Publications mathématiques de Besançon Algèbre et théorie des nombres

Roman Holowinsky, Guillaume Ricotta, and Emmanuel Royer The amplification method in the $G L(3)$ Hecke algebra 2015, p. 13-40.
<http://pmb.cedram.org/item?id=PMB_2015_ \qquad 13_0>

[^0]
THE AMPLIFICATION METHOD IN THE $G L(3)$ HECKE ALGEBRA

by

Roman Holowinsky, Guillaume Ricotta and Emmanuel Royer

Abstract

This article contains all the technical ingredients required to implement an effective, explicit and unconditional amplifier in the context of $G L(3)$ automorphic forms. In particular, several coset decomposition computations in the $G L(3)$ Hecke algebra are explicitly done.

Résumé. - Cet article contient tous les ingrédients techniques nécessaires à la mise en place efficace, explicite et inconditionnelle de la méthode d'amplification dans le cadre des formes automorphes de $G L(3)$. En particulier, il y est donné plusieurs décompositions explicites de systèmes de représentants dans l'algèbre de Hecke de $G L(3)$.

Contents

1. Introduction and statement of the results
 14

1.1. Motivation: sup-norms of $G L(n)$ Hecke-Maass cusp forms 14
1.2. The $G L(2)$ and $G L(3)$ amplifier 14
1.3. Statement of the results 16
1.4. Organization of the paper 18
2. Background on the $G L(3)$ Hecke algebra 19
3. Proof of the linearizations given in Theorem A 21
3.1. Linearization of $\Lambda \operatorname{diag}(1,1, p) \Lambda * \Lambda \operatorname{diag}(1, p, p) \Lambda$ 21
3.2. Linearization of $\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda * \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda$ 24
Appendix A. Decomposition of Λ-double cosets into Λ-cosets 28
A.1. Decomposition and degree of $\Lambda \operatorname{diag}(1,1, p) \Lambda$ 29
A.2. Decomposition and degree of $\Lambda \operatorname{diag}(1, p, p) \Lambda$ 30
A.3. Decomposition and degree of $\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda$ 30
A.4. Degree of $\Lambda \operatorname{diag}\left(1, p^{2}, p^{4}\right) \Lambda$ 32
A.5. Degree of $\Lambda \operatorname{diag}\left(1, p^{3}, p^{3}\right) \Lambda$ 36
A.6. Degree of $\Lambda \operatorname{diag}\left(1,1, p^{3}\right) \Lambda$ 37
References 39

Mathematical subject classification (2010). - 11F99, 11F60, 11F55.
Key words and phrases. - Amplification method, Hecke operators, Hecke algebras.

1. Introduction and statement of the results

1.1. Motivation: sup-norms of $G L(n)$ Hecke-Maass cusp forms. - Let f be a $G L(n)$ Maass cusp form and K be a fixed compact subset of $S L_{n}(\mathbb{R}) / S O_{n}(\mathbb{R})$ (see [Gol06]). The generic or local bound for the sup-norm of f restricted to K is given by

$$
\left||f|_{K} \|_{\infty} \ll \lambda_{f}^{n(n-1) / 8}\right.
$$

where λ_{f} is the Laplace eigenvalue of f (see [Sar]). Note that F. Brumley and N. Templier noticed in [BT] that the previous bound does not hold when $n \geqslant 6$ if f is not restricted to a compact.
If f is an eigenform of the Hecke algebra, however, then the generic bound is not expected to be the correct order of magnitude for the sup-norm of the restriction of f to a fixed compact. This is essentially due to the fact that the Hecke operators are additional symmetries on the ambient space. In other words, we expect there to exist an absolute positive constant $\delta_{n}>0$ such that

$$
\begin{equation*}
\left\|\left.f\right|_{K}\right\|_{\infty} \ll \lambda_{f}^{n(n-1) / 8-\delta_{n}} \tag{1.1}
\end{equation*}
$$

H. Iwaniec and P. Sarnak proved the bound given in (1.1) in [IS95] when $n=2$ for $\delta_{2}=1 / 24$. Note that improving this constant δ_{2} seems to be a very delicate open problem. The case $n=3$ was completed by the authors in [HRR] with $\delta_{3}=1 / 124$. The general case was done, without an explicit value for δ_{n}, in a series of recent impressive works by V. Blomer and P. Maga in [BMb] and in [BMa].

All of the above achievements (and much more) were made possible thanks to generalizations of the amplification method developed by W. Duke, J. Friedlander and H. Iwaniec for $G L(1)$ and $G L(2)$ (see [FI92], [Iwa92] and [DFI94] for example). In particular, the proof of (1.1) for $n=3$ with $\delta_{3}=1 / 124$ relies on Theorem B of this article which was stated without proof in [HRR] as Proposition 4.1^{1}. For the sake of completeness and future use, we provide the full details of the proof of Theorem B, including computations, here in this article.
1.2. The $G L(2)$ and $G L(3)$ amplifier. - The general principle behind the construction of an amplifier, is the existence of an identity which allows one to write a non-zero constant as a finite sum of Hecke eigenvalues. In the most basic context of $G L(2)$ automorphic forms, this identity is

$$
\begin{equation*}
\lambda_{f}(p)^{2}-\lambda_{f}\left(p^{2}\right)=1 \tag{1.2}
\end{equation*}
$$

where p is any prime and $\lambda_{f}(n)$ is the n-th Hecke eigenvalue of a Hecke-Maass cusp form f of full level, i.e. $T_{n} f=\lambda_{f}(n) f$ where

$$
\left(T_{n} f\right)(z)=\frac{1}{\sqrt{n}} \sum_{a d=n} \sum_{b=1}^{d} f\left(\frac{a z+b}{d}\right) .
$$

One may interpret the above identity as the fact that the Rankin-Selberg convolution factors as the product of the adjoint square and the Riemann zeta function and therefore has a pole at $s=1$.

[^1]From the identity (1.2), one constructs an amplifier

$$
A_{f}:=\left|\sum_{\ell} \alpha_{\ell} \lambda_{f}(\ell)\right|^{2}
$$

with

$$
\alpha_{\ell}:= \begin{cases}\lambda_{f_{0}}(\ell) & \text { if } \ell \leqslant \sqrt{L} \text { is a prime number } \\ -1 & \text { if } \ell \leqslant L \text { is the square of a prime number } \\ 0 & \text { otherwise }\end{cases}
$$

for some fixed form f_{0}. The advantage to constructing such an amplifier is that it is expected to be small ${ }^{2}$ for general forms f while satisfying the lower bound $A_{f}>_{\varepsilon} L^{1-\varepsilon}$ when $f=f_{0}$. Reinterpreting (1.2) in terms of Hecke operators, we may write

$$
T_{p} \circ T_{p}-T_{p^{2}}=I d
$$

In application to the sup-norm problem for GL(2) via a pre-trace formula argument, this translates into a need to geometrically understand the behavior of the following collection of operators on an automorphic kernel

$$
T_{p}, T_{p} \circ T_{q}^{*}, T_{p} \circ T_{q^{2}}^{*} \text { and } T_{p^{2}} \circ T_{q^{2}}^{*}
$$

both in the cases of primes $p=q$ and $p \neq q$. Since the Hecke operators T_{n} in $G L(2)$ are selfadjoint and computationally pleasant to work with due to their relatively simple composition law, one quickly computes that the above collection of Hecke operators may be reduced to the study of

$$
T_{p}, T_{p q}, T_{p q^{2}} \text { and } T_{p^{2} q^{2}}
$$

In truth, one has an opportunity to further reduce the collection of necessary Hecke operators through the simple inequality

$$
\begin{equation*}
A_{f} \leqslant 2\left|\sum_{p} \alpha_{p} \lambda_{f}(p)\right|^{2}+2\left|\sum_{p} \alpha_{p^{2}} \lambda_{f}\left(p^{2}\right)\right|^{2} \tag{1.3}
\end{equation*}
$$

Indeed, an appropriate application of (1.3) (see for example [BHM]) allows one to further restrict the set of necessary Hecke operators to

$$
T_{p q} \text { and } T_{p^{2} q^{2}}
$$

both in the cases of primes $p=q$ and $p \neq q$.
The case of $G L(3)$ is much more computationally involved due to the lack of self-adjointness of the Hecke operators and their multiplication law. Instead of looking at identities involving Hecke eigenvalues, we start immediately with the Hecke operators themselves (see §2 for definitions). Our fundamental identity now will be

$$
\begin{equation*}
T_{\operatorname{diag}(1, p, p)} \circ T_{\operatorname{diag}(1,1, p)}-T_{\operatorname{diag}\left(1, p, p^{2}\right)}=\left(p^{2}+p+1\right) I d \tag{1.4}
\end{equation*}
$$

We set $c_{f}(p)=a_{f}(p, 1), c_{f}(p)^{*}=\overline{a_{f}(p, 1)}$ and $c_{f}\left(p^{2}\right)$ to be the eigenvalues of $p^{-1} T_{\operatorname{diag}(1,1, p)}=$ $T_{p}, p^{-1} T_{\operatorname{diag}(1, p, p)}=T_{p}^{*}$ and $p^{-2} T_{\operatorname{diag}\left(1, p, p^{2}\right)}$ respectively when acting on a form f. See (2.3)

[^2]and (2.4) for the precise definitions. We construct the amplifier
$$
A_{f}:=\left|\sum_{\ell} \alpha_{\ell} c_{f}(\ell)\right|^{2}
$$
with 3
\[

\alpha_{\ell}:= $$
\begin{cases}c_{f_{0}}(\ell)^{*} & \text { if } \ell \leqslant \sqrt{L} \text { is a prime number } \\ -1 & \text { if } \ell \leqslant L \text { is the square of a prime number } \\ 0 & \text { otherwise }\end{cases}
$$
\]

As in the case of $G L(2)$, this amplifier will satisfy $A_{f_{0}}>_{\varepsilon} L^{1-\varepsilon}$ and A_{f} is otherwise expected to be small for $f \neq f_{0}$.
Applying the inequality

$$
\begin{equation*}
A_{f} \leqslant 2\left|\sum_{p} \alpha_{p} c_{f}(p)\right|^{2}+2\left|\sum_{p} \alpha_{p^{2}} c_{f}\left(p^{2}\right)\right|^{2}, \tag{1.5}
\end{equation*}
$$

one is reduced to understanding the actions of

$$
T_{\operatorname{diag}(1,1, p)} \circ T_{\operatorname{diag}(1, q, q)} \text { and } T_{\operatorname{diag}\left(1, p, p^{2}\right)} \circ T_{\operatorname{diag}\left(1, q, q^{2}\right)}
$$

both in the cases of primes $p=q$ and $p \neq q$ on the relevant automorphic kernel. In the following sections, we compute the above compositions as linear combinations of other Hecke operators and state our main result as Theorem B. In the end, we shall see that the following operators are the relevant ones for our application

$$
T_{\operatorname{diag}(1, p, p q)}, T_{\operatorname{diag}\left(1, p q, p^{2} q^{2}\right)}, T_{\operatorname{diag}\left(1, p^{3}, p^{3}\right)} \text { and } T_{\operatorname{diag}\left(1,1, p^{3}\right)}
$$

for primes $p=q$ and $p \neq q$.

1.3. Statement of the results. -

Theorem A. - Let p be a prime number and $\Lambda=G L_{3}(\mathbb{Z})$.

- The set $R_{1,1, p}$ (respectively $R_{1, p, p}, R_{1, p, p^{2}}$) defined in Proposition $A .1$ (respectively Proposition A.2, Proposition A.3) is a complete system of representatives for the distinct Λ right cosets in the Λ-double coset of $\operatorname{diag}(1,1, p)$ (respectively $\operatorname{diag}(1,1, p), \operatorname{diag}\left(1, p, p^{2}\right)$) modulo Λ.

