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ON THE SUP-NORM OF SL3 HECKE–MAASS CUSP FORMS

by

Roman Holowinsky, Kevin Nowland, Guillaume Ricotta and Emmanuel Royer

Abstract. — This work contains a proof of a non-trivial explicit quantitative bound in the eigenvalue
aspect for the sup-norm of a SL3(Z) Hecke–Maass cusp form restricted to a compact set.

Résumé. — (Sur la norme infinie des formes de Hecke–Maass deSL3) Ce travail contient une preuve
d’une borne non-triviale explicite quantitative par rapport à la valeur propre pour la norme infinie d’une
forme de Hecke–Maass cuspidale de SL3(Z) restreinte à un ensemble compact.

1. Introduction

1.1. Statement of the results. — The correspondence principle in quantum mechanics
suggests a way to study a classical system via its semi-classical limit of quantization. For
instance, let X be a compact Riemannian manifold. We can choose an orthonormal basis
(f j ) j > 0 of L 2(X ) satisfying

∀ j > 0, ∆( f j ) = λ j f j .

where∆ is the Laplace–Beltrami operator onX and 0 = λ0 < λ 1 6 λ2 6 . . . is its spectrum. If
Gt is the geodesic flow onX then its quantization is − h2∆ , whereh is Planck’s constant. Thus
it is very natural to attempt to understand the asymptotic behaviour of the eigenfunctions
of ∆ .
A classical question here (suggested by the correspondence principle) is to bound‖ f j ‖ ∞ as
λ j → ∞ (see [17] and [20] for more details). A. Seeger and C. Sogge proved in [21] a very
general and qualitative bound, essentially sharp, in the case of compact Riemannian surfaces.
If X is a compact locally symmetric space then P. Sarnak proved in [19] the generic bound

‖ f j ‖ ∞ � λ
(dim(X )− rank(X ))/ 4
j

provided f j is the joint eigenfunction of all the algebra of the invariant differential operators.
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In [11], H. Iwaniec and P. Sarnak proved a bound sharper than that of A. Seeger and C. Sogge
for certain Hecke eigenfunctions on arithmetic surfaces which are the quotient of the upper-
half plane by a congruence subgroup ofSL2(Z). They took advantage of the fact that some
additional symmetries, the Hecke correspondences, act on these surfaces and one can take an
orthonormal basis of Hecke eigenfunctions. The Laplace–Beltrami operator in this context is
the hyperbolic Laplacian.
Following this foundational result, the sup-norm problem in the eigenvalue aspect has since
been considered in various settings. For instance, S. Koyama investigated the case of quo-
tients of the three-dimensional hyperbolic space by arithmetic subgroups in [13] and proved
similar results, which have been improved by V. Blomer, G. Harcos and D. Milicevic in [2].
J. Vanderkam [23] and later on V. Blomer and P. Michel ([5]) considered the case of the
sphere and of the ellipsoids. S. Marshall considered the sup-norm problem restricted to to-
tally geodesic submanifolds in [14] and in [15]. V. Blomer and A. Pohl considered for the
first time a manifold of higher rank and solved the case of Hecke Siegel Maass cusp form of
genus2 for Sp4(Z) in [6].
We will focus on another non-compact Riemannian symmetric space of dimension5 and
rank 2, which is

X = SL3(Z)\ SL3(R)/SO 3(R).
In this manuscript, we provide a proof of a non-trivial explicit quantitative upper bound for
a SL3(Z) Hecke–Maass cusp form at a generic pointz in a fixed compact subset ofX . These
forms are Maass forms since they are eigenfunctions of the algebra of invariant differential
operators and Hecke forms since we assume they are eigenfunctions under the Hecke operators.
Specifically, we establish the following result.

Theorem A. — Let Φ be anL 2-normalized and temperedSL3(Z) Hecke–Maass cusp form
on X with Laplace eigenvalueλ and type (ν1, ν2) in iR2 satisfying |ν1 − ν2| � 1. Let C be a
fixed compact in X . One has

‖ Φ|C ‖ ∞ � C,ε λ(5− 2)/ 4− 1/ 76+ε

for all ε > 0.

Several works related to this problem have to be mentioned. In [3], V. Blomer and P. Maga
proved a qualitative non-trivial bound for the sup-norm of PGL(4) Hecke–Maass cusp forms
restricted to compact sets and in [4], they proved a qualitative non-trivial bound for the
sup-norm of PGL( n) Hecke–Maass cusp forms restricted to compact sets forn > 5. In both
works, the subconvexity exponent is not computed. Very recently, V. Blomer, G. Harcos and
P. Maga proved in [1] a quantitative bound for the global (namely without any restriction to
compact sets) sup-norm ofGL(3) Hecke–Maass cusp forms. More explicitly, they proved that

‖ Φ‖ ∞ � ε λ(5− 2)/ 4+9/ 40+ε

for any L 2-normalized and temperedSL3(Z) Hecke–Maass cusp formΦ on X with Laplace
eigenvalueλ and for any ε > 0.
The method of proof builds on generalizations of the work of H. Iwaniec and P. Sarnak in [11],
i.e. one studies a smooth amplified second moment, which comes from the spectral expansion
of an automorphic kernel, which itself has a geometric expansion. This is usually referred to
as the pre-trace formula.
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An amount of time is devoted to the construction of a relevant function on the spectral side
of the pre-trace formula. In particular, one has to bound its inverse Helgason transform in
the di�erent domains of the positive Weyl chamber. This relies on the spherical inversion
formula and on a systematic study of theGL(3) spherical function itself done by S. Marshall
in [16].
Finally, the geometric side of the ampli�ed pre-trace formula is bounded thanks to a counting
lemma, which is the analogue of the one seen in [6].

1.2. Organization of the paper. � Section 2 contains the knowledge on Lie groups and
Lie algebras required for this work and all the relevant notations. Section 3 brie�y explains the
strategy of the proof and states an ampli�ed pre-trace formula. The background on theGL(3)
Hecke algebra is given in Section 4. Moreover, several linearizations of compositions of some
Hecke operators, which are required to make the ampli�cation e�ective and done in [10], are
recalled. In Section 5, the function which occurs on the spectral side of the ampli�ed pre-trace
formula is constructed and several estimates for its inverse Helgason transform are proven.
Section 6 contains a �rst bound for the geometric side of the ampli�ed pre-trace formula,
based on the results done in the previous sections. The counting lemma required to complete
this bound is given in Section 7. The end of the proof of Theorem A appears in the �nal
section.

