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ACTION OF AN ENDOMORPHISM ON (THE SOLUTIONS OF) A
LINEAR DIFFERENTIAL EQUATION

by

Lucia Di Vizio

Abstract. —The purpose of this survey is to provide the reader with a user friendly introduction to
the two articles [8] and [9], which give a Galoisian description of the action of an endomorphism of a
differential field (K, ∂) on the solutions of a linear differential equation defined over (K, ∂). After having
introduced the theory, we give some concrete examples.

Résumé. — (Action d’un endormorphisme sur (les solutions d’) une équation différentielle linéaire)Le
but de ce survol est de présenter d’une façon accessible le contenu des articles [8] et [9], qui donnent une
description galoisienne de l’action d’un endomorphisme d’un corps différentiel (K, ∂) sur les solutions
d’une équation différentielle linéaire à coefficients dans (K, ∂). Après une présentation de la théorie nous
donnons quelques exemples d’applications.

1. Introduction

The purpose of this survey is to provide the reader with a user friendly introduction to the
two articles [8] and [9], which give a Galoisian description of the action of an endomorphism of
a differential field (K, ∂) on the solutions of a linear differential equation defined over (K, ∂).
Although this paper is totally independent from [6], the combination of the two surveys can
give an overview of the topic, which has the default of not being complete and the advantage
of being rather short, facilitating the orientation in a literature that has developed relatively
quickly.
Parameterized Galois theories start with the seminal works [15] and [2]. In the latter the
authors consider the dependence of a full set of solutions of a linear differential equation with
respect to a differential parameter, which is incarnated in a derivation linearly independent
from the one appearing in the equation. This work has been followed by [12], which considers
the problem of differential dependence of a full set of solutions of a linear difference equation.
See [11] for a detailed introduction to this topic or [6] for a shorter survey.

2010 Mathematics Subject Classification. — 12H10, 12H20, 34M15.
Key words and phrases. — Differential Galois theory, discrete parameter, difference algebra.



22 Action of an endomorphism on (the solutions of) a linear differential equation

The dependence of a full set of solutions of a linear functional equation with respect to a
discrete parameter is considered in [8], [9] and [18]. Due to the intrinsic difficulty of difference
algebra, the proofs, but also sometimes the statements, are more complicated than in the
analogous continuous theory. We will hide the technicalities, but the reader should not be
naive and should pay attention to easy generalizations of notions of usual algebra.
The parameterized Galois theories have given a great boost to Galois theory of functional
equations. Their developments and applications, that we have collected in a separated list of
references at the end of the paper, go beyond the scope of this survey.
We introduce the definitions of difference and differential algebra that are essential for the
content of this survey. A more detailed, but still quite short, presentation can be found in [8].
For general introductions to these topics, see [4], [13], [16].

2. A quick overview of differential Galois theory

For the reader convenience we give a very short introduction to classical differential Galois
theory, as a sort of guideline for the pages below. There are numerous introductions to this
topic, going from short notes to thick volumes. We cite here a selection of references [1], [5],
[17], [20], [21], [22].

2.1. Differential algebra. —A ∂-ring (R, ∂) is a ring R equipped with a derivation ∂, i.e.,
with a linear map ∂ : R→ R satisfying the Leibniz rule ∂(ab) = a∂(b)+∂(a)b for all a, b ∈ R.
For simplicity we will frequently say that R is a ∂-ring. All rings in this paper are supposed
to be commutative with 1 and to have characteristic zero. The ring R∂ = {r ∈ R : ∂(r) = 0}
is the subring of ∂-constants of R. A ∂-ideal of R is an ideal which is stable by the action
of ∂. A maximal ∂-ideal of R is a ∂-ideal of R that is maximal for the inclusion among the
∂-ideals. A maximal ∂-ideal does not need to be maximal but it is always prime. A ∂-ring is
said to be ∂-simple if it has no nontrivial ∂-ideals.
A ∂-ring is called a ∂-field if the underling ring is a field. Its subring of ∂-constants is always
a field. Let (K, ∂) be a ∂-field. A ∂-field extension (L, ∂)/(K, ∂) is a field extension L/K such
that both L and K are ∂-fields and that the derivation of L extends the derivation of K. If
A is a subset of L then K{A}∂ (resp. K〈A〉∂) is the smallest ∂-ring (resp. ∂-field) containing
K and A.

2.2. A crush course in differential Galois theory. — Let (K, ∂) be a ∂-field of charac-
teristic 0. One can naturally consider a linear differential system ∂(y) = Ay with coefficient
in K, i.e., a linear differential system associated with a matrix A that belongs to the ring
Mn(K) of square matrices of order n with coefficients in K.
Let us suppose that the field of ∂-constants of K is algebraically closed. Under this assump-
tion, we know that there exists a Picard–Vessiot extension L/K for ∂(y) = Ay, i.e., a ∂-field
extension (L, ∂)/(K, ∂), such that

(1) there exists U ∈ GLn(L), whose entries generate L over K and verifying ∂(U) = AU ;

(2) L∂ = K∂ =: k.

The differential Galois group of ∂(y) = Ay is defined as
Gal(L/K) := {ϕ is a field automorphim of L/K, commuting to ∂}.
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Lucia Di Vizio 23

Any automorphism ϕ ∈ Gal(L/K) sends U to another invertible matrix of solutions of ∂y =
Ay, so that U−1ϕ(U) ∈ GLn(k). This gives a (faithful) representation Gal(L/K)→ GLn(k)
of Gal(L/K) as a group of matrices: It turns out that Gal(L/K) is an algebraic group. One
can define a Galois correspondence among the intermediate ∂-fields of L/K and the linear
algebraic subgroups of Gal(L/K).
One of the most important results of the Galois theory of differential equations is that the
dimension dimk Gal(L/K) of Gal(L/K) as an algebraic variety is equal to the transcendence
degree of the extention L/K.