[^3]- The following formulas for the degrees of Λ-double cosets hold.

$$
\begin{aligned}
\operatorname{deg}(\operatorname{diag}(1,1, p)) & =p^{2}+p+1 \\
\operatorname{deg}(\operatorname{diag}(1, p, p)) & =p^{2}+p+1 \\
\operatorname{deg}\left(\operatorname{diag}\left(1, p, p^{2}\right)\right) & =p(p+1)\left(p^{2}+p+1\right) \\
\operatorname{deg}(\operatorname{diag}(p, p, p)) & =1 \\
\operatorname{deg}\left(\operatorname{diag}\left(1, p^{2}, p^{4}\right)\right) & =p^{5}(p+1)\left(p^{2}+p+1\right) \\
\operatorname{deg}\left(\operatorname{diag}\left(1, p^{3}, p^{3}\right)\right) & =p^{4}\left(p^{2}+p+1\right) \\
\operatorname{deg}\left(\operatorname{diag}\left(p, p, p^{4}\right)\right) & =p^{4}\left(p^{2}+p+1\right) \\
\operatorname{deg}\left(\operatorname{diag}\left(p, p^{2}, p^{3}\right)\right) & =p(p+1)\left(p^{2}+p+1\right) \\
\operatorname{deg}\left(\operatorname{diag}\left(p^{2}, p^{2}, p^{2}\right)\right) & =1
\end{aligned}
$$

- Finally,

$$
\begin{equation*}
\Lambda \operatorname{diag}(1,1, p) \Lambda * \Lambda \operatorname{diag}(1, p, p) \Lambda=\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda+\left(p^{2}+p+1\right) \Lambda \operatorname{diag}(p, p, p) \Lambda \tag{1.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda * \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda=\Lambda \operatorname{diag}\left(1, p^{2}, p^{4}\right) \Lambda+(p+1) \Lambda \operatorname{diag}\left(1, p^{3}, p^{3}\right) \Lambda \tag{1.7}\\
& +(p+1) \Lambda \operatorname{diag}\left(p, p, p^{4}\right) \Lambda+(p+1)(2 p-1) \Lambda \operatorname{diag}\left(p, p^{2}, p^{3}\right) \Lambda \\
& \quad+p(p+1)\left(p^{2}+p+1\right) \Lambda \operatorname{diag}\left(p^{2}, p^{2}, p^{2}\right) \Lambda .
\end{align*}
$$

Remark 1.1. - In [Kod67], T. Kodama explicitely computed the product of other double cosets in the slightly harder case of the Hecke ring for the symplectic group. The results stated in the previous theorem are similar in spirit.

Remark 1.2. - It is well-known that a Λ-double coset can be identified with its characteristic function χ. Under this identification, the multiplication law between Λ-double cosets is the classical convolution between functions. If $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ with $\mu_{1} \geqslant \mu_{2} \geqslant \mu_{3} \geqslant 0$ and $\nu=\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ with $\nu_{1} \geqslant \nu_{2} \geqslant \nu_{3} \geqslant 0$ are two partitions of length less than n, then

$$
\chi_{\Lambda \operatorname{diag}\left(p^{\mu_{1}}, p^{\mu_{2}}, p^{\mu_{3}}\right) \Lambda} * \chi_{\Lambda \operatorname{diag}\left(p^{\nu_{1}}, p^{\nu_{2}}, p^{\nu_{3}}\right) \Lambda}=\sum_{\lambda} g_{\mu, \nu}^{\lambda}(p) \chi_{\Lambda \operatorname{diag}\left(p^{\lambda_{1}}, p^{\left.\lambda_{2}, p^{\lambda_{3}}\right) \Lambda}\right.}
$$

for any prime number p where λ ranges over the partitions of length less than n and the $g_{\mu, \nu}^{\lambda}(p)$ are the Hall polynomials (see [Mac95, Equation (2.6) Page 295]). The sum on the right-hand side of the above equality is finite since only a finite number of the Hall polynomials are non-zero. However, determining which Hall polynomials vanish is not straightforward (see
[Mac95, Equation (4.3) Page 188]). Using Sage, one can check that

$$
\begin{aligned}
g_{(2,1,0),(2,1,0)}^{(4,2,0)}(p) & =1 \\
g_{(2,3,0),(2,1,0)}^{(3,3)}(p) & =p+1, \\
g_{(2,1,0),(2,1,0)}^{(4,1,1)}(p) & =p+1, \\
g_{(2,1,0),(2,1,0)}^{(3,2,)}(p) & =(p+1)(2 p-1), \\
g_{(2,2,0),(2,1,0)}^{(2,2)}(p) & =p(p+1)\left(p^{2}+p+1\right)
\end{aligned}
$$

and one can recover the coefficients occurring in (1.7). We prefer to give a different proof, which has the advantage of producing explicit systems of representatives for the Λ-right cosets and formulas for the degrees.

Corollary B. - If p and q are two prime numbers then

$$
\begin{equation*}
T_{\operatorname{diag}(1, p, p)} \circ T_{\operatorname{diag}(1,1, q)}=T_{\operatorname{diag}(1, p, p q)}+\delta_{p=q}\left(p^{2}+p+1\right) I d \tag{1.8}
\end{equation*}
$$

and

$$
\begin{array}{r}
T_{\operatorname{diag}\left(1, p, p^{2}\right)} \circ T_{\operatorname{diag}\left(1, q, q^{2}\right)}=T_{\operatorname{diag}\left(1, p q, p^{2} q^{2}\right)}+\delta_{p=q}(p+1)\left(T_{\operatorname{diag}\left(1, p^{3}, p^{3}\right)}+T_{\operatorname{diag}\left(1,1, p^{3}\right)}\right) \tag{1.9}\\
+\delta_{p=q}(p+1)(2 p-1) T_{\operatorname{diag}\left(1, p, p^{2}\right)}+\delta_{p=q} p(p+1)\left(p^{2}+p+1\right) I d
\end{array}
$$

When $p \neq q$, the previous corollary immediately follows from (2.9) and (2.10). When $p=q$, it is a consequence of the previous theorem and of (2.9).

Remark 1.3. - As observed by L. Silberman and by A. Venkatesh in [SA] and used by V. Blomer and P. Maga in [BMb] and in [BMa], the precise formulas for the Hall polynomials occurring in (1.8) and in (1.9) are not really needed for the purpose of the amplification method, since the Hall polynomials are easily well approximated for p and q large by the much easier Schur polynomials. Nevertheless, the precise list of the Hecke operators relevant for the amplification method, namely occurring in (1.8) and in (1.9), seems to be crucial in order to obtain the best possible explicit result. For instance, G. Harcos and N. Templier used such a list in order to prove the best known subconvexity exponent for the sup-norm of GL(2) automorphic forms in the level aspect in [HT13].
1.4. Organization of the paper. - The general background on $G L(3)$ Maass cusp forms and on the $G L(3)$ Hecke algebra is given in Section 2. The linearizations involved in Theorem A are detailed in Section 3. The proof requires decompositions of Λ-double cosets into Λ-left and right cosets and computations of degrees as done in Appendix A.

Notations. - Λ stands for the group $G L_{3}(\mathbb{Z})$ of 3×3 invertible matrices with integer coefficients. If g is a 3×3 matrix with real coefficients then ${ }^{t} g$ stands for its transpose. For $g \in G L_{3}(\mathbb{Q})$ we let T_{g} denote the Hecke operator associated to g (see §2). If a, b and c are three rational numbers then
$-\operatorname{diag}(a, b, c)$ denotes the diagonal 3×3 matrix with a, b and c as diagonal coefficients;

- $L_{a, b, c}$ (respectively $R_{a, b, c}$) stands for a system of representatives for the decomposition of the Λ-double coset $\Lambda \operatorname{diag}(a, b, c) \Lambda$ into Λ-left (respectively right) cosets.

Acknowledgements. The authors would like to thank the referees for a very careful reading of the manuscript.
They also want to thank J. Cogdell, É. Fouvry, E. Kowalski and P. Michel for fruitful discussions related to this work.
This article was worked out at several places: Université Blaise Pascal (Clermont-Ferrand), the Department of Mathematics of The Ohio State University (Columbus), École Polytechnique Fédérale de Lausanne, Eidgenossische Technische Hochschule (Zurich), Forschungsinstitut fur Mathematik (Zurich). The authors would like to thank all of these institutions for their hospitality and inspiring working conditions.
The research of R. Holowinsky was partially supported by the Sloan fellowship BR2011-083 and the NSF grant DMS-1068043. In-person collaboration with the other authors was made possible through this funding.
The research of G. Ricotta was partially supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme. The grant agreement number of this project, whose acronym is ANERAUTOHI, is PIEF-GA-2009-251271. He would like to thank ETH and its entire staff for the excellent working conditions. Last but not least, the second author would like to express his gratitude to K. Belabas for his crucial but isolated support for Analytic Number Theory among the Number Theory research team A2X (Institut de Mathématiques de Bordeaux, Université de Bordeaux).

2. Background on the $G L(3)$ Hecke algebra

Convenient references for this section include [AZ95], [Gol06], [New72] and [Shi94]. Let f be a $G L(3)$ Maass cusp form of full level. Such f admits a Fourier expansion (2.1)

$$
f(g)=\sum_{\gamma \in U_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z})} \sum_{\substack{m_{1} \geqslant 1 \\
m_{2} \in \mathbb{Z} \backslash\{0\}}} \frac{a_{f}\left(m_{1}, m_{2}\right)}{m_{1}\left|m_{2}\right|} W_{\mathrm{Ja}}\left(\left(\begin{array}{lll}
m_{1}\left|m_{2}\right| & & \\
& m_{1} & \\
& & 1
\end{array}\right)\left(\begin{array}{ll}
\gamma & \\
& 1
\end{array}\right) g, \nu_{f}, \psi_{1, \frac{m_{2}}{\left|m_{2}\right|}}\right)
$$

for $g \in G L_{3}(\mathbb{R})$ (see [Gol06, Equation (6.2.1)]). Here $U_{2}(\mathbb{Z})$ stands for the \mathbb{Z}-points of the group of upper-triangular unipotent 2×2 matrices. $\nu_{f} \in \mathbb{C}^{2}$ is the type of f, whose components are complex numbers characterized by the property that, for every invariant differential operator D in the center of the universal enveloping algebra of $G L_{3}(\mathbb{R})$, the cusp form f is an eigenfunction of D with the same eigenvalue as the power function $I_{\nu_{f}}$, which is defined in [Gol06, Equation (5.1.1)]. $\psi_{1, \pm 1}$ is the character of the group of upper-triangular unipotent real 3×3 matrices defined by

$$
\psi_{1, \pm 1}\left(\left(\begin{array}{ccc}
1 & u_{1,2} & u_{1,3} \\
& 1 & u_{2,3} \\
& & 1
\end{array}\right)\right)=e^{2 i \pi\left(u_{2,3} \pm u_{1,2}\right)}
$$

$W_{J a}\left(*, \nu_{f}, \psi_{1, \pm 1}\right)$ stands for the $G L(3)$ Jacquet Whittaker function of type ν_{f} and character $\psi_{1, \pm 1}$ defined in [Gol06, Equation 6.1.2]. The complex number $a_{f}\left(m_{1}, m_{2}\right)$ is the $\left(m_{1}, m_{2}\right)$-th Fourier coefficient of f for m_{1} a positive integer and m_{2} a non-vanishing integer.
For $g \in G L_{3}(\mathbb{Q})$, the Hecke operator T_{g} is defined by

$$
T_{g}(f)(h)=\sum_{\delta \in \Lambda \backslash \Lambda g \Lambda} f(\delta h)
$$

for $h \in G L_{3}(\mathbb{R})$ (see [AZ95, Chapter 3, Sections 1.1 and 1.5]). The degree of g or T_{g} defined by

$$
\operatorname{deg}(g)=\operatorname{deg}\left(T_{g}\right)=\operatorname{card}(\Lambda \backslash \Lambda g \Lambda)
$$

is scaling invariant, in the sense that

$$
\begin{equation*}
\operatorname{deg}(r g)=\operatorname{deg}(g) \tag{2.2}
\end{equation*}
$$

for $r \in \mathbb{Q}^{\times}$. The adjoint of T_{g} for the Petersson inner product is $T_{g^{-1}}$. The algebra of Hecke operators \mathbb{T} is the ring of endomorphisms generated by all the T_{g} 's with $g \in G L_{3}(\mathbb{Q})$, a commutative algebra of normal endomorphisms (see [Gol06, Theorem 6.4.6]), which contains the m-th normalized Hecke operator

$$
\begin{equation*}
T_{m}=\frac{1}{m} \sum_{\substack{\left.g=\operatorname{diag}\left(y_{1}, y_{2}, y_{3}\right) \\ y_{1}\left|y_{2}\right| y_{3}\right) \\ y_{1} y_{2} y_{3}=m}} T_{g} \tag{2.3}
\end{equation*}
$$

for all positive integers m. A Hecke-Maass cusp form f of full level is a Maass cusp form of full level, which is an eigenfunction of \mathbb{T}. In particular, it satisfies