Notations . � The main parameters in this work are a positive real numberT, which goes
to in�nity and a positive integer L (a power of T determined at the very �nal step) which
goes to in�nity with T. Thus, if f and g are someC-valued functions onR2 then the symbols
f (T; L) � A g(T; L) or equivalently f (T; L) = OA (g(T; L)) mean that jf (T; L)j is smaller
than a constant, which only depends onA, times g(T; L). Similarly, f (T; L) = o(1) means
that f (T; L) ! 0 as T goes to in�nity among the positive real numbers.
We will denote by " a positive constant whose value may vary from one line to the next one.
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2. Background on Lie groups and Lie algebras

Let G := SL3(R) and

A =
n

a =
� a1

a2
a3

�
2 M 3(R); det(a) = 1 ; 8 i 2 f 1; 2; 3g; ai > 0

o
;

whose Lie algebra is

a =
�

H =
�

h1
h2

h3

�
2 M 3(R); Tr (H ) = 0

�
;

whose complexi�cation is denoted byaC. Let

N =
�

n =
�

1 x1 x3
1 x2

1

�
2 M 3(R)

�

and K := SO3(R) be one of the maximal compact subgroups ofG.
The Iwasawa decompositionof G is given by G = NAK . If g = nak then one denotes by

IwK (g) = k and IwA (g) = a:

The set
� := f H1;2 = E1;1 � E2;2; H2;3 = E2;2 � E3;3g

is a basis of the2-dimensional R-vector spacea where E i;j the matrix with all zero entries
except for a 1 in the i th row and j th column. The Killing form

B (H; H 0) = 6 Tr (HH 0)

is a positive de�nite quadratic form on a. The same properties hold foraC, the only di�erence
being that the Killing form is a non-degenerate bilinear symmetric form on aC.
The R-linear forms

� i;j (H ) = hi � hj

for 1 6 i; j 6 3 belong to a� and

� �
1 :=

n
� +

1 = � 1;2; � +
2 = � 2;3

o

is a basis of the2-dimensionalR-vector spacea� , whose elements are called thesimple positive
roots. The last positive root is � +

3 = � +
1 + � +

2 . The multiplicative roots on A are

8 i 2 f 1; 2; 3g; � i (a) = e� +
i (log ( a)) :

Another basis of a� is given by
� �

2 := f � 1; � 2g
where

� 1(H ) = h1; � 2(H ) = h1 + h2:
One can check that� �

2 is the dual basis of� . The same properties hold fora�
C.

Publications mathématiques de Besançon � 2019/2



R. Holowinsky and K. Nowland and G. Ricotta and E. Royer 57

Figure 1. A = exp H .

The Killing form being positive de�nite on a, one can identify canonically a and a� , in the
sense that

8 � 2 a� ; 9! H � 2 a; � = B (H � ; � ):

In addition, one can transfer the Killing form to a� by the formula

8 (�; � ) 2 (a� )2 ; B (�; � ) := B (H � ; H � ):

The basis f 6� 1; 6� 2g is the B -dual basis of the basis� �
1, in the sense that

B
�
6� i ; � +

j

�
= � i;j

for 1 6 i; j 6 2. The same properties hold fora�
C since the Killing form is non-degenerate

on a�
C.

One can also de�ne a positive de�nite quadratic form on a�
C as follows. Obviously,

a�
C = a� � i a� :

If � = � R + � I with respect to this decomposition then the conjugate of� is de�ned to be
� conj = � R � � I . The bilinear symmetric form on a�

C given by

f (� 1; � 2) = B
�
� 1; � conj

2

�

is positive de�nite and the induced norm is

k� k =
q

f (�; � ) =
q

k� Rk2 + k� I k2:

The basis � �
2 is the one that will be used to �nd an explicit integral representation for the

spherical function. If � belongs toa�
C then there exists a unique pairs = ( s1; s2) of complex
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numbers satisfying

(1) � = s1� 1 + s2� 2:

One writes � = � s.
One gets for free an explicit parametrization of the multiplicative characters on A via the
exponential map. If a belongs toA then one can de�ne

p1(a) = a1; p2(a) = a1a2:

For s = ( s1; s2) a pair of complex numbers, the Selberg character of parameters is given by

ps(a) = p1(a)s1 p2(a)s2 :

A famous one is the module given by� = p2
(1;1) . All the multiplicative characters of A are

of this shape. If � : A ! C is a multiplicative character then there exists a unique pair
s = ( s1; s2) of complex numbers satisfying

� = ps:

Note that
exp� � s = ps � exp:

The Weyl group W of G is the quotient of the normalizer of A in K by the centralizer of A in
K . Its action on A can be identi�ed with the action of the symmetric group � 3 by permuting
the diagonal elements of the diagonal matrices inA. W also acts ona and aC by permuting
the diagonal matrices of these vector spaces. A fundamental domain for this action ofW on
A is given by the positive Weyl chamber

A+ := f a 2 A; � 1(a) > 1; � 2(a) > 1g:

This action is transferred to an action on the group of multiplicative characters on A as
follows. Recall that for s 2 C2, the multiplicative character � s can be identi�ed with the
C-linear function � s. For w 2 W , one can de�ne theC-linear function w:� s by

w:� s = B (w:H � s ; � ) :

In other words, Hw:� s = w:H � s . The multiplicative character w:ps is the multiplicative char-
acter associated tow:� s, namely

(w:ps) (a) = exp (( w:� s)(log (a))) :

Equivalently, W acts on C2 by the explicit formulas given by

(1; 2):s = ( � s1; s1 + s2);

(1; 3):s = ( � s2; � s1);

(2; 3):s = ( s1 + s2; � s2);

(1; 2; 3):s = ( s2; � s1 � s2);

(1; 3; 2):s = ( � s1 � s2; s1):

Recall that the Cartan decomposition of G is G = KAK . If g = k1ak2 then one has a
simple formula for the geodesic distanceon the Riemannian manifold G=K between g and
the identity matrix I . Since I is �xed by the action of K , our distance function will only
depend on the entries ofa as

(2) d(g; I )2 := log 2 (a1) + log 2 (a2) + log 2 (a3):
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Up to a constant, this notion of distance comes from taking � (X ) := � t X as a Cartan
involution on the Lie algebra and de�ning a notion of size asB (X; � � (X )) with corresponding
distance betweenX and Y as B (X � Y;� � (X � Y )) . In terms of the multiplicative roots,
this becomes

d(g; I )2 =
2
3

�
log2 (� 1(a)) + log ( � 1(a)) log ( � 2(a)) + log 2 (� 2(a))

�
:

3. The ampli�ed pre-trace formula

Let � j 0 be our favorite SL3(Z) Hecke�Maass cusp form of type� j 0 = ( � j 0 ;1; � j 0 ;2) 2 C2. The
background on these objects can be found in [9]. One can include� j 0 in an orthonormal basis
of SL3(Z) Hecke�Maass cusp forms(� j ) j > 0, the type of each � j being � j = ( � j; 1; � j; 2) 2 C2

for j > 0.
Let k be a smooth and compactly supported bi-K -invariant function on G satisfying the
following properties.

� For j > 0, H(k)( � j ) > 0 where H(k) is the Helgason transform ofk (see Section 5).

� H (k) is non-negative on the continuous spectrum ofX .

� H (k)( � j 0 ) � 1.

Let K (z; z0) be the automorphic kernel given by

(3) K (z; z0) :=
X

 2 GL 3 (Z)=f� I g

k(z� 1z 0)

for all z and z0 in G. This function is left- SL3(Z)-invariant and right- K -invariant with respect
to each variablez and z0.
Spectrally decomposing via a pre-trace formula, one gets that

(4) K (z; z0) =
X

j > 0

H(k)( � j )� j (z0)� j (z) + : : :

where : : : stands for the contribution of the continuous spectrum.
Let I be a suitable �nite subset of N2 and let � = ( � m;n )(m;n )2 I be a suitable sequence of
complex numbers which will be chosen later. Assume the existence of linear operatorsTm;n
and T �

m;n such that

Tm;n (� j ) = aj (m; n)� j ;(5)

T �
m;n (� j ) = aj (m; n)� j(6)

for (m; n) 2 I . We shall later chooseaj (m; n) to be the Hecke eigenvalues of certain Hecke
operators Tm;n . De�ning

A j (� ) :=
X

(m;n )2 I

� m;n aj (m; n);
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60 On the sup-norm of SL3 Hecke�Maass cusp forms

one has that
X

j > 0

jA j (� )j2 H(k)( � j )� j (z0)� j (z) + : : :