3. Examples of situations encompassed by the theory below

We are presenting here a few (baby) examples and problems that the reader should keep in
mind reading the sequel.

Example 3.1. — Let us consider the field of rational functions C(α, x) in the variables α and
x, equipped with the usual derivation ∂ = d

dx , acting trivially on C(α), and the automorphism
τ : C(α, x) −→ C(α, x),

f(α, x) 7−→ f(α+ 1, x).
A solution of the rank 1 linear differential equation

∂ = α

1− xy

is given by the hypergeometric series:

Fα =
∑
n≥0

(α)n
n! xn ∈ C(α)[[x]],

where (a)0 = 1 and (α)n+1 = (α+ n)(α)n, for any n ≥ 1. One can naturally ask whether Fα
is also solution of a (linear) τ -equation, which in this setting would be also called a contiguity
relation. Of course, it is easy to find out that Fα is solution of

τ(y) = 1
1− xy.

The question that we address here is the following: would it be possible to read the existence
of the τ -equation above on a convenient Galois group?

Example 3.2. — Another instance of the phenomenon above comes from p-adic differential
equations. Indeed the action of a Frobenius lift on their solutions is of great help in their
study.
Let p be a prime number and let us consider the field Cp with its norm | · |, such that |p| = p−1,
and an element π ∈ Cp verifying πp−1 = −p. Following [10, Chapter II, Section 6] the series
θ(x) ∈ Cp[[x]], defined by θ(x) = exp(π(xp − x)), has a radius of convergence bigger than 1.
Therefore it belongs to the field E†Cp

, consisting of all series
∑
n∈Z anx

n with an ∈ Cp such
that

– ∃ ε > 0 such that ∀ ρ ∈ ]1, 1 + ε[ we have limn→±∞ |an|ρn = 0 and

– supn |an| is bounded.
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24 Action of an endomorphism on (the solutions of) a linear differential equation

One can endow E†Cp
with an endomorphism F :

∑
n∈Z anx

n 7→
∑
n∈Z anx

pn. (For the sake of
simplicity we assume here that F is Cp-linear, which has no consequences on this specific
example.) The solution exp(πx) of the equation ∂(y) = πy, where ∂ = d

dx , does not belong
to E†Cp

, since it has radius of convergence 1. On the other hand, exp(πx) is a solution of an
order one linear difference equation with coefficients in E†Cp

:

F (y) = θ(x)y, θ(x) ∈ E†Cp
.

So, here is another very classical situation in which one considers solutions of a linear dif-
ferential equation and finds difference relations among them.

Example 3.3. — Let us consider the field C(x) of rational functions with complex coeffi-
cients, equipped with the derivative ∂ = x d

dx and the endomorphism σ : f(x) 7→ f(xd), where
d ≥ 2 is a fixed integer. Then x1/d is solution of the differential equation

∂(y) = y

d
,

and satisfies a σ-equation, namely σ(y) = x. This kind of σ-equations is better known as a
Mahler equation.

Remark 3.4. — Here are some comments:

(1) In the examples above, the difference operator is sometimes an automorphism and
sometimes an endomorphism. In general we will suppose that we are dealing with an
endomorphism acting on the solutions of the differential equation, to include many cases
of interest, such as the action of the Frobenius of p-adic differential equations or the
case of Mahler equations.
Notice that a field with an endomorphism can always be embedded in a bigger field with
an automorphism, called its inversive closure. So one can always replace (K,σ) with
its inversive closure. However, in [8] the authors make great efforts to avoid such an
extension, as far as possible. In the theory of p-adic differential equations, for instance,
replacing the base field with its inversive closure would erase the distinction between
strong and weak Frobenius structures.

(2) In the examples above, all the difference relations are linear. This is a coincidence, and,
in general we will deal also with the existence of non-linear difference relations among
solutions of differential equations.

4. Difference algebra and geometry

4.1. Difference algebra. —A σ-ring (R, σ) is a ring R equipped with an endomorphism
σ. For simplicity we will frequently say that R is a σ-ring. The ring Rσ = {r ∈ R : σ(r) = r}
is the subring of σ-constants of R. A σ-ideal of R is an ideal which is stable by the action of σ.
A maximal σ-ideal of R is a σ-ideal of R that is maximal for the inclusion among the σ-ideals.
Notice that a maximal σ-ideal does not need to be either maximal or prime. A σ-ring is said
to be σ-simple if it has no nontrivial σ-ideals.
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Lucia Di Vizio 25

4.1.1. σ-fields. —A σ-ring is called a σ-field (resp. a σ-domain) if the underlying ring is a
field (resp. a domain and σ is injective). The subring of σ-constants of a σ-field is always a
field. Let (k, σ) be a σ-field. A σ-field extension (L, σ)/(k, σ) is a field extension L/k such
that both L and k are σ-fields and that the endomorphism of L extends the endomorphism
of k. If A is a subset of L then k{A}σ ⊂ L (resp. k 〈A〉σ ⊂ L) is the smallest σ-ring (resp.
σ-field) containing k and A.