$$
\begin{equation*}
T_{m}(f)=a_{f}(m, 1) f \quad \text { and } \quad T_{m}^{*}(f)=a_{f}(1, m) f=\overline{a_{f}(m, 1)} f \tag{2.4}
\end{equation*}
$$

according to [Gol06, Theorem 6.4.11].
The algebra \mathbb{T} is isomorphic to the absolute Hecke algebra, the free \mathbb{Z}-module generated by the double cosets $\Lambda g \Lambda$ where g ranges over $\Lambda \backslash G L_{3}(\mathbb{Q}) / \Lambda$ and endowed with the following multiplication law. If g_{1} and g_{2} belong to $G L_{3}(\mathbb{Q})$ and

$$
\Lambda g_{1} \Lambda=\bigcup_{i=1}^{\operatorname{deg}\left(g_{1}\right)} \Lambda \alpha_{i} \text { and } \Lambda g_{2} \Lambda=\bigcup_{j=1}^{\operatorname{deg}\left(g_{2}\right)} \Lambda \beta_{j}
$$

then

$$
\begin{equation*}
\Lambda g_{1} \Lambda * \Lambda g_{2} \Lambda=\sum_{\Lambda h \Lambda \subset \Lambda g_{1} \Lambda g_{2} \Lambda} m\left(g_{1}, g_{2} ; h\right) \Lambda h \Lambda \tag{2.5}
\end{equation*}
$$

where $h \in G L_{3}(\mathbb{Q})$ ranges over a system of representatives of the Λ-double cosets contained in the set $\Lambda g_{1} \Lambda g_{2} \Lambda$ and

$$
\begin{align*}
m\left(g_{1}, g_{2} ; h\right) & =\operatorname{card}\left(\left\{(i, j) \in\left\{1, \ldots, \operatorname{deg}\left(g_{1}\right)\right\} \times\left\{1, \ldots, \operatorname{deg}\left(g_{2}\right)\right\}, \alpha_{i} \beta_{j} \in \Lambda h\right\}\right), \tag{2.6}\\
& =\frac{1}{\operatorname{deg}(h)} \operatorname{card}\left(\left\{(i, j) \in\left\{1, \ldots, \operatorname{deg}\left(g_{1}\right)\right\} \times\left\{1, \ldots, \operatorname{deg}\left(g_{2}\right)\right\}, \alpha_{i} \beta_{j} \in \Lambda h \Lambda\right\}\right), \tag{2.7}\\
& =\frac{\operatorname{deg}\left(g_{2}\right)}{\operatorname{deg}(h)} \operatorname{card}\left(\left\{i \in\left\{1, \ldots, \operatorname{deg}\left(g_{1}\right)\right\}, \alpha_{i} g_{2} \in \Lambda h \Lambda\right\}\right) . \tag{2.8}
\end{align*}
$$

Confer [AZ95, Lemma 1.5 Page 96]. In particular,

$$
\begin{equation*}
\Lambda \operatorname{diag}(r, r, r) \Lambda * \Lambda g \Lambda=\Lambda r g \Lambda \tag{2.9}
\end{equation*}
$$

for $g \in G L_{3}(\mathbb{Q})$ and $r \in \mathbb{Q}^{\times}$([AZ95, Lemma 2.4 Page 107]). In addition, for p and q two distinct prime numbers,

$$
\begin{equation*}
\Lambda \operatorname{diag}\left(1, p^{\alpha_{1}}, p^{\alpha_{2}}\right) \Lambda * \Lambda \operatorname{diag}\left(1, q^{\beta_{1}}, q^{\beta_{2}}\right) \Lambda=\Lambda \operatorname{diag}\left(1, p^{\alpha_{1}} q^{\beta_{1}}, p^{\alpha_{2}} q^{\beta_{2}}\right) \Lambda \tag{2.10}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are non-negative integers by [AZ95, Proposition 2.5 Page 107].

Every double coset $\Lambda g \Lambda$ with g in $G L_{3}(\mathbb{Q})$ contains a unique representative of the form

$$
\begin{equation*}
r \operatorname{diag}\left(1, s_{1}(g), s_{2}(g)\right) \tag{2.11}
\end{equation*}
$$

where $r \in \mathbb{Q}^{*}$ and $s_{1}(g), s_{2}(g)$ are some positive integers satisfying $s_{1}(g) \mid s_{2}(g)$ (see [AZ95, Lemma 2.2]).
Finally, let $g=\left[g_{i, j}\right]_{1 \leqslant i, j \leqslant 3}$ be a 3×3 matrix with integer coefficients. Its determinantal divisors are the non-negative integers given by

$$
\begin{aligned}
d_{1}(g) & =\operatorname{gcd}\left(\left\{g_{i, j}, 1 \leqslant i, j \leqslant 3\right\}\right) \\
d_{2}(g) & =\operatorname{gcd}(\{\text { determinants of } 2 \times 2 \text { submatrices of } g\}) \\
d_{3}(g) & =|\operatorname{det}(g)|
\end{aligned}
$$

and its determinantal vector is $\boldsymbol{d}(g)=\left(d_{1}(g), d_{2}(g), d_{3}(g)\right)$. The determinantal divisors turn out to be useful since if h is another 3×3 matrix with integer coefficients then h belongs to $\Lambda g \Lambda$ if and only if $d_{k}(h)=d_{k}(g)$ for $1 \leqslant k \leqslant 3$ (see [New72]).

3. Proof of the linearizations given in Theorem A

3.1. Linearization of $\Lambda \operatorname{diag}(1,1, p) \Lambda * \Lambda \operatorname{diag}(1, p, p) \Lambda$. - This section contains the proof of (1.6).
By (2.5), the product of these double cosets equals

$$
\sum_{\Lambda h \Lambda \subset \Lambda \operatorname{diag}(1,1, p) \Lambda \operatorname{diag}(1, p, p) \Lambda} m\left(\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & p
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) ; h\right) \Lambda h \Lambda
$$

where $h \in G L_{3}(\mathbb{Q})$ ranges over a system of representatives of the Λ-double cosets contained in the set

$$
\Lambda\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & p
\end{array}\right) \Lambda\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) \Lambda
$$

Let us determine the matrices h occuring in this sum. Let h in $G L_{3}(\mathbb{Q})$ be such that $\Lambda h \Lambda$ is included in the previous set. By (2.11), one has uniquely

$$
\Lambda h \Lambda=\Lambda \varepsilon \frac{\lambda_{1}}{\lambda_{2}} \operatorname{diag}\left(1, s_{1}, s_{2}\right) \Lambda
$$

with $\varepsilon= \pm 1, \lambda_{1}, \lambda_{2}>0,\left(\lambda_{1}, \lambda_{2}\right)=1, s_{1}, s_{2}>0, s_{1} \mid s_{2}$. The inclusion is equivalent to

$$
\Lambda \varepsilon \lambda_{1} \operatorname{diag}\left(1, s_{1}, s_{2}\right) \Lambda=\Lambda \lambda_{2} \delta_{1} \delta_{2} \Lambda
$$

for some matrices $\delta_{1} \in R_{1,1, p}$ and $\delta_{2} \in L_{1, p, p}$ by (A.3) and (A.5). So, both matrices have the same determinantal divisors ie

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2} d_{1}\left(\delta_{1} \delta_{2}\right) \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} d_{2}\left(\delta_{1} \delta_{2}\right) \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} d_{3}\left(\delta_{1} \delta_{2}\right)=\lambda_{2}^{3} p^{3}
\end{aligned}
$$

One can check that the set

$$
\left\{\delta_{1} \delta_{2},\left(\delta_{1}, \delta_{2}\right) \in R_{1,1, p} \times L_{1, p, p}\right\}
$$

is made exactly of the matrices

$$
\begin{aligned}
&\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right) \\
& \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(p, p^{2}, p^{3}\right), \\
&\left(\begin{array}{ccc}
p & d_{1}+D_{1} & \\
& & p \\
& & p
\end{array}\right) \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(\left(p, d_{1}+D_{1}\right), p\left(p, d_{1}+D_{1}\right), p^{3}\right), \\
&\left(\begin{array}{ccc}
p & & e_{1}+E_{1} \\
& p & f_{1}+F_{1} \\
& & p
\end{array}\right) \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(\left(p, e_{1}+E_{1}, f_{1}+F_{1}\right), p\left(p, e_{1}+E_{1}, f_{1}+F_{1}\right), p^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\begin{array}{lll}
p^{2} & & p E_{1} \\
& p & F_{1} \\
& & 1
\end{array}\right) & \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(1, p, p^{3}\right), \\
\left(\begin{array}{ccc}
p^{2} & p D_{1} & \\
& & 1
\end{array}\right) & \\
& \\
\left(\begin{array}{ccc}
1 & p d_{1} & \\
& p^{2} & \\
& & p
\end{array}\right) & \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(1, p, p^{3}\right), \\
\left(\begin{array}{ccc}
p & p d_{1} & d_{1} F_{1}+E_{1} \\
& p^{2} & p F_{1}
\end{array}\right) & \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(1, p, p^{3}\right), \\
& \\
\left(\begin{array}{ccc}
1 & & p e_{1} \\
& p & p f_{1} \\
& & p^{2}
\end{array}\right) & \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(1, p, p^{3}\right), \\
\left(\begin{array}{lll}
p & d_{2} & p e 1 \\
& 1 & p f_{1} \\
& & p^{2}
\end{array}\right) & \rightsquigarrow \boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(1, p, p^{3}\right), \\
&
\end{aligned}
$$

with $0 \leqslant d_{1}, e_{1}, f_{1}, D_{1}, E_{1}, F_{1}<p$. As a consequence, only two cases can occur since

$$
\boldsymbol{d}\left(\delta_{1} \delta_{2}\right) \in\left\{\left(1, p, p^{3}\right),\left(p, p^{2}, p^{3}\right)\right\}
$$

First case: $\boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(1, p, p^{3}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2}, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{3} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{1}=\lambda_{2}=1$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=p$. The third equation gives $s_{2}=p^{2}$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda
$$

Second case: $\boldsymbol{d}\left(\delta_{1} \delta_{2}\right)=\left(p, p^{2}, p^{3}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2} p, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p^{2}, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{3} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{2}=1$ and $\lambda_{1}=p$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=1$. The third equation gives $s_{2}=1$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}(p, p, p) \Lambda
$$

As a consequence,

$$
\Lambda \operatorname{diag}(1,1, p) \Lambda * \Lambda \operatorname{diag}(1, p, p) \Lambda=m_{1} \Lambda\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \Lambda+m_{2} \Lambda\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right) \Lambda
$$

where

$$
\begin{aligned}
m_{1} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & p
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) ;\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right)\right) \\
m_{2} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & p
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) ;\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right)\right)
\end{aligned}
$$

Let us compute the value of m_{2} first. By (2.6), (A.6) and (2.2),

$$
m_{2}=\left(p^{2}+p+1\right)\left|\left\{\delta_{1} \in R_{1,1, p}, \delta_{1}\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) \in \Lambda\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right) \Lambda\right\}\right|
$$

Let us compute the remaining cardinality. One can check that the set

$$
\left\{\delta_{1}\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p
\end{array}\right), \delta_{1} \in R_{1,1, p}\right\}
$$

is exactly made of the matrices

$$
\begin{aligned}
\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right) & \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(p, p^{2}, p^{3}\right), \\
\left(\begin{array}{ccc}
1 & p d_{1} & \\
& p^{2} & \\
& & p
\end{array}\right) & \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(1, p, p^{3}\right), \\
\left(\begin{array}{ccc}
1 & 0 & p e_{1} \\
& p & p f_{1} \\
& & p^{2}
\end{array}\right) & \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(1, p, p^{3}\right)
\end{aligned}
$$

with $0 \leqslant d_{1}, e_{1}, f_{1}<p$. The fact that the determinantal vector of $\operatorname{diag}(p, p, p)$ is $\left(p, p^{2}, p^{3}\right)$ implies that

$$
\left\{\delta_{1} \in R_{1,1, p}, \delta_{1}\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) \in \Lambda\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right) \Lambda\right\}=\left\{\left(\begin{array}{lll}
p & & \\
& p & \\
& & p
\end{array}\right)\right\}
$$

and is of cardinality 1 such that $m_{2}=p^{2}+p+1$.
Now, let us compute the value of m_{1}. By (2.6), (A.6) and (A.8),

$$
m_{1}=\frac{1}{p(p+1)}\left|\left\{\delta_{1} \in R_{1,1, p}, \delta_{1}\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) \in \Lambda\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \Lambda\right\}\right|
$$

