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Ribeiro
Abstract. —We discuss a digit principle for derivatives of certain (-values in Tate algebras of positive
characteristic discovered by David Goss.
Résumé. — (Principe des chiffres en base q et dérivées de certaines séries L)Dans cet article nous

discutons d’un principe des chiffres (« digit principle ») en base ¢ pour les dérivées de certaines valeurs
zéta dans les algebres de Tate en caractéristique non nulle.

1. Introduction

The present paper was initially conceived as an appendix of the paper of [4], and the main
result, essentially due to David Goss, is Theorem 3.1, a new kind of digit principle for certain
derivatives of (-values in Tate algebras, generalizing the so-called Carlitz zeta values. Later,
David Goss and us, the other authors, decided to make it into an independent article, but
this plan was interrupted because David Goss suddenly died on April, 4, 2017. In the present
newer version, the paper also reflects the mathematical exchanges between us and him. We
would like to dedicate it to his memory.

1.1. Derivatives of Riemann’s zeta function and Goss’ zeta function. — The func-
tional equation of Riemann’s zeta function ¢ : C — P1(C) induces, as it is well known, trivial
zeroes at the negative even integers. These zeroes are simple, and we have the following
identities for the first derivatives:

2n)!
1.1 "(-2 :—1"(72 1), > 0.
(1.1) C(=2m) = (1) ggaCen +1),
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82 The digit principle and derivatives of certain L-series

Moreover, the function {(z) has no zero at z = 0, but we have the classical formula

(1.2) ¢(0) = —3 n(2),

which is again a consequence of the functional equation.

Let now F, be the finite field having ¢ elements and let ¢ be an indeterminate over [F,. We
consider the local field Ko = Fy((671)), which is the completion of the field K = F,(6) for
the valuation at infinity ve, (With ve(f) = —1), as an analogue of the real line. We observe
indeed that A = [F,[f] is discrete and co-compact in K

In the years 1980, David Goss introduced a theory of global zeta functions in the setting of
function fields of positive characteristic. His program was strongly motivated also by several
signs going toward the possible existence of a functional equation, and one among them was
the phenomenon of trivial zeroes. Indeed, in the above setting, defining, following Goss:

Ca(—n,z)=1]] (1 2480 P)P”) => 2" Y a"el+zA[z], n>0
3

dZO a€A+’d

where A, (resp. A 4) denotes the multiplicative monoid of monic polynomials (resp. monic
polynomials of degree d) and with the product running over the irreducible polynomials of
Ay, one sees that (4(—n,z) € A[z]. It is also quite easy to show that (4(—n,1) = 0 if and
only if n > 0 and n = 0 (mod ¢ — 1). Moreover, in this case, the first derivative (4(—n, z)’
in z does not vanish at z = 1, so the trivial zeroes are in this way simple, just as those
of Riemann’s zeta function. The polynomials {4(—n, z) and certain natural generalizations,
have been the object of extensive investigations by several authors. Nevertheless, no analytic
reason has been found, such as the poles of a gamma factor, to justify the above properties,
and no relationship connecting these first derivatives to the positive values of Goss’ zeta
functions has been clearly recognized.

1.2. Zeta values in Tate algebras. — Let us introduce new variables ¢, ..., ts. For nota-
tional convenience, we shall denote by ¢, the set of {t1,...,ts}. We set ¢, := () by convention.
The ring K[t,] carries the Gauss valuation (infimum of the valuations of the coefficients

of a polynomial), again denoted by vs. Its completion Ts(Ko) = KTOE] is an ultrametric
Banach algebra, the standard s-dimensional Tate algebra over K
In [7, 24], the following functions

Ca( => ¥ ° tS)eﬁrs(Koov, n>0.5>0

d>0acA, 4

have been introduced and studied. By [7, Proposition 6] we know that, for all n > 0 and s > 0,
Ca(n;s) defines an entire function in s variables. By [7, Theorem 1], if n = s (mod g — 1),
there exists A\, s € K(t,) N Ts(Ks)™ such that:

(13) CA(n;S) = )\n,s

where
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is a fundamental period of the Carlitz exponential (see [21, Section 3.1]) and

w0 = (0 ] (1- %) € oy (1407w, o)

1>0

is Anderson—Thakur’s function (see Section 4). The above definitions depend on a common
choice of ¢ — 1-th root of —6 (see [3]), but the ratio w(tl)“inw(t&) does not.
In fact, w is the inverse of an entire function in the variable ¢, and its poles determine
analytically, trivial zeroes of the functions (4(n;s), from which arises naturally the idea of
studying the Taylor expansion of the functions (4(n;s) in the neighborhood of these trivial
zeroes. In particular, if s > 1 and s = 1 (mod ¢ — 1), the function (4(1;s) vanishes at the
point t, = (t1,...,ts) = (0,...,0). In this paper, we will study the values

d d
ds 1= dh T dt, (Ca(1; 3))151:--.:155:9 € Ko,
and we will show, in Theorem 3.1 that a sort of digit principle holds for them, first highlighted
by David Goss.

(1.4)

2. Notation

In this paper, we will use the following notation.
— N: the set of non-negative integers.
— N* =N\ {0}: the set of positive integers.
— Z: the set of integers.
— IFy: a finite field having ¢ elements.
— p: the characteristic of [Fy.
— ¢: an indeterminate over IFy.
— A: the polynomial ring F,[6].
— A, : the set of monic elements in A.
— For d € N, A} ; denotes the set of monic elements in A of degree d.
— K =TF4(0): the fraction field of A.
— oo: the unique place of K which is a pole of 6.