Definition 4.1 ([16, Definition 4.1.7]). — Let L|k be a σ-field extension. Elements a1, . . . ,
an ∈ L are called transformally (or σ-algebraically) independent over k if the elements
a1, . . . , an, σ(a1), . . . , σ(an), . . . are algebraically independent over k. Otherwise, they are
called transformally dependent over k.
We define the σ-transcendence degree of L|k, or σ- trdeg(L|k) for short, as the maximal
cardinality of a subset of L whose elements are σ-transformally independent over k.

The ring of σ-polynomials in the indeterminates x1, . . . , xr with coefficients in k, or over k,
is the σ-ring k{x1, . . . , xr}σ, where x1, . . . , xr are σ-algebraically independent over k.

Definition 4.2 ([14, Definition 3.1, p. 1330]). — A σ-field k is called linearly σ-closed if
every linear system of difference equations over k has a fundamental solution matrix in k.
That is, for every B ∈ GLn(k) there exists Y ∈ GLn(k) with σ(Y ) = BY .
We say that a σ-field k is σ-closed1 if every system of difference polynomial equations with
coefficients in k, which posses a solution in some σ-field extension of k, has a solution in k
(see also [3, Section 1.1]).

Working with a σ-closed σ-field spares some technicalities, but not all of them, and not the
most significant. Moreover being σ-closed is in general quite a strong requirement for a σ-
field. Being linearly σ-closed is a weaker assumption, although quite strong. For instance, the
field of meromorphic functions over C (resp. C r {0}) is σ-closed for σ : f(x) 7→ f(x + 1)
(resp. σ : f(x) 7→ f(qx), for q ∈ C, q 6= 0 and |q| 6= 1). This is not at all a trivial remark.
See [19] for a proof.
4.1.2. k-σ-algebras. —A k-σ-algebra S is a k-algebra equipped with an endomorphism σ,
such that the natural morphism k → S commutes to σ. If there exists a finite set A ⊂ S such
that S = k{A}σ then we say that S is a finitely σ-generated k-σ-algebra.
Let k be a σ-field and S a k-σ-algebra. We say that S is σ-separable over k if σ is injective
on the k-σ-algebra S ⊗k k′, for every σ-field extension k′ of k.

4.2. Breviary on σ-algebraic groups. —

Definition 4.3. — Let k be a σ-field. A σ-algebraic group over k is a (covariant) functor
G from the category of k-σ-algebras to the category of groups which is representable by a
finitely σ-generated k-σ-algebra. I.e., there exists a finitely σ-generated k-σ-algebra k{G}
such that

G ' Algσk(k{G}, · ).

Here Algσk stands for morphisms of k-σ-algebras. By the Yoneda lemma k{G} is unique up
to isomorphisms.

1A σ-closed σ-field is also called a model of ACFA, in model theory language.
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26 Action of an endomorphism on (the solutions of) a linear differential equation

The most natural example in this setting is the σ-algebraic group GLn,k which is represented
by the finitely σ-generated k-σ-algebra k{X,detX−1}σ, where X = (Xi,j) is a square matrix
of order n.
We say that H is a σ-closed subgroup of G, if it is a subfunctor of G. We will be interested
in σ-closed subgroups of GLn,k, i.e. σ-algebraic groups that are represented by quotient of
k{X,detX−1}σ by a convenient σ-ideal.

Remark 4.4. — A σ-closed subgroup H of a σ-algebraic group G can, of course, be normal,
in the usual sense. See Definition A.41 and Theorem A.43 in [8] for the existence of the
quotient G/H.

We need to define the σ-dimension σ-dimk(G) of a σ-algebraic group G over a σ-field k. We
refer to [8, Appendix A.7] for a discussion of the different issues of such a definition.

Definition 4.5. — If G is a σ-algebraic group associated with the finitely σ-generated
k-σ-algebra k{G} we define:

σ- dimk(G) =
⌊

lim sup
i→∞

(
dim(k[a, . . . , σi(a)])

i+ 1

)⌋
,

where bxc denotes the largest integer not greater than x, a = (a1, . . . , am) is a σ-generating
set of k{G} over k and the dim(k[a, . . . , σi(a)]) is the usual Krull dimension.

Remark 4.6. — If k{G} is a σ-domain σ-finitely generated over k, then σ- dimk(G) coin-
cides with σ- trdeg(k{G}|k). See [8, Lemma A.26].

We will need also the following definition:

Definition 4.7. — Let G be a σ-closed subgroup of GLn,k. We call G a σd-constant sub-
group of GLn,k if G is contained in the σ-closed subgroup GLσd

n,k of GLn,k defined by the
σ-ideal generated by σd(X)−X.
If k̃ is a σ-field extension of k, we say that G is conjugate over k̃ to a σd-constant group if
there exists h ∈ GLn(k̃) such that hG

k̃
h−1 ≤ GL

n,̃k
is σd-constant, where G

k̃
is the restriction

of the functor G to the category of k̃-σ-algebras.

If G is a σ-closed subgroup of GLn,k, then it is defined by a σ-ideal I(G) of k{X,detX−1}σ.
Notice that k{X,detX−1}σ contains a copy of k[X,detX−1], which is the ring of rational
function of the linear algebraic group GLn,k.2 The Zariski closure G[0] of G is the linear
algebraic subgroup of GLn,k defined by the ideal I(G) ∩ k[X,detX−1].