Let us compute the remaining cardinality. Both the analysis done for m_{2} and the fact that the determinantal vector of $\operatorname{diag}\left(1, p, p^{2}\right)$ is $\left(1, p, p^{2}\right)$ imply that

$$
\begin{aligned}
&\left\{\delta_{1} \in R_{1,1, p}, \delta_{1}\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right) \in \Lambda\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \Lambda\right\}=\underset{0 \leqslant d_{1}<p}{\bigcup}\left\{\left(\begin{array}{ccc}
1 & d_{1} & \\
& p & \\
& & 1
\end{array}\right)\right\} \\
& \bigcup_{0 \leqslant e_{1}, f_{1}<p}\left\{\left(\begin{array}{lll}
1 & e_{1} \\
& 1 & f_{1} \\
& & p
\end{array}\right)\right\}
\end{aligned}
$$

which is of cardinality $p(p+1)$ such that $m_{1}=1$.
3.2. Linearization of $\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda * \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda$. - This section contains the proof of (1.7).
By (2.5), the product of these double cosets equals

$$
\sum_{\Lambda h \Lambda \subset \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda} m\left(\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right),\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) ; h\right) \Lambda h \Lambda
$$

where $h \in G L_{3}(\mathbb{Q})$ ranges over a system of representatives of the Λ-double cosets contained in the set

$$
\Lambda\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \Lambda\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \Lambda
$$

Let us determine the relevant matrices h occuring in this sum. Let h in $G L_{3}(\mathbb{Q})$ be such that $\Lambda h \Lambda$ is included in the previous set. By (2.11), one has uniquely

$$
\Lambda h \Lambda=\Lambda \varepsilon \frac{\lambda_{1}}{\lambda_{2}} \operatorname{diag}\left(1, s_{1}, s_{2}\right) \Lambda
$$

with $\varepsilon= \pm 1, \lambda_{1}, \lambda_{2}>0,\left(\lambda_{1}, \lambda_{2}\right)=1, s_{1}, s_{2}>0, s_{1} \mid s_{2}$. The inclusion is equivalent to

$$
\Lambda \varepsilon \lambda_{1} \operatorname{diag}\left(1, s_{1}, s_{2}\right) \Lambda=\Lambda \lambda_{2} \delta_{1} \delta_{2} \Lambda
$$

for some matrices $\delta_{1} \in R_{1, p, p^{2}}$ and $\delta_{2} \in L_{1, p, p^{2}}$ by (A.7). So, both matrices have the same determinantal divisors ie

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2} d_{1}\left(\delta_{1} \delta_{2}\right) \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} d_{2}\left(\delta_{1} \delta_{2}\right) \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} d_{3}\left(\delta_{1} \delta_{2}\right)=\lambda_{2}^{3} p^{6}
\end{aligned}
$$

By (A.7), a straightforward but tedious computation ensures that the set

$$
\left\{\boldsymbol{d}\left(\delta_{1} \delta_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in R_{1, p, p^{2}} \times L_{1, p, p^{2}}\right\}
$$

is a subset of

$$
\left\{\left(1, p^{2}, p^{6}\right),\left(1, p^{3}, p^{6}\right),\left(p, p^{2}, p^{6}\right),\left(p, p^{3}, p^{6}\right),\left(p^{2}, p^{4}, p^{6}\right)\right\}
$$

Case 1: $\left(d_{1}, d_{2}, d_{3}\right)=\left(1, p^{2}, p^{6}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2}, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p^{2}, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{6} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{1}=\lambda_{2}=1$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=p^{2}$. The third equation gives $s_{2}=p^{4}$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}\left(1, p^{2}, p^{4}\right) \Lambda
$$

Case 2: $\left(d_{1}, d_{2}, d_{3}\right)=\left(1, p^{3}, p^{6}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2}, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p^{3}, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{6} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{1}=\lambda_{2}=1$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=p^{3}$. The third equation gives $s_{2}=p^{3}$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}\left(1, p^{3}, p^{3}\right) \Lambda
$$

Case 3: $\left(d_{1}, d_{2}, d_{3}\right)=\left(p, p^{2}, p^{6}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2} p, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p^{2}, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{6} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{2}=1$ and $\lambda_{1}=p$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=1$. The third equation gives $s_{2}=p^{3}$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}\left(p, p, p^{4}\right) \Lambda
$$

Case 4: $\left(d_{1}, d_{2}, d_{3}\right)=\left(p, p^{3}, p^{6}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2} p, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p^{3}, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{6} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{2}=1$ and $\lambda_{1}=p$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=p$. The third equation gives $s_{2}=p^{2}$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}\left(p, p^{2}, p^{3}\right) \Lambda
$$

$\underline{\text { Case 5: }}\left(d_{1}, d_{2}, d_{3}\right)=\left(p^{2}, p^{4}, p^{6}\right)$.

$$
\begin{aligned}
\varepsilon \lambda_{1} & =\lambda_{2} p^{2}, \\
\lambda_{1}^{2} s_{1} & =\lambda_{2}^{2} p^{4}, \\
\varepsilon \lambda_{1}^{3} s_{1} s_{2} & =\lambda_{2}^{3} p^{6} .
\end{aligned}
$$

The first equation gives $\varepsilon=\lambda_{2}=1$ and $\lambda_{1}=p^{2}$ by the coprimality of λ_{1} and λ_{2}. The second equation gives $s_{1}=1$. The third equation gives $s_{2}=1$. Thus,

$$
\Lambda h \Lambda=\Lambda \operatorname{diag}\left(p^{2}, p^{2}, p^{2}\right) \Lambda
$$

As a consequence,

$$
\begin{aligned}
& \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda * \Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda=m_{1} \Lambda\left(\begin{array}{lll}
1 & & \\
& p^{2} & \\
& & p^{4}
\end{array}\right) \Lambda+m_{2} \Lambda\left(\begin{array}{lll}
1 & & \\
& p^{3} & \\
& & p^{3}
\end{array}\right) \Lambda \\
&+m_{3} \Lambda\left(\begin{array}{lll}
p & & \\
& p & \\
& & p^{4}
\end{array}\right) \Lambda+m_{4} \Lambda\left(\begin{array}{lll}
p & & \\
& p^{2} & \\
& & p^{3}
\end{array}\right) \Lambda+m_{5} \Lambda\left(\begin{array}{lll}
p^{2} & & \\
& p^{2} & \\
& & p^{2}
\end{array}\right) \Lambda
\end{aligned}
$$

where

$$
\begin{aligned}
m_{1} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) ;\left(\begin{array}{lll}
1 & 1 & \\
& p^{2} & \\
& & p^{4}
\end{array}\right)\right) \\
m_{2} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) ;\left(\begin{array}{lll}
1 & & \\
& p^{3} & \\
& & p^{3}
\end{array}\right)\right) \\
m_{3} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) ;\left(\begin{array}{lll}
p & & \\
& p & \\
& & p^{4}
\end{array}\right)\right), \\
m_{4} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) ;\left(\begin{array}{lll}
p & & \\
& p^{2} & \\
& & p^{3}
\end{array}\right)\right), \\
m_{5} & :=m\left(\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) ;\left(\begin{array}{lll}
p^{2} & & \\
& p^{2} & \\
& & p^{2}
\end{array}\right)\right) .
\end{aligned}
$$

Let us compute the value of m_{1}. By (2.6), (A.8) and (A.9),

$$
m_{1}=\frac{1}{p^{4}} \left\lvert\,\left\{\delta_{1} \in R_{1, p, p^{2}}, \delta_{1}\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \in \Lambda\left(\begin{array}{ccc}
1 & & \\
& p^{2} & \\
& & p^{4}
\end{array}\right) \Lambda\right\}\right.
$$

Let us compute the remaining cardinality. One can check that the set

$$
\left\{\delta_{1}\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right), \delta_{1} \in R_{1, p, p^{2}}\right\}
$$

is exactly made of the matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
p^{2} & & \\
& p & p^{2} f_{1} \\
& & p^{3}
\end{array}\right) \\
\left(\begin{array}{ccc}
p & p d_{2} & \\
& p^{3} & \\
& & p^{2}
\end{array}\right)\left(p \mid d_{2}\right) \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(p, p^{3}, p^{6}\right), \\
\left(\begin{array}{ccc}
p & p d_{1} & p^{2} e_{1} \\
& p^{2} & p^{2} f_{1} \\
& & p^{3}
\end{array}\right)\left(d_{1} f_{1}=0,\left(d_{1}, e_{1}, f_{1}\right) \neq(0,0,0)\right) \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(p, p^{6}, p^{6}\right),
\end{gathered}
$$

and

$$
\left(\begin{array}{ccc}
1 & p d_{1} & p^{2} e_{2} \\
& p^{2} & p^{2} f_{2} \\
& & p^{4}
\end{array}\right)\left(p \mid f_{2}\right) \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(1, p^{2}, p^{6}\right)
$$

and

$$
\left(\begin{array}{ccc}
1 & p d_{2} & p^{2} e_{1} \\
& p^{3} & \\
& & p^{3}
\end{array}\right) \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(1, p^{3}, p^{6}\right)
$$

and

$$
\left(\begin{array}{ccc}
p & & p^{2} e_{2} \\
& p & p^{2} f_{2} \\
& & p^{4}
\end{array}\right)\left(p \mid e_{2}\right) \quad \rightsquigarrow \quad\left(d_{1}, d_{2}, d_{3}\right)=\left(p, p^{2}, p^{6}\right)
$$

and

$$
\left(\begin{array}{lll}
p^{2} & & \\
& p^{2} & \\
& & p^{2}
\end{array}\right) \rightsquigarrow\left(d_{1}, d_{2}, d_{3}\right)=\left(p^{2}, p^{4}, p^{6}\right)
$$

where $0 \leqslant d_{1}, e_{1}, f_{1}<p$ and $0 \leqslant d_{2}, e_{2}, f_{2}<p^{2}$. The fact that the determinantal vector of $\operatorname{diag}\left(1, p^{2}, p^{4}\right)$ is $\left(1, p^{2}, p^{6}\right)$ implies that $m_{1}=1$.
Let us compute the value of m_{2}. By (2.6), (A.8) and (A.10),

$$
m_{2}=\frac{p+1}{p^{3}}\left|\left\{\delta_{1} \in R_{1, p, p^{2}}, \delta_{1}\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \in \Lambda\left(\begin{array}{ccc}
1 & & \\
& p^{3} & \\
& & p^{3}
\end{array}\right) \Lambda\right\}\right|
$$

Both the analysis done for m_{1} and the fact that the determinantal vector of $\operatorname{diag}\left(1, p^{3}, p^{3}\right)$ is $\left(1, p^{3}, p^{6}\right)$ imply that $m_{2}=p+1$.

Let us compute the value of m_{3}. By (2.6), (A.8), (2.2) and (A.11),

$$
m_{3}=\frac{p+1}{p^{3}}\left|\left\{\delta_{1} \in R_{1, p, p^{2}}, \delta_{1}\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \in \Lambda\left(\begin{array}{ccc}
p & & \\
& p & \\
& & p^{4}
\end{array}\right) \Lambda\right\}\right| .
$$

Both the analysis done for m_{1} and the fact that the determinantal vector of $\operatorname{diag}\left(p, p, p^{4}\right)$ is $\left(p, p^{2}, p^{6}\right)$ imply that $m_{3}=p+1$.
Let us compute the value of m_{4}. By (2.6), (A.8), (2.2) and (A.8),

$$
m_{4}=\frac{p+1}{p^{3}}\left|\left\{\delta_{1} \in R_{1, p, p^{2}}, \delta_{1}\left(\begin{array}{lll}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \in \Lambda\left(\begin{array}{lll}
p & & \\
& p^{2} & \\
& & p^{3}
\end{array}\right) \Lambda\right\}\right|
$$

Both the analysis done for m_{1} and the fact that the determinantal vector of $\operatorname{diag}\left(p, p^{2}, p^{3}\right)$ is $\left(p, p^{3}, p^{6}\right)$ imply that $m_{4}=(p+1)(2 p-1)$.
Let us compute the value of m_{5}. By (2.6), (A.8) and (2.2),

$$
m_{5}=p(p+1)\left(p^{2}+p+1\right)\left|\left\{\delta_{1} \in R_{1, p, p^{2}}, \delta_{1}\left(\begin{array}{ccc}
1 & & \\
& p & \\
& & p^{2}
\end{array}\right) \in \Lambda\left(\begin{array}{ccc}
p^{2} & & \\
& p^{2} & \\
& & p^{2}
\end{array}\right) \Lambda\right\}\right|
$$

Both the analysis done for m_{1} and the fact that the determinantal vector of $\operatorname{diag}\left(p^{2}, p^{2}, p^{2}\right)$ is $\left(p^{2}, p^{4}, p^{6}\right)$ imply that $m_{5}=p(p+1)\left(p^{2}+p+1\right)$.