=
X

(m1 ;n1 )2 I
(m2 ;n2 )2 I

� m1 ;n1 � m2 ;n2

X

j > 0

H(k)( � j )aj (m1; n1)aj (m2; n2)� j (z0)� j (z) + : : :

upon expanding the square and where: : : stands for the contribution of the continuous
spectrum of X .
Fix z and consider the previous equality as an equality of functions ofz0. One has

X

j > 0

jA j (� )j2H(k)( � j )� j (z0)� j (z) + : : :

=
X

(m1 ;n1 )2 I
(m2 ;n2 )2 I

� m1 ;n1 � m2 ;n2

X

j > 0

H(k)( � j )
h�

T �
m2 ;n2

� Tm1 ;n1

�
(� j )

i
(z0) � j (z) + : : : :

By (4), this gives
X

j > 0

jA j (� )j2 H(k)( � j )� j (z0)� j (z) + : : :

=
X

(m1 ;n1 )2 I
(m2 ;n2 )2 I

� m1 ;n1 � m2 ;n2

h�
T �

m2 ;n2
� Tm1 ;n1

�
(K (z; � ))

i
(z0):

Here we have used the fact that the Hecke operatorsTm;n act on the Eisenstein series in the
continuous spectrum in the same way in which they act on Hecke�Maass cusp forms. The
left-hand side of this formula is the spectral sidewhereas the right-hand side is thegeometric
side of the ampli�ed pre-trace formula.
Choosing z = z0, one makes use of positivity of the summand and estimates the size of any
single � j 0 (z) by the following inequality

(7) jA j 0 (� )j2 H(k)( � j 0 ) j� j 0 (z)j2 6
X

(m1 ;n1 )2 I
(m2 ;n2 )2 I

� m1 ;n1 � m2 ;n2

h�
T �

m2 ;n2
� Tm1 ;n1

�
(K (z; � ))

i
(z):

Therefore, everything boils down to bounding the geometric side of the ampli�ed pre-trace
formula.
We will choose the coe�cients � m;n such that jA j 0 (� )j is bounded below by a small power
of the main parameter T. We will also choose the coe�cients aj (m; n) such that it will be
possible to linearize the compositionT �

m2 ;n2
� Tm1 ;n1 . See Section 4 for an explicit description

of all these parameters.
We will not choose the function k occurring in (7) but instead the function 1 H(k) with the
required properties and we will prove the needed estimates for the corresponding functionk
in order to bound the geometric side of the ampli�ed pre-trace formula.

1Actually, similarly to what did H. Iwaniec and P. Sarnak in [11, Section 1], we will choose the inverse Fourier
transform of H (k).
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4. The Hecke algebra

4.1. Linearizations of Hecke operators. � For g a matrix in GL3(Q), the Hecke op-
erator Tg acts on a C-valued function f de�ned on G, which is left-SL3(Z)-invariant and
right- K -invariant, by the formula

(Tg(f )) ( z) =
X

� 2 GL 3 (Z)nGL 3 (Z)g GL 3 (Z)

f
�

1
det(� )1=3

�z
�

for all z in SL3(R). Note that on the one hand, the double cosetGL3(Z)gGL3(Z) is a �nite
union of left GL3(Z) cosets sinceg belongs to GL3(Q) and on the other hand, Tg is well-
de�ned since its de�nition does not depend on a choice of representatives of the quotient set
becausef is left-SL3(Z)-invariant. The resulting new function Tg(f ) remains left-SL3(Z)-
invariant and right- K -invariant. The fact that g is allowed to have rational coe�cients and
not only integer ones is required for the theory since the adjoint with respect to the Petersson
inner product of Tg is Tg� 1 .
One can compute the action of such Hecke operatorTg on the automorphic kernel as follows.
Let us �x a matrix z in G. One successively gets

(Tg(K (z; � ))) ( z0) =
X

� 2 GL 3 (Z)nGL 3 (Z)g GL 3 (Z)

X

 2 GL 3 (Z)=f� I g

k
�

1
det(� )1=3

z� 1�z 0
�

(8)

=
X

� 2 GL 3 (Z)nGL 3 (Z)g GL 3 (Z)

X

 2 GL 3 (Z)=f� I g

k
�

1
det(� )1=3

z� 1�z 0
�

(9)

=
X

� 2 GL 3 (Z)g GL 3 (Z)=f� I g

k
�

1
det(� )1=3

z� 1�z 0
�

(10)

for each matrix z0 in G. The equation (10) reveals that we should have a clear understanding
of the double coset ofg.
The main reference is [18]. Letg = [ gi;j ]16 i;j 6 3 be a matrix of size3 with integer coe�cients
and k 6 3 be a positive integer. Let I k be the �nite set of all k-tuples f i 1; : : : ; i kg satisfying
1 6 i 1 < � � � < i k 6 3. If ! and � are two elements ofI k then g(!; � ) will denote the k � k
determinantal minor of g whose row indices are the elements of! and whose column indices
are the elements of� . The k-th determinantal divisor of g say dk (g) is de�ned by

dk (g) :=

(
0 if 8 (!; � ) 2 I 2

k ; g(!; � ) = 0 ;
gcd

�
g(!; � ); (!; � ) 2 I 2

k
	

otherwise

where the gcd is chosen to be positive. In particular,

d1(g) = gcd fj gi;j j ; 1 6 i; j 6 3g; d3(A) = jdet(g)j :

These quantities are useful since they completely determine a given double coset. More pre-
cisely, a matrix h of size3 with integer coe�cients belongs to GL3(Z)gGL3(Z) if and only if

8 1 6 k 6 3; dk (h) = dk (g):

The determinantal divisors satisfy the divisibility properties

(11) 8 1 6 k 6 2; dk (A)2 j dk� 1(A)dk+1 (A)
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with the convention d0(A) = 1 and

(12) d1(A)k j dk (A)

for 1 6 k 6 3.
For n a positive integer, the n-th normalized Hecke operator is de�ned by

Tn :=
1
n

X

g= diag(y1 ;y2 ;y3 )
y1 jy2 jy3

y1y2y3= n

Tg:

Its dual ([9, Theorem 6.4.6]) with respect to the Petersson inner product is given by

T �
n =

1
n

X

g= diag(y1 ;y2 ;y3 )
y1 jy2 jy3

y1y2y3= n

Tg� 1 :

Applying the ampli�cation method requires being able to linearize the composition of sev-
eral Hecke operators. The di�erent required formulas proved in [10] are encapsulated in the
proposition.

Proposition 4.1 (R. Holowinsky�G. Ricotta�E. Royer ( [10])). � Let p and q be two
prime numbers.

