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THE AMPLIFICATION METHOD IN THE GL(3) HECKE ALGEBRA

by

Roman Holowinsky, Guillaume Ricotta and Emmanuel Royer

Abstract. — This article contains all the technical ingredients required to implement an ef-
fective, explicit and unconditional amplifier in the context of GL(3) automorphic forms. In
particular, several coset decomposition computations in the GL(3) Hecke algebra are explicitly
done.

Résumé. — Cet article contient tous les ingrédients techniques nécessaires à la mise en place
efficace, explicite et inconditionnelle de la méthode d’amplification dans le cadre des formes
automorphes de GL(3). En particulier, il y est donné plusieurs décompositions explicites de
systèmes de représentants dans l’algèbre de Hecke de GL(3).
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14 The amplification method in the GL(3) Hecke algebra

1. Introduction and statement of the results

1.1. Motivation: sup-norms of GL(n) Hecke-Maass cusp forms. — Let f be a GL(n)
Maass cusp form and K be a fixed compact subset of SLn(R)/SOn(R) (see [Gol06]). The
generic or local bound for the sup-norm of f restricted to K is given by

||f |K ||∞ � λ
n(n−1)/8
f

where λf is the Laplace eigenvalue of f (see [Sar]). Note that F. Brumley and N. Templier
noticed in [BT] that the previous bound does not hold when n > 6 if f is not restricted to a
compact.
If f is an eigenform of the Hecke algebra, however, then the generic bound is not expected to
be the correct order of magnitude for the sup-norm of the restriction of f to a fixed compact.
This is essentially due to the fact that the Hecke operators are additional symmetries on the
ambient space. In other words, we expect there to exist an absolute positive constant δn > 0
such that
(1.1) ||f |K ||∞ � λ

n(n−1)/8−δn
f .

H. Iwaniec and P. Sarnak proved the bound given in (1.1) in [IS95] when n = 2 for δ2 = 1/24.
Note that improving this constant δ2 seems to be a very delicate open problem. The case
n = 3 was completed by the authors in [HRR] with δ3 = 1/124. The general case was done,
without an explicit value for δn, in a series of recent impressive works by V. Blomer and
P. Maga in [BMb] and in [BMa].
All of the above achievements (and much more) were made possible thanks to generalizations
of the amplification method developed by W. Duke, J. Friedlander and H. Iwaniec for GL(1)
and GL(2) (see [FI92], [Iwa92] and [DFI94] for example). In particular, the proof of (1.1) for
n = 3 with δ3 = 1/124 relies on Theorem B of this article which was stated without proof in
[HRR] as Proposition 4.11. For the sake of completeness and future use, we provide the full
details of the proof of Theorem B, including computations, here in this article.

1.2. The GL(2) and GL(3) amplifier. —The general principle behind the construction
of an amplifier, is the existence of an identity which allows one to write a non-zero constant
as a finite sum of Hecke eigenvalues. In the most basic context of GL(2) automorphic forms,
this identity is
(1.2) λf (p)2 − λf (p2) = 1
where p is any prime and λf (n) is the n-th Hecke eigenvalue of a Hecke-Maass cusp form f
of full level, i.e. Tnf = λf (n)f where

(Tnf)(z) = 1√
n

∑
ad=n

d∑
b=1

f

(
az + b

d

)
.

One may interpret the above identity as the fact that the Rankin-Selberg convolution factors
as the product of the adjoint square and the Riemann zeta function and therefore has a pole
at s = 1.
1Theorem B and Proposition 4.1 in [HRR] are not entirely identical. Since releasing our first article [HRR],
we have noticed a simplification in the construction of the amplifier. Therefore, Theorem B only contains the
identities in Proposition 4.1 of [HRR] which are necessary for the amplification method. The implied power
saving in the Laplace eigenvalue for the sup-norm bound remains the same.
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R. Holowinsky and G. Ricotta and E. Royer 15

From the identity (1.2), one constructs an amplifier

Af :=
∣∣∣∣∣∑
`

α`λf (`)
∣∣∣∣∣
2

with

α` :=


λf0(`) if ` 6

√
L is a prime number,

−1 if ` 6 L is the square of a prime number,
0 otherwise

for some fixed form f0. The advantage to constructing such an amplifier is that it is expected
to be small2 for general forms f while satisfying the lower bound Af �ε L

1−ε when f = f0.
Reinterpreting (1.2) in terms of Hecke operators, we may write

Tp ◦ Tp − Tp2 = Id.

In application to the sup-norm problem for GL(2) via a pre-trace formula argument, this
translates into a need to geometrically understand the behavior of the following collection of
operators on an automorphic kernel

Tp, Tp ◦ T ∗q , Tp ◦ T ∗q2 and Tp2 ◦ T ∗q2

both in the cases of primes p = q and p 6= q. Since the Hecke operators Tn in GL(2) are self-
adjoint and computationally pleasant to work with due to their relatively simple composition
law, one quickly computes that the above collection of Hecke operators may be reduced to
the study of

Tp, Tpq, Tpq2 and Tp2q2 .

In truth, one has an opportunity to further reduce the collection of necessary Hecke operators
through the simple inequality

(1.3) Af 6 2
∣∣∣∣∣∑
p

αpλf (p)
∣∣∣∣∣
2

+ 2
∣∣∣∣∣∑
p

αp2λf (p2)
∣∣∣∣∣
2

.

Indeed, an appropriate application of (1.3) (see for example [BHM]) allows one to further
restrict the set of necessary Hecke operators to

Tpq and Tp2q2

both in the cases of primes p = q and p 6= q.
The case of GL(3) is much more computationally involved due to the lack of self-adjointness
of the Hecke operators and their multiplication law. Instead of looking at identities involving
Hecke eigenvalues, we start immediately with the Hecke operators themselves (see §2 for
definitions). Our fundamental identity now will be

(1.4) Tdiag(1,p,p) ◦ Tdiag(1,1,p) − Tdiag(1,p,p2) = (p2 + p+ 1)Id.

We set cf (p) = af (p, 1), cf (p)∗ = af (p, 1) and cf (p2) to be the eigenvalues of p−1Tdiag(1,1,p) =
Tp, p−1Tdiag(1,p,p) = T ∗p and p−2Tdiag(1,p,p2) respectively when acting on a form f . See (2.3)

2This follows, at least conditionally, from a suitable version of the Generalized Riemann Hypothesis. However,
we do not need to use this fact.
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16 The amplification method in the GL(3) Hecke algebra

and (2.4) for the precise definitions. We construct the amplifier

Af :=
∣∣∣∣∣∑
`

α`cf (`)
∣∣∣∣∣
2

with3

α` :=


cf0(`)∗ if ` 6

√
L is a prime number,

−1 if ` 6 L is the square of a prime number,
0 otherwise.

As in the case of GL(2), this amplifier will satisfy Af0 �ε L
1−ε and Af is otherwise expected

to be small for f 6= f0.
Applying the inequality

(1.5) Af 6 2
∣∣∣∣∣∑
p

αpcf (p)
∣∣∣∣∣
2

+ 2
∣∣∣∣∣∑
p

αp2cf (p2)
∣∣∣∣∣
2

,

one is reduced to understanding the actions of

Tdiag(1,1,p) ◦ Tdiag(1,q,q) and Tdiag(1,p,p2) ◦ Tdiag(1,q,q2)

both in the cases of primes p = q and p 6= q on the relevant automorphic kernel. In the
following sections, we compute the above compositions as linear combinations of other Hecke
operators and state our main result as Theorem B. In the end, we shall see that the following
operators are the relevant ones for our application

Tdiag(1,p,pq), Tdiag(1,pq,p2q2), Tdiag(1,p3,p3) and Tdiag(1,1,p3)

for primes p = q and p 6= q.