Appendix A. Decomposition of Λ-double cosets into Λ-cosets

By [AZ95, Lemma 1.2 Page 94 and Lemma 2.1 Page 105], we know that every Λ-double coset $\Lambda g \Lambda$ with g in $G L_{3}(\mathbb{Q})$ with integer coefficients is both a finite union of Λ-left cosets and Λ-right cosets. In addition, every Λ-right coset Λg contains a unique upper-triangular column reduced representative, namely

$$
\Lambda g=\Lambda\left(\begin{array}{lll}
a & d & e \\
& b & f \\
& & c
\end{array}\right)
$$

where $0 \leqslant d<b$ and $0 \leqslant e, f<c$ by [AZ95, Lemma 2.7 Page 109].
As a consequence, every Λ-left coset $g \Lambda$ contains a unique upper-triangular row reduced representative, namely

$$
g \Lambda=\left(\begin{array}{lll}
a & d & e \\
& b & f \\
& & c
\end{array}\right) \Lambda
$$

where $0 \leqslant d, e<a$ and $0 \leqslant f<b$. More explicitely, if $U W^{t} g W=H$ is the upper-triangular column reduced representative of the Λ-right coset $\Lambda W^{t} g W$ with W the anti-diagonal matrix with 1's on the anti-diagonal then $g W^{t} U W=W^{t} H W$ is the upper-triangular row reduced representative of the Λ-left coset $g \Lambda$.
The previous fact also entails that

$$
\begin{equation*}
\Lambda g \Lambda=\bigcup_{\delta \in R_{g}} \Lambda \delta \Rightarrow \Lambda g \Lambda=\bigcup_{\delta \in W^{t} R_{g} W} \delta \Lambda \tag{A.1}
\end{equation*}
$$

since

$$
\Lambda g \Lambda=W \Lambda g \Lambda=W^{t}(\Lambda g \Lambda)=W \bigcup_{\delta \in R_{g}}^{t} \delta \Lambda=\bigcup_{\delta \in R_{g}} W^{t} \delta W \Lambda
$$

Let us finish with a useful elementary practical remark for the computations done in the following sections of the appendix. If H is an upper-triangular column reduced matrix in a Λ-double coset $\Lambda \operatorname{diag}\left(p^{\alpha_{1}}, p^{\alpha_{2}}, p^{\alpha_{3}}\right) \Lambda$ where p is a prime number and α_{1}, α_{2} and α_{3} are non-negative integers then

$$
H=\left(\begin{array}{ccc}
p^{\delta_{1}} & * & * \tag{A.2}\\
& p^{\delta_{2}} & * \\
& & p^{\delta_{3}}
\end{array}\right), \sum_{j=1}^{3}\left(\alpha_{j}-\delta_{j}\right)=0, \forall j \in\{1,2,3\}, 0 \leqslant \delta_{j} \leqslant \max _{1 \leqslant k \leqslant 3} \alpha_{k} .
$$

The fact that the diagonal cofficients of H are powers of p comes from the determinant equation. The condition on the exponents of these diagonal coefficients follows from the fact that $p^{\max \left\{\alpha_{k}, 1 \leqslant k \leqslant 3\right\}} H^{-1}$ has integer coefficients.

A.1. Decomposition and degree of $\Lambda \operatorname{diag}(1,1, p) \Lambda$. -

Proposition A.1. - One has

$$
\begin{equation*}
\Lambda \operatorname{diag}(1,1, p) \Lambda=\bigcup_{\delta \in R_{1,1, p}} \Lambda \delta=\bigcup_{\delta \in L_{1,1, p}} \delta \Lambda \tag{A.3}
\end{equation*}
$$

where

$$
R_{1,1, p}=\{\operatorname{diag}(p, 1,1)\} \bigcup_{0 \leqslant d_{1}<p}\left\{\left(\begin{array}{ccc}
1 & d_{1} & \\
& p & \\
& & 1
\end{array}\right)\right\} \bigcup_{0 \leqslant e_{1}, f_{1}<p}\left\{\left(\begin{array}{ccc}
1 & 0 & e_{1} \\
& 1 & f_{1} \\
& & p
\end{array}\right)\right\}
$$

and

$$
L_{1,1, p}=\{\operatorname{diag}(1,1, p)\} \bigcup_{0 \leqslant f_{1}<p}\left\{\left(\begin{array}{ccc}
1 & & \\
& p & f_{1} \\
& & 1
\end{array}\right)\right\} \bigcup_{0 \leqslant d_{1}, e_{1}<p}\left\{\left(\begin{array}{ccc}
p & d_{1} & e_{1} \\
& 1 & \\
& & 1
\end{array}\right)\right\} .
$$

In particular,

$$
\begin{equation*}
\operatorname{deg}(\operatorname{diag}(1,1, p))=p^{2}+p+1 \tag{A.4}
\end{equation*}
$$

Proof of Proposition A.1. - The decomposition into Λ-right cosets implies the decomposition into Λ-left cosets by (A.1). The possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & e_{1} \\
& 1 & f_{1} \\
& & p
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=(1,1, p), \\
& \left(\begin{array}{lll}
1 & d_{1} & 0 \\
& p & 0 \\
& & 1
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=(1,1, p), \\
& \left(\begin{array}{lll}
p & 0 & 0 \\
& 1 & 0 \\
& & 1
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=(1,1, p)
\end{aligned}
$$

where $0 \leqslant d_{1}, e_{1}, f_{1}<p$. The fact that the determinantal vector of $\operatorname{diag}(1,1, p)$ is $(1,1, p)$ implies the decomposition into Λ-left cosets given in (A.3) and the computation of the degree too.
A.2. Decomposition and degree of $\Lambda \operatorname{diag}(1, p, p) \Lambda$. -

Proposition A.2. - One has

$$
\begin{equation*}
\Lambda \operatorname{diag}(1, p, p) \Lambda=\cup_{\delta \in L_{1, p, p}} \delta \Lambda \tag{A.5}
\end{equation*}
$$

where

$$
L_{1, p, p}=\{\operatorname{diag}(1, p, p)\} \bigcup_{0 \leqslant e_{1}, f_{1}<p}\left\{\left(\begin{array}{ccc}
p & & e_{1} \\
& p & f_{1} \\
& & 1
\end{array}\right)\right\} \bigcup_{0 \leqslant d_{1}<p}\left\{\left(\begin{array}{ccc}
p & d_{1} & \\
& 1 & \\
& & p
\end{array}\right)\right\} .
$$

In particular,

$$
\begin{equation*}
\operatorname{deg}(\operatorname{diag}(1, p, p))=p^{2}+p+1 \tag{A.6}
\end{equation*}
$$

Proof of Proposition A.2. - By (A.2), the possible upper-triangular row reduced matrices δ that can occur in the decomposition into Λ-left cosets are

$$
\begin{aligned}
& \left(\begin{array}{lll}
p & d_{1} & e_{1} \\
& p & f_{1} \\
& & 1
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, d_{1}, d_{1} f_{1}\right), p^{2}\right), \\
& \left(\begin{array}{lll}
p & d_{1} & e_{1} \\
& 1 & \\
& & p
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, e_{1}\right), p^{2}\right), \\
& \left(\begin{array}{lll}
1 & & \\
& p & f_{1} \\
& & p
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, f_{1}\right), p^{2}\right)
\end{aligned}
$$

where $0 \leqslant d_{1}, e_{1}, f_{1}<p$. The fact that the determinantal vector of $\operatorname{diag}(1, p, p)$ is $\left(1, p, p^{2}\right)$ implies the decomposition into Λ-left cosets given in (A.5) and the computation of the degree too.
A.3. Decomposition and degree of $\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda$. -

Proposition A.3. - One has

$$
\begin{equation*}
\Lambda \operatorname{diag}\left(1, p, p^{2}\right) \Lambda=\cup_{\delta \in R_{1, p, p^{2}}} \Lambda \delta=\cup_{\delta \in L_{1, p, p^{2}}} \delta \Lambda \tag{A.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1, p, p^{2}}=\bigcup_{\substack{0 \leqslant d_{1}<p \\
0 \leqslant e_{2} f_{2}<p^{2} \\
p \mid f_{2}}}\left\{\left(\begin{array}{ccc}
1 & d_{1} & e_{2} \\
& p & f_{2} \\
& & p^{2}
\end{array}\right)\right\} \bigcup_{\substack{0 \leqslant e_{1}<p \\
0 \leqslant d_{2}<p^{2}}}\left\{\left(\begin{array}{lll}
1 & d_{2} & e_{1} \\
& p^{2} & \\
& & p
\end{array}\right)\right\} \\
& \bigcup_{\substack{0 \leqslant e_{2}, f_{2}<p^{2} \\
p \mid e_{2}}}\left\{\left(\begin{array}{ccc}
p & & e_{2} \\
& 1 & f_{2} \\
& & p^{2}
\end{array}\right)\right\} \bigcup_{0 \leqslant f_{1}<p}\left\{\left(\begin{array}{ccc}
p^{2} & & \\
& 1 & f_{1} \\
& & p
\end{array}\right)\right\} \underset{\substack{0 \leqslant d_{2}<p^{2} \\
p \mid d_{2}}}{\bigcup}\left\{\left(\begin{array}{lll}
p & d_{2} & \\
& p^{2} & \\
& & 1
\end{array}\right)\right\} \\
& \bigcup_{\substack{0 \leqslant d_{1}, e_{1}, f_{1}<p \\
d_{1} f_{1}=0 \\
\left(d_{1}, e_{1}, f_{1}\right) \neq(0,0,0)}}\left\{\left(\begin{array}{ccc}
p & d_{1} & e_{1} \\
& p & f_{1} \\
& & p
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{ccc}
p^{2} & & \\
& p & \\
& & 1
\end{array}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{1, p, p^{2}}=\bigcup_{\substack{0 \leqslant f_{1}<p \\
0 \leqslant d_{1}, e_{2}<p^{2} \\
p \mid d_{2}}}\left\{\left(\begin{array}{ccc}
p^{2} & d_{2} & e_{2} \\
& p & f_{1} \\
& & 1
\end{array}\right)\right\} \bigcup_{\substack{0 \leqslant e_{1}<p \\
0 \leqslant f_{2}<p^{2}}}\left\{\left(\begin{array}{ll}
p & \\
& e_{1} \\
& p^{2} \\
f_{2} \\
& \\
& 1
\end{array}\right)\right\} \\
& \bigcup_{\substack{0 \leqslant d_{2}, e_{2}<p^{2} \\
p \mid e_{2}}}\left\{\left(\begin{array}{ccc}
p^{2} & d_{2} & e_{2} \\
& 1 & \\
& & p
\end{array}\right)\right\} \bigcup_{0 \leqslant d_{1}<p}\left\{\left(\begin{array}{ccc}
p & d_{1} & \\
& 1 & \\
& & p^{2}
\end{array}\right)\right\} \bigcup_{\substack{0 \leqslant f_{2}<p^{2} \\
p \mid f_{2}}}\left\{\left(\begin{array}{ccc}
1 & & \\
& p^{2} & f_{2} \\
& & p
\end{array}\right)\right\} \\
& \bigcup_{\substack{0 \leqslant d_{1}, e_{1}, f_{1}<p \\
d_{1}=0 \\
\left(d_{1}, e_{1}, f_{1}\right) \neq(0,0,0)}}\left\{\left(\begin{array}{ccc}
p & d_{1} & e_{1} \\
& p & f_{1} \\
& & p
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{lll}
p^{2} & & \\
& p & \\
& & 1
\end{array}\right)\right\} .
\end{aligned}
$$

In particular,

$$
\begin{equation*}
\operatorname{deg}\left(\operatorname{diag}\left(1, p, p^{2}\right)\right)=p(p+1)\left(1+p+p^{2}\right) \tag{A.8}
\end{equation*}
$$