4.3. Issues with difference algebras and fields. — Let (k, σ) be a characteristic 0 σ-
field. The theory below produces a Galois group which is a σ-closed subgroup of GLn,k.
The problem with difference geometry is the following: no matter how huge are the σ-field
extensions of the σ-field k that we consider, we may never get enough zeros of our ideal to
characterize its geometry. A more serious way of restating this problem is the following: one

2To be precise one should introduce a different notation for the σ-algebraic group GLn,k and the linear algebraic
group GLn,k. According to the definition that follows, we could call GLn,k[0] the linear algebraic group, but
it appears as a useless complication of the notation, since the meaning will be always clear from the context.
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Lucia Di Vizio 27

needs to look at the Galois group as a difference group scheme to actually establish a Galois
correspondence. The following example should clarify the situation.

Example 4.8. — Let us consider the σ-field k and the σ-closed subgourp G of Gm,k defined
by {t2 = 1}: This means that the Hopf algebra of Gm,k is the σ-ring of σ-polynomials k

{
t, 1
t

}
σ

and that G is the σ-closed subgroup defined by the σ-ideal generated by the σ-polynomial
t2 − 1. Let S be any σ-field extension of k. Clearly, the group of S-rational points of G is
G(S) = {1,−1}.
Let H be a σ-closed subgroup of G defined by the σ-ideal generated by {t2−1, σ(t)−1}. Once
more for any σ-field extension S of k we have H(S) = {1}, although such an ideal is not
trivial, in any sense.
Now let us consider the rational points of those groups in some k-σ-algebras. Notice that an
endomorphism of a ring (or of a k-algebra) does not need to be injective, as in the case of
σ-fields: This allows the set of zeros to be much larger in some k-σ-algebras than in any
σ-field. Typically, we can consider the rational points of G in a k-σ-algebra S which is an
extension of the k-σ-algebra k{t, t−1}σ/(t2 − 1). Similarly for the group H and the algebra
k{t, t−1}σ/(t2 − 1, σ(t)− 1).
This justifies the fact that we cannot simply consider a set of zeros in a large σ-field, but we
are obliged to look at such groups as difference group schemes, i.e. group functors from the
category of k-σ-algebras to the category of groups, as in previous subsection. The problem will
become even clearer in the Example 4.9 below.

4.4. Difference-differential algebra. —A σ∂-ring R is a ring which is both a σ-ring and
a ∂-ring and that satisfies the following compatibility condition: We suppose that there exists
a ∂-constant } such that ∂σ = }σ∂.
The notions already introduced above for ∂-rings and σ-rings intuitively generalize to this
case, so that we have σ∂-ideals, σ∂-simple σ∂-ring, σ∂-fields, σ∂-field extensions, K-σ∂-
algebras, and so on.

Example 4.9. — Let us consider the σ∂-field K = C(x), with the automorphism σ(x) =
x + 1, and the usual derivation ∂ = d

dx . Moreover we consider the σ∂-field extension of K
defined by:

L := K〈
√
x〉σ,∂ = K(

√
x+ i;∀ i ∈ Z, i ≥ 0)

and the group Autσ∂(L/K) of automorphisms ϕ of L over K, that commute to σ and ∂. Since
ϕ commutes with the derivation and

√
x is solution of the equation ∂(y) = y

2x , there exists a
∂-constant cϕ such that ϕ(

√
x) = cϕ

√
x. Moreover, ϕ(x) = x implies that c2

ϕ = 1. Finally the
commutativity with σ imposes that ϕ(

√
x+ i) = σi(cϕ)

√
x+ i. Of course the only choice in

C for cϕ is 1 or −1. So:

Autσ∂(L/K) ∼= {c2
ϕ = 1} = {1,−1} ⊂ Gm(C).

The invariant σ-field of such a group is K(
√
x+ i

√
x+ j;∀ i, j ∈ Z, i, j ≥ 0), which compro-

mises any hope of having a decent Galois correspondence.
Now let us consider the subgroup Gm(C) defined by {c2

ϕ = 1, σ(cϕ) = 1}. If we look at its C
points, it coincides with the trivial group {1} and therefore its invariant field is the whole field
L. Clearly this is not what we want: we really would like to be able to say that the invariant
field of the subgroup defined by {c2

ϕ = 1, σ(cϕ) = 1} is K(
√
x+ i;∀ i ∈ Z, i ≥ 1).

Publications mathématiques de Besançon – 2019/1



28 Action of an endomorphism on (the solutions of) a linear differential equation

To make sense of the situation, as we have already pointed out, one is obliged to develop a
schematic approach and look for rational points not only in σ-field extensions of C but in the
whole category of C-σ-algebras. See next section.

This example is already in [8]. Many more can be found in loc. cit.

5. Difference Galois theory of differential equations

The structure of the difference Galois theory of differential equations is not different from the
structure of any Galois theory: One needs to construct a splitting ring, the σ-Picard–Vessiot
ring, and to construct a group of automorphisms of such a ring, or of its quotient field, if it is
a domain. Then one can classify the groups appearing in the theory and recover information
on the solutions of the differential system considered in the first place.

Notation 5.1. — We consider a σ∂-field (K, ∂, σ), with its field of ∂-constants k = K∂ ,
and we suppose that there exists } ∈ k such that

(5.1) ∂σ = }σ∂,

so that k is a σ-field. All fields are in characteristic 0. Our object of study will be a linear
differential system

(5.2) ∂(y) = Ay, with A ∈Mn(K).