1.3. Statement of the results. —

Theorem A. — Let p be a prime number and Λ = GL3(Z).

– The set R1,1,p (respectively R1,p,p, R1,p,p2) defined in Proposition A.1 (respectively Propo-
sition A.2, Proposition A.3) is a complete system of representatives for the distinct Λ-
right cosets in the Λ-double coset of diag(1, 1, p) (respectively diag(1, 1, p), diag(1, p, p2))
modulo Λ.

3One may also choose a variant, in the spirit of [Ven10], which involves the signs of cf0 (`).
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R. Holowinsky and G. Ricotta and E. Royer 17

– The following formulas for the degrees of Λ-double cosets hold.

deg (diag(1, 1, p)) = p2 + p+ 1,
deg (diag(1, p, p)) = p2 + p+ 1,

deg
(
diag(1, p, p2)

)
= p(p+ 1)(p2 + p+ 1),

deg (diag(p, p, p)) = 1,
deg

(
diag(1, p2, p4)

)
= p5(p+ 1)(p2 + p+ 1),

deg
(
diag(1, p3, p3)

)
= p4(p2 + p+ 1),

deg
(
diag(p, p, p4)

)
= p4(p2 + p+ 1),

deg
(
diag(p, p2, p3)

)
= p(p+ 1)(p2 + p+ 1),

deg
(
diag(p2, p2, p2)

)
= 1.

– Finally,

(1.6) Λdiag(1, 1, p)Λ ∗ Λdiag(1, p, p)Λ = Λdiag(1, p, p2)Λ + (p2 + p+ 1)Λdiag(p, p, p)Λ.

and

(1.7) Λdiag(1, p, p2)Λ ∗ Λdiag(1, p, p2)Λ = Λdiag(1, p2, p4)Λ + (p+ 1)Λdiag(1, p3, p3)Λ
+ (p+ 1)Λdiag(p, p, p4)Λ + (p+ 1)(2p− 1)Λdiag(p, p2, p3)Λ

+ p(p+ 1)(p2 + p+ 1)Λdiag(p2, p2, p2)Λ.

Remark 1.1. — In [Kod67], T. Kodama explicitely computed the product of other double
cosets in the slightly harder case of the Hecke ring for the symplectic group. The results stated
in the previous theorem are similar in spirit.

Remark 1.2. — It is well-known that a Λ-double coset can be identified with its character-
istic function χ. Under this identification, the multiplication law between Λ-double cosets is
the classical convolution between functions. If µ = (µ1, µ2, µ3) with µ1 > µ2 > µ3 > 0 and
ν = (ν1, ν2, ν3) with ν1 > ν2 > ν3 > 0 are two partitions of length less than n, then

χΛdiag(pµ1 ,pµ2 ,pµ3 )Λ ∗ χΛdiag(pν1 ,pν2 ,pν3 )Λ =
∑
λ

gλµ,ν(p)χΛdiag(pλ1 ,pλ2 ,pλ3)Λ

for any prime number p where λ ranges over the partitions of length less than n and the gλµ,ν(p)
are the Hall polynomials (see [Mac95, Equation (2.6) Page 295]). The sum on the right-hand
side of the above equality is finite since only a finite number of the Hall polynomials are
non-zero. However, determining which Hall polynomials vanish is not straightforward (see
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18 The amplification method in the GL(3) Hecke algebra

[Mac95, Equation (4.3) Page 188]). Using Sage, one can check that

g
(4,2,0)
(2,1,0),(2,1,0)(p) = 1,

g
(3,3,0)
(2,1,0),(2,1,0)(p) = p+ 1,

g
(4,1,1)
(2,1,0),(2,1,0)(p) = p+ 1,

g
(3,2,1)
(2,1,0),(2,1,0)(p) = (p+ 1)(2p− 1),

g
(2,2,2)
(2,1,0),(2,1,0)(p) = p(p+ 1)(p2 + p+ 1)

and one can recover the coefficients occurring in (1.7). We prefer to give a different proof,
which has the advantage of producing explicit systems of representatives for the Λ-right cosets
and formulas for the degrees.

Corollary B. — If p and q are two prime numbers then
(1.8) Tdiag(1,p,p) ◦ Tdiag(1,1,q) = Tdiag(1,p,pq) + δp=q(p2 + p+ 1)Id
and

(1.9) Tdiag(1,p,p2) ◦ Tdiag(1,q,q2) = Tdiag(1,pq,p2q2) + δp=q(p+ 1)
(
Tdiag(1,p3,p3) + Tdiag(1,1,p3)

)
+ δp=q(p+ 1)(2p− 1)Tdiag(1,p,p2) + δp=qp(p+ 1)(p2 + p+ 1)Id.

When p 6= q, the previous corollary immediately follows from (2.9) and (2.10). When p = q,
it is a consequence of the previous theorem and of (2.9).

Remark 1.3. — As observed by L. Silberman and by A. Venkatesh in [SA] and used by
V. Blomer and P. Maga in [BMb] and in [BMa], the precise formulas for the Hall polynomials
occurring in (1.8) and in (1.9) are not really needed for the purpose of the amplification
method, since the Hall polynomials are easily well approximated for p and q large by the
much easier Schur polynomials. Nevertheless, the precise list of the Hecke operators relevant
for the amplification method, namely occurring in (1.8) and in (1.9), seems to be crucial in
order to obtain the best possible explicit result. For instance, G. Harcos and N. Templier used
such a list in order to prove the best known subconvexity exponent for the sup-norm of GL(2)
automorphic forms in the level aspect in [HT13].

1.4. Organization of the paper. —The general background on GL(3) Maass cusp forms
and on the GL(3) Hecke algebra is given in Section 2. The linearizations involved in Theo-
rem A are detailed in Section 3. The proof requires decompositions of Λ-double cosets into
Λ-left and right cosets and computations of degrees as done in Appendix A.

Notations. — Λ stands for the group GL3(Z) of 3 × 3 invertible matrices with integer
coefficients. If g is a 3× 3 matrix with real coefficients then tg stands for its transpose. For
g ∈ GL3(Q) we let Tg denote the Hecke operator associated to g (see §2). If a, b and c are
three rational numbers then

– diag(a, b, c) denotes the diagonal 3× 3 matrix with a, b and c as diagonal coefficients;

– La,b,c (respectively Ra,b,c) stands for a system of representatives for the decomposition of
the Λ-double coset Λdiag(a, b, c)Λ into Λ-left (respectively right) cosets.
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2. Background on the GL(3) Hecke algebra

Convenient references for this section include [AZ95], [Gol06], [New72] and [Shi94].
Let f be a GL(3) Maass cusp form of full level. Such f admits a Fourier expansion
(2.1)

f(g) =
∑

γ∈U2(Z)\SL2(Z)

∑
m1>1

m2∈Z\{0}

af (m1,m2)
m1|m2|

WJa

m1|m2|
m1

1

(γ
1

)
g, νf , ψ1, m2

|m2|


for g ∈ GL3(R) (see [Gol06, Equation (6.2.1)]). Here U2(Z) stands for the Z-points of the
group of upper-triangular unipotent 2× 2 matrices. νf ∈ C2 is the type of f , whose compo-
nents are complex numbers characterized by the property that, for every invariant differential
operator D in the center of the universal enveloping algebra of GL3(R), the cusp form f is
an eigenfunction of D with the same eigenvalue as the power function Iνf , which is defined in
[Gol06, Equation (5.1.1)]. ψ1,±1 is the character of the group of upper-triangular unipotent
real 3× 3 matrices defined by

ψ1,±1

1 u1,2 u1,3
1 u2,3

1

 = e2iπ(u2,3±u1,2).