— VUso: the discrete valuation on K corresponding to the place oo normalized such that
Voo(0) = —1.

— Ko =TFy((3)): the completion of K at oo.

— Cqo: the completion of a fixed algebraic closure of K,. The unique valuation of C,, which
extends vy, will still be denoted by vo.
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— X = (—Q)Fll a fixed (¢ — 1)-th-root of —6 in C.

— For s € N, {t1,t2,...,ts} denotes a set of s variables and we will also denote it by ;.

3. The digit Principle

Let N be a positive integer. We consider its base-¢ expansion
k .
(3.1) N=> ni,
i=0

so that n; € {0,...,q — 1} for all 4. We recall that £,(N) = 3% ;n; and the definition of the
Carlitz factorial:
H(N) = HD;M € A+7
i>0
where [i] = 07 — 0 if i > 0 and D; = [j][j — 1]7--- [1]77" for j > 0, while we set Dy = 1.
It is easy to see (the details are in Sections 4, 5 and 6) that, if we denote by o’ the derivative
%a of a € A with respect to 6, the series

a/N
> >
d21a€A+,d

converges in K, to a limit that we denote by d. This limit is easily seen to be equal to the
evaluation of entire function of the variables ¢y

d

d
= (Ca(1; N

in compatibility with (1.4).
In particular, if n = ¢ with j > 0, we will see (Proposition 5.1) that
1 Dj 1
0 = — — and §,; = L7,
2y e =7
Let N >1,4,(N)>2and N =1 (mod ¢ — 1). We set:

£q(N)—1

k .
(3.2) By(t,0) = (—1) "1 Ly(t) (Hw(tql)"i> 71,
=0

where IV has base ¢ expansion (3.1), Ly (t) = Y 4ca, “(Z)N, and w(t) is the Anderson-Thakur

special function (see Section 4). By [9, Lemma 7.6], we have:

BN(t, 0) S A[t]

We will prove the following:
Theorem 3.1. — If N > q is such that N =1 (mod g — 1) and £,(N) > q, then

on II(N) = (6,
~‘@VrI([fV])‘%:HI(%

o\ T
9
7-(- )
q
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where for x € R, [z] denotes the integer part of x, and where

Lg(N)—

By = (—1)"T By (0,0).

Theorem 3.1 can be viewed as a kind of digit principle for the values d; in the sense of [14].
In Section 4, using a log-algebraic result which was originally discovered by Leonard Carlitz
in 1942, we give the first properties of Anderson and Thakur function w(t). In Section 5 we
discuss the one-digit case of our Theorem, while the general case is discussed in Section 6. In
Section 8 we also give some complements on these problems.

4. Carlitz log-algebraic result and its ramifications

This section is an elementary introduction to some of the recent developments on the arith-
metic of special values of certain L-functions introduced by David Goss in 1979 ([20]). We
have tried to keep this paragraph as self-contained as possible. All the results contained in
this section are well-known but some of their proofs are new.

Lemma 4.1. — Let X1,..., X, be m > 1 indeterminates over Co. Let d € N be an integer
such that (¢ — 1)d > m. Then:

Z a(X1) - a(Xy,) =0.

a€A+’d
Proof. — This Lemma is a special case of [21, Lemma 8.8.1]. We have:
m d
Sooaxy)aXm) = Y I <X,‘§+ZQX}€1> .
a€Ay 4 Gty Ca€Fg k=1 =1

If we develop the right hand side of the above equality and we use that ZCEJFq ("=0ifn#0
(mod g — 1), we get the assertion of the Lemma. O

Lemma 4.2. — Let d > 1 be an integer. Then:

a€A+,d
where lqg = [[¢—, (6 — 69°).

Proof. — Let us set:
caX)= [ xX-a).
a€A,degy a<d

Then one can show by induction on d (see [21, p. 46-47]) the following identity due to Leonard
Carlitz:

(X) i Dy qu

€d = Y ’
=6 Dila—k

where ¢y = 1. Taking the logarithmic derivative, we get:

Dy

loea(X) > X oa

acA,degya<d
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Evaluating the above equality at ¢ and using the fact that eq(8%) = Dy ([21, Proposi-
tion 3.1.6]), we get the desired result. O

Let t be an indeterminate over C,. Leonard Carlitz also obtained the following remarkable
result ([13, (5.8)]):

Proposition 4.3. — Letd € N,d > 1. Then:

d—1
Z @ ll H (t— gq’“)
a€A+7d d k=0

Proof. — Let us set:

Then for k € {1,...,d — 1}, we have by Lemma 4.1:

FOT) = Y o t= 3 a@® (@)’ a(6” ) = 0.
GEA+,d CLEA.hd
One also observes that F'(6) = 0 since d > 1. Therefore:
1\ o K
Fty=1| > = | J[@-6").
a€A+,d k=0
It remains to apply Lemma 4.2. O

Let 7 : Coo[[t]] = Cxo][t]] be the homomorphism of F,[[t]]-algebras such that:
T Z ant™ | = Z alt",  ap € Cx.
n>0 n>0

We denote by T; C Coo[[t]] the Tate algebra in the variable ¢ with coefficients in C,, which

is the completion C[t], for the Gauss valuation at infinity ve. Observe that:

{f € Coollt]], m(f) = [} = Fylt]],
from which one deduces easily that
{f €T, (f) = f} = Fylt].
Let ¢ : A — A[t]{r} be the homomorphism of F,-algebras such that:
do =0+ (t—0)r.