Remark 5.2. — If we can find a solution column y of (5.2) in a σ∂-field extension of K,
then σ(y) verifies the differential system: ∂(σ(y)) = }σ(∂y) = }σ(A)σ(y). More generally, for
any positive integer d we can iterate ∂(y) = Ay and obtain:

(5.3) ∂(σd(y)) = }dσd(∂(y)) = }dσd(A)σd(y),

where }d = }σ(}) . . . σd−1(}).
If U is a fundamental solution of ∂(y) = Ay is some σ∂-field extension of K, we can be
interested in finding all algebraic relations among the entries of U, σU, . . . , σdU . This problem
can be tackled studying the differential Galois groups of the following linear differential system
of order n(d+ 1):

(5.4) ∂(y(d)) =



A 0 . . . . . . 0

0 σ(A) . . . ...
... . . . . . . . . . ...
... . . . . . . 0
0 . . . . . . 0 }dσd(A)


y(d)

If we do not want to bound the order d we need to give a meaning to a “limit” of the
differential Galois groups constructed for any d. The σ-Galois group of ∂(y) = Ay introduced
below incarnates, heuristically, this limit. We are not going to introduce any notion of limit,
but this idea is behind all parameterized Galois theories.
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5.1. Construction of σ-Picard–Vessiot rings. —

Definition 5.3. — A K-σ∂-algebra R is called a σ-Picard–Vessiot ring for ∂(y) = Ay if:

– there exists U ∈ GLn(R) such that ∂(U) = AU and R = K{U,detU−1}σ;

– R is ∂-simple.

A σ-Picard–Vessiot ring (over K) is a K-σ∂-algebra that is a σ-Picard–Vessiot ring for a
differential system ∂y = Ay, with coefficients in K.

The definition above is subtle and needs some comments. Indeed let us try to construct the
σ∂-Picard–Vessiot ring naively. We take the ring of σ-polynomials K{X,detX−1}σ, where
X = (Xi.j) is a square matrix of order n, and we define a derivation extending ∂. Since the
entries of X are σ-algebraically independent, we can do that as we see fit. We set ∂X = AX,
∂(σ(X)) = }σ(∂X) = }σ(A)σ(X), and more generally, for any positive integer d:
(5.5) ∂(σd(X)) = }dσd(∂(X)) = }dσd(A)σd(X).
We have endowed K{X,detX−1}σ with a structure of σ∂-ring. Now we can consider a max-
imal σ∂-ideal M of K{X,detX−1}σ. The ring K{X,detX−1}σ/M almost satisfies the con-
ditions of the definition above, apart that it is σ∂-simple and most likely not ∂-simple: It
has no proper ideals invariant under both σ and ∂, but it may have a proper ideal which is
invariant under the action of ∂. The point behind the definition of σ∂-Picard–Vessiot ring
is that there exist maximal σ∂-ideals that are also maximal ∂-ideals. This means that the
construction of R must be more sophisticated than the one that we have sketched above.
On the other hand, asking that R is ∂-simple has some advantages: A maximal ∂-ideal is at
least prime, while a maximal σ∂-ideal does not need to be prime, so that a σ-Picard–Vessiot
ring is always a domain and even a σ-domain.

Proposition 5.4 ([23, Lemma 2.16, p. 1392], [8, Proposition 1.12]). — Let K be a σ∂-
field, k := K∂ be algebraically closed and A ∈ Mn(K). Then there exists a σ-Picard–Vessiot
extension R for ∂y = Ay such that R∂ = K∂ = k.

Idea of the proof. — For each one of the systems ∂(y) = Ady, as in (5.4), we are able to
construct a (classical) Picard–Vessiot ring by taking the quotient of a ring of polynomials in
the (d+ 1)n2 indeterminates X,σ(X), . . . , σd(X):

Sd := K
[
X, 1

det(X) , σ(X), 1
σ(det(X)) , . . . , σ

d(X), 1
σd(det(X))

]
by some maximal ∂-ideal md of Sd. Here X is an n × n-matrix of σ-indeterminates and the
action of ∂ on Sd is determined by ∂(X) = AX and the commutativity relation (5.1). The
difficulty is to make this construction compatible with the natural injection Sd−1 → Sd and the
action of σ: Namely we need to construct the ideals md so that md−1 ⊂ md and σ(md−1) ⊂ md.
This difficulty can be resolved by a recourse to the prolongation lemma for difference kernels
(see [4, Lemma 1, Chapter 6, p. 149]). We set m :=

⋃
d≥0 md and R := k{X, 1

det(X)}σ/m. So R
is the union of the ∂-simple rings Rd := Sd/md. One concludes using some standard theorems
of differential algebra. �

The uniqueness of the σ-Picard–Vessiot rings is a subtle matter, which may require some
technical assumptions. We recall only one statement and refer to [8, Section 1.1.2] for a
deeper discussion of the problem.
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Corollary 5.5 ([8, Corollary 1.17]). — Let K be a σ∂-field such that K∂ is a σ-closed
σ-field. Let R1 and R2 be two σ-Picard–Vessiot rings for ∂(y) = Ay with A ∈Mn(K). Then
there exists an integer l ≥ 1 such that R1 and R2 are isomorphic as K-∂σl-algebras.

We remind some first properties of σ-Picard–Vessiot ring:

Lemma 5.6. — Let R be a σ-Picard–Vessiot ring over K. We have:

(1) R is σ∂-simple.

(2) R is a σ-domain. In particular σ and ∂ extend to the field of fractions L of R and
L∂ = R∂.

(3) In the notation above, let R be the σ-Picard–Vessiot ring of ∂y = Ay, with A ∈Mn(K),
and L be the field of fractions of R. If Y ∈ GLn(L) is a solution matrix of ∂y = Ay,
then for any integer d ≥ 0:

K

[
Y,

1
detY , σ(Y ), 1

detσ(Y ) , . . . , σ
d(Y ), 1

detσd(Y )

]
⊂ L

is a (classical) Picard–Vessiot ring for the differential system (5.4).