WJa(∗, νf , ψ1,±1) stands for the GL(3) Jacquet Whittaker function of type νf and character
ψ1,±1 defined in [Gol06, Equation 6.1.2]. The complex number af (m1,m2) is the (m1,m2)-th
Fourier coefficient of f for m1 a positive integer and m2 a non-vanishing integer.
For g ∈ GL3(Q), the Hecke operator Tg is defined by

Tg(f)(h) =
∑

δ∈Λ\ΛgΛ
f(δh)
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20 The amplification method in the GL(3) Hecke algebra

for h ∈ GL3(R) (see [AZ95, Chapter 3, Sections 1.1 and 1.5]). The degree of g or Tg defined
by

deg(g) = deg(Tg) = card (Λ \ ΛgΛ)
is scaling invariant, in the sense that
(2.2) deg(rg) = deg(g)
for r ∈ Q×. The adjoint of Tg for the Petersson inner product is Tg−1 . The algebra of Hecke
operators T is the ring of endomorphisms generated by all the Tg’s with g ∈ GL3(Q), a
commutative algebra of normal endomorphisms (see [Gol06, Theorem 6.4.6]), which contains
the m-th normalized Hecke operator

(2.3) Tm = 1
m

∑
g=diag(y1,y2,y3)

y1|y2|y3
y1y2y3=m

Tg

for all positive integers m. A Hecke-Maass cusp form f of full level is a Maass cusp form of
full level, which is an eigenfunction of T. In particular, it satisfies
(2.4) Tm(f) = af (m, 1)f and T ∗m(f) = af (1,m)f = af (m, 1)f
according to [Gol06, Theorem 6.4.11].
The algebra T is isomorphic to the absolute Hecke algebra, the free Z-module generated by
the double cosets ΛgΛ where g ranges over Λ \ GL3(Q)/Λ and endowed with the following
multiplication law. If g1 and g2 belong to GL3(Q) and

Λg1Λ =
deg(g1)⋃
i=1

Λαi and Λg2Λ =
deg(g2)⋃
j=1

Λβj

then
(2.5) Λg1Λ ∗ Λg2Λ =

∑
ΛhΛ⊂Λg1Λg2Λ

m(g1, g2;h)ΛhΛ

where h ∈ GL3(Q) ranges over a system of representatives of the Λ-double cosets contained
in the set Λg1Λg2Λ and

m(g1, g2;h) = card ({(i, j) ∈ {1, . . . ,deg(g1)} × {1, . . . ,deg(g2)}, αiβj ∈ Λh}) ,

(2.6)

= 1
deg(h)card ({(i, j) ∈ {1, . . . ,deg(g1)} × {1, . . . ,deg(g2)}, αiβj ∈ ΛhΛ}) ,(2.7)

= deg(g2)
deg(h) card ({i ∈ {1, . . . ,deg(g1)}, αig2 ∈ ΛhΛ}) .(2.8)

Confer [AZ95, Lemma 1.5 Page 96]. In particular,
(2.9) Λdiag(r, r, r)Λ ∗ ΛgΛ = ΛrgΛ
for g ∈ GL3(Q) and r ∈ Q× ([AZ95, Lemma 2.4 Page 107]). In addition, for p and q two
distinct prime numbers,
(2.10) Λdiag(1, pα1 , pα2)Λ ∗ Λdiag(1, qβ1 , qβ2)Λ = Λdiag(1, pα1qβ1 , pα2qβ2)Λ
where α1, α2, β1, β2 are non-negative integers by [AZ95, Proposition 2.5 Page 107].

Publications mathématiques de Besançon – 2015



R. Holowinsky and G. Ricotta and E. Royer 21

Every double coset ΛgΛ with g in GL3(Q) contains a unique representative of the form
(2.11) rdiag(1, s1(g), s2(g))
where r ∈ Q∗ and s1(g), s2(g) are some positive integers satisfying s1(g) | s2(g) (see [AZ95,
Lemma 2.2]).
Finally, let g = [gi,j ]16i,j63 be a 3 × 3 matrix with integer coefficients. Its determinantal
divisors are the non-negative integers given by

d1(g) = gcd({gi,j , 1 6 i, j 6 3}),
d2(g) = gcd({determinants of 2× 2 submatrices of g}),
d3(g) = |det(g)|.

and its determinantal vector is d(g) = (d1(g), d2(g), d3(g)). The determinantal divisors turn
out to be useful since if h is another 3× 3 matrix with integer coefficients then h belongs to
ΛgΛ if and only if dk(h) = dk(g) for 1 6 k 6 3 (see [New72]).

3. Proof of the linearizations given in Theorem A

3.1. Linearization of Λdiag(1, 1, p)Λ ∗ Λdiag(1, p, p)Λ. —This section contains the proof
of (1.6).
By (2.5), the product of these double cosets equals

∑
ΛhΛ⊂Λdiag(1,1,p)Λdiag(1,p,p)Λ

m

1
1

p

 ,
1

p
p

 ;h

ΛhΛ

where h ∈ GL3(Q) ranges over a system of representatives of the Λ-double cosets contained
in the set

Λ

1
1

p

Λ

1
p

p

Λ.

Let us determine the matrices h occuring in this sum. Let h in GL3(Q) be such that ΛhΛ is
included in the previous set. By (2.11), one has uniquely

ΛhΛ = Λελ1
λ2

diag(1, s1, s2)Λ

with ε = ±1, λ1, λ2 > 0, (λ1, λ2) = 1, s1, s2 > 0, s1 | s2. The inclusion is equivalent to
Λελ1diag(1, s1, s2)Λ = Λλ2δ1δ2Λ

for some matrices δ1 ∈ R1,1,p and δ2 ∈ L1,p,p by (A.3) and (A.5). So, both matrices have the
same determinantal divisors ie

ελ1 = λ2d1(δ1δ2),
λ2

1s1 = λ2
2d2(δ1δ2),

ελ3
1s1s2 = λ3

2d3(δ1δ2) = λ3
2p

3.

One can check that the set
{δ1δ2, (δ1, δ2) ∈ R1,1,p × L1,p,p}
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is made exactly of the matricesp p
p

  d(δ1δ2) = (p, p2, p3),

p d1 +D1
p

p

  d(δ1δ2) = ((p, d1 +D1), p(p, d1 +D1), p3),

p e1 + E1
p f1 + F1

p

  d(δ1δ2) = ((p, e1 + E1, f1 + F1), p(p, e1 + E1, f1 + F1), p3)

and p2 pE1
p F1

1

  d(δ1δ2) = (1, p, p3),

p2 pD1
1

p

  d(δ1δ2) = (1, p, p3),

1 pd1
p2

p

  d(δ1δ2) = (1, p, p3),

p pd1 d1F1 + E1
p2 pF1

1

  d(δ1δ2) = (1, p, p3),

1 pe1
p pf1

p2

  d(δ1δ2) = (1, p, p3),

p d2 pe1
1 pf1

p2

  d(δ1δ2) = (1, p, p3)

with 0 6 d1, e1, f1, D1, E1, F1 < p. As a consequence, only two cases can occur since

d(δ1δ2) ∈ {(1, p, p3), (p, p2, p3)}.

First case: d(δ1δ2) = (1, p, p3).

ελ1 = λ2,

λ2
1s1 = λ2

2p,

ελ3
1s1s2 = λ3

2p
3.