Tp � Tq =
1
pq

Tdiag(1;1;pq) + � p= q
p + 1

p2 Tdiag(1;p;p) ;

T �
p � Tq =

1
pq

Tdiag(1;p;pq) + � p= q
p2 + p + 1

p2 Id;

T �
p � T �

q =
1
pq

Tdiag(1;pq;pq) + � p= q
p + 1

p2 Tdiag(1;1;p) :

Tp �
�
Tq � T �

q � Id
�

=
q + 1
pq2 Tdiag(1;1;p) +

1
pq2 Tdiag(1;q;pq2 )

+ � p= q

�
p + 1

p3 Tdiag(1;p2 ;p2 ) +
p + 1

p2 Tdiag(1;1;p)

�
:

T �
p �

�
Tq � T �

q � Id
�

=
q + 1
pq2 Tdiag(1;p;p) +

1
pq2 Tdiag(1;pq;pq2 )

+ � p= q

�
p + 1

p3 Tdiag(1;1;p2 ) +
p + 1

p2 Tdiag(1;p;p)

�
:

�
Tp � T �

p � Id
�

�
�
Tq � T �

q � Id
�

=
1

p2q2 Tdiag(1;pq;p2q2 ) +
q + 1
p2q2 Tdiag(1;p;p2 )

+
p + 1
p2q2 Tdiag(1;q;q2 ) +

(p + 1)( q + 1)
p2q2 Id

+ � p= q

�
p + 1

p4 Tdiag(1;p3 ;p3 ) +
p + 1

p4 Tdiag(1;1;p3 )

�

+ � p= q

 
(p + 1)(2 p � 1)

p4 Tdiag(1;p;p2 ) +
p(p + 1)(1 + p + p2)

p4 Id

!

:
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Moreover,

Tp;1 = T �
1;p = Tp;

T �
p;1 = T1;p = T �

p ;

Tp;p = T �
p;p = Tp � T �

p � Id :

Recall that the Hecke algebra is isomorphic to the algebra of doubleGL3(Z)-cosets where
the multiplication law is de�ned in [22]. The previous proposition follows from an explicit
computation of the multiplication of the corresponding double cosets.

4.2. Constructing an ampli�er. � In this section, we will choose the setI and the
coe�cients � m;n , (m; n) 2 I occurring in (7).
Let us construct a relevant GL(3) ampli�er, based on the identity

(13) aj 0 (1; p)aj 0 (p;1) � aj 0 (p; p) = 1

whereaj 0 (m; n) stands for the (m; n)-th Fourier coe�cient of � j 0 . Let L > 1 be a parameter,
whose value will be determined later on (a positive power ofT). Let us choose

(14) I := f (p;1); (1; p); (p; p); L 6 p 6 2L; p primeg

and

(15) � m;n :=

8
>>>><

>>>>:

aj 0 (1; p) if L 6 m = p 6 2L is a prime and n = 1 ,
aj 0 (p;1) if m = 1 and L 6 n = p 6 2L is a prime,
� 2 if L 6 m = n = p 6 2L are the same prime,
0 otherwise

such that

A j 0 (� ) = 2
X

L 6 p6 2L

(aj 0 (1; p)aj 0 (p;1) � aj 0 (p; p))

= 2
X

L 6 p6 2L

1

satis�es

(16) A j 0 (� ) � " L 1� "

by (13).

5. Test functions in the pre-trace formula

5.1. On the cuspidal spectrum of X . � Let � be a Hecke�Maass cusp form of type
(� 1; � 2) 2 C2. Its archimedean Langlands parameters are

(� 1; � 2; � 3) = (2 � 1 + � 2; � � 1 + � 2; � � 1 � 2� 2)

and the element ofa�
C=W corresponding to � is

� � = 3 � 1� 1 + 3 � 2� 2:

Let us denote by � the set of these linear forms. The Laplacian eigenvalue of� is

1 � 3� 2
1 � 3� 1� 2 � 3� 2

2 = 1 �
1
2

�
� 2

1 + � 2
2 + � 2

3

�
:

Publications mathématiques de Besançon � 2019/2



64 On the sup-norm of SL3 Hecke�Maass cusp forms

The Jacquet�Shalika bound towards the Ramanujan�Petersson�Selberg conjecture asserts
that

max
16 i 6 3

j<e(� i )j 6
1
2

and the unitaricity condition tells us that

f � 1; � 2; � 3g = f� � 1; � � 2; � � 3g:

Both previous facts ensure that either

(� 1; � 2) 2 (iR)2 ;

in which case� is said to be tempered or

(� 1; � 2) =
�

2�
3

; �
�
3

+ it
�

with � and t in R with j� j 6 1=2, in which case� is said to be exceptionnal.

5.2. Construction of a relevant test function on the spectral side. � In this section,
we will design the function H(k) occurring in (7).
If F = f a 2 A; d(a; I ) > 1g then F is a closed subset ofG, which does not containI . By the
properties of the distance function,g in KFK also satis�es d(g; I ) > 1. Thus, one can �nd a
Weyl-invariant symmetric open neighborhood O of I in G and a small enough positive real
number � satisfying

I 2 O � A(� ) = f a 2 A; jj logajj 6 � g � G n KFK

and KA (� )K � G n KFK = f g 2 G; d(g; I ) < 1g.
The Paley�Wiener theorem asserts that the diagram given in �gure 2 is a commutative dia-
gram of isomorphisms of topological algebras. In this diagram,H is the Helgason transform,
F is the Fourier transform and A is the Abel transform. Of course,C1

c (a)W can be identi-
�ed to C1

c (A)W , via the exponential map. R. Gangolli proved a re�ned version in [8] of the
Paley�Wiener theorem, which says that if g belongs toC1

c (A(� ))W then A � 1(g) belongs to
C1

c (KA (� )K ) � C1
c (G n KFK ).

Figure 2. The Paley�Wiener theorem

Both previous paragraphs imply that there exists a Weyl-invariant symmetric open neigh-
borhood U of 0 in a such that

8 g 2 C1
c (U)W ; A � 1(g) 2 C1

c (G n KFK )
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and kH k 6 1=3 for H in U.
Let us �x U0 a Weyl-invariant symmetric open neighborhood of0 in a satisfying U0+ U0 �
U. Let us also �x a real non-negative symmetric function g in C1

c (U0)W normalized byR
h2 a g(h)dH = 2 . See �gure 3.

Figure 3. Test function g 2 C1
c (a)W

By [7, Lemma 6.2], the function F (g) in P(a�
C)W is even, real-valued2 on the spectrum � of

X and satis�es
8 � 2 a�

C; k� k 6 1 ) jF (g)( � )j > 1:
Recall that the Paley�Wiener condition means that

8 � 2 a�
C; 8 m > 0; jF (g)( � )j 6 cm (g)

exp (� k� Rk)
(1 + k� k)m :

Brie�y speaking, F (g) is a real bump function over 0.
In order to restore the positivity, let us de�ne h = g � g such that F (h) = F (g)2. By [7,
Lemma 6.3], the function h in C1

c (U)W is real symmetric and its Fourier transform F (h),
which belongs toP(a�

C)W , is a non-negative3 function on the spectrum � of X satisfying

8 � 2 a�
C; k� k 6 1 ) jF (h)( � )j > 1:

The Paley�Wiener condition becomes

8 � 2 a�
C; 8 m > 0; F (h)( � ) 6 dm (g)

exp (2� k� Rk)
(1 + k� k)m :

Thus, F (h) is a bump function over 0 non-negative on the spectrum� of X .

2But not on a�
C.