Proof. — The first assertion is a tautology. For the second assertion see [8, Lemma 1.4]. The
third assertion is proved in loc. cit., Lemma 1.3. �

5.2. σ-Picard–Vessiot extensions. —

Definition 5.7. — Let K be a σ∂-field and A ∈ Mn(K). A σ∂-field extension L of K is
called a σ-Picard–Vessiot extension for ∂(y) = Ay if

(1) there exists Y ∈ GLn(L) such that ∂(Y ) = AY and L = K 〈Yij | 1 ≤ i, j ≤ n〉σ;

(2) L∂ = K∂ .

Proposition 5.8 ([8, Proposition 1.5]). — Let K be a σ∂-field and A ∈ Mn(K). If L|K
is a σ-Picard–Vessiot extension for ∂(y) = Ay with solution matrix Y ∈ GLn(L), then
R := K{Y, 1

det(Y )}σ is a σ-Picard–Vessiot ring for ∂(y) = Ay. Conversely, if R is a σ-
Picard–Vessiot ring for ∂(y) = Ay with R∂ = K∂, then the field of fractions of R is a
σ-Picard–Vessiot extension for ∂(y) = Ay.

As far as the uniqueness is concerned we recall only the statement below. Notice that two
σ-field extensions L1 and L2 of a σ-field K are compatible if there exists a σ-field M which
is a σ-field extension of K and two endomorphisms of σ-fields Li →M , for i = 1, 2.

Proposition 5.9 ([8, Corollary 1.18, Proposition 1.19]). — Let K be a σ∂-field such that
K∂ is a σ-closed σ-field. Let L1 and L2 be two σ-Picard–Vessiot extensions for ∂(y) = Ay
with A ∈Mn(K). Then

(1) there exists an integer l ≥ 1 such that L1|K and L2|K are isomorphic as ∂σl-field
extensions of K.
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(2) the σ∂-fields L1 and L2 are isomorphic (as σ∂-field extensions of K) if and only if L1
and L2 are compatible σ-field extensions of K.

To conclude this subsection we consider the following very natural situation:

Proposition 5.10 ([8, Proposition 1.14]). — Let k be a σ-field and let K = k(x) denote
the field of rational functions in one variable x over k. Extend σ to K by setting σ(x) = x
and consider the derivation ∂ = d

dx . Thus K is a σ∂-field with } = 1 and K∂ = k. Then for
every A ∈Mn(K), there exists a σ-Picard–Vessiot extension L|K for ∂(y) = Ay.

Proof. — Since we are in characteristic zero, there exists an a ∈ kσ which is a regular point for
∂(y) = Ay. That is, no denominator appearing in the entries of A vanishes at a. We consider
the field k((x−a)) of formal Laurent series in x−a as a σ∂-field by setting ∂(

∑
bi(x−a)i) =∑

ibi(x − a)i−1 and σ(
∑
bi(x − a)i) =

∑
σ(bi)(x − a)i. Then k((x − a)) is naturally a σ∂-

field extension of K. By choice of a, there exists a solution matrix Y ∈ GLn(k((x − a))) for
∂(y) = Ay. Since k((x−a))∂ = k it is clear that L := K〈Y 〉σ ⊂ k((x−a)) is a σ-Picard–Vessiot
extension for ∂(y) = Ay. �

5.3. The σ-Galois group and its properties. — If R ⊂ R′ is an inclusion of σ∂-rings,
we denote by Autσ∂(R′|R) the automorphisms of R′ over R in the category of σ∂-rings, i.e.,
the automorphisms are required to be the identity on R and to commute with ∂ and σ.
Let us suppose that R is a σ∂-ring and that S is a k-σ-algebra. If we endow S with a trivial
action of ∂, then we can define a natural structure of σ∂-ring over the tensor product R⊗k S:
We have ∂(r ⊗ s) = ∂(r)⊗ s for r ∈ R and s ∈ S. Now we are ready to introduce the notion
of σ-Galois group:

Definition 5.11. — Let L|K be a σ-Picard–Vessiot extension with σ-Picard–Vessiot ring
R ⊂ L and field of ∂-constants k = K∂ . We define σ-Gal(L|K) to be the functor from the
category of k-σ-algebras to the category of groups given by

σ-Gal(L|K)(S) := Autσ∂(R⊗k S|K ⊗k S),
for every k-σ-algebra S. The functor σ-Gal(L|K) is defined on morphisms by base extension.
We call σ-Gal(L|K) the σ-Galois group of L|K.

We are interested in the geometrical properties of σ-Gal(L|K).

Proposition 5.12 ([8, Proposition 2.5]). — Let L|K be a σ-Picard–Vessiot extension with
σ-Picard–Vessiot ring R ⊂ L. Then σ-Gal(L|K) is a σ-algebraic group over k = K∂. The
choice of matrices A ∈Mn(K) and Y ∈ GLn(L) such that L|K is a σ-Picard–Vessiot exten-
sion for ∂(y) = Ay with fundamental solution matrix Y defines a σ-closed embedding

σ-Gal(L|K) ↪→ GLn,k
of σ-algebraic groups.