We refer the reader to [9] for a detailed study of such objects that we may call Drinfeld
modules over Tate algebras. Let log, be the unique element in 1 + 7Co[[t]]{{7}} such that:

log, ¢g = 0log,, .
Lemma 4.4. — We have:

d—1
1 k
d>1 k=0
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Proof. — Write log, = 32,50 ln(¢)7",1n(¢) € Cuol[t]], with lo(¢) = 1. From the equation
log, ¢g = 0log,, we get for n > 1:

n—1

(0 =09 )ln() = ln-1(d)(t — 07 ).
The Lemma follows. O
Let us observe that log, converges on { f € T¢, voo(f) > —1} since foralld > 0, voo(i Hz;é(t—

7)) = ¢% — 1 where vs is the co-adic Gauss valuation on T;.
We set

P\
Ly =can=% y = 11 (1—;)) e TF.
d>0acAy 4 P monic prime of A

Then, Proposition 4.3 implies immediately the following log-algebraic result in the sense of
Anderson ([1, 2]):

Corollary 4.5. — We have the following equality in T;:
L(t) = log,(1).

We refer the interested reader to [6, 10, 12, 22, 23] for the recent developments around
Anderson’s log-algebraicity Theorem.

We denote by (—9)0%1 a fixed ¢ — 1-th root of —6 in C, and we recall:

= qleHl_elq EC?O,

i>1
1 t . _
w(t) = (07T [J0 - o)™t e T

The following result is due to F. Pellarin ([24, Theorem 1)):

Theorem 4.6. — We have the following equality in T,:
L(tw(t) 1
T 00—t

Proof. — We give a new proof of this result by using Proposition 4.3. Let d > 1 be an integer.
By Carlitz formula (Proposition 4.3):

e—dtd Z

N\I—\

d . d—1 ¢
1;[ (1—0 H(l—qu).

1
a€A+ d a(g) k=0
Now:
1
a5 t
g—d4d Z (11;) _ Z CL().
acAy g a(g) a€A,a(0)=1,degy a<d a
Furthermore:

T

a€A,a(0)=1,degg a<d a a€A,a(0)#0,degg a<d
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88 The digit principle and derivatives of certain L-series

Letting d tend to 400, we get:

Finally observe that:

The Theorem follows. O

The function w(t) was introduced by G. Anderson and D. Thakur in [3] (see [5] and [22] for
generalizations of this special function). The Anderson—Thakur special function is intimately
connected to Gauss-Thakur sums as it was highlighted in [8].

Let C : A — A{r} be the Carlitz module ([21, Chapter 3]), in other words, C' is the homo-
morphism of F-algebras given by Cp = 7 + 6. Let us set:

expo = Z %Ti e T{{7}}.
i>0 Tt
expc is called the Carlitz exponential. We have the following equality in T:{{7}} :
expo 8 = Cpexpe .
Let us observe that exp, converges on T;.

Lemma 4.7. — We have:
ker expo |c,, = TA.

Proqf — Note that the edges of the Newton polygon of %(X) =2 i>0 D%Xqi*I are (¢* —
1,i¢"),i > 0. Since ker exp |, is an A-module, we deduce that there exists € Coo, Voo (1) =

q__ql such that:

ker expc o, = nA.
Since expy defines an entire function on C,, we deduce that:
expo(X) = Z ;XW =X J] (1 — j}i) .
>0 acA\{0}
Recall that, for n € N, ZCGF; ("= —-1ifn>1n=0 (modqg—1) and ZCGIF; M=0
otherwise. We deduce:

X 1
—— Z nfn E — | X™.
XPc (X) n=0 (mod g—1),n>1 (a€A+ ar
We therefore get:
1 1
_pl—a -
n Z a?~l  p1— 8

a€A+
Now, a simple computation shows that 7(w(t)) = (t — #)w(t). Thus, by Theorem 4.6, we get:

(Zdzo Za€A+,d %)(t - e)w(t) 1

7 T 91—t
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We evaluate ¢ at 8 to obtain:

1
_5l-q - -
2 a1 91— 6
ac€A4
Thus:
1 ewx. O
T
We will need the following crucial result in the sequel:
Proposition 4.8. — We have the following equality in Ty :
T
t) = — .
w(t) = expc (0 _ t)
Proof. — This result is a consequence of the formulas established in [24]. We give a detailed

proof for the convenience of the reader.
Recall that w(t) € T; . Let us set

F(t) = expc (07r:t) .

By Lemma 4.7, we observe that:
o7 O —t+t)7
Cop(F () = expg (9—1&) = expc (9—75)
= exp¢ () + expe <9tirt> = texpo (;) =tF(t).