3But not on a�
C.
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We would like to construct a bump function over the spectral parameter of our favorite tem-
pered Hecke�Maass cusp form� 0. By the previous section, the element� � 0 of a�

C associated
to � 0 is given by

� � 0 = 3 � 0;1� 1 + 3 � 0;2� 2 2 ia�

where (� 0;1; � 0;2) is the type of � 0, which belongs to iR2 by the temperedness condition on
� 0. Let us de�ne

(17) � T = 3 iT � 1 + 3 iT � 2

and
hT = e� � T h  F (hT )( � ) = F (h)( � � � T ):

This function hT belongs toC1
c (U) and its Fourier transform satis�es

8 � 2 a�
C; k� � � T k 6 1 ) jF (hT )( � )j > 1:

The Paley�Wiener condition becomes

(18) 8 � 2 a�
C; 8 m > 0; F (hT )( � ) 6 dm (g)

exp (2� k� k)
(1 + k� � � T k)m :

This follows from the Paley�Wiener condition for h and the fact that (� � � T )R = � R with
k� Rk 6 k� k by [7, Proposition 3.4]. Thus, F (hT ) is a bump function over � T non-negative
on the spectrum � of X .
With hT not Weyl-invariant, it seems natural to de�ne

hW
T (H ) =

X

w2 W

hT (w:h) = h(H )
X

w2 W

e� � T (w:h)

whose Fourier transform is given by

F
�
hW

T

�
(� ) =

X

w2 W

F (h)( � � w:� T ):

The previous paragraphs imply that hW
T belongs to C1

c (U)W . In particular, A � 1(hW
T ) is

supported in the compact setG nKFK which does not depend onT. The Fourier transform
of hW

T is non-negative on the spectrum� of X and satis�es for � 2 a�
C�

�
�F

�
hW

T

�
(� )

�
�
� > 1:

as soon as there existsw in W with k� � w:� T k 6 1.
This function F (hW

T ) is the Weyl-invariant bump function non-negative on the spectrum � of
X we were looking at (see Figure 4). In other words,H(k) = F (hW

T ) in (7), and k = A � 1(hW
T ).

5.3. Estimates for the inverse Helgason transform of our test function. � The
spherical function of parameter s 2 C2 is de�ned by

' s(g) =
Z

k2 K
(ps� 1=2)(Iw A (kg)) dk

for g in G with the Haar measure onK normalized so that K has measure one. The spherical
function ' s is a bi-K -invariant function on G, Weyl-invariant in its parameter s and satis�es
' s(I ) = 1 . We will also write ' � where the association between� and s is as in (1). The
oscillatory integral which forms the spherical function has been studied by many authors,
including J. J. Duistermaat, J. A. C. Kolk and V. S. Varadarajan [7], V. Blomer and A. Pohl [6]
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Figure 4. Test function F
�
hW

T

�
2 P (a�

C)W

and S. Marshall [16]. We will rely on the result of S. Marshall, which we restate below just
for GL(3) and in our notation, though his result is for semisimple and noncompact groups
with �nite center. De�ne the singular set in ia� to be

n
� 2 ia� ; B (� +

j ; � ) 2 �i Z for somej = 1 ; 2; 3
o

:

Proposition 5.1 (S. Marshall, [16, Theorem 1.3]). � Let B � A be a compact set and
let B � � i a� be a compact set which does not intersect the singular set. Then

(19) ' exp(T � ) (a) � B;B �

3Y

j =1

(1 + Tj log � j (a)j) � 1=2

for any a in B and � in B � .

The inverse Helgason transform, also called the inverse spherical transform, is given by

(20) k(a) = H � 1
�
F

�
hW

T

��
(a) =

Z

t2 R2
F

�
hW

T

�
(t)' it (a)

dt
jc3(t)j2

;

the measure being the Plancherel one, wherec3 stands for the Harish�Chandra c-function.
The required estimates for the inverse Helgason transformk of our test function F (hW

T )
constructed in Subsection 5.2 which will enable us to estimate the geometric side of the
ampli�ed pre-trace formula (7) are given in the following proposition.

Proposition 5.2 . � Let a be an element in a compact subset ofA.

� If a belongs to the closure of the positive Weyl chamberA+ then

k(a) = H � 1
�
F

�
hW

T

��
(a) � " T3+ " :
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� If a belongs to the positive Weyl chamberA+ then

k(a) = H � 1
�
F

�
hW

T

��
(a) � "

T3=2+ "
p

(� 1(a)2 � 1) (� 2(a)2 � 1) (� 3(a)2 � 1)
:

� If a satis�es 1 6 � 1(a) 6 1 + O(1)=T and � 2(a) > 1 + O(1)=T then

k(a) = H � 1
�
F

�
hW

T

��
(a) � "

T2+ "

� 2(a)2 � 1
:

� If a satis�es � 1(a) > 1 + O(1)=T and 1 6 � 2(a) 6 1 + O(1)=T then

H � 1
�
F

�
hW

T

��
(a) � "

T2+ "

� 1(a)2 � 1
:

Altogether, the bounds given in this proposition are summarized in the �gure 5.

Figure 5. Bounds for the inverse Helgason transformk = H � 1
�
F

�
hW

T

��

(up to T " ).

Proof. � By the Weyl-invariance of both ' it in its parameter and of the Plancherel measure,
and by the construction of the test function F (hW

T ),

k(a) = 6
Z

t2 R2
F (hT ) ( t)' it (a)

dt
jc3(it )j2

:

The spherical function satis�es j' it (a)j is bounded while the Harish�Chandra c-function sat-
is�es (see [12, Chapter 5, Theorem 6.4])

jc3(i (t1; t2)) j � 2 =
�
12

t1t2(t1 + t2) tanh
�

�
2

t1

�
tanh

�
�
2

t2

�
tanh

�
�
2

(t1 + t2)
�

;

and thus grows polynomially in t. The Paley�Wiener estimate (18) of arbitrary polynomial
decay for the test function away from � T implies that for any positive integer m,

k(a) = 6
Z

B T " (� T )
F (hT ) ( t)' it (a)

dt
jc3(it )j2

+ Om (T � m )
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where � T is de�ned in (17) and BT " (� T ) stands for a ball of center (T; T) and radius T " .
In BT " (� T ), jc3(it )j2 � T3 and F (hT ) is bounded. We will now see that the conditions for
S. Marshall's bound (19) are met. Let B be a compact set which contains the support ofk
for all T . Such sets exist by the construction ofk. Sincei (� 1 + � 2) is not in the singular set, it
is possible to takeB � to be a closed ball aroundi (� 1 + � 2) that is disjoint from the singular
set. Then for T su�ciently large, TB � will contain a ball of radius T " around � T . With these
choices of the setsB and B � made, (19) applies. Taylor expandinglog � i at � i = 1 if a is
near a wall of the Weyl chamber gives the denominators in the proposition. �

6. First estimate for the geometric side of the ampli�ed pre-trace formula

This section is devoted to the proof of the following �rst estimate for j� j 0 (z)j. Let us de�ne

(21) K `;n (z) :=
X

� 2 GL 3 (Z) diag(1 ;`;n ) GL 3 (Z)=f� 1g

�
�
�
�k

�
1

det(� )1=3
z� 1�z

� �
�
�
�

for any positive integer n, any positive integer ` dividing n and any z in X and where

k = H � 1
�
F

�
hW

T

��
:

Proposition 6.1 . � Let z be in X . One has

(22) L 2� " j� j 0 (z)j2 � "
X

L 6 p;q6 2L

j� p;1� q;1j
pq

K q;pq(z) +
X

L 6 p6 2L

j� p;1j2 (p2 + p + 1)
p2 K 1;1(z)

+
X

L 6 p;q6 2L

j� p;1� 1;qj
pq

K 1;pq(z) +
X

L 6 p6 2L

j� p;1j2 (p + 1)
p2 K p;p(z)

+
X

L 6 p;q6 2L

j� p;1j (q + 1)
pq2 K 1;p(z) +

X

L 6 p;q6 2L

j� p;1j
pq2 K q;pq2 (z)

+
X

L 6 p6 2L

j� p;1j (p + 1)
p3 K p2 ;p2 (z) +

X

L 6 p6 2L

j� p;1j (p + 1)
p2 K 1;p(z)

+
X

L 6 p;q6 2L

1
p2q2 K pq;p2q2 (z) +

X

L 6 p;q6 2L

q + 1
p2q2 K p;p2 (z)

+
X

L 6 p;q6 2L

p + 1
p2q2 K q;q2 (z) +

X

L 6 p;q6 2L

(p + 1)( q + 1)
p2q2 K 1;1(z)

+
X

L 6 p6 2L

p + 1
p4 K p3 ;p3 (z) +

X

L 6 p6 2L

p + 1
p4 K 1;p3 (z)

+
X

L 6 p6 2L

(p + 1)(2 p � 1)
p4 K p;p2 (z) +

X

L 6 p6 2L

p(p + 1)(1 + p + p2)
p4 K 1;1(z)

where all the summations are over prime numbers.