Indeed, if ϕ ∈ σ-Gal(L|K)(S), for some k-σ-algebra S, then Y −1ϕ(Y ) must be an invertible
square matrix with coefficients in S, so an element of GLn,k(S). We will identify σ-Gal(L|K)
with its image in GLn,k.
Notice that another choice of fundamental solution matrix yields a conjugated representation
of σ-Gal(L|K) in GLn,k. Therefore sometimes, we will consider σ-Gal(L|K) as a σ-closed
subgroup of GLn,k without mentioning the fundamental solution matrix Y .
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Now we state an important property of the σ-Galois group, which is extensively used in
applications.

Proposition 5.13 ([8, Proposition2.17]). — Let L|K be a σ-Picard–Vessiot extension with
σ-Galois group G and constant field k = K∂. Then

σ- trdeg(L|K) = σ-dimk(G).

Finally we want to state a result that gives the relation between the σ-Galois group and the
usual Galois group of a differential equation.

Proposition 5.14 ([8, Proposition 2.15]). — Let L|K be a σ-Picard–Vessiot extension with
σ-field of ∂-constants k = K∂. Let A ∈ Mn(K) and Y ∈ GLn(L) such that L|K is a σ-
Picard–Vessiot extension for ∂(y) = Ay with fundamental solution matrix Y . We consider
the σ-Galois group G of L|K as a σ-closed subgroup of GLn,k via the embedding associated
with the choice of A and Y . Set L0 = K (Y ) ⊂ L.
Then L0|K is a (classical) Picard–Vessiot extension for the linear system ∂(y) = Ay. The
(classical) Galois group of L0|K is naturally isomorphic to G[0], the Zariski closure of G
inside GLn,k.

Remark 5.15. — On can defined a d-th order Zariski closure G[d] of G and compare it
to the Galois group of (5.4). By now, the reader has probably an intuition on the kind of
statement that one could obtain generalizing the proposition above. The details can be found
in [8, Section A5 and Proposition 2.15]

5.4. Galois correspondence. — In the notation of Proposition 5.14, let S be a k-σ-
algebra, τ ∈ G(S) and a ∈ L. By definition, τ is an automorphism of R ⊗k S. If we write
a = r1

r2
with r1, r2 ∈ R, r2 6= 0 then, we say that a is invariant under τ if and only if

τ(r1 ⊗ 1) · r2 ⊗ 1 = r1 ⊗ 1 · τ(r2 ⊗ 1) in R⊗k S.
If H is a σ-closed subgroup of G, we say that a ∈ L is invariant under H if a is invariant
under every element of H(S) ⊂ G(S), for every k-σ-algebra S. The set of all elements in L,
invariant under H, is denoted with LH . Obviously LH is an intermediate σ∂-field of L|K.
If M is an intermediate σ∂-field of L|K, then it is clear from Definition 5.7 that L|M is a
σ-Picard–Vessiot extension with σ-Picard–Vessiot ring MR, the ring compositum of M and
R inside L. There is a natural embedding σ-Gal(L|M) ↪→ σ-Gal(L|K) of σ-algebraic groups
(in the sense that the first is identified to a subfunctor of the second), whose image consists
of precisely those automorphisms that leave invariant every element of M .

Theorem 5.16 (σ-Galois correspondence [8, Theorem 3.2]). — Let L|K be a σ-Picard–
Vessiot extension with σ-Galois group G = σ-Gal(L|K). Then there is an inclusion reversing
bijection between the set of intermediate σ∂-fields M of L|K and the set of σ-closed subgroups
H of G given by

M 7→ σ-Gal(L|M) and H 7→ LH .

Theorem 5.17 (Second fundamental theorem of σ-Galois theory [8, Thm. 3.3]). —
Let L|K be a σ-Picard–Vessiot extension with σ-Galois group G. Let K ⊂ M ⊂ L be an
intermediate σ∂-field and H ≤ G a σ-closed subgroup of G such that M and H correspond
to each other in the σ-Galois correspondence.
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Then M is a σ-Picard–Vessiot extension of K if and only if H is normal in G. If this is the
case, the σ-Galois group of M |K is the quotient G/H.

6. Integrability

In [9], the authors consider several applications of the discrete parameterized Galois theory of
difference equations. We won’t mention all of them, in particular we won’t mention those con-
cerning rank one differential equations. Indeed they are not so surprising for those who know
other parameterized Galois theories. We will focus on the integrability and its applications
to differential systems having almost simple Galois groups.

6.1. Definition and first properties. —

Definition 6.1. — Let K be a σ∂-field, A ∈ Mn(K), for some positive integer n, and
d ∈ Z>0. We say that ∂(y) = Ay is σd-integrable (over K), if there exists B ∈ GLn(K), such
that

(6.1)
{
∂(y) = Ay

σd(y) = By

is compatible, i.e.,
(6.2) ∂(B) +BA = }dσd(A)B,
where }d = }σ(}) . . . σd−1(}).

The following proposition interprets the compatibility relation (6.2) in terms of solutions of
the system (6.1).

Proposition 6.2 ([9, Proposition 5.2]). — Let K be a σ∂-field, ∂(y) = Ay be a linear
differential equation with A ∈Mn(K) and L be a σ∂-field extension of K.

(1) If there exist B ∈ GLn(K) and Y ∈ GLn(L) such that ∂(Y ) = AY and σd(Y ) = BY
(i.e., Y is a fundamental solution of (6.1)), then B satisfies (6.2).

(2) Conversely, assume that L is a σ-Picard–Vessiot extension for ∂(y) = Ay such that
k = K∂ is linearly σd-closed (see Definition 4.2). If there exists a matrix B ∈ GLn(K)
verifying (6.2), then there exists a fundamental solution Y ∈ GLn(L) of (6.1).