Proof of Proposition A.3. - The decomposition into Λ-right cosets implies the decomposition into Λ-left cosets by (A.1). By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are

$$
\text { Type 1: }\left(\begin{array}{ccc}
p & d_{1} & e_{1} \\
& p & f_{1} \\
& & p
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{1}, f_{1}\right),\left(p^{2}, p d_{1}, p f_{1}, d_{1} f_{1}-p e_{1}\right), p^{3}\right)
$$

and
Type 2: $\left(\begin{array}{ccc}1 & d_{1} & e_{2} \\ & p & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, f_{2}\right), p^{3}\right)$,
Type 3: $\left(\begin{array}{ccc}1 & d_{2} & e_{1} \\ & p^{2} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, f_{1}\right), p^{3}\right)$,
Type 4: $\left(\begin{array}{lll}p & & e_{2} \\ & 1 & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, e_{2}\right), p^{3}\right)$,
Type 5: $\left(\begin{array}{lll}p^{2} & & e_{1} \\ & 1 & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, e_{1}\right), p^{3}\right)$,
Type 6: $\left(\begin{array}{lll}p & d_{2} & \\ & p^{2} & \\ & & 1\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, d_{2}\right), p^{3}\right)$,
Type 7: $\left(\begin{array}{ccc}p^{2} & d_{1} & \\ & p & \\ & & 1\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, d_{1}\right), p^{3}\right)$
where $0 \leqslant d_{1}, e_{1}, f_{1}<p$ and $0 \leqslant d_{2}, e_{2}, f_{2}<p^{2}$. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of $\operatorname{diag}\left(1, p, p^{2}\right)$, namely $\left(1, p, p^{3}\right)$.
Let us consider the matrices of type 1 . The condition on $d_{2}(\delta)$ implies $d_{1} \neq 0$. The condition on $d_{1}(\delta)$ implies that $\left(d_{1}, e_{1}, f_{1}\right) \neq(0,0,0)$. The condition on $d_{2}(\delta)$ implies $p \mid d_{1} f_{1}$ such that $p \mid d_{1}$ or $p \mid f_{1}$, namely $d_{1}=0$ or $f_{1}=0$. There are $(p-1)(2 p+1)$ such matrices of type 1 . Let us consider the matrices of type 2 . The condition on $d_{2}(\delta)$ implies $p \mid f_{2}$. There are p^{4} such matrices of type 2 .
Let us consider the matrices of type 3 . The condition on $d_{2}(\delta)$ implies $f_{1}=0$. There are p^{3} such matrices of type 3 .
Let us consider the matrices of type 4 . The condition on $d_{2}(\delta)$ implies $p \mid e_{2}$. There are p^{3} such matrices of type 4 .
Let us consider the matrices of type 5 . The condition on $d_{2}(\delta)$ implies $e_{1}=0$. There are p such matrices of type 5 .
Let us consider the matrices of type 6 . The condition on $d_{2}(\delta)$ implies $p \mid d_{2}$. There are p such matrices of type 6 .
Let us consider the matrices of type 7 . The condition on $d_{2}(\delta)$ implies $d_{1}=0$. There is 1 such matrix of type 7 .
One can recover the decomposition in Λ-right cosets given in (A.7) and the value of the degree given in (A.8) by summing all the contributions in the previous paragraphs.
A.4. Degree of $\Lambda \operatorname{diag}\left(1, p^{2}, p^{4}\right) \Lambda$. -

Proposition A.4. - One has

$$
\begin{equation*}
\operatorname{deg}\left(\operatorname{diag}\left(1, p^{2}, p^{4}\right)\right)=p^{5}(p+1)\left(p^{2}+p+1\right) \tag{A.9}
\end{equation*}
$$

Proof of Proposition A.4. - By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are

Type 1: $\left(\begin{array}{lll}p^{4} & d_{2} & \\ & p^{2} & \\ & & 1\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{2}, d_{2}\right), p^{6}\right)$,
Type 2: $\left(\begin{array}{ccc}p^{4} & & e_{2} \\ & 1 & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{2}, e_{2}\right), p^{6}\right)$,
Type 3: $\left(\begin{array}{lll}p^{2} & d_{4} & \\ & p^{4} & \\ & & 1\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{2}, d_{4}\right), p^{6}\right)$,
Type 4: $\left(\begin{array}{lll}p^{2} & & e_{4} \\ & 1 & f_{4} \\ & & p^{4}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{2}, e_{4}\right), p^{6}\right)$,
Type 5: $\left(\begin{array}{ccc}1 & d_{4} & e_{2} \\ & p^{4} & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{2}, f_{2}, d_{4} f_{2}\right), p^{6}\right)$,
Type 6: $\left(\begin{array}{ccc}1 & d_{2} & e_{4} \\ & p^{2} & f_{4} \\ & & p^{4}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{2}, f_{4}, d_{2} f_{4}\right), p^{6}\right)$
and
Type 7: $\left(\begin{array}{ccc}p^{4} & d_{1} & e_{1} \\ & p & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{1}, f_{1}\right),\left(p^{2}, p d_{1}, d_{1} f_{1}-p e_{1}\right), p^{6}\right)$,
Type 8: $\left(\begin{array}{ccc}p & d_{4} & e_{1} \\ & p^{4} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{4}, e_{1}, f_{1}\right),\left(p^{2}, p f_{1}, p d_{4}, d_{4} f_{1}\right), p^{6}\right)$,
Type 9: $\left(\begin{array}{ccc}p & d_{1} & e_{4} \\ & p & f_{4} \\ & & p^{4}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{4}, f_{4}\right),\left(p^{2}, p f_{4}, d_{1} f_{4}-p e_{4}\right), p^{6}\right)$
and
Type 10: $\left(\begin{array}{lll}p^{3} & d_{3} & \\ & p^{3} & \\ & & 1\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{3}, d_{3}\right), p^{6}\right)$,
Type 11: $\left(\begin{array}{lll}p^{3} & & e_{3} \\ & 1 & f_{3} \\ & & p^{3}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{3}, e_{3}\right), p^{6}\right)$,
Type 12: $\left(\begin{array}{ccc}1 & d_{3} & e_{3} \\ & p^{3} & f_{3} \\ & & p^{3}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{3}, f_{3}, d_{3} f_{3}\right), p^{6}\right)$
and
Type 13: $\left(\begin{array}{ccc}p^{3} & d_{2} & e_{1} \\ & p^{2} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{2}, e_{1}, f_{1}\right),\left(p^{3}, p d_{2}, d_{2} f_{1}-p^{2} e_{1}\right), p^{6}\right)$
Type 14: $\left(\begin{array}{ccc}p^{3} & d_{1} & e_{2} \\ & p & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{2}, f_{2}\right),\left(p^{3}, p^{2} d_{1}, d_{1} f_{2}-p e_{2}\right), p^{6}\right)$
Type 15: $\left(\begin{array}{ccc}p^{2} & d_{3} & e_{1} \\ & p^{3} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{3}, e_{1}, f_{1}\right),\left(p^{3}, p d_{3}, p^{2} f_{1}, d_{3} f_{1}\right), p^{6}\right)$
Type 16: $\left(\begin{array}{ccc}p^{2} & d_{1} & e_{3} \\ & p & f_{3} \\ & & p^{3}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{3}, f_{3}\right),\left(p^{3}, d_{1} f_{3}-p e_{3}, p^{2} f_{3}\right), p^{6}\right)$
and

$$
\begin{aligned}
& \text { Type 17: }\left(\begin{array}{ccc}
p & d_{3} & e_{2} \\
& p^{3} & f_{2} \\
& & p^{2}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{3}, e_{2}, f_{2}\right),\left(p^{3}, p f_{2}, p^{2} d_{3}, d_{3} f_{2}\right), p^{6}\right) \\
& \text { Type 18: }\left(\begin{array}{lll}
p & d_{2} & e_{3} \\
& p^{2} & f_{3} \\
& & p^{3}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{2}, e_{3}, f_{3}\right),\left(p^{3}, p f_{3}, d_{2} f_{3}-p^{2} e_{3}\right), p^{6}\right)
\end{aligned}
$$

and

$$
\text { Type 19: }\left(\begin{array}{ccc}
p^{2} & d_{2} & e_{2} \\
& p^{2} & f_{2} \\
& & p^{2}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p^{2}, d_{2}, e_{2}, f_{2}\right),\left(p^{4}, p^{2} d_{2}, p^{2} f_{2}, d_{2} f_{2}-p^{2} e_{2}\right), p^{6}\right)
$$

where $0 \leqslant d_{j}, e_{j}, f_{j}<p^{j}$ for $j=1,2,3,4$. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of $\operatorname{diag}\left(1, p^{2}, p^{4}\right)$, namely $\left(1, p^{2}, p^{6}\right)$.
Let us consider the matrices of type 1 . The condition on $d_{2}(\delta)$ implies $d_{2}=0$. There is 1 relevant matrix of type 1 .
Let us consider the matrices of type 2 . The condition on $d_{2}(\delta)$ implies $e_{2}=0$. There are p^{2} relevant matrices of type 2 .
Let us consider the matrices of type 3 . The condition on $d_{2}(\delta)$ implies $p^{2} \mid d_{4}$. There are p^{2} relevant matrices of type 3 .
Let us consider the matrices of type 4 . The condition on $d_{2}(\delta)$ implies $p^{2} \mid e_{4}$. There are p^{6} relevant matrices of type 4.
Let us consider the matrices of type 5 . The condition on $d_{2}(\delta)$ implies $e_{2}=0$. There are p^{6} relevant matrices of type 5 .
Let us consider the matrices of type 6 . The condition on $d_{2}(\delta)$ implies $p^{2} \mid f_{4}$. There are p^{8} relevant matrices of type 6 .
Let us consider the matrices of type 7 . The condition on $d_{2}(\delta)$ implies $d_{1}=e_{1}=0$ and the condition on $d_{1}(\delta)$ implies $f_{1} \neq 0$. There are $p-1$ relevant matrices of type 7 .
Let us consider the matrices of type 8 . The condition on $d_{2}(\delta)$ implies $f_{1}=0$ and $p \mid d_{4}$. The condition on $d_{1}(\delta)$ implies $e_{1} \neq 0$. There are $p^{3}(p-1)$ relevant matrices of type 8 .