The first equation gives ε = λ1 = λ2 = 1 by the coprimality of λ1 and λ2. The second
equation gives s1 = p. The third equation gives s2 = p2. Thus,

ΛhΛ = Λdiag(1, p, p2)Λ.
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Second case: d(δ1δ2) = (p, p2, p3).

ελ1 = λ2p,

λ2
1s1 = λ2

2p
2,

ελ3
1s1s2 = λ3

2p
3.

The first equation gives ε = λ2 = 1 and λ1 = p by the coprimality of λ1 and λ2. The second
equation gives s1 = 1. The third equation gives s2 = 1. Thus,

ΛhΛ = Λdiag(p, p, p)Λ.

As a consequence,

Λdiag(1, 1, p)Λ ∗ Λdiag(1, p, p)Λ = m1Λ

1
p

p2

Λ +m2Λ

p p
p

Λ

where

m1 := m

1
1

p

 ,
1

p
p

 ;

1
p

p2

 ,
m2 := m

1
1

p

 ,
1

p
p

 ;

p p
p

 .
Let us compute the value of m2 first. By (2.6), (A.6) and (2.2),

m2 = (p2 + p+ 1)

∣∣∣∣∣∣
δ1 ∈ R1,1,p, δ1

1
p

p

 ∈ Λ

p p
p

Λ


∣∣∣∣∣∣ .

Let us compute the remaining cardinality. One can check that the setδ1

1
p

p

 , δ1 ∈ R1,1,p


is exactly made of the matricesp p

p

  (d1, d2, d3) = (p, p2, p3),

1 pd1
p2

p

  (d1, d2, d3) = (1, p, p3),

1 0 pe1
p pf1

p2

  (d1, d2, d3) = (1, p, p3)
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with 0 6 d1, e1, f1 < p. The fact that the determinantal vector of diag(p, p, p) is (p, p2, p3)
implies that δ1 ∈ R1,1,p, δ1

1
p

p

 ∈ Λ

p p
p

Λ

 =


p p

p


and is of cardinality 1 such that m2 = p2 + p+ 1.
Now, let us compute the value of m1. By (2.6), (A.6) and (A.8),

m1 = 1
p(p+ 1)

∣∣∣∣∣∣
δ1 ∈ R1,1,p, δ1

1
p

p

 ∈ Λ

1
p

p2

Λ


∣∣∣∣∣∣ .

Let us compute the remaining cardinality. Both the analysis done for m2 and the fact that
the determinantal vector of diag(1, p, p2) is (1, p, p2) imply thatδ1 ∈ R1,1,p, δ1

1
p

p

 ∈ Λ

1
p

p2

Λ

 =
⋃

06d1<p


1 d1

p
1


⋃

06e1,f1<p


1 e1

1 f1
p


which is of cardinality p(p+ 1) such that m1 = 1.

3.2. Linearization of Λdiag(1, p, p2)Λ∗Λdiag(1, p, p2)Λ. —This section contains the proof
of (1.7).
By (2.5), the product of these double cosets equals

∑
ΛhΛ⊂Λdiag(1,p,p2)Λdiag(1,p,p2)Λ

m

1
p

p2

 ,
1

p
p2

 ;h

ΛhΛ

where h ∈ GL3(Q) ranges over a system of representatives of the Λ-double cosets contained
in the set

Λ

1
p

p2

Λ

1
p

p2

Λ.

Let us determine the relevant matrices h occuring in this sum. Let h in GL3(Q) be such that
ΛhΛ is included in the previous set. By (2.11), one has uniquely

ΛhΛ = Λελ1
λ2

diag(1, s1, s2)Λ

with ε = ±1, λ1, λ2 > 0, (λ1, λ2) = 1, s1, s2 > 0, s1 | s2. The inclusion is equivalent to

Λελ1diag(1, s1, s2)Λ = Λλ2δ1δ2Λ

Publications mathématiques de Besançon – 2015



R. Holowinsky and G. Ricotta and E. Royer 25

for some matrices δ1 ∈ R1,p,p2 and δ2 ∈ L1,p,p2 by (A.7). So, both matrices have the same
determinantal divisors ie

ελ1 = λ2d1(δ1δ2),
λ2

1s1 = λ2
2d2(δ1δ2),

ελ3
1s1s2 = λ3

2d3(δ1δ2) = λ3
2p

6.

By (A.7), a straightforward but tedious computation ensures that the set{
d(δ1δ2), (δ1, δ2) ∈ R1,p,p2 × L1,p,p2

}
is a subset of

{(1, p2, p6), (1, p3, p6), (p, p2, p6), (p, p3, p6), (p2, p4, p6)}.
Case 1: (d1, d2, d3) = (1, p2, p6).

ελ1 = λ2,

λ2
1s1 = λ2

2p
2,

ελ3
1s1s2 = λ3

2p
6.

The first equation gives ε = λ1 = λ2 = 1 by the coprimality of λ1 and λ2. The second
equation gives s1 = p2. The third equation gives s2 = p4. Thus,

ΛhΛ = Λdiag(1, p2, p4)Λ.

Case 2: (d1, d2, d3) = (1, p3, p6).

ελ1 = λ2,

λ2
1s1 = λ2

2p
3,

ελ3
1s1s2 = λ3

2p
6.

The first equation gives ε = λ1 = λ2 = 1 by the coprimality of λ1 and λ2. The second
equation gives s1 = p3. The third equation gives s2 = p3. Thus,

ΛhΛ = Λdiag(1, p3, p3)Λ.

Case 3: (d1, d2, d3) = (p, p2, p6).

ελ1 = λ2p,

λ2
1s1 = λ2

2p
2,

ελ3
1s1s2 = λ3

2p
6.

The first equation gives ε = λ2 = 1 and λ1 = p by the coprimality of λ1 and λ2. The second
equation gives s1 = 1. The third equation gives s2 = p3. Thus,

ΛhΛ = Λdiag(p, p, p4)Λ.

Case 4: (d1, d2, d3) = (p, p3, p6).

ελ1 = λ2p,

λ2
1s1 = λ2

2p
3,

ελ3
1s1s2 = λ3

2p
6.
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The first equation gives ε = λ2 = 1 and λ1 = p by the coprimality of λ1 and λ2. The second
equation gives s1 = p. The third equation gives s2 = p2. Thus,

ΛhΛ = Λdiag(p, p2, p3)Λ.

Case 5: (d1, d2, d3) = (p2, p4, p6).

ελ1 = λ2p
2,

λ2
1s1 = λ2

2p
4,

ελ3
1s1s2 = λ3

2p
6.

The first equation gives ε = λ2 = 1 and λ1 = p2 by the coprimality of λ1 and λ2. The second
equation gives s1 = 1. The third equation gives s2 = 1. Thus,

ΛhΛ = Λdiag(p2, p2, p2)Λ.

