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FUNDAMENTAL UNITS FOR ORDERS GENERATED BY A UNIT

by

Stéphane R. Louboutin

Abstract. — Let ε be an algebraic unit for which the rank of the group of units of the order
Z[ε] is equal to 1. Assume that ε is not a complex root of unity. It is natural to wonder whether
ε is a fundamental unit of this order. It turns out that the answer is in general positive, and that
a fundamental unit of this order can be explicitly given (as an explicit polynomial in ε) in the
rare cases when the answer is negative. This paper is a self-contained exposition of the solution
to this problem, solution which was up to now scattered in many papers in the literature. We
also include the state of the art in the case that the rank of the group of units of the order Z[ε]
is greater than 1 when now one wonders whether the set {ε} can be completed in a system of
fundamental units of the order Z[ε].

Résumé. — Soit ε une unité algébrique pour laquelle le rang du groupe des unités de l’ordre
Z[ε] est égal à 1. Supposons que ε ne soit pas une racine complexe de l’unité. Il est alors naturel
de se demander si ε est une unité fondamentale de cet ordre. Nous montrons que la réponse est
en général positive et que, dans les rares cas où elle ne l’est pas, une unité fondamentale de cet
ordre peut être explicitement donnée (comme polynôme en ε). Nous présentons ici une exposition
complète de la solution à ce problème, solution jusqu’à présent dispersée dans plusieurs articles.
Nous incluons l’état de l’art de ce problème dans le cas où la rang du groupe des unités de
l’ordre Z[ε] est strictement plus grand que 1, où la question naturelle est maintenant de savoir
si on peut adjoindre à ε d’autres unités de l’ordre Z[ε] pour obtenir un système fondamental
d’unités de cet ordre.
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1. Introduction and Notation

Let ε be an algebraic unit for which the rank of the group of units of the order Z[ε] is equal
to 1. Then either (i) ε is a totally real quadratic unit, or (ii) ε is a non-totally real cubic unit
or (iii) ε is a totally imaginary quartic unit. In these three situations, if we assume that ε
is not a complex root of unity, it is natural to ask whether ε is a fundamental unit of the
order Z[ε]. And in case it is not, it is natural to construct one from it. In Section 2, in the
very simple case of the real quadratic units, we introduce the method that we will also use
in Sections 3 and 4 to answer to this question in the more difficult remaining cases of cubic
units of negative discriminants and totally imaginary quartic units. Now, assume that the
the rank of the group of units of the order Z[ε] is greater than 1. The natural question is
now to wonder whether the set {ε} can be completed in a system of fundamental units of the
order Z[ε]. In Section 5, we will answer to this question in the case of totally real cubic units,
the only situation where to date this question has been answered. We conclude this paper by
giving in Section 6 a conjecture for the case of quartic units of negative discriminants and by
showing in Section 7 that the solution to this problem for units of degree greater than 4 is
bound to be more complicated.
In order to put the previously published elements of solution to our natural question in
a general framework that might lead to solutions in presently unsolved cases, we introduce
heights for polynomials and algebraic units. They will enable us to formulate our mains results
in (8), (14), (18), (20) and (21) in a clear and uniform way. Let Πα(X) = Xn − an−1X

n−1 +
· · ·+ (−1)n−1a1X + (−1)na0 ∈ Z[X] be the minimal polynomial of an algebraic integer α. It
is monic and Q-irreducible. Let dα > 0 be the absolute value of its discriminant Dα 6= 0. Let
β ∈ Z[α] and assume that Q(β) = Q(α), i.e. that deg Πβ(X) = deg Πα(X). Then

(1) Dβ = (Z[α] : Z[β])2Dα and hence dβ = (Z[α] : Z[β])2dα.

In particular, Z[β] = Z[α] if and only if dβ = dα.
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S. Louboutin 43

Now, assume that α is an algebraic unit, i.e. assume that a0 = ±1. For p > 0 a real number
and p =∞ we define the heights of α and of its minimal polynomial Πα(X) by

Hp(α) = Hp(Πα(X)) := max
1≤k≤n

(|αk|nkp + |αk|−nkp)1/p > 1

and
H∞(α) = H∞(Πα(X)) := max

1≤k≤n
max(|αk|nk , |αk|−nk) ≥ 1,

where α1, · · · , αn are the complex roots of Πα(X) and nk = 1 if αk is real and nk = 2
is αk is not real. Notice that p 7→ Hp(P (X)) is a decreasing function of p > 0 such that
limp→∞Hp(P (X)) = H∞(P (X)). Notice also that H∞(α) > 1 as soon as α is not a com-
plex root of unity (e.g. see [Was, Lemma 1.6]). The most useful property of our height,
as compared to the usual height H(P (X)) = max0≤i≤n−1 |ai| and the Malher measure
M(P (X)) =

