1+···+lr=m

ζk(1, . . . , 1︸ ︷︷ ︸
k1−1

, l1 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
kr−1

, lr + 1).

Then we have

(3.6)
G

(m)
k (0)
m! = (−1)m−1Cm(k).

Corollary 3.5. — For a nonempty index k, we have

(3.7) Fk(z) =
∞∑
m=1

(−1)m−1Cm(
←−
k∨)zm.

By comparing the above three expressions of the Taylor expansion of Fk(z), we get

(3.8) ζ
(
(1, . . . , 1︸ ︷︷ ︸

m

)~ (k∨)?
)

= Am(k) = Cm(
←−
k∨).

Since each of these expressions can be written as a sum of finitely many MZVs, this identity
gives linear relations among MZVs. The relation

(3.9) ζ
(
(1, . . . , 1︸ ︷︷ ︸

m

)~ (k∨)?
)

= Am(k)

appears in [2] with a different proof (see Section 3.4 below), while

(3.10) ζ
(
(1, . . . , 1︸ ︷︷ ︸

m

)~ k?
)

= Cm(←−k )

(k∨ is replaced by k) is given in [4, Proposition 5.3]. Kawashima also proved the equivalence
of (3.10) for m = 1 and the duality relation.

Example 3.6. — Let us consider the case of k = (1). Then the formula (3.3) says that

F1(z) =
∞∑
m=1

(−1)m−1ζ(1, . . . , 1︸ ︷︷ ︸
m−1

, 2)zm.

On the other hand, (3.4) and (3.7) give

F1(z) =
∞∑
m=1

(−1)m−1ζ(m+ 1)zm,

which is exactly the classical formula (1.5) in the introduction. Hence we obtain

ζ(1, . . . , 1︸ ︷︷ ︸
m−1

, 2) = ζ(m+ 1),

which is a special case of the duality.
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3.3. Harmonic relation. —

Theorem 3.7 ([3, Theorem 5.3]). — For any indices k and l, we have

(3.11) Fk(z)Fl(z) = Fk∗̄l(z).

By substituting the Taylor expansion (3.3) into this relation (3.11), we obtain algebraic
relations among MZVs.

Corollary 3.8 (Kawashima’s relation). — For any indices k, l and any integer m ≥ 1,
we have

(3.12)
∑
p,q≥1
p+q=m

ζ
(
(1, . . . , 1︸ ︷︷ ︸

p

)~ (k∨)?
)
ζ
(
(1, . . . , 1︸ ︷︷ ︸

q

)~ (l∨)?
)
− ζ

(
(1, . . . , 1︸ ︷︷ ︸

m

)~ ((k ∗̄ l)∨)?
)
.

3.4. Remark on the work of Kaneko–Yamamoto. —Here we briefly discuss the rela-
tionship of some formulas presented in this section with the results of [2].
Note that we may substitute the Taylor expansion (3.4) instead of (3.3) into the harmonic
relation (3.11). This implies

(3.13)
∑
p,q≥1
p+q=m

Ap(k)Aq(l) = −Am(k ∗̄ l).

In other words, we may rewrite Kawashima’s relation (3.12) in terms of the values Am(k),
using the identity (3.9).
In [2, Section 6], we go in reverse. That is, we directly deduce (3.13) from the regularized
double shuffle relation for MZVs. On the other hand, by making the change of variables
t 7→ 1− t (in other words, by using the duality relation for MZVs), we have

(3.14) Am(k) = I

 ◦
◦

k•
m

 = I


•
•

k∨◦
m

 .
Moreover, the integral-series identity [2, Theorem 4.1] implies that

(3.15) ζ
(
(1, . . . , 1︸ ︷︷ ︸

m

)~ (k∨)?
)

= I


•
•

k∨◦
m

 .
Hence the relation (3.13) is equivalent to Kawashima’s relation (3.12).
Thus we can prove Kawashima’s relation without using the Kawashima function. An advan-
tage of this proof is its algebraic nature. In fact, [2, Theorem 6.7] states that Kawashima’s
relation holds for any Q-linear map Z : H0 → R satisfying the regularized double shuffle rela-
tion and the duality relation. In this algebraic setting, transcendental objects such as Fk(z)
are not available.
On the other hand, it seems very hard to find relations such as (3.12) without considering
the Kawashima function. It remains still fruitful to investigate applications of the Kawashima
function to the study of MZVs.
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