Therefore:

Since 7(w(t)) = (t — O)w(t), we get:

We have then:

Now observe that

F(t) = expo (Z eaﬂtj) > Apint?,
7>0

where A\gj+1 = expo(g7r)- Note that \g = (—G)Q%l. We also observe that for all j > 0,
Uoo(Agi+1) = j + 1 — L5, This implies voo(%;) — 1) > 0. By the definition of w(t), we also

have vw(% —1) > 0. Thus:
F
Voo <(t) — 1) > 0.
w(t)
Since £ € Fy[t], we get w(t) = F(t). O

Notice that w(t) defines a meromorphic function on Co, without zeroes. Its only poles, simple,
are located at t = 0,69, 0‘12, ... As an immediate consequence of Proposition 4.8, we get:
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Corollary 4.9. — For all j > 0, we have:
@’ e
(t =07 )w(t)],_po = —Fj.
Let expy € 1+ 7T {{7}} be such that:

expy 0 = ¢ expy -
By the same argument as that of the proof of Lemma 4.4, we have:

k
t— ‘
exp, = 1+ E —Hk O(DZ )7'1.
i>1

Observe that exp, converges on T;.

Lemma 4.10. — The exponential series expy induces an evact sequence of IFy[t]-modules:

O%ﬁA[t]%'H}%']&—)O.

Proof. — Let us observe that in T, {{7}}:
expe w(t) = w(t) expy, .
Thus exp defines an entire function on Co, and thus expy(Coo) = Coo. Therefore:
expo(Ty) = Ty.
Since w(t) € T}, we get:

exp¢(Tt)
1
ker exp, = W ker expc .
Now, Lemma 4.7 implies:
ker expo = TA[t]. O

Following L. Taelman ([25]), we introduce the module of “units” associated to ¢/A[t]:

U(¢/Alt]) = {f € Te N Koo[[t]] | expy(f) € At]}-
Observe that U(¢/A[t]) is an A[t]-module.

Proposition 4.11. — We have:
U(o/Alt]) = L(t)A[t].
Proof. — By Carlitz log-algebraic result (Corollary 4.5):
expy(L(t)) = 1.
Thus:
L(t)Alt] C U(¢/Alt]).

Now, let us set:
M ={f €T N Kx[[t] | ve(f) > 0}.
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We have:

Mn Alt] = {0},

expy(M) = M,

T N Ko[[t]] = Aft] & M.
Since L(t) € (T; N Koo[[t]])™ and veo (L(t)) = 0, we get:
T, N Ko[[t]] = L(t)AJt] & M.
Thus:
expy (T N Koo[[t]) N A[t] = expy(L(2)A[t]).
We deduce that:
U(¢/Alt]) C L(t)A[t] + kerexp,, .

The Proposition is then a consequence of Lemma 4.10 and Theorem 4.6. ]

The above Proposition reflects a class formula similar to that obtained in [26]. We refer the
interested reader to the references [6, 9, 10, 11, 15, 16, 17, 18, 19].

5. The one digit case
Recall that:

L(t) = Ca(l;1) =) Z

d>0 a€A+ d
Furthermore, we recall that we have the following equality in T; (Theorem 4.6):
L(tw(t) 1
T 0t

This implies that L(t) extends to an entire function on Co, (see also [7, Proposition 6]). We

set:
=> ¥ -

d>0 a€A+ d

Tta

where a(t) denotes the derivative %a( ) of a(t) with respect to ¢t. The derivative % induces
a continuous endomorphism of the algebra of entire functions on Cs, and therefore L'(t)

. . . . U J
extends to an entire function on Coo. Thus, for j > 0 an integer, > Sg>1 X aca, , % converges
in K, and we have:

qf_z Z ‘t 099

d>1 LLGAJr d

Proposition 5.1. — The following properties hold:

(1) We have:

1
_gl[k]
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(2) Let j > 1 be an integer, then:
(¢’ j
5qf = 7(q >%1_qj-
[J]
Proof. —

(1) It is well known that, for n > 0, Dy = [],ca, , @ [21, Proposition 3.1.6]. Therefore,
G/,

DacAin G = —ﬁ from which the first formula follows.

(2) By [21], Remark 8.13.10, we have:

L(t)|,_pys = 0.
Thus:
L(1)
0gp = L'(t)],_gs = T 07 |y
But,
I ,
Dot
T -t
It remains to apply Corollary 4.9.
O
Remark 5.2. — The transcendence over K of the “bracket series” 61 = >_;5 ﬁ was first

obtained by Wade [27]. The transcendence of ¢; directly implies the transcendence of 7.

6. The several digit case

As a consequence of [9, Lemma 7.6] (see also [7, Corollary 21]), the series Ly(t) =

D420 2a€A, g a has a zero of order at least IV at ¢t = #. Furthermore,

=> ¥ -

d>1 (IEA+ d

defines an entire function on C,, such that
on = Ly (0).

Proof of Theorem 8.1. — Recall that N = Zf:o n;q’ is the g-expansion of N. We set s =
l4(N). Recall moreover Equation (3.2):

(~1)51 By(t,0) (Hw (17 ) € Alt].
Observe that:

ZHZOG’ )

a€A+
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Let s = Zf:o n; and let t1,...,ts be s indeterminates over C,. We set:
a(ty)---a(t
a
(IEA+
Since oy = EN(O), it is the evaluation at t; = ... = t,, = O,tngt1 = ... = tpgtn, =
k .
0%, .. lngtedng 141 = - -« = tngtetny_1+4n, = 07 of the function
L(t)

i=0 H?:l(tn0+~~.+ni—l+j — 04 )

We obtain, by [7, Theorem 1], by Corollary 4.9 and our previous discussions:

Sy TTE g (S22
BN = 0 D .