∏
1≤i≤n max(1, |αi|) of P (X) =

∏n
i=1(X − αi) = Xn − an−1X

n−1 + · · · +
(−1)n−1a1X + (−1)na0 ∈ C[X], is that for any algebraic unit α and any 0 6= m ∈ Z we
have
(2) H∞(αm) = H∞(α)|m|,
provided that Q(αm) = Q(α), a property akin to the one satisfied by the canonical height on
an elliptic curve.
Assume that we have proved that for all algebraic units α of a given degree n > 1 we have
(3) CaH∞(α)a ≤ dα ≤ CbH∞(α)b

where 0 < a < b and Ca, Cb > 0 depend only on the numbers of real and complex conjugates
of α (see Lemma 3, Theorems 9, 24, 33 and Conjecture 39). Since there are only finitely many
algebraic units of a given degree of a bounded height, there exists a unit η0 of degree n such
that H∞(α) ≥ H∞(η0) > 1 for all algebraic units α of degree n that are not a complex root of
unity. Let N be the least rational integer greater than b/a. If an algebraic unit ε of degree n
that is not a complex root of unity is such that ε = ±ηm for some η ∈ Z[ε] and some m ≥ N ,
then Z[η] = Z[ε] and Dη = Dε (Lemma 2). In particular, ε and η are of the same degree and
have the same numbers of real and complex conjugates. Using (2) and (3), we obtain

CaH∞(η)Na ≤ CaH∞(η)ma = CaH∞(ε)a ≤ dε = dη ≤ CbH∞(η)b.

Hence, H∞(η) ≤ (Cb/Ca)1/(Na−b) is bounded and there are only finitely many such η’s.
Moreover, the inequalities

H∞(η0)ma ≤ H∞(η)ma ≤ (Cb/Ca)H∞(η)b ≤ (Cb/Ca)Na/(Na−b)

show that m is bounded and there are only finitely many such ε’s. In conclusion, assuming
that (3) holds true, we obtain that if ε = ±ηm for some η ∈ Z[ε] and some 0 6= m ∈ Z then
|m| ≤ b/a, appart from finitely many sporadic algebraic units ε’s. This line of reasoning is
clearly a key step toward solving our general question. Indeed, as it is rather easy to settle
the case m = 2 (see Lemmas 13, 20 and 35), our problem is almost solved in the situations
where b/a < 3. However, solving the problem ε = ±η3 is not that easy. In fact, we do not
even know how to solve it for totally imaginary quartic units of negative discriminant (see
Conjecture 38). Hence our problem is probably hard to solve in the situations where the best
exponents in (3) turn out to satisfy b/a ≥ 3.
Anyway, clearly our main tool to tackle our problem will thus to obtain lower and upper
bounds of the form (3) for the absolute discriminants dα of algebraic units α. We could have
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44 Fundamental units for orders generated by a unit

restrained ourselves to the use of the single height H∞, but the proof of Corollary 12 makes
it clear that using the height H1 yields better bounds.
Notice that if ε is an algebraic unit, then Z[ε] = Z[−ε] = Z[1/ε] = Z[−1/ε], Dε = D−ε =
D1/ε = D−1/ε and Hp(ε) = Hp(−ε) = Hp(1/ε) = Hp(−1/ε) for p > 0 or p = ∞. The
four monic polynomials Πε(X) = Xn − an−1X

n−1 + · · · + (−1)n−1a1X + (−1)na0 ∈ Z[X],
with a0 ∈ {±1}, Π−ε(X) = (−1)nΠα(−X), Π1/ε(X) = (−1)na0X

nΠε(1/X) and Π−1/ε(X) =
(−1)na0X

nΠε(−1/X) are called equivalent. They have the same discriminant and the same
height. At least one of them is such that |a1| ≤ an−1. We call it reduced. By an appropriate
choice of the root of Πε(X), we may also assume that |ε| ≥ 1. If ε is real, we may instead
assume that ε > 1.
For example, take Πε(X) = X4 +3X3 +6X2 +4X+1. Since Πε(X) is not reduced, we set ε′ =
−1/ε = ε3+3ε2+6ε+4 = P (ε), for which Πε′(X) = X4Πε(−1/X) = X4−4X3+6X2−3X+1
is reduced. By Point 2(c)iii of Theorem 18, η = ε′3 − 3ε′2 + 3ε′ = ε3 + 2ε2 + 4ε + 1 is
a fundamental unit of Z[ε′] = Z[ε] and ε′ = −1/η4 yields ε = −1/ε′ = η4. Moreover,
Πη(X) = X4 −X3 + 1 is reduced, dε = dη = 229 and Z[ε] = Z[η].