The following result on σd-integrability is an analogue of Proposition 2.9 in [12], and Sec-
tion 1.2.1 in [7]. The statement below may seem more general than the cited results, because
it contains the descent [9, Proposition 5.8].

Theorem 6.3 ([9, Proposition 5.11]). — Let L|K be a σ-Picard–Vessiot extension for
∂(y) = Ay, with A ∈ Mn(K). Then ∂(y) = Ay is σd-integrable over K if and only if there
exists a σ-separable σ-field extension k̃ of k := K∂, such that the σ-Galois group σ-Gal(L|K)
is conjugate over k̃ to a σd-constant subgroup of GL

n,̃k
.

The theorem above is of no help if one does not have a handy criterion. In [9, Appendix],
the authors prove some structure theorems for difference groups having simple and almost
simple Zariski closure, generalizing a theorem in [3]. We only state the final criteria that can
be deduced from those geometric statements.

Publications mathématiques de Besançon – 2019/1



34 Action of an endomorphism on (the solutions of) a linear differential equation

6.2. Simple and almost simple groups. —A linear algebraic group H over a field k is
called simple if it is non-commutative, connected and every normal closed subgroup is trivial.
If H is non-commutative, connected and every normal closed connected subgroup is trivial,
then H is called almost simple. We say that H is absolutely (almost) simple if the base
extension of H to the algebraic closure of k is (almost) simple.
Now we state the two criteria that are useful in applications.

Proposition 6.4 ([9, Proposition 6.1]). — Let K be an inversive σ∂-field, A ∈Mn(K) and
L|K a σ-Picard–Vessiot extension for ∂(y) = Ay. We assume that the Zariski closure H of
σ-Gal(L|K) inside GLn,k is an absolutely simple algebraic group of dimension t ≥ 1 over
k = K∂. Then the following statements are equivalent:

(1) σ-Gal(L|K) is a proper σ-closed subgroup of H.

(2) The σ-transcendence degree of L|K is strictly less than t.

(3) There exists d ∈ Z>0 such that the system ∂(y) = Ay is σd-integrable.

Theorem 6.5 ([9, Proposition 6.4]). — Let K be an inversive σ∂-field, ∂(y) = Ay a dif-
ferential system with A ∈Mn(K) and L|K a σ-Picard–Vessiot extension for ∂(y) = Ay. We
assume that the Zariski closure H of σ-Gal(L|K) inside GLn,k is an absolutely almost simple
algebraic group of dimension t ≥ 1 over k = K∂. Let K ′ be the relative algebraic closure of
K inside L. Then the following statements are equivalent:

(1) σ-Gal(L|K ′) is a proper σ-closed subgroup of H.

(2) The σ-transcendence degree of L|K is strictly less than t.

(3) There exists d ∈ Z>0 such that the system ∂(y) = Ay is σd-integrable over K ′.

Remark 6.6. — Compare to the situation with a differential parameter, in this context we
are obliged to make a field extension from K to K ′ to obtain the integrability in the case of
an almost simple group. This comes from the fact that finite cyclic σ-algebraic groups have
many σ-closed subgroups, while cyclic finite differential groups have a simpler geometry. See
Example 4.8. In other words, the extension K ′/K corresponds to the largest finite σ-closed
subgroups of σ-Gal(L|K). By finite, we mean that Zariski closure is a finite algebraic group.

For n = 2 the theorem above can be restated in a quite explicit way:

Corollary 6.7 ([9, Proposition 6.6]). — Let K = k(x) be a field of rational functions
equipped with the derivation ∂ = d

dx and an automorphism σ commuting with ∂, such that
k ⊂ C be an algebraically closed inversive σ-field. We assume that the differential equation
∂2(y)− ry = 0, with r(x) ∈ K, has (usual) Galois group Sl2(k) and we denote by L|K one of
its σ-Picard–Vessiot extensions. Let K ′ be the relative algebraic closure of K in L. We have:

– If the σ-transcendence degree of L|K is strictly less than 3, there exists s ∈ Z>0 such that
the differential system

(6.3)
{
∂2(b) + (σs(r)− r)b = 2∂(d)
∂2(d) + (σs(r)− r)d = 2σs(r)∂(b) + ∂(σs(r))b

has a non-zero algebraic solution (b, d) ∈ (K ′)2.
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– If we can find a solution (b, d) ∈ (K ′)2 of (6.3), such that the matrix

B =
(

d− ∂(b) b
σs(r)b− ∂(d) d

)
is invertible, then the σ-transcendence degree of L|K is strictly less than 3.

We apply Corollary 6.7 to the case of the Airy equation

(6.4) ∂2(y)− xy = 0.

Notice that it has an irregular singularity at ∞, and that all the other points of A1
C are

ordinary. This immediately implies that (6.4) admits a basis of solutions (A(x), B(x)) in the
field M of meromorphic functions over C.

Corollary 6.8 ([9, Proposition 6.10]). — Let C(x) be the field of rational functions over
the complex numbers, equipped with the derivation ∂ = d

dx and the automorphism σ : f(x) 7→
f(x + 1), and M be the field of meromorphic functions over C. In the notation above, let
L = C(x) 〈A(x), B(x), ∂(A(x)), ∂(B(x))〉σ ⊂ M be the σ-Picard–Vessiot extension for the
Airy equation. Then, σ-Gal(L|C(x)) is equal to Sl2,C and the functions A(x), B(x) and
∂(B(x)) are transformally independent over C(x).
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