™

Now, by Proposition 5.1, we have, for all i > 1, D; = [i]6 ;77 =1, We obtain the Theorem by

using the fact that:

q

e~ L -

q i>1

7. Some non vanishing results
Proposition 7.1. — Let N > 1 be an integer such that N =1 (mod ¢ — 1). Then dn # 0.
Proof. — Tt follows from Theorem 3.1 and the fact that By(t,0)[.—¢ # 0 ([4]). O
The aim of this section is to prove that the series éy do not vanish for other values of N:

Theorem 7.2. — Suppose that ¢ > 2. Let N > 1 be a positive integer such that 2 < s :=
ly(N) < q—1. Then dn # 0.

7.1. Decomposition of series in K,,. — Let ¢ be an integer, 0 < i < g — 2. We set:

K =0T (07)) = 3 and"ing € Zian € By p C Kox.
n<n
n=i 1;10(01 q—1

Then, we have the obvious decomposition:
K= @ K
0<i<q—1
and the characterization:
KO = {f(0) € Ko |forall \€ F;  f(A) = N'f(0) }.

o0
For simplicity, if f € Ko, we will note fg_,5g for the image of f under the substitution

0 — A0, so that if f € Koo, then f € K& if, and only if fig,xg = N f for all A € .
Consider now for an N > 1, and d > 0,
IN

= —,

CL€A+Yd
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then if A € FZ, figng = AN@-D=df Thus, f € KGN DN modah),

Proposition 7.3. — Let N > 1 be an integer, and m = ﬁ. Then, oy = 0 if, and
only if, for all0 < j<m—1,

SR S

d=j (mod m)a€A 4

Proof. — Write for all d > 0,

a/N
fa= 2. =
a€A+7d
Then, f; € KAWND=N modm) 04t d,d' > 0,
d(N-1)—-N=d(N-1)—N mod q—1
if and only if d = d’ mod m. O
Remark 7.4. — The “worst” case in the above proposition occurs when m = 1, so that

the proposition is empty. But this is equivalent to N =1 mod ¢ — 1 and we already know
by Proposition 7.1 that §y does not vanish. Otherwise, the vanishing of dy is equivalent to
the vanishing of at least two series. The worst remaining case is then when m = 2, that is,

Nzﬂzl mod g — 1.

7.2. Proof of Theorem 7.2. — For d > 0, we set:
d—1

ba(X) = J] (X —67)

=0
and recall that:

la=(0—07)(0—09"") ... (6 —0%).
Observe that: e
_ 7 —4
Uoo(ld) = q— 1 .

Recall that we have expanded N in base ¢:
N=q¢"+...+¢*

with 0 <e; <...<egand 2 <s<¢g—1. Since 2 < s < g— 1, the log-algebraicity result [10,
Proposition 5.6]. (see also [10, Example 5.7]) gives another expression for Jy:

S~ alt) olts) _ T ba(X)

a€A+7d a ld
so that .
o'V Tl Teba(X) x e
Sa = Z I 1
aeAjL’d d
and

on = Su.

d>1
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Let e > 0 be an integer. We define the function f. : N* — N as follows:

7((efl)qe+q:_;‘116) ifd>e+1,
fe(d) =S —(d —1)¢° ifl<d<eanddZ0 (mod p),
—(d—2)¢° — ¢%! ifl<d<eandd=0 (mod p).

This function is strictly decreasing.

Lemma 7.5. — Letd > 1 and e > 0 be integers. Then, we have:

d
o (U0 e ) = Fold)
Proof. — Write:

d d—1 , d—1
ﬁbd( ) ll_[ X 04 Z X _ l

0 =0
The lemma follows by direct calculations. O
Lemma 7.5 implies that for d > 1,

s qd+1 —q s
(7.1) Voo (Sd) = —voo(la) + Z fe;(d) = (]_71 + Z fe,(d)

i=1 i=1

We will distinguish two cases: es # 0 (mod p) and e; =0 (mod p).
Proposition 7.6. — Suppose that e; Z 0 (mod p). Let d > 1 be an integer such that d # es.

Then:
Voo (Sd) > Voo(Se,)-

In particular, dn # 0.

Proof. — Since es Z 0 (mod p), Equation (7.1) implies:

qeerl qeerl s qes _ qei
Voo (Se,) = +Zfez €s —7_2 -1 |-

qg—1
We will distinguish three cases:

Case 1: d > es+ 1. — By (7.1), we have:

d+1 S d+1 s
+1 _ q+

voo(80) = 7 3 feuld)
i=1

Since s < ¢ — 1, we obtain:

d+1 es+1

¢t —gq gt —qs q? — ¢
=(q—s)

Voo(Sq) — Voo (Se,) = 1— -9

Thus,
Voo (S4d) > Voo (Se,) ford > es + 1.
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Case 2: d < e; — 2. — Since the functions f., are strictly decreasing, it follows that:

d+1 _ es+1 s

Voo (Sg) = Voo (Se,) = T— 4 4 Z Fei(d) = fei(es))

q—
qd+1 _ qes+1
2 (]_71 + (fe(es = 2) — fe(es))
d+1 _ es+1
S 4 RNPS
qg—1
_qes+1
2q¢°
q—1 e
> 0.
Thus,
Voo (Sd) > Voo(Se,) for d < es — 2.
Case 3: d = e; — 1. — Since the functions f., are strictly decreasing, we obtain:
qes _ es+1 S
Voo (Ses—1) — Voo (Se,) = + Z fei(es —1) — fe,(es))
qeS _ q65+1
2 q—1 + (fer(es = 1) = fei(es)) + (fe.(es = 1) — fe,(es))
es __ es+1
> q q +qes—1 + qes — qes—l
q—1
> 0.
Thus,
Voo (Sey—1) > Voo (S, )
The proof is finished. O