The quantities K `;n (z) will be bounded thanks to Proposition 5.2 and a counting lemma given
in the next section.
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Proof of Proposition 6.1. � The ampli�er de�ned in (15) satis�es

(23) � m;n = � n;m

and

(24) � m;m = � m;m

for any (m; n) 2 I , the set de�ned in (14).
Let z0 be in X and de�ne

S :=
X

j > 0

�
�
�
�
�
�

X

(m;n )2 I

� m;n aj (m; n)

�
�
�
�
�
�

2

ĥ(� j )� j (z)� j (z0):

Expanding the square,

S =
9X

k=1

Sk (g; g0)

where

S1(z; z0) =
X

p;q� L

� p;1� q;1
X

j > 0

ĥ(� j )aj (p;1)aj (q;1)� j (z)� j (z0);

S2(z; z0) =
X

p;q� L

� p;1� 1;q
X

j > 0

ĥ(� j )aj (p;1)aj (1; q)� j (z)� j (z0);

S3(z; z0) =
X

p;q� L

� p;1� q;q
X

j > 0

ĥ(� j )aj (p;1)aj (q; q)� j (z)� j (z0)

and

S4(z; z0) =
X

p;q� L

� 1;p� q;1
X

j > 0

ĥ(� j )aj (1; p)aj (q;1)� j (z)� j (z0);

S5(z; z0) =
X

p;q� L

� 1;p� 1;q
X

j > 0

ĥ(� j )aj (1; p)aj (1; q)� j (z)� j (z0);

S6(z; z0) =
X

p;q� L

� 1;p� q;q
X

j > 0

ĥ(� j )aj (1; p)aj (q; q)� j (z)� j (z0)

and

S7(z; z0) =
X

p;q� L

� p;p� q;1
X

j > 0

ĥ(� j )aj (p; p)aj (q;1)� j (z)� j (z0);

S8(z; z0) =
X

p;q� L

� p;p� 1;q
X

j > 0

ĥ(� j )aj (p; p)aj (1; q)� j (z)� j (z0);

S9(z; z0) =
X

p;q� L

� p;p� q;q
X

j > 0

ĥ(� j )aj (p; p)aj (q; q)� j (z)� j (z0):
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One can check that

S9(z; z0) = S9(z0; z)

S1(z; z0) = S5(z0; z)

S2(z; z0) = S4(z0; z)

S3(z; z0) = S6(z0; z)

S7(z; z0) = S8(z0; z)

by (23) and (24). Thus,

S =
4X

k=1

�
Tk (z; z0) + Tk (z0; z)

�
+ T5(z; z0)

where

T1(z; z0) =
X

p;q� L

� p;1� q;1
X

j > 0

ĥ(� j )aj (p;1)aj (q;1)� j (z)� j (z0);

T2(z; z0) =
X

p;q� L

� p;1� 1;q
X

j > 0

ĥ(� j )aj (p;1)aj (1; q)� j (z)� j (z0);

T3(z; z0) = � 2
X

p;q� L

� p;1
X

j > 0

ĥ(� j )aj (p;1)aj (q; q)� j (z)� j (z0);

T4(z; z0) = � 2
X

p;q� L

� q;1
X

j > 0

ĥ(� j )aj (p; p)aj (q;1)� j (z)� j (z0);

T5(z; z0) = 4
X

p;q� L

X

j > 0

ĥ(� j )aj (p; p)aj (q; q)� j (z)� j (z0):

One can check that
T3(z; z0) = T4(z0; z)

such that

S =
2X

k=1

�
Uk (z; z0) + Uk (z0; z)

�
+ 2

�
U3(z; z0) + U3(z0; z)

�
+ U4(z; z0)

where

U1(z; z0) =
X

p;q� L

� p;1� q;1
X

j > 0

ĥ(� j )aj (p;1)aj (q;1)� j (z)� j (z0)

U2(z; z0) =
X

p;q� L

� p;1� 1;q
X

j > 0

ĥ(� j )aj (p;1)aj (1; q)� j (z)� j (z0)

U3(z; z0) = � 2
X

p;q� L

� p;1
X

j > 0

ĥ(� j )aj (p;1)aj (q; q)� j (z)� j (z0)

U4(z; z0) = 4
X

p;q� L

X

j > 0

ĥ(� j )aj (p; p)aj (q; q)� j (z)� j (z0):

Let us de�ne
' (z) =

X

j > 0

ĥ(� j )� j (z)� j (z0) =
X

 2 GL 3 (Z)=f� I g

k(z� 1z 0):
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Now,

U1(z; z0) =
X

p;q� L

� p;1� q;1

�
Tp � T �

q

�
(' ) (z)

U2(z; z0) =
X

p;q� L

� p;1� 1;q (Tp � Tq) ( ' ) (z)

U3(z; z0) = � 2
X

p;q� L

� p;1

�
Tp �

�
Tq � T �

q � Id
��

(' ) (z)

U4(z; z0) = 4
X

p;q� L

��
Tq � T �

q � Id
�

�
�
Tq � T �

q � Id
��

(' ) (z):

Let us de�ne

K m;n (z; z0) =
X

� 2 GL 3 (Z)diag(1;m;n ) GL 3 (Z)=f� I g

k
�

1
det(� )1=3

z0� 1�z
�

:

By the second equation in Proposition 4.1 and by (8),

U1(z; z0) =
X

p;q� L

� p;1� q;1

pq
K q;pq(z; z0) +

X

p� L

j� p;1j2(p2 + p + 1)
p2 K 1;1(z; z0):

By the �rst equation in Proposition 4.1 and by (8),

U2(z; z0) =
X

p;q� L

� p;1� 1;q

pq
K 1;pq(z; z0) +

X

p� L

� 2
p;1(p + 1)

p2 K p;p(z; z0):

By the fourth equation in Proposition 4.1 and by (8),

U3(z; z0) = � 2
X

p;q� L

� p;1(q + 1)
pq2 K 1;p(z; z0) � 2

X

p;q� L

� p;1

pq2 K q;pq2 (z; z0)

� 2
X

p� L

� p;1(p + 1)
p3 K p2 ;p2 (z; z0) � 2

X

p� L

� p;1(p + 1)
p2 K 1;p(z; z0):

By the sixth equation in Proposition 4.1 and by (8),

U4(z; z0) = 4
X

p;q� L

1
p2q2 K pq;p2q2 (z; z0) + 4

X

p;q� L

q + 1
p2q2 K p;p2 (z; z0)

+ 4
X

p;q� L

p + 1
p2q2 K q;q2 (z; z0) + 4

X

p;q� L

(p + 1)( q + 1)
p2q2 K 1;1(z; z0)