As a consequence,

Λdiag(1, p, p2)Λ ∗ Λdiag(1, p, p2)Λ = m1Λ

1
p2

p4

Λ +m2Λ

1
p3

p3

Λ

+m3Λ

p p
p4

Λ +m4Λ

p p2

p3

Λ +m5Λ

p2

p2

p2

Λ

where

m1 := m

1
p

p2

 ,
1

p
p2

 ;

1
p2

p4

 ,
m2 := m

1
p

p2

 ,
1

p
p2

 ;

1
p3

p3

 ,
m3 := m

1
p

p2

 ,
1

p
p2

 ;

p p
p4

 ,
m4 := m

1
p

p2

 ,
1

p
p2

 ;

p p2

p3

 ,
m5 := m

1
p

p2

 ,
1

p
p2

 ;

p2

p2

p2

 .
Let us compute the value of m1. By (2.6), (A.8) and (A.9),

m1 = 1
p4

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 , δ1

1
p

p2

 ∈ Λ

1
p2

p4

Λ


∣∣∣∣∣∣ .
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Let us compute the remaining cardinality. One can check that the setδ1

1
p

p2

 , δ1 ∈ R1,p,p2


is exactly made of the matrices p2

p p2f1
p3

  (d1, d2, d3) = (p, p3, p6),

p pd2
p3

p2

 (p | d2)  (d1, d2, d3) = (p, p3, p6),

p pd1 p2e1
p2 p2f1

p3

 (d1f1 = 0, (d1, e1, f1) 6= (0, 0, 0))  (d1, d2, d3) = (p, p3, p6)

and 1 pd1 p2e2
p2 p2f2

p4

 (p | f2)  (d1, d2, d3) = (1, p2, p6)

and 1 pd2 p2e1
p3

p3

  (d1, d2, d3) = (1, p3, p6)

and p p2e2
p p2f2

p4

 (p | e2)  (d1, d2, d3) = (p, p2, p6)

and p2

p2

p2

  (d1, d2, d3) = (p2, p4, p6)

where 0 6 d1, e1, f1 < p and 0 6 d2, e2, f2 < p2. The fact that the determinantal vector of
diag(1, p2, p4) is (1, p2, p6) implies that m1 = 1.
Let us compute the value of m2. By (2.6), (A.8) and (A.10),

m2 = p+ 1
p3

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 , δ1

1
p

p2

 ∈ Λ

1
p3

p3

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of diag(1, p3, p3) is
(1, p3, p6) imply that m2 = p+ 1.
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Let us compute the value of m3. By (2.6), (A.8), (2.2) and (A.11),

m3 = p+ 1
p3

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 , δ1

1
p

p2

 ∈ Λ

p p
p4

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of diag(p, p, p4) is
(p, p2, p6) imply that m3 = p+ 1.
Let us compute the value of m4. By (2.6), (A.8), (2.2) and (A.8),

m4 = p+ 1
p3

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 , δ1

1
p

p2

 ∈ Λ

p p2

p3

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of diag(p, p2, p3) is
(p, p3, p6) imply that m4 = (p+ 1)(2p− 1).
Let us compute the value of m5. By (2.6), (A.8) and (2.2),

m5 = p(p+ 1)(p2 + p+ 1)

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 , δ1

1
p

p2

 ∈ Λ

p2

p2

p2

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of diag(p2, p2, p2)
is (p2, p4, p6) imply that m5 = p(p+ 1)(p2 + p+ 1).

Appendix A. Decomposition of Λ-double cosets into Λ-cosets

By [AZ95, Lemma 1.2 Page 94 and Lemma 2.1 Page 105], we know that every Λ-double coset
ΛgΛ with g in GL3(Q) with integer coefficients is both a finite union of Λ-left cosets and
Λ-right cosets. In addition, every Λ-right coset Λg contains a unique upper-triangular column
reduced representative, namely

Λg = Λ

a d e
b f

c


where 0 6 d < b and 0 6 e, f < c by [AZ95, Lemma 2.7 Page 109].
As a consequence, every Λ-left coset gΛ contains a unique upper-triangular row reduced
representative, namely

gΛ =

a d e
b f

c

Λ

where 0 6 d, e < a and 0 6 f < b. More explicitely, if UW tgW = H is the upper-triangular
column reduced representative of the Λ-right coset ΛW tgW with W the anti-diagonal matrix
with 1’s on the anti-diagonal then gW tUW = W tHW is the upper-triangular row reduced
representative of the Λ-left coset gΛ.
The previous fact also entails that

(A.1) ΛgΛ =
⋃
δ∈Rg

Λδ ⇒ ΛgΛ =
⋃

δ∈W tRgW

δΛ
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since
ΛgΛ = WΛgΛ = W t (ΛgΛ) = W

⋃
δ∈Rg

tδΛ =
⋃
δ∈Rg

W tδWΛ.

Let us finish with a useful elementary practical remark for the computations done in the
following sections of the appendix. If H is an upper-triangular column reduced matrix in
a Λ-double coset Λdiag(pα1 , pα2 , pα3)Λ where p is a prime number and α1, α2 and α3 are
non-negative integers then

(A.2) H =

pδ1 ∗ ∗
pδ2 ∗

pδ3

 , 3∑
j=1

(αj − δj) = 0,∀j ∈ {1, 2, 3}, 0 6 δj 6 max
16k63

αk.

The fact that the diagonal cofficients of H are powers of p comes from the determinant
equation. The condition on the exponents of these diagonal coefficients follows from the fact
that pmax {αk,16k63}H−1 has integer coefficients.

A.1. Decomposition and degree of Λdiag(1, 1, p)Λ. —

Proposition A.1. — One has

(A.3) Λdiag(1, 1, p)Λ =
⋃

δ∈R1,1,p

Λδ =
⋃

δ∈L1,1,p

δΛ

where

R1,1,p = {diag(p, 1, 1)}
⋃

06d1<p


1 d1

p
1

 ⋃
06e1,f1<p


1 0 e1

1 f1
p


and

L1,1,p = {diag(1, 1, p)}
⋃

06f1<p


1

p f1
1

 ⋃
06d1,e1<p


p d1 e1

1
1

 .
In particular,

(A.4) deg (diag(1, 1, p)) = p2 + p+ 1.

Proof of Proposition A.1. — The decomposition into Λ-right cosets implies the decomposi-
tion into Λ-left cosets by (A.1). The possible upper-triangular column reduced matrices δ
that can occur in the decomposition into Λ-right cosets are1 0 e1

1 f1
p

  d(δ) = (1, 1, p),

1 d1 0
p 0

1

  d(δ) = (1, 1, p),

p 0 0
1 0

1

  d(δ) = (1, 1, p)
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where 0 6 d1, e1, f1 < p. The fact that the determinantal vector of diag(1, 1, p) is (1, 1, p)
implies the decomposition into Λ-left cosets given in (A.3) and the computation of the degree
too. �

A.2. Decomposition and degree of Λdiag(1, p, p)Λ. —

Proposition A.2. — One has

(A.5) Λdiag(1, p, p)Λ = ∪δ∈L1,p,pδΛ

where

L1,p,p = {diag(1, p, p)}
⋃

06e1,f1<p


p e1

p f1
1

 ⋃
06d1<p


p d1

1
p

 .
In particular,

(A.6) deg (diag(1, p, p)) = p2 + p+ 1.