Proposition 7.7. — Suppose that e; = 0 (mod p). Let d > 1 be an integer such that
d¢{es—1,es,es+ 1}. Then:

Voo (54) > Voo (Se,) > Voo(Se,—1)-

Proof. — Let t be the integer such that 0 <t <s—1and e; < e411 =...=es. Since eg =0
mod Equation (7.1) implies:
(mod p), Eq p
qes+1
'Uoo(Ses) q—l +Zfez 65
t .
¢t —q o -
— LS (- 0e + T ) — 5= (e - D +a )
¢—1 iH ¢-1
qes+1 —4q . ( e; qes - qei> e es—1
= — e, — 1)+ ——— |+ (s—t)(¢* — ¢=7 ).
e M (e A )

We will distinguish three cases:
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Case 1: d > es+ 2. — By (7.1),
d+1 _ s s s

_ d _ e
vm(sd):%_‘_z!fei(d) q—z<(6i—1)qei+q q > ]
i=1

q—1 i=1

Since s < q¢—1 and d > ez + 2, we get:

qd+1 _ qes—i-l s qd _ qeS L
Voola) = vao(Se) = T = 2 T =0~
i=1
qd . qes .
= (¢ - 3)(1_71 —(s=t)(g™ —q>7)
qes+2 _ qes B
i M AabVLCEt S
> 0.

Thus,
Voo (S4d) > Voo (Se,) for d > es + 2.

Case 2: d < ey — 2. — We have:
d+1 _ gestl s

g —qg°
Voo (Sa) = Voo (Se,) = q— 1 + Z fei(d) = fe,(es))

qd+1 _ q€s+1

> -1 + (fer(es —2) = fey(€s)) + (fe, (s — 2) — fe,(es))
gttt — go Tl 1 2 1

= e U A U A
—q=t! 1 1 2
1 (¢ +q= )+ (¢ +4¢=77)

> 0.

It follows that
Voo (Sd) > Voo (Se,) for d < es — 2.

Case 3: d =es — 1. — Since s > ¢ — 1, it follows that:

g =gt qes+1 L
Voo (Se,—1) = Voo (Se,) = + Z (e, (es — fei(es))
— es+1

= % gt = (gt )

<0
Thus,

Voo (Se.) > Voo (Se,—1)-

The proof is finished. O
Suppose now that e; = 0 (mod p). Set m = W Then m > 2, and by the above

proposition, the series > g—.  (mod m) Sa does not vanish. By Proposition 7.3, we obtain that
dn # 0. This completes the proof of Theorem 7.2.

Publications mathématiques de Besangon — 2019/1



98 The digit principle and derivatives of certain L-series

8. Taylor expansions in the neighborhood of (6,...,0)
We shall first analyze the function w in the neighborhood of 6.

—

8.1. Laurent expansion of w. — The Tate algebra T; := C|[t], is endowed with the
family of continuous Cuo-linear endomorphisms (D),),>0 where D,, is the n-th higher deriva-
tive in ¢ defined by D, (t™) = (7)™ ™.

Let us suppose that a sequence of elements (A4;);~o of T, is given, so that for all i, 4; is a
1-unit, that is, voo(A4; — 1) > veo(A4;) = 0, and lim; ,(A; — 1) = 0 in T;. Then, the product

14
>0

converges to an element F' € T;. We easily obtain, from Leibniz’s rule, and for n > 0, the

formula:
Du)= ¥ IIbut.
p1p2,€N, Y ) pi=n 121
Here, by definition, a composition of a positive integer n is an s-tuple (with unrestricted s)

of positive integers (nq,...,ns) such that >, n; = n. We deduce, for n > 0:
Dpl (All) . Dps (A'Ls) .

.1 D VD S

s>1 P=(p1,....ps) 0<i1<--<is i Ai
> pi=n
We now choose
F=(t-0)w,

and we recall that the function omega of Anderson and Thakur has the following product
expansion:

hence, setting

we have

>0
Observe now that, for all j > 0 and ¢ > 0:
D;(A; ; ,
DA% _ g0 )
7
We deduce D
F i is —
”ﬁg ) :ZZ Z (0T — )P (99" — ) 7Ps
s>1 P 0<ip<---<ig
where the second sum is over the compositions P = (p1,...,ps) of n. Define n(()) := 1 and,
for (p1,...,ps) as above,
n(pla"-aps) = Z [il]_pl "'[is]_ps EKocn
0<ty <<t
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where [i] = 09" — . We deduce, taking into account the above computations:

Lemma 8.1. — The following formula holds:

(8:2) (-0 =73 X X aon.p) | -0

TLZO 821 p:(pl ps)

-----

Note that, by the usual conventions, the coefficient corresponding to n = 0 is —.
We now compute the higher derivatives of another infinite product. Let us consider:

_ Hi>0<1_ﬁ) _HB'
P 9
[Tiso (1 - %) i>0

where .
0T —t
I
We know from the formula (4.6) that this coincides with L(t). Since D,,(B;)/B; equals 1, ﬁ
or 0 depending on whether n = 0,1 or n > 1, we have the series expansion:

PulG) s gty oy,

G 0<i1<---<in

)

We deduce:
Lemma 8.2. — The following formula holds:

L) = 3 (=1)™(L,..., )t — O)™.

n20 n times

The above formula of course agrees with (1) of Proposition 5.1. Note also that both entire
functions (t — #)w and L(t) define invertible formal series in Ko[[t — 0]].