+ 4
X

p� L

p + 1
p4 K p3 ;p3 (z; z0) + 4

X

p� L

p + 1
p4 K 1;p3 (z; z0)

+ 4
X

p� L

(p + 1)(2 p � 1)
p4 K p;p2 (z; z0) + 4

X

p� L

p(p + 1)(1 + p + p2)
p4 K 1;1(z; z0):

Finally, we choosez0 = z.
The properties of the function hW

T constructed in the previous section and (16) conclude the
proof of this proposition by positivity. �
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7. The counting Lemma

7.1. Preliminary steps. � In this section, z will be in a compact set of X , which means
that

z = naK =
�

1 x1 x3
1 x2

1

� � a1
a2

a3

�
K

where

(25) 1 � x1; x2; x3 � 1; 1 � � 1 :=
a1

a2
; � 2 :=

a2

a3
>

p
3

2
:

In this section, � will be an invertible matrix of size 3, whose Cartan decomposition ofz� 1�z
can be written as

z� 1�z = k1bk2 = k1

�
b1

b2
b3

�
k2 2 KA + K:

By a slight abuse of notations, let us set

� 1 = � 1

�
z� 1�z

�
:= � 1(b); � 2 = � 2

�
z� 1�z

�
:= � 2(b)

and note that

b1 =
�
n� 2

1� 2

� 1=3
; b2 =

�
n

� 2

� 1

� 1=3

; b3 =
�

n
� 1� 2

2

� 1=3

:

Let M `;n (z; � 1; � 2) be the number of matrices

� =
�

a b c
d e f
g h j

�

with integer coe�cients satisfying

(26) d(� ) = ( d1(� ); d2(� ); d3(� )) = (1 ; `; n ); 8 j 2 f 1; 2g; 1 6 � j 6 1 + � j

where ` and n are positive integers with ` j n and 0 6 � 1; � 2 � 1. This section is devoted to
the proof of the following proposition.

Proposition 7.1 . � Let z be in a compact set ofX , 0 6 � 1; � 2 � 1 and � = � 2
1 + � 2

2 + � 1� 2.
One has

M `;n (z; � 1; � 2) � " n1=3+ "
X

� j`

1
�

�
1 + n2=3

� p
� + �

� 1=5
� 2

�

0

B
@1 +

n2=3
� p

� + �
� 1=5

`=�

1

C
A

0

@1 +
n1=3

� p
� + �

�

`=�

1

A

for any " > 0.

Remark 7.2 . � The referee kindly pointed us that � � � 2
1 + � 2

2 and � 1=2 + � � � 1=2

since 0 6 � 1; � 2 � 1. Nevertheless, on the one hand, the statement given in the previous
proposition reminds the reader with the distance function given in (2) and on the other hand
reveals the structure of the proof of this proposition.
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This counting lemma is optimal in the following sense. If z = I , the identity matrix, then
the number of matrices � is bounded by n1=3+ " if n is a cube, which matches the order of
magnitude for the number of automorphs of I , namely the number of matrices� satisfying
�K = K .
The main ingredient in the proof consists in counting integer solutions to equations involving
explicit positive de�nite quadratic forms with real coe�cients, which depend on x1, x2, x3
and on the multiplicative roots � 1 and � 2. The discriminants of these quadratic forms will
be either � 1 >

p
3=2 > 0 or � 2 >

p
3=2 > 0, which enables us to approximate them by

positive de�nite quadratic forms with rational coe�cients. This Diophantine approximation
preliminary step lies at the heart of the proof of the counting lemma proved by V. Blomer
and A. Pohl ([6]).
Let us �x for now � , one of these matrices.
One can check that

z� 1�z =

0

@
a0 b0 c0

d0 e0 f 0

g0 h0 j 0

1

A

where

a0 = a � x1d + xg;

b0 =
(a � x1d + xg)x1 + b� x1e+ xh

� 1
;

c0 =
(a � x1d + xg)x3 + ( b� x1e+ xh)x2 + c � x1f + xj

� 3
;

d0 = � 1(d � x2g);

e0 = ( d � x2g)x1 + e � x2h;

f 0 =
(d � x2g)x3 + ( e � x2h)x2 + f � x2j

� 2
;

g0 = � 3g;

h0 = � 2(gx1 + h);

j 0 = gx3 + hx2 + j

where x := x1x2 � x3 and � 3 := � 1� 2.
Let us set

� 2 := dj � fg

� 3 := dh � eg

� 5 := aj � cg

� 6 := ah � bg

� 9 := ae� bd:

The matrix z� 1�z being close ton1=3k1k2, let us compute the Frobenius norm of

(27) z� 1�z � n1=3k1k2 =:

0

@
A B C
D E F
G H J

1

A :
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By the bi-invariance of the Fronenius norm by orthogonal matrices, one has

kz� 1�z � n1=3k1k2kF =
q

(b1 � n1=3)2 + ( b2 � n1=3)2 + ( b3 � n1=3)2

� n1=3
p

�

by (26) and where � =: � 2
1 + � 2

2 + � 1� 2. In particular,

(28) jAj; : : : ; jJ j � n1=3
p

�

such that

(29) ja0j; : : : ; jj 0j � n1=3(1 +
p

�) � n1=3

since the coe�cients of the orthogonal matrix k1k2 are bounded and

(30) jaj; : : : ; jj j � n1=3

by the explicit formulas for the coe�cients of z� 1�z and (25).
The matrix

k1k2 =
1

n1=3

0

@
a0� A b0� B c0� C
d0� D e0� E f 0� F
g0� G h0� H j 0� J

1

A

being orthogonal, its rows and columns are orthonormal, which implies

(31) a02 + d02 + g02 = n2=3 + O
�
n2=3

� p
� + �

��
;

(32) g02 + h02 + j 02 = n2=3 + O
�
n2=3

� p
� + �

��
;

and

(33) d02 + e02 + f 02 = n2=3 + O
�
n2=3

� p
� + �

��

by (28) and (29). In addition, k1k2 is equal to its comatrix, which implies

(34) � 0
2 := d0j 0� f 0g0 = � 1(� 2 + x2� 3) = � n1=3b0+ O

�
n2=3

� p
� + �

��

by (28) and (29).
The determinant equation det(� ) = n can be written as

(35) c� 3 � f � 6 + j� 9 = n:

7.2. The core of the proof of Proposition 7.1. � The proof of Proposition 7.1 heavily
relies on the following result.

Proposition 7.3 . � Let x0, y0 be some �xed integers,D0 > 0 be an absolute constant,U a
large parameter, which goes to in�nity and 0 6 � � 1. Let 1 6 k 6 5 be an integer. Letu be a
real number satisfying juj 6 U2, v be a positive integer andm be a positive integer satisfying
jmj � U. Let q be a positive de�nite binary quadratic form with three uniformly bounded real
coe�cients of discriminant D > D0 and � be a linear form on R2 with two uniformly bounded
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real coe�cients. Assume that among the �ve coe�cients of q and � , exactly k of them are
not integers. In this case,

�
�
�
n

(x; y) 2 Z2; jxj; jyj � U; (x; y) � (x0; y0) mod v; q(x; y) + m� (x; y) = u + O(U2� )
o�

�
�

� D 0 ;" U"

 

1 +
U2� 1=(k+1)

v

!

for all " > 0. Note that the implied constant depends onD0 and " , but is uniform in all other
parameters.