Proof of Proposition A.2. — By (A.2), the possible upper-triangular row reduced matrices δ
that can occur in the decomposition into Λ-left cosets are

p d1 e1
p f1

1

  d(δ) = (1, (p, d1, d1f1), p2),

p d1 e1
1

p

  d(δ) = (1, (p, e1), p2),

1
p f1

p

  d(δ) = (1, (p, f1), p2)

where 0 6 d1, e1, f1 < p. The fact that the determinantal vector of diag(1, p, p) is (1, p, p2)
implies the decomposition into Λ-left cosets given in (A.5) and the computation of the degree
too. �

A.3. Decomposition and degree of Λdiag(1, p, p2)Λ. —

Proposition A.3. — One has

(A.7) Λdiag(1, p, p2)Λ = ∪δ∈R1,p,p2 Λδ = ∪δ∈L1,p,p2 δΛ
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where

R1,p,p2 =
⋃

06d1<p
06e2,f2<p2

p|f2


1 d1 e2

p f2
p2

 ⋃
06e1<p
06d2<p2


1 d2 e1

p2

p


⋃

06e2,f2<p2

p|e2


p e2

1 f2
p2

 ⋃
06f1<p


p2

1 f1
p

 ⋃
06d2<p2

p|d2


p d2

p2

1


⋃

06d1,e1,f1<p
d1f1=0

(d1,e1,f1) 6=(0,0,0)


p d1 e1

p f1
p

⋃

p2

p
1



and

L1,p,p2 =
⋃

06f1<p
06d2,e2<p2

p|d2


p2 d2 e2

p f1
1

 ⋃
06e1<p
06f2<p2


p e1

p2 f2
1


⋃

06d2,e2<p2

p|e2


p2 d2 e2

1
p

 ⋃
06d1<p


p d1

1
p2

 ⋃
06f2<p2

p|f2


1

p2 f2
p


⋃

06d1,e1,f1<p
d1f1=0

(d1,e1,f1)6=(0,0,0)


p d1 e1

p f1
p

⋃

p2

p
1

 .

In particular,

(A.8) deg
(
diag(1, p, p2)

)
= p(p+ 1)(1 + p+ p2).

Proof of Proposition A.3. — The decomposition into Λ-right cosets implies the decompo-
sition into Λ-left cosets by (A.1). By (A.2), the possible upper-triangular column reduced
matrices δ that can occur in the decomposition into Λ-right cosets are

Type 1:

p d1 e1
p f1

p

  d(δ) = ((p, d1, e1, f1), (p2, pd1, pf1, d1f1 − pe1), p3)
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and

Type 2:

1 d1 e2
p f2

p2

  d(δ) = (1, (p, f2), p3),

Type 3:

1 d2 e1
p2 f1

p

  d(δ) = (1, (p, f1), p3),

Type 4:

p e2
1 f2

p2

  d(δ) = (1, (p, e2), p3),

Type 5:

p2 e1
1 f1

p

  d(δ) = (1, (p, e1), p3),

Type 6:

p d2
p2

1

  d(δ) = (1, (p, d2), p3),

Type 7:

p2 d1
p

1

  d(δ) = (1, (p, d1), p3)

where 0 6 d1, e1, f1 < p and 0 6 d2, e2, f2 < p2. Let us count the matrices among the previous
ones, whose determinantal vector is the same as the one of diag(1, p, p2), namely (1, p, p3).
Let us consider the matrices of type 1. The condition on d2(δ) implies d1 6= 0. The condition
on d1(δ) implies that (d1, e1, f1) 6= (0, 0, 0). The condition on d2(δ) implies p | d1f1 such that
p | d1 or p | f1, namely d1 = 0 or f1 = 0. There are (p− 1)(2p+ 1) such matrices of type 1.
Let us consider the matrices of type 2. The condition on d2(δ) implies p | f2. There are p4

such matrices of type 2.
Let us consider the matrices of type 3. The condition on d2(δ) implies f1 = 0. There are p3

such matrices of type 3.
Let us consider the matrices of type 4. The condition on d2(δ) implies p | e2. There are p3

such matrices of type 4.
Let us consider the matrices of type 5. The condition on d2(δ) implies e1 = 0. There are p
such matrices of type 5.
Let us consider the matrices of type 6. The condition on d2(δ) implies p | d2. There are p
such matrices of type 6.
Let us consider the matrices of type 7. The condition on d2(δ) implies d1 = 0. There is 1 such
matrix of type 7.
One can recover the decomposition in Λ-right cosets given in (A.7) and the value of the degree
given in (A.8) by summing all the contributions in the previous paragraphs. �

A.4. Degree of Λdiag(1, p2, p4)Λ. —

Proposition A.4. — One has

(A.9) deg
(
diag(1, p2, p4)

)
= p5(p+ 1)(p2 + p+ 1).
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Proof of Proposition A.4. — By (A.2), the possible upper-triangular column reduced matri-
ces δ that can occur in the decomposition into Λ-right cosets are

Type 1:

p4 d2
p2

1

  d(δ) = (1, (p2, d2), p6),

Type 2:

p4 e2
1 f2

p2

  d(δ) = (1, (p2, e2), p6),

Type 3:

p2 d4
p4

1

  d(δ) = (1, (p2, d4), p6),

Type 4:

p2 e4
1 f4

p4

  d(δ) = (1, (p2, e4), p6),

Type 5:

1 d4 e2
p4 f2

p2

  d(δ) = (1, (p2, f2, d4f2), p6),

Type 6:

1 d2 e4
p2 f4

p4

  d(δ) = (1, (p2, f4, d2f4), p6)

and

Type 7:

p4 d1 e1
p f1

p

  d(δ) = ((p, d1, e1, f1), (p2, pd1, d1f1 − pe1), p6),

Type 8:

p d4 e1
p4 f1

p

  d(δ) = ((p, d4, e1, f1), (p2, pf1, pd4, d4f1), p6),

Type 9:

p d1 e4
p f4

p4

  d(δ) = ((p, d1, e4, f4), (p2, pf4, d1f4 − pe4), p6)

and

Type 10:

p3 d3
p3

1

  d(δ) = (1, (p3, d3), p6),

Type 11:

p3 e3
1 f3

p3

  d(δ) = (1, (p3, e3), p6),

Type 12:

1 d3 e3
p3 f3

p3

  d(δ) = (1, (p3, f3, d3f3), p6)

Publications mathématiques de Besançon – 2015



34 The amplification method in the GL(3) Hecke algebra

and

Type 13:

p3 d2 e1
p2 f1

p

  d(δ) = ((p, d2, e1, f1), (p3, pd2, d2f1 − p2e1), p6)

Type 14:

p3 d1 e2
p f2

p2

  d(δ) = ((p, d1, e2, f2), (p3, p2d1, d1f2 − pe2), p6)

Type 15:

p2 d3 e1
p3 f1

p

  d(δ) = ((p, d3, e1, f1), (p3, pd3, p
2f1, d3f1), p6)

Type 16:

p2 d1 e3
p f3

p3

  d(δ) = ((p, d1, e3, f3), (p3, d1f3 − pe3, p
2f3), p6)

and

Type 17:

p d3 e2
p3 f2

p2

  d(δ) = ((p, d3, e2, f2), (p3, pf2, p
2d3, d3f2), p6)

Type 18:

p d2 e3
p2 f3

p3

  d(δ) = ((p, d2, e3, f3), (p3, pf3, d2f3 − p2e3), p6)

and

Type 19:

p2 d2 e2
p2 f2

p2

  d(δ) = ((p2, d2, e2, f2), (p4, p2d2, p
2f2, d2f2 − p2e2), p6)

where 0 6 dj , ej , fj < pj for j = 1, 2, 3, 4. Let us count the matrices among the previous ones,
whose determinantal vector is the same as the one of diag(1, p2, p4), namely (1, p2, p6).
Let us consider the matrices of type 1. The condition on d2(δ) implies d2 = 0. There is 1
relevant matrix of type 1.
Let us consider the matrices of type 2. The condition on d2(δ) implies e2 = 0. There are p2

relevant matrices of type 2.
Let us consider the matrices of type 3. The condition on d2(δ) implies p2 | d4. There are p2

relevant matrices of type 3.
Let us consider the matrices of type 4. The condition on d2(δ) implies p2 | e4. There are p6

relevant matrices of type 4.
Let us consider the matrices of type 5. The condition on d2(δ) implies e2 = 0 . There are p6