8.2. The s variable case. — We work in Ty and we suppose that n = s (mod ¢ — 1). We
recall that

a(ty)---a(t
5 ) )
aEAt
represents an entire function in the variables ¢,. We can expand in series

Ca(n; s)(ts) = ity — 0)" -+ (ts — 0) € Koo[[t1 — 0, ts — 0]].

)

The Newton polyhedron of this series is likely to be interesting. We consider the case n =
1,s > 1. Then, in [7], it is proved that

77[-)\1 s
(75) CA( ’8)(75) w(t1)~-w(ts)’
with A; s € A[t,]. It is easy to show that, for all i =1,...,s with s > 1, L(t,)|,=¢ = 0.

This means that
Al,s

M = =0 (t, - 0)

€ Alt].
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The main conjecture in [7], proved in the paper [4], asserts that if s > 1, then p ¢ is a unit
of K[[t1 —0,...,ts—0]]; it does not vanish at ¢; = #. This implies (it is in fact equivalent to)
the non-vanishing of ds.

In [7] the following result is proved (see Theorem 1):

Theorem 8.3. — Forn>1,n=s (modq—1),
s 6—1 t:
Vi i= 7" Calmsshottr) it [T TT (1 57) © KTt
i=135=0
where § is the smallest non-negative integer such that at once ¢° —n > 0 and 544 (¢®°—n) > 2.

8.2.1. Some examples with s = n. —If n = s = 1, Theorem 8.3 is sharp by the explicit

formula L(x¢, 1) = —ﬁ. We take as another example the case t = s = ¢ for which § = 1.

We have ~q
Calg;s) = 7(Ca(l;s)) = — (t1 —0) - (tg — Ow(ty) - - - w(ty)

so, again, the result is sharp.

8.2.2. More about the polynomials V, ;. — We have observed that V; s is a unit of K{[t; —
0,...,ts—0]] for all s > 1, s =1 (mod ¢ — 1) (recall that V} 5 is a polynomial) and the case
s =n = 11is clear too. What about the more general case of V, ; with n = s (mod ¢—1) and
n > 17 We shall set, for commodity,

s

Vs =7 "Ca(n;s)w(ty)---w(ts) H(9 —t;).
=1
If n > 2, then § > 1 in Theorem 8.3 and V,,s € V,y JK[[t1 — 0,...,ts — 0]]*. From now on, we
assume that n > 2. We want to analyze the singularity of V7 at ¢; = 6 for all ¢ which is the
same as that of V,, ,.

8.2.3. Case s < n. — This is the simplest case. Indeed, since evy((4(n;s)), the evaluation at
t1 = - =ts = 0 of (a(n;s), equals the Carlitz zeta value (4(n — s) which is non-zero, we
see that Vi, s (or equivalently, V,*,) are units of K[[t1 —0,...,ts — 0]].

8.2.4. Case s > n. — We shall prove:

Theorem 8.4. — Let us consider integers n, s such thatn = s (mod ¢—1), s >n > 2. For
all choices of (ky, ..., ks) € Z5, (ti—0)k1 -+ (ts—0)k:V,, 5, an element of K ((t1—0,...,ts—0)),
is not a unit of K[ty — 0,...,ts — 0]].

Proof. — Observe that the main result of [4] implies that Vj s_,41 is a unit of KJ[t; —
0,... ,ts—nt1 — 0]]. In this case, evg(V,;;) = 0 (indeed, n > s and s =n (mod ¢ — 1) implies

evg(Vyys) = evg(Ca(n;s)) = 0. Let us choose I C {1,...,s} a subset with n — 1 elements and
let us denote by J the set {1,...,s}\ I. We have |J| = s —n + 1. We observe:

Vi =7 "T]10 — ta)w(t)] T [(0 — t)w(t)] Calns ).
el jeJ
Since

lim Calnis) = L(t) = 3" Y Liesa)

t;—05iel d>0a€A, ; a
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we deduce that

t,_ljg,leel Vs = Visons1(ty) = Vis—nt1(ty) H(9 —t).
i 3 ]EJ

We know that Vi s_pn41(t;) is a unit of K[[t; — 6;5 € J]]. In particular, expanding
Vie= 22 Gl = 0)" e (ts = 0)" € K[[ti =0, — 0],
15058520

we have ¢ o = 0 and, for any subset J C {1,...,s} with s —n + 1 elements, by setting
(i1,...,1s) with i; = 1 for j € J and i; = 0 otherwise, we have ¢;, . ;, # 0. This ends the
proof of the Proposition. O

References

[1] G. W. ANDERSON, “Rank one elliptic A-modules and A-harmonic series”, Duke Math. J. 73
(1994), no. 3, p. 491-542.

, “Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-series in Char-
acteristic p”, J. Number Theory 60 (1996), no. 1, p. 165-209.

2]

[3] G. W. ANDERSON & D. S. THAKUR, “Tensor powers of the Carlitz module and zeta values”,
Ann. Math. 132 (1990), no. 1, p. 159-191.

[4] B. ANGLES, T. Nco DAc & F. TAVARES RIBEIRO, “Exceptional zeros of L-series and Bernoulli-
Carlitz numbers”, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci., https://arxiv.org/abs/
1511.06209, 2015.