Proof of Proposition 7.3. � Let us approximate simultaneously thek coe�cients of q and � ,
say c1; : : : ; ck , which are not integers by rational numbers of common denominator1 6 r 6 R
for some parameterR, which will be chosen later.

8 i 2 f 1; : : : ; kg;
�
�
�
�ci �

pi

r

�
�
�
� 6

1
rR 1=k

:

If (x; y) 2 Z2 satisfy jxj; jyj � U and

q(x; y) + m� (x; y) = u + O(U2� )

then

qZ(x; y) + m� Z(x; y) = ru + O

 

RU2� +
U2

R1=k

!

where qZ (respectively � Z) is the binary quadratic form (respectively linear form on R2)
with integer coe�cients obtained from q (respectively � ) after substituing the coe�cients � i ,
1 6 i 6 k, by their rational approximation and multiplying by the common denominator r .
The optimal choice for R is given by

R = min
�

U"

� k=(k+1)
; U2k

�
=

(
U "

� k= ( k +1) if � > 1
U ( k +1)(2 k � " ) =k ,

U2k otherwise.

In both cases,R ! + 1 as U ! 1 since� � 1. Thus, the quadratic form r � 1qZ , being close
to the quadratic form q of discriminant D > D0 > 0, remains positive de�nite and the same
holds for qZ . Note that

qZ(x; y) + m� Z(x; y)

belongs to a �xed congruence class modulov. By [6, Lemma 8(a)], the number of pairs of
integers (x; y) is bounded by

� "

 

RU2 +
U2

R1=k

! "
0

@1 +
RU2� + U2

R1=k

v

1

A � " U"

 

1 +
U2� 1=(k+1)

v

!

:

�
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7.3. Proof of Proposition 7.1. � One of the coe�cients of the matrix � is di�erent from
0. For instance, let us assume thatg 6= 0 and let us set � = ( g; `). There are n1=3=� integers
g by (30). Let us �x g.
Firstly, let us count the number of pairs (a; d). The equation in (31) can be written as

(36) qR
1 (a; d) + 2 g� R

1 (a; d) = n2=3 � (� 3
3 � � 2

1x2
2 � x2)g2 + O

�
n2=3

� p
� + �

��

where qR
1 is the positive de�nite quadratic form of discriminant � 2

1 > 3=4 with bounded real
coe�cients given by

qR
1 (a; d) = a2 + ( x2

1 + � 2
1)d2 � 2x1ad

and � R
1 is the linear form with bounded real coe�cients given by

� R
1 (a; d) = xa � (xx 1 + � 2

1x2)d:

By Proposition 7.3, the number of pairs (a; d) is bounded by

� " n"
�

1 + n2=3
� p

� + �
� 1=5

�
:

Let us count the number of pairs(h; j ). Similarly, the equation in (32) implies that the number
of pairs (h; j ) is also bounded by

� " n"
�

1 + n2=3
� p

� + �
� 1=5

�
:

Let us �x (a; d; g; h; j ) and let us count the number of4-tuples (b; c; e; f). We decompose this
count into

X

(b;c;e;f )

1 =
X

e
` j� 3

X

f
` j� 2

X

b
` j� 6

X

c
` j� 5

1 =
X

e
` j� 36=0

X

f
` j� 2

X

b
` j� 6

X

c
` j� 5

1 +
X

e
` j� 3=0

X

f
` j� 2

X

c
` j� 5

X

b
` j� 6

1:

Note that � 3 = 0 �xes e. Thus, the largest count will be
X

e
` j� 36=0

X

f
` j� 2

X

b
` j� 6

X

c
` j� 5

1:

Let us count the number of pairs (e; f ). The equation in (33) can be writen as (after multi-
plying by � 2

2)

(37) qR
3 (e; f ) + 2 � R

3 (e; f ) = n2=3 � C + O
�
n2=3

� p
� + �

��

where qR
3 is the positive de�nite quadratic form of discriminant � 2

2 > 3=4 with bounded real
coe�cients given by

qR
3 (e; f ) = ( � 2

2 + x2
2)e2 + f 2 + 2x2ef;

� R
3 is the linear form with bounded real coe�cients given by

� R
3 (e; f ) =

�
(� 2

2x1 + x2x3)d � (x2
2x3 + � 2

2x1x2)g � (� 2
2x2 + x3

2)h � x2
2j

�
e

+
�
x3d � x2x3g � x2

2h � x2j
�

f

and C is a constant, which only depends onz, d, g, h and j and bounded by n2=3. We will
use once again Proposition 7.3 but with the additional feature that both e and f belong to a
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�xed congruence class modulò =� since` divides both � 2 = dj � fg and � 3 = dh � eg. The
number of pairs (e; f ) is bounded by

� " n"

0

B
@1 +

n2=3
� p

� + �
� 1=5

`=�

1

C
A :

Let us count the number of b. Equation (34) implies (after multiplying by � 1=n1=3) that

b =

 
� 2

1x2

n1=3
g + x1

!

e+
� 2

1

n1=3
gf +

� 1

n1=3
c2 + O

�
n1=3

� p
� + �

��

for some constant c2, which only depends on(a; d; g; h; j ). Moreover, b belongs to a �xed
congruence class modulò=� since` divides � 6 = ah� gb. Thus, the number of b is bounded by

1 +
n1=3

� p
� + �

�

`=�
:

Let us count the number of c. There is only onec since c is �xed by the determinant equa-
tion (35) where � 3 6= 0 . Note that this is where the condition � 3 6= 0 is used.

8. End of the proof of Theorem A

8.1. Bounding K `;n (z). � The following proposition gives a bound for the quantities
K `;n (z) given in (21) for any z in a compact set ofX , any positive integer n and any positive
integer ` dividing n. Let us de�ne

M `;n :=
X

� j`

1
�

 

1 +
n2=3

`=�

!  

1 +
n1=3

`=�

!

for any positive integer n and any positive integer ` dividing n.

Proposition 8.1 . � Let n a positive integer, which goes to in�nity with T and ` a positive
integer dividing n. If z belongs to a compact subset ofX and n 6 T3=10 then

K `;n (z) � " T3+ " n1=3+ " + T2+ " n5+ " M `;n :

Proof of Proposition 8.1. � By Proposition 5.2, if 1 6 � 1(a); � 2(a) � 1 then

H � 1
�
hW

T

�
(a) �

8
>><

>>:

T3+ " if 1 6 � 1(a); � 2(a) 6 1 + 1=n10=3,
T3=2+ " n5 1 + 1=n10=3 6 � 1(a); � 2(a) � 1,
T2+ " n10=3 otherwise.

By Proposition 7.1, if 0 6 � 1; � 2 � 1 then

M `;n (z; � 1; � 2) �

(
n1=3+ " if 0 6 � 1; � 2 6 1=n10=3,
n5=3+ " M `;n otherwise.

These two facts conclude the proof since ifn 6 T3=10 then T3=2n20=3 6 T2n5. �
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8.2. Proof of Theorem A. � Let us quickly �nish the proof of Theorem A. By Rankin�
Selberg theory and the Cauchy�Schwarz inequality, the ampli�er de�ned in (15) satis�es

k� k2
2 � " L 1+ " ;

k� k1 � " L 1+ "

for any " > 0.
Thus, by Proposition 6.1 and Proposition 8.1, if L 6 T3=40 then

j� j 0 (z)j2 � " (TL)"

 
T3

L
+ T2L 18

!

:

The optimal choice for L is given by L = T1=19 6 T3=40, which implies Theorem A.
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