Let us consider the matrices of type 9 . The condition on $d_{2}(\delta)$ implies $p \mid f_{4}$ and $p \mid d_{1} f_{4} / p-e_{4}$. One has $d_{1} \neq 0$ since otherwise $d_{1}(\delta)=1=\left(p, e_{4}\right)$ and $d_{2}(\delta)=p\left(p, e_{4}\right)=p \neq p^{2}$. Thus, d_{1} is invertible modulo p and $f_{4} / p \equiv e_{4} \overline{d_{1}}(\bmod p)$ such that f_{4} / p can take p^{2} values. There are $(p-1) p^{6}$ relevant matrices of type 9 .
Let us consider the matrices of type 10 . The condition on $d_{2}(\delta)$ implies $p^{2} \| d_{3}$. There are $p-1$ relevant matrices of type 10 .
Let us consider the matrices of type 11 . The condition on $d_{2}(\delta)$ implies $p^{2} \| e_{3}$. There are $(p-1) p^{3}$ relevant matrices of type 11 .
Let us consider the matrices of type 12 . The condition on $d_{2}(\delta)$ implies $p^{2} \| f_{3}$. There are $(p-1) p^{6}$ relevant matrices of type 12 .
Let us consider the matrices of type 13 . Note that $\left(e_{1}, f_{1}\right) \neq(0,0)$ since otherwise $d_{1}(\delta)=$ $1=\left(p, d_{2}\right)$, which implies that $d_{2}(\delta)=\left(p d_{2}, p^{3}\right)=p \neq p^{2}$. As a consequence, $d_{1}(\delta)=1=$ $\left(p, d_{2}, e_{1}, f_{1}\right)$. The fact that $d_{2}(\delta)=p^{2}$ implies that $p \mid d_{2}$ and $p \mid f_{1} d_{2} / p$, namely $f_{1}=0$ or $d_{2}=0$. If $d_{2}=0$ then $d_{2}(\delta)=p^{2}=\left(p^{3}, p^{2} e_{1}\right)$ such that $e_{1} \neq 0$. There are $p(p-1)$ such matrices. If $d_{2} \neq 0$ then $f_{1}=0, d_{2}(\delta)=p^{2}\left(p, d_{2} / p, e_{1}\right)=p^{2}$ since d_{2} / p is coprime with p and $d_{1}(\delta)=1=\left(p, e_{1}\right)$ such that $e_{1} \neq 0$. There are $(p-1)^{2}$ such matrices. Finally, there are $(p-1)(2 p-1)$ relevant matrices of type 13.
Let us consider the matrices of type 14 . The fact that $d_{2}(\delta)=p^{2}$ implies that $p^{2} \mid d_{1} f_{2}-p e_{2}$. If $d_{1}=0$ then $p \mid e_{2}$ and $d_{2}(\delta)=p^{2}=\left(p^{3}, p^{2} e_{2} / p\right)$ if $e_{2} \neq 0 . d_{1}(\delta)=1=\left(p, f_{2}\right)$ implies that $p \nmid f_{2}$. There are $(p-1)\left(p^{2}-p\right)$ such matrices. If $d_{1} \neq 0$ then the value of f_{2} is fixed by $f_{2} \equiv p e_{2} \overline{d_{1}}\left(\bmod p^{2}\right)$ and $d_{1}(\delta)=\left(p, d_{1}\right)=1$. There are $p^{2}(p-1)$ such matrices. Finally, there are $(p-1)\left(2 p^{2}-p\right)$ relevant matrices of type 14.
Let us consider the matrices of type 15 . The condition $d_{2}(\delta)=p^{2}$ implies that $p \mid d_{3}$ and $p \mid f_{1} d_{3} / p$. If $f_{1}=0$ then $d_{2}(\delta)=p^{2}=p^{2}\left(p, d_{3} / p\right)$ such that $p \| d_{3}$. The condition $d_{1}(\delta)=$ $1=\left(p, e_{1}\right)$ implies that $e_{1} \neq 0$. There are $\left(p^{2}-p\right)(p-1)$ such matrices. If $f_{1} \neq 0$ then $p^{2} \mid d_{3}$ and $d_{1}(\delta)=1$. There are $p^{2}(p-1)$ such matrices. Finally, there are $(p-1)\left(2 p^{2}-p\right)$ relevant matrices of type 15 .
Let us consider the matrices of type 16. The condition $d_{2}(\delta)=p^{2}$ implies that $p^{2} \mid d_{1} f_{3}-p e_{3}$. If $p \mid e_{3}$ then $p^{2} \mid d_{1} f_{3}$. If $p \mid e_{3}$ and $p \mid d_{1}$ then $d_{1}=0$ and the condition $d_{1}(\delta)=1=\left(p, f_{3}\right)$ implies that $p \nmid f_{3}$ and $d_{2}(\delta)=p^{2}$. There are $p^{2}\left(p^{3}-p^{2}\right)$ such matrices. If $p \mid e_{3}$ and $p \nmid d_{1}$ then $p^{2} \mid f_{3}$ then $d_{2}(\delta)=p^{2}\left(p, d_{1} f_{3} / p^{2}-e_{3} / p\right) \neq p^{2}$ if and only if $f_{3} / p^{2} \equiv \overline{d_{1}} e_{3} / p(\bmod p)$, which given d_{1} and e_{3} / p can happen for only one value of f_{3} / p^{2}. There are $(p-1) p^{2}(p-1)$ such matrices. If $p \nmid e_{3}$ then $d_{1}(\delta)=1=\left(p, d_{1}, e_{3}, f_{3}\right)$. The condition $p^{2} \mid d_{1} f_{3}-p e_{3}$ implies that $p^{2} \nmid d_{1} f_{3}$ and $p \nmid d_{1}$ but $p \mid f_{3}$. The condition $d_{2}(\delta)$ implies that $p \| d_{1} f_{3} / p-e_{3}$. Given d_{1} and e_{3}, there are p choices for f_{3} / p given by $f_{3} / p \equiv \overline{d_{1}} e_{3}(\bmod p)$ but one has to remove the value satisfying $f_{3} / p \equiv \overline{d_{1}} e_{3}\left(\bmod p^{2}\right)$. There are $(p-1)\left(p^{3}-p^{2}\right)(p-1)$ such matrices. Finally, there are $p^{3}(p-1)(2 p-1)$ relevant matrices of type 16.
Let us consider the matrices of type 17 . The condition $d_{2}(\delta)=p^{2}$ implies that $p \mid f_{2}$. If $f_{2}=0$ then $d_{2}(\delta)=p^{2}=p^{2}\left(p, d_{3}\right)$ such that $p \nmid d_{3}$, which implies $d_{1}(\delta)=1$. There are $\left(p^{3}-p^{2}\right) p^{2}$ such matrices. If $f_{2} \neq 0$ then $p \mid d_{3}$ since $p \mid d_{3} f_{2} / p$, in which case $d_{2}(\delta)=p^{2}$. The condition $d_{1}(\delta)=1$ implies that $p \nmid e_{2}$. There are $p^{2}\left(p^{2}-p\right)(p-1)$ such matrices. Finally, there are $p^{3}(p-1)(2 p-1)$ relevant matrices of type 17 .
Let us consider the matrices of type 18 . The condition $d_{2}(\delta)=p^{2}$ implies that $p \mid f_{3}$ and $p \mid d_{2} f_{3} / p$. If $p^{2} \mid f_{3}$ then $d_{2}(\delta)=p^{2}=p^{2}\left(p, d_{2} f_{3} / p^{2}-e_{3}\right)$. One has to remove the p^{2} values of e_{3} satisfying $e_{3} \equiv d_{2} f_{3} / p^{2}(\bmod p)$. In this case, one has $d_{1}(\delta)=\left(p, d_{2}, e_{3}\right)=1$ since if $p \mid\left(d_{2}, e_{3}\right)$ then $\left(p, d_{2} f_{3} / p^{2}-e_{3}\right) \neq 1$. There are $p^{2}\left(p^{3}-p^{2}\right) p$ such matrices. If $p^{2} \nmid f_{3}$ then
$p \mid d_{2}$ and the conditions on $d_{1}(\delta)$ and $d_{2}(\delta)$ are satisfied. There are $p\left(p^{3}-p^{2}\right)\left(p^{2}-p\right)$ such matrices. Finally, there are $p^{4}(p-1)(2 p-1)$ relevant matrices of type 18.
Let us consider the matrices of type 19. The condition on $d_{2}(\delta)$ implies that $p^{2} \mid d_{2} f_{2}$. If $d_{2}=0$ then $d_{2}(\delta)=p^{2}=p^{2}\left(p^{4}, e_{2}, f_{2}\right)$ and $d_{1}(\delta)=1=\left(p^{2}, e_{2}, f_{2}\right)$. One has to remove the couples $\left(e_{2}, f_{2}\right)$ satisfying $p \mid e_{2}$ and $p \mid f_{2}$, namely p^{2} couples. There are $p^{4}-p^{2}$ such matrices. If $d_{2} \neq 0$ and $f_{2}=0$ then $d_{2}(\delta)=p^{2}=p^{2}\left(p^{2}, d_{2}, e_{2}\right)$ and $d_{1}(\delta)=1=\left(p^{2}, d_{2}, e_{2}\right)$. One has to remove the couples $\left(d_{2}, e_{2}\right)$ satisfying $p \mid d_{2}$ and $p \mid e_{2}$, namely $(p-1) p$ couples. There are $\left(p^{2}-1\right) p^{2}-(p-1) p$ such matrices. If $d_{2} \neq 0$ and $f_{2} \neq 0$ then $d_{2}(\delta)=p^{2}=$ $p^{2}\left(p^{2}, p d_{2} / p, p f_{2} / p, d_{2} f_{2} / p^{2}-e_{2}\right)$ and $d_{1}(\delta)=1=\left(p^{2}, e_{2}\right)$. Thus, $p \nmid e_{2}$ and $p \nmid d_{2} f_{2} / p^{2}-e_{2}$. Among the $p^{2}-p$ values of e_{2} satisfying $p \nmid e_{2}$, one has to remove these satisfying $e_{2} \equiv d_{2} f_{2} / p^{2}$ $(\bmod p)$ of cardinal p. There are $(p-1)\left(p^{2}-2 p\right)(p-1)$ such matrices. Finally, there are $p(p-1)\left(3 p^{2}-p+1\right)$ relevant matrices of type 19 .
One can recover the value of the degree given in (A.9) by summing all the contributions in the previous paragraphs.

A.5. Degree of $\Lambda \operatorname{diag}\left(1, p^{3}, p^{3}\right) \Lambda$. -

Proposition A.5. - One has

$$
\begin{equation*}
\operatorname{deg}\left(\operatorname{diag}\left(1, p^{3}, p^{3}\right)\right)=p^{4}\left(p^{2}+p+1\right) \tag{A.10}
\end{equation*}
$$

Proof of Proposition A.5. - By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are

$$
\begin{aligned}
& \text { Type 1: }\left(\begin{array}{lll}
p^{3} & d_{3} & \\
& p^{3} & \\
& & 1
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{3}, d_{3}\right), p^{6}\right), \\
& \text { Type 2: }\left(\begin{array}{lll}
p^{3} & & e_{3} \\
& 1 & f_{3} \\
& & p^{3}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{3}, e_{3}\right), p^{6}\right), \\
& \text { Type 3: }\left(\begin{array}{lll}
1 & d_{3} & e_{3} \\
& p^{3} & f_{3} \\
& & p^{3}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p^{3}, f_{3}, d_{3} f_{3}\right), p^{6}\right)
\end{aligned}
$$

and
Type 4: $\left(\begin{array}{lll}p^{3} & d_{2} & e_{1} \\ & p^{2} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{2}, e_{1}, f_{1}\right),\left(p^{3}, p d_{2}, d_{2} f_{1}-p^{2} e_{1}\right), p^{6}\right)$,
Type 5: $\left(\begin{array}{ccc}p^{3} & d_{1} & e_{2} \\ & p & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{2}, f_{2}\right),\left(p^{3}, p^{2} d_{1}, d_{1} f_{2}-p e_{2}\right), p^{6}\right)$,
Type 6: $\left(\begin{array}{ccc}p^{2} & d_{3} & e_{1} \\ & p^{3} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{3}, e_{1}, f_{1}\right),\left(p^{3}, p d_{3}, p^{2} f_{1}, d_{3} f_{1}\right), p^{6}\right)$,
Type 7: $\left(\begin{array}{ccc}p^{2} & d_{1} & e_{3} \\ & p & f_{3} \\ & & p^{3}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{3}, f_{3}\right),\left(p^{3}, p^{2} f_{1}, d_{1} f_{3}-p e_{3}\right), p^{6}\right)$,

$$
\begin{aligned}
& \text { Type 8: }\left(\begin{array}{lll}
p & d_{3} & e_{2} \\
& p^{3} & f_{2} \\
& & p^{2}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{3}, e_{2}, f_{2}\right),\left(p^{3}, p^{2} d_{3}, p f_{2}, d_{3} f_{2}\right), p^{6}\right), \\
& \text { Type 9: }\left(\begin{array}{lll}
p & d_{1} & e_{3} \\
& p^{2} & f_{3} \\
& & p^{3}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{4}, f_{4}\right),\left(p^{3}, p f_{3}, d_{2} f_{3}-p^{2} e_{3}\right), p^{6}\right)
\end{aligned}
$$

and

$$
\text { Type 10: }\left(\begin{array}{ccc}
p^{2} & d_{2} & e_{2} \\
& p^{2} & f_{2} \\
& & p^{2}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(\left(p^{2}, d_{2}, e_{2}, f_{2}\right),\left(p^{4}, p^{2} d_{2}, p^{2} f_{2}, d_{2} f_{2}-p^{2} e_{2}\right), p^{6}\right)
$$