relevant matrices of type 5.
Let us consider the matrices of type 6. The condition on d2(δ) implies p2 | f4 . There are p8

relevant matrices of type 6.
Let us consider the matrices of type 7. The condition on d2(δ) implies d1 = e1 = 0 and the
condition on d1(δ) implies f1 6= 0. There are p− 1 relevant matrices of type 7.
Let us consider the matrices of type 8. The condition on d2(δ) implies f1 = 0 and p | d4. The
condition on d1(δ) implies e1 6= 0. There are p3(p− 1) relevant matrices of type 8.
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Let us consider the matrices of type 9. The condition on d2(δ) implies p | f4 and p | d1f4/p−e4.
One has d1 6= 0 since otherwise d1(δ) = 1 = (p, e4) and d2(δ) = p(p, e4) = p 6= p2. Thus, d1 is
invertible modulo p and f4/p ≡ e4d1 (mod p) such that f4/p can take p2 values. There are
(p− 1)p6 relevant matrices of type 9.
Let us consider the matrices of type 10. The condition on d2(δ) implies p2 || d3. There are
p− 1 relevant matrices of type 10.
Let us consider the matrices of type 11. The condition on d2(δ) implies p2 || e3. There are
(p− 1)p3 relevant matrices of type 11.
Let us consider the matrices of type 12. The condition on d2(δ) implies p2 || f3. There are
(p− 1)p6 relevant matrices of type 12.
Let us consider the matrices of type 13. Note that (e1, f1) 6= (0, 0) since otherwise d1(δ) =
1 = (p, d2), which implies that d2(δ) = (pd2, p

3) = p 6= p2. As a consequence, d1(δ) = 1 =
(p, d2, e1, f1). The fact that d2(δ) = p2 implies that p | d2 and p | f1d2/p, namely f1 = 0 or
d2 = 0. If d2 = 0 then d2(δ) = p2 = (p3, p2e1) such that e1 6= 0. There are p(p − 1) such
matrices. If d2 6= 0 then f1 = 0, d2(δ) = p2(p, d2/p, e1) = p2 since d2/p is coprime with p
and d1(δ) = 1 = (p, e1) such that e1 6= 0. There are (p− 1)2 such matrices. Finally, there are
(p− 1)(2p− 1) relevant matrices of type 13.
Let us consider the matrices of type 14. The fact that d2(δ) = p2 implies that p2 | d1f2− pe2.
If d1 = 0 then p | e2 and d2(δ) = p2 = (p3, p2e2/p) if e2 6= 0. d1(δ) = 1 = (p, f2) implies
that p - f2. There are (p − 1)(p2 − p) such matrices. If d1 6= 0 then the value of f2 is fixed
by f2 ≡ pe2d1 (mod p2) and d1(δ) = (p, d1) = 1. There are p2(p− 1) such matrices. Finally,
there are (p− 1)(2p2 − p) relevant matrices of type 14.
Let us consider the matrices of type 15. The condition d2(δ) = p2 implies that p | d3 and
p | f1d3/p. If f1 = 0 then d2(δ) = p2 = p2(p, d3/p) such that p || d3. The condition d1(δ) =
1 = (p, e1) implies that e1 6= 0. There are (p2− p)(p− 1) such matrices. If f1 6= 0 then p2 | d3
and d1(δ) = 1. There are p2(p− 1) such matrices. Finally, there are (p− 1)(2p2 − p) relevant
matrices of type 15.
Let us consider the matrices of type 16. The condition d2(δ) = p2 implies that p2 | d1f3−pe3.
If p | e3 then p2 | d1f3. If p | e3 and p | d1 then d1 = 0 and the condition d1(δ) = 1 = (p, f3)
implies that p - f3 and d2(δ) = p2. There are p2(p3 − p2) such matrices. If p | e3 and p - d1
then p2 | f3 then d2(δ) = p2(p, d1f3/p

2 − e3/p) 6= p2 if and only if f3/p
2 ≡ d1e3/p (mod p),

which given d1 and e3/p can happen for only one value of f3/p
2. There are (p− 1)p2(p− 1)

such matrices. If p - e3 then d1(δ) = 1 = (p, d1, e3, f3). The condition p2 | d1f3 − pe3 implies
that p2 - d1f3 and p - d1 but p | f3. The condition d2(δ) implies that p || d1f3/p − e3. Given
d1 and e3, there are p choices for f3/p given by f3/p ≡ d1e3 (mod p) but one has to remove
the value satisfying f3/p ≡ d1e3 (mod p2). There are (p − 1)(p3 − p2)(p − 1) such matrices.
Finally, there are p3(p− 1)(2p− 1) relevant matrices of type 16.
Let us consider the matrices of type 17. The condition d2(δ) = p2 implies that p | f2. If f2 = 0
then d2(δ) = p2 = p2(p, d3) such that p - d3, which implies d1(δ) = 1. There are (p3 − p2)p2

such matrices. If f2 6= 0 then p | d3 since p | d3f2/p, in which case d2(δ) = p2. The condition
d1(δ) = 1 implies that p - e2. There are p2(p2 − p)(p − 1) such matrices. Finally, there are
p3(p− 1)(2p− 1) relevant matrices of type 17.
Let us consider the matrices of type 18. The condition d2(δ) = p2 implies that p | f3 and
p | d2f3/p. If p2 | f3 then d2(δ) = p2 = p2(p, d2f3/p

2 − e3). One has to remove the p2 values
of e3 satisfying e3 ≡ d2f3/p

2 (mod p). In this case, one has d1(δ) = (p, d2, e3) = 1 since if
p | (d2, e3) then (p, d2f3/p

2 − e3) 6= 1. There are p2(p3 − p2)p such matrices. If p2 - f3 then
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p | d2 and the conditions on d1(δ) and d2(δ) are satisfied. There are p(p3 − p2)(p2 − p) such
matrices. Finally, there are p4(p− 1)(2p− 1) relevant matrices of type 18.
Let us consider the matrices of type 19. The condition on d2(δ) implies that p2 | d2f2. If
d2 = 0 then d2(δ) = p2 = p2(p4, e2, f2) and d1(δ) = 1 = (p2, e2, f2). One has to remove
the couples (e2, f2) satisfying p | e2 and p | f2, namely p2 couples. There are p4 − p2 such
matrices. If d2 6= 0 and f2 = 0 then d2(δ) = p2 = p2(p2, d2, e2) and d1(δ) = 1 = (p2, d2, e2).
One has to remove the couples (d2, e2) satisfying p | d2 and p | e2, namely (p − 1)p couples.
There are (p2 − 1)p2 − (p − 1)p such matrices. If d2 6= 0 and f2 6= 0 then d2(δ) = p2 =
p2(p2, pd2/p, pf2/p, d2f2/p

2 − e2) and d1(δ) = 1 = (p2, e2). Thus, p - e2 and p - d2f2/p
2 − e2.

Among the p2−p values of e2 satisfying p - e2, one has to remove these satisfying e2 ≡ d2f2/p
2

(mod p) of cardinal p. There are (p − 1)(p2 − 2p)(p − 1) such matrices. Finally, there are
p(p− 1)(3p2 − p+ 1) relevant matrices of type 19.
One can recover the value of the degree given in (A.9) by summing all the contributions in
the previous paragraphs. �

A.5. Degree of Λdiag(1, p3, p3)Λ. —

Proposition A.5. — One has

(A.10) deg
(
diag(1, p3, p3)

)
= p4(p2 + p+ 1).