[5] , “Special functions and twisted L-series”, J. Théor. Nombres Bordeauz 29 (2017), no. 3,
p. 931-961.
[6] , “Stark units in positive characteristic”, Proc. Lond. Math. Soc. 115 (2017), no. 4, p. 763-

812.

[7] B. ANGLES & F. PELLARIN, “Functional identities for L-series values in positive characteristic”,
J. Number Theory 142 (2014), p. 223-251.

, “Universal Gauss—Thakur sums and L-series”, Invent. Math. 200 (2015), no. 2, p. 653-

669.

[9] B. ANGLES, F. PELLARIN & F. TAVARES RIBEIRO, “Arithmetic of positive characteristic L-
series values in Tate algebras”, Compos. Math. 152 (2016), no. 1, p. 1-61, with and appendix by
F. Demeslay.

, “Anderson—Stark units for F,[0]”, Trans. Am. Math. Soc. 370 (2018), no. 3, p. 1603-1627.

[11] B. ANcLES & L. TAELMAN, “Arithmetic of characteristic p special L-values”, Proc. Lond. Math.
Soc. 110 (2015), no. 4, p. 1000-1032, with an appendix by V. Bosser.

[12] B. ANGLES & F. TAVARES RIBEIRO, “Arithmetic of function field units”, Math. Ann. 367 (2017),
no. 1-2, p. 501-579.

[13] L. CARLITZ, “Some topics in the arithmetic of polynomials”, Bull. Am. Math. Soc. 48 (1942),
no. 10, p. 679-691.

[14] K. CONRAD, “The digit principle”, J. Number Theory 84 (2000), no. 2, p. 230-257.

[15] C. DEBRY, “Towards a class number formula for Drinfeld modules”, PhD Thesis, University of
Amsterdam / KU Leuven, 2016, http://hdl.handle.net/11245/1.545161.

Publications mathématiques de Besangon — 2019/1


https://arxiv.org/abs/1511.06209
https://arxiv.org/abs/1511.06209
http://hdl.handle.net/11245/1.545161

102 The digit principle and derivatives of certain L-series

[16]) F. DEMESLAY, “A class formula for L-series in positive characteristic”, https://arxiv.org/
abs/1412.3704, 2014.

[17] J. FANG, “Equivariant Special L-values of abelian t-modules”, https://arxiv.org/abs/1503.
07243, to appear in J. Number Theory, 2015.

[18] ——, “Special L-values of abelian t-modules”, J. Number Theory 147 (2015), p. 300-325.

, “Equivariant trace formula mod p”, C. R. Math. Acad. Sci. Paris 354 (2016), no. 4,
p. 335-338.

[20] D. Goss, “v-adic zeta functions, L-series and measures for function fields”, Invent. Math. 55
(1979), p. 107-116.

[21] ——, Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge., vol. 35, Springer, 1996.

[22] N. GREEN & M. A. PAPANIKOLAS, “Special L-values and shtuka functions for Drinfeld modules
on elliptic curves”, Res. Math. Sci. 5 (2018), article ID 4 (47 pages).

[23] M. A. PAPANIKOLAS, “Log-Algebraicity on Tensor Powers of the Carlitz Module and Special
Values of Goss L-Functions”, in preparation.

[24] F. PELLARIN, “Values of certain L-series in positive characteristic”, Ann. Math. 176 (2012),
no. 3, p. 2055-2093.

[25] L. TAELMAN, “A Dirichlet unit theorem for Drinfeld modules”, Math. Ann. 348 (2010), no. 4,
p. 899-907.

[26) ——, “Special L-values of Drinfeld modules”, Ann. Math. 175 (2012), no. 1, p. 369-391.

[27] L. I. WADE, “Certain quantities transcendental over GF(p™, z)”, Duke Math. J. 8 (1941), p. 701-
720.

September 19, 2017

Davip Goss'

BRUNO ANGLES, Université de Caen Normandie, Laboratoire de Mathématiques Nicolas Oresme,
CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France.
E-mail : bruno.angles@unicaen.fr

TuaN NGco Dac, CNRS and Université de Caen Normandie, Laboratoire de Mathématiques Nicolas Oresme,
CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France.
E-mail : tuan.ngodac@unicaen. fr

FEDERICO PELLARIN, Institut Camille Jordan, UMR 5208, Site de Saint-Etienne, 23 rue du Dr. P.
Michelon,42023 Saint-Etienne, France e E-mail : federico.pellarin@univ-st-etienne.fr

FLoric TAVARES RIBEIRO, Université de Caen Normandie, Laboratoire de Mathématiques Nicolas Oresme,
CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France.

E-malil : floric.tavares-ribeiro@unicaen.fr

Publications mathématiques de Besangon — 2019/1


https://arxiv.org/abs/1412.3704
https://arxiv.org/abs/1412.3704
https://arxiv.org/abs/1503.07243
https://arxiv.org/abs/1503.07243

	1. Introduction
	1.1. Derivatives of Riemann's zeta function and Goss' zeta function
	1.2. Zeta values in Tate algebras

	2. Notation
	3. The digit Principle
	4. Carlitz log-algebraic result and its ramifications
	5. The one digit case
	6. The several digit case
	7. Some non vanishing results
	7.1. Decomposition of series in K infty
	7.2. Proof of Theorem 7.2

	8. Taylor expansions in the neighborhood of (theta,…, theta)
	8.1. Laurent expansion of omega
	8.2. The s variable case

	References