where $0 \leqslant d_{j}, e_{j}, f_{j}<p^{j}$ for $j=1,2,3$. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of $\operatorname{diag}\left(1, p^{3}, p^{3}\right)$, namely $\left(1, p^{3}, p^{6}\right)$.
Let us consider the matrices of type 1 . The condition on $d_{2}(\delta)$ implies $d_{3}=0$. There is 1 relevant matrix of type 1 .
Let us consider the matrices of type 2 . The condition on $d_{2}(\delta)$ implies $e_{3}=0$. There are p^{3} relevant matrices of type 2 .
Let us consider the matrices of type 3 . The condition on $d_{2}(\delta)$ implies $f_{3}=0$. There are p^{6} relevant matrices of type 3 .
Let us consider the matrices of type 4 . The condition on $d_{2}(\delta)$ implies $d_{2}=0$ and $e_{1}=0$. Then, $d_{1}(\delta)=1=\left(p, f_{1}\right)$ such that $f_{1} \neq 0$. There are $p-1$ relevant matrices of type 4 .
Let us consider the matrices of type 5 . The condition on $d_{2}(\delta)$ implies $d_{1}=0$ and $e_{2}=0$. Then, $d_{1}(\delta)=1=\left(p, f_{2}\right)$ such that $p \nmid f_{2}$. There are $p^{2}-p$ relevant matrices of type 5 .
Let us consider the matrices of type 6 . The condition on $d_{2}(\delta)$ implies $f_{1}=0$ and $p^{2} \mid d_{3}$. Then, $d_{1}(\delta)=1=\left(p, e_{1}\right)$ such that $e_{1} \neq 0$. There are $p(p-1)$ relevant matrices of type 6 .
Let us consider the matrices of type 7 . The condition on $d_{2}(\delta)$ implies $p \mid f_{3}$ and $p \mid d_{1} f_{3} / p-e_{3}$. One has $d_{1} \neq 0$ since otherwise $p^{2} \mid e_{2}$ by the condition on $d_{2}(\delta)$ such that $d_{1}(\delta)=p \neq 1$. Thus, d_{1} is invertible modulo p and $f_{3} / p \equiv e_{3} \overline{d_{1}}\left(\bmod p^{2}\right)$ is fixed. There are $(p-1) p^{3}$ relevant matrices of type 7 .
Let us consider the matrices of type 8 . The condition on $d_{2}(\delta)$ implies $p \mid d_{3}$ and $f_{2}=0$. Then, $d_{1}(\delta)=1=\left(p, e_{2}\right)$ such that $p \nmid e_{2}$. There are $p^{2}\left(p^{2}-p\right)$ relevant matrices of type 8 . Let us consider the matrices of type 9 . The condition on $d_{2}(\delta)$ implies $p^{2} \mid f_{3}$ and $p \mid$ $d_{2} f_{3} / p-e_{3}$. If $f_{3}=0$ then $p \mid e_{3}$ and $d_{1}(\delta)=1=\left(p, d_{2}\right)$ such that $p \nmid d_{2}$. There are $\left(p^{2}-p\right) p^{2}$ such matrices. If $f_{3} \neq 0$ then $d_{2} \equiv e_{3} \overline{f_{3} / p^{2}}(\bmod p)$ can take p values. Then, $d_{1}(\delta)=1=\left(p, e_{3}\right)$ such that $p \nmid e_{3}$. There are $p\left(p^{3}-p^{2}\right)(p-1)$ such matrices. Finally, there are $p^{4}(p-1)$ relevant matrices of type 9 .
Let us consider the matrices of type 10 . The condition on $d_{2}(\delta)$ implies $p\left|d_{2}, p\right| f_{2}$ and $p \mid d_{2} f_{2} / p^{2}-e_{2}$. One has $d_{2} \neq 0$ since otherwise $d_{2}(\delta)=p^{2}\left(p^{2}, e_{2}\right)=p^{2} d_{1}(\delta)=p^{2} \neq p^{3}$. Thus, d_{2} / p is invertible modulo p and f_{2} is fixed by $f_{2} / p \equiv e_{2} \overline{d_{2} / p}(\bmod p)$. Then, $d_{1}(\delta)=1=$ $\left(p, e_{2}\right)$ such that $p \nmid e_{2}, p \nmid f_{2} / p$ and $d_{2}(\delta)=p^{3}$. There are $(p-1)\left(p^{2}-p\right)$ relevant matrices of type 10 .
One can recover the value of the degree given in (A.10) by summing all the contributions in the previous paragraphs.
A.6. Degree of $\Lambda \operatorname{diag}\left(1,1, p^{3}\right) \Lambda$. -

Proposition A.6. - One has

$$
\begin{equation*}
\operatorname{deg}\left(\operatorname{diag}\left(1,1, p^{3}\right)\right)=p^{4}\left(p^{2}+p+1\right) \tag{A.11}
\end{equation*}
$$

Proof of Proposition A.6. - By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition of the Λ-double coset $\Lambda \operatorname{diag}\left(1,1, p^{3}\right) \Lambda$ into Λ-right cosets are

$$
\begin{aligned}
& \text { Type 1: }\left(\begin{array}{lll}
p^{3} & & \\
& 1 & \\
& & 1
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,1, p^{3}\right), \\
& \text { Type 2: }\left(\begin{array}{lll}
1 & d_{3} & \\
& p^{3} & \\
& & 1
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,1, p^{3}\right), \\
& \text { Type 3: }\left(\begin{array}{lll}
1 & & e_{3} \\
& 1 & f_{3} \\
& & p^{3}
\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,1, p^{3}\right)
\end{aligned}
$$

and
Type 4: $\left(\begin{array}{ccc}1 & d_{1} & e_{2} \\ & p & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, f_{2}\right), p^{3}\right)$,
Type 5: $\left(\begin{array}{ccc}1 & d_{2} & e_{1} \\ & p^{2} & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, f_{1}\right), p^{3}\right)$,
Type 6: $\left(\begin{array}{lll}p & & e_{2} \\ & 1 & f_{2} \\ & & p^{2}\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, e_{2}\right), p^{3}\right)$,
Type 7: $\left(\begin{array}{ccc}p^{2} & & e_{1} \\ & 1 & f_{1} \\ & & p\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, e_{1}\right), p^{3}\right)$,
Type 8: $\left(\begin{array}{lll}p & d_{2} & \\ & p^{2} & \\ & & 1\end{array}\right) \rightsquigarrow \boldsymbol{d}(\delta)=\left(1,\left(p, d_{2}\right), p^{3}\right)$,
Type 9: $\left(\begin{array}{ccc}p^{2} & d_{1} & \\ & p & \\ & & 1\end{array}\right) \rightsquigarrow \quad \boldsymbol{d}(\delta)=\left(1,\left(p, d_{1}\right), p^{3}\right)$
and

$$
\text { Type 10: }\left(\begin{array}{ccc}
p & d_{1} & e_{1} \\
& p & f_{1} \\
& & p
\end{array}\right) \rightsquigarrow \quad \boldsymbol{d}(\delta)=\left(\left(p, d_{1}, e_{1}, f_{1}\right),\left(p^{2}, p d_{1}, p f_{1}, d_{1} f_{1}-p e_{1}\right), p^{3}\right)
$$

where $0 \leqslant d_{j}, e_{j}, f_{j}<p^{j}$ for $j=1,2,3$. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of $\operatorname{diag}\left(1,1, p^{3}\right)$, namely $\left(1,1, p^{3}\right)$.
Let us consider the matrices of type 1 . There is 1 relevant matrix of type 1 .

Let us consider the matrices of type 2 . There are p^{3} relevant matrices of type 2 .
Let us consider the matrices of type 3 . There are p^{6} relevant matrices of type 3 .
Let us consider the matrices of type 4 . The condition on $d_{2}(\delta)$ implies $p \nmid f_{2}$. There are $p^{3}\left(p^{2}-p\right)$ relevant matrices of type 4 .
Let us consider the matrices of type 5 . The condition on $d_{2}(\delta)$ implies $f_{1} \neq 0$. There are $p^{3}(p-1)$ relevant matrices of type 5.
Let us consider the matrices of type 6 . The condition on $d_{2}(\delta)$ implies $p \nmid e_{2}$. There are $p^{2}\left(p^{2}-p\right)$ relevant matrices of type 6 .
Let us consider the matrices of type 7 . The condition on $d_{2}(\delta)$ implies $e_{1} \neq 0$. There are $p(p-1)$ relevant matrices of type 6 .
Let us consider the matrices of type 8 . The condition on $d_{2}(\delta)$ implies $p \nmid d_{2}$. There are $p^{2}-p$ relevant matrices of type 7 .
Let us consider the matrices of type 9 . The condition on $d_{2}(\delta)$ implies $d_{1} \neq 0$. There are $p-1$ relevant matrices of type 9 .
Let us consider the matrices of type 10 . One has $d_{1} \neq 0$ since otherwise $p \mid d_{2}(\delta)$. Thus, $d_{1}(\delta)=1$. In addition, $f_{1} \neq 0$ since otherwise $p \mid d_{2}(\delta)$. There are $p(p-1)^{2}$ relevant matrices of type 10 .
One can recover the value of the degree given in (A.11) by summing all the contributions in the previous paragraphs.

References

[AZ95] A. N. Andrianov and V. G. Zhuravlëv, Modular forms and Hecke operators, volume 145 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1995. Translated from the 1990 Russian original by Neal Koblitz.
[BHM] V. Blomer, G. Harcos, and D. Milićević, Bounds for eigenforms on arithmetic hyperbolic 3-manifolds. Available at http://arxiv.org/abs/1401.5154.
[BMa] Valentin Blomer and Péter Maga, Subconvexity for sup-norms of automorphic forms on $P G L(n)$. Available at http://arxiv.org/pdf/1405.6691.pdf.
[BMb] Valentin Blomer and Péter Maga, The sup-norm problem for PGL(4). Available at http: //arxiv.org/pdf/1404.4331.pdf.
[BT] Farrell Brumley and Nicolas Templier, Large values of cusp forms on $G L(n)$. available at http://arxiv.org/abs/1411.4317.
[DFI94] W. Duke, J. B. Friedlander, and H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math., 115 (2):219-239, 1994.
[FI92] J. Friedlander and H. Iwaniec, A mean-value theorem for character sums, Michigan Math. J., 39 (1):153-159, 1992.
[Gol06] Dorian Goldfeld, Automorphic forms and L-functions for the group $G L(n, \mathbb{R})$, volume $\mathbf{9 9}$ of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan.
[HRR] Roman Holowinsky, Guillaume Ricotta, and Emmanuel Royer, On the sup-norm of SL(3) Hecke-Maass cusp form. Available at http://arxiv.org/abs/1411.4317.
[HT13] Gergely Harcos and Nicolas Templier, On the sup-norm of Maass cusp forms of large level. III, Math. Ann., 356 (1):209-216, 2013.
[IS95] H. Iwaniec and P. Sarnak, L^{∞} norms of eigenfunctions of arithmetic surfaces, Ann. of Math. (2), 141 (2):301-320, 1995.
[Iwa92] Henryk Iwaniec, The spectral growth of automorphic L-functions, J. Reine Angew. Math., 428:139-159, 1992.
[Kod67] Tetsuo Kodama, On the law of product in the Hecke ring for the symplectic group, Mem. Fac. Sci. Kyushu Univ. Ser. A, 21:108-121, 1967.
[Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
[New72] Morris Newman, Integral matrices, Academic Press, New York, 1972. Pure and Applied Mathematics, Vol. 45.
[SA] L. Silberman and Venkatesh A, Entropy bounds for Hecke eigenfunctions on division algebras. Preprint available at http://www.math.ubc.ca/~lior/work/.
[Sar] Peter Sarnak, Letter to Morawetz. Available at http://www.math.princeton.edu/sarnak.
[Shi94] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1.
[Ven10] Akshay Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), $\mathbf{1 7 2}$ (2):989-1094, 2010.

February 10, 2015
Roman Holowinsky, Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174 • E-mail : holowinsky.1@osu.edu
Guillaume Ricotta, Université de Bordeaux, IMB, 351 cours de la libération, 33405 Talence Cedex, France E-mail : Guillaume.Ricotta@math.u-bordeaux1.fr
Emmanuel Royer, Université Blaise Pascal, Laboratoire de mathématiques, Les Cézeaux, BP 80026, 63171 Aubière Cedex, France • E-mail : emmanuel.royer@math.univ-bpclermont.fr

[^0]: © Presses universitaires de Franche-Comté, 2015, tous droits réservés.
 L'accès aux articles de la revue « Publications mathématiques de Besançon » (http://pmb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://pmb.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]: ${ }^{1}$ Theorem B and Proposition 4.1 in [HRR] are not entirely identical. Since releasing our first article [HRR], we have noticed a simplification in the construction of the amplifier. Therefore, Theorem B only contains the identities in Proposition 4.1 of [HRR] which are necessary for the amplification method. The implied power saving in the Laplace eigenvalue for the sup-norm bound remains the same.

[^2]: ${ }^{2}$ This follows, at least conditionally, from a suitable version of the Generalized Riemann Hypothesis. However, we do not need to use this fact.

[^3]: ${ }^{3}$ One may also choose a variant, in the spirit of [Ven10], which involves the signs of $c_{f_{0}}(\ell)$.