Proof of Proposition A.5. — By (A.2), the possible upper-triangular column reduced matri-
ces δ that can occur in the decomposition into Λ-right cosets are

Type 1:

p3 d3
p3

1

  d(δ) = (1, (p3, d3), p6),

Type 2:

p3 e3
1 f3

p3

  d(δ) = (1, (p3, e3), p6),

Type 3:

1 d3 e3
p3 f3

p3

  d(δ) = (1, (p3, f3, d3f3), p6)

and

Type 4:

p3 d2 e1
p2 f1

p

  d(δ) = ((p, d2, e1, f1), (p3, pd2, d2f1 − p2e1), p6),

Type 5:

p3 d1 e2
p f2

p2

  d(δ) = ((p, d1, e2, f2), (p3, p2d1, d1f2 − pe2), p6),

Type 6:

p2 d3 e1
p3 f1

p

  d(δ) = ((p, d3, e1, f1), (p3, pd3, p
2f1, d3f1), p6),

Type 7:

p2 d1 e3
p f3

p3

  d(δ) = ((p, d1, e3, f3), (p3, p2f1, d1f3 − pe3), p6),
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Type 8:

p d3 e2
p3 f2

p2

  d(δ) = ((p, d3, e2, f2), (p3, p2d3, pf2, d3f2), p6),

Type 9:

p d1 e3
p2 f3

p3

  d(δ) = ((p, d1, e4, f4), (p3, pf3, d2f3 − p2e3), p6)

and

Type 10:

p2 d2 e2
p2 f2

p2

  d(δ) = ((p2, d2, e2, f2), (p4, p2d2, p
2f2, d2f2 − p2e2), p6)

where 0 6 dj , ej , fj < pj for j = 1, 2, 3. Let us count the matrices among the previous ones,
whose determinantal vector is the same as the one of diag(1, p3, p3), namely (1, p3, p6).
Let us consider the matrices of type 1. The condition on d2(δ) implies d3 = 0. There is 1
relevant matrix of type 1.
Let us consider the matrices of type 2. The condition on d2(δ) implies e3 = 0. There are p3

relevant matrices of type 2.
Let us consider the matrices of type 3. The condition on d2(δ) implies f3 = 0. There are p6

relevant matrices of type 3.
Let us consider the matrices of type 4. The condition on d2(δ) implies d2 = 0 and e1 = 0.
Then, d1(δ) = 1 = (p, f1) such that f1 6= 0. There are p− 1 relevant matrices of type 4.
Let us consider the matrices of type 5. The condition on d2(δ) implies d1 = 0 and e2 = 0.
Then, d1(δ) = 1 = (p, f2) such that p - f2. There are p2 − p relevant matrices of type 5.
Let us consider the matrices of type 6. The condition on d2(δ) implies f1 = 0 and p2 | d3.
Then, d1(δ) = 1 = (p, e1) such that e1 6= 0. There are p(p− 1) relevant matrices of type 6.
Let us consider the matrices of type 7. The condition on d2(δ) implies p | f3 and p | d1f3/p−e3.
One has d1 6= 0 since otherwise p2 | e2 by the condition on d2(δ) such that d1(δ) = p 6= 1.
Thus, d1 is invertible modulo p and f3/p ≡ e3d1 (mod p2) is fixed. There are (p−1)p3 relevant
matrices of type 7.
Let us consider the matrices of type 8. The condition on d2(δ) implies p | d3 and f2 = 0.
Then, d1(δ) = 1 = (p, e2) such that p - e2. There are p2(p2 − p) relevant matrices of type 8.
Let us consider the matrices of type 9. The condition on d2(δ) implies p2 | f3 and p |
d2f3/p − e3. If f3 = 0 then p | e3 and d1(δ) = 1 = (p, d2) such that p - d2. There are
(p2 − p)p2 such matrices. If f3 6= 0 then d2 ≡ e3f3/p2 (mod p) can take p values. Then,
d1(δ) = 1 = (p, e3) such that p - e3. There are p(p3 − p2)(p− 1) such matrices. Finally, there
are p4(p− 1) relevant matrices of type 9.
Let us consider the matrices of type 10. The condition on d2(δ) implies p | d2, p | f2 and
p | d2f2/p

2−e2. One has d2 6= 0 since otherwise d2(δ) = p2(p2, e2) = p2d1(δ) = p2 6= p3. Thus,
d2/p is invertible modulo p and f2 is fixed by f2/p ≡ e2d2/p (mod p). Then, d1(δ) = 1 =
(p, e2) such that p - e2, p - f2/p and d2(δ) = p3. There are (p − 1)(p2 − p) relevant matrices
of type 10.
One can recover the value of the degree given in (A.10) by summing all the contributions in
the previous paragraphs. �

A.6. Degree of Λdiag(1, 1, p3)Λ. —
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Proposition A.6. — One has

(A.11) deg
(
diag(1, 1, p3)

)
= p4(p2 + p+ 1).

Proof of Proposition A.6. — By (A.2), the possible upper-triangular column reduced matri-
ces δ that can occur in the decomposition of the Λ-double coset Λdiag(1, 1, p3)Λ into Λ-right
cosets are

Type 1:

p3

1
1

  d(δ) = (1, 1, p3),

Type 2:

1 d3
p3

1

  d(δ) = (1, 1, p3),

Type 3:

1 e3
1 f3

p3

  d(δ) = (1, 1, p3)

and

Type 4:

1 d1 e2
p f2

p2

  d(δ) = (1, (p, f2), p3),

Type 5:

1 d2 e1
p2 f1

p

  d(δ) = (1, (p, f1), p3),

Type 6:

p e2
1 f2

p2

  d(δ) = (1, (p, e2), p3),

Type 7:

p2 e1
1 f1

p

  d(δ) = (1, (p, e1), p3),

Type 8:

p d2
p2

1

  d(δ) = (1, (p, d2), p3),

Type 9:

p2 d1
p

1

  d(δ) = (1, (p, d1), p3)

and

Type 10:

p d1 e1
p f1

p

  d(δ) = ((p, d1, e1, f1), (p2, pd1, pf1, d1f1 − pe1), p3)

where 0 6 dj , ej , fj < pj for j = 1, 2, 3. Let us count the matrices among the previous ones,
whose determinantal vector is the same as the one of diag(1, 1, p3), namely (1, 1, p3).
Let us consider the matrices of type 1. There is 1 relevant matrix of type 1.
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Let us consider the matrices of type 2. There are p3 relevant matrices of type 2.
Let us consider the matrices of type 3. There are p6 relevant matrices of type 3.
Let us consider the matrices of type 4. The condition on d2(δ) implies p - f2. There are
p3(p2 − p) relevant matrices of type 4.
Let us consider the matrices of type 5. The condition on d2(δ) implies f1 6= 0. There are
p3(p− 1) relevant matrices of type 5.
Let us consider the matrices of type 6. The condition on d2(δ) implies p - e2. There are
p2(p2 − p) relevant matrices of type 6.
Let us consider the matrices of type 7. The condition on d2(δ) implies e1 6= 0. There are
p(p− 1) relevant matrices of type 6.
Let us consider the matrices of type 8. The condition on d2(δ) implies p - d2. There are p2−p
relevant matrices of type 7.
Let us consider the matrices of type 9. The condition on d2(δ) implies d1 6= 0. There are p−1
relevant matrices of type 9.
Let us consider the matrices of type 10. One has d1 6= 0 since otherwise p | d2(δ). Thus,
d1(δ) = 1. In addition, f1 6= 0 since otherwise p | d2(δ). There are p(p− 1)2 relevant matrices
of type 10.
One can recover the value of the degree given in (A.11) by summing all the contributions in
the previous paragraphs. �
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