2. The real quadratic case

We introduce in this very simple situation the three tools and method we will use to solve
the more difficult cubic and quartic cases.
Let ε be an algebraic quadratic unit which is not a complex root of unity and for which the
rank of the group of units of the quadratic order Z[ε] is equal to 1. Hence, ε is totally real.
We may and we will assume that ε > 1.

Lemma 1. — The smallest quadratic unit greater than 1 is η0 := (1 +
√

5)/2.

Lemma 2. — Let ε be an algebraic integer. If ε = ±ηn with n ∈ Z and η ∈ Z[ε], then
Z[η] = Z[ε]. Hence, Dη = Dε and dη = dε.

Proof. — Notice that Z[η] ⊆ Z[ε] = Z[±ηn] ⊆ Z[η] and use (1). �

Lemma 3. — Let α be a real quadratic unit. Then

(4)
(
|α| − |α|−1

)2
≤ dα ≤

(
|α|+ |α|−1

)2
.

Proof. — We have dα = (α− α′)2, where α′ = ±1/α be the conjugate of α. �

Theorem 4. — A real quadratic unit ε > 1 is always the fundamental unit of the quadratic
order Z[ε], except if ε = (3 +

√
5)/2, in which case ε = η2, where 1 < η = (1 +

√
5)/2 =

ε− 1 ∈ Z[ε] is the fundamental unit of Z[ε] = Z[η], and dε = dη = 5.

Proof. — Assume that ε > 1 is not the fundamental unit of Z[ε]. Then there exist a quadratic
unit 1 < η ∈ Z[ε] and n ≥ 2 such that ε = ηn, which yields dε = dη (Lemma 2). Using (4) we
obtain

0 < η − η−1 = η2 − η−2

η + η−1 ≤
ηn − η−n

η + η−1 = ε− ε−1

η + η−1 ≤
√
dε/dη = 1.

But 0 < η − η−1 ≤ 1 implies 1 < η ≤ (1 +
√

5)/2 and η = η0, by Lemma 1. We now obtain
1 = η0 − η−1

0 = (η2
0 − η−2

0 )/(η0 + η−1
0 ) ≤ (ηn0 − η−n0 )/(η0 + η−1

0 ) ≤ 1, which yields n = 2. �
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3. The non-totally real cubic case

The aim of this Section 3 is to prove Theorem 8. It was first proved in [Nag]. However,
while working on class numbers of some cubic number fields, we come up in [Lou06] with a
completely different proof of Nagell’s result. Our proof was based on lower bounds on absolute
discriminants of non-totally real algebraic cubic units (see Theorem 9), proof then simplified
in [Lou10].

Definition 5. — A cubic polynomial of type (T) is a monic cubic polynomial P (X) = X3−
aX2+bX−1 ∈ Z[X] which is Q-irreducible (⇔ b 6= a and b 6= −a−2), of negative discriminant
DP (X) < 0 and whose only real root εP satisfies εP > 1 (⇔ P (1) < 0 ⇔ b ≤ a − 1). In that
situation, Hp(P (X)) = (εpP + ε−pP )1/p and H∞(P (X)) = εP .

Let ε be an algebraic cubic unit for which the rank of the group of units of the cubic order
Z[ε] is equal to 1. Hence, ε is not totally real. We may and we will assume that ε is real and
that ε > 1, i.e. that Πε(X) is a cubic polynomial of type (T) (notice that if ε is of type (T)
and ε = ηn for some odd n ≥ 3 and some η ∈ Z[ε], then η is clearly also of type (T), whereas
if ε is reduced then it is not clear whether η is also necessarily reduced):

Lemma 6. — Let εP > 1 be the only real root of a cubic polynomial P (X) = X3 − aX2 +
bX − 1 ∈ Z[X] of type (T). Then
(5) 0 ≤ a < εP + 2 and |b| ≤

√
4a+ 4.

Proof. — Let ε−1/2
P eiφ and ε

−1/2
P e−iφ be the non-real complex roots of P (X). Then a =

εP + 2ε−1/2
P cosφ ≥ εP − 2 > −1 and b = 2ε1/2

P cosφ+ ε−1
P . Hence,

(6) 4a− b2 = 4εP sin2 φ+ 4ε−1/2
P cosφ− ε−2

P > −5
and (5) holds true. �

Notice that (5) makes it easy to list all the cubic polynomials of type (T) whose real roots
are less than or equal to a given upper bound B. Taking B = 2, we obtain:

Lemma 7. — The real root η0 = 1.32471 · · · of Π(X) = X3−X − 1 is the smallest real but
non-totally real cubic unit greater than 1.

3.1. Statement of the result for the cubic case. —

Theorem 8. — Let ε > 1 be a real cubic algebraic unit of negative discriminant Dε =
−dε < 0. Let η > 1 be the fundamental unit of the cubic order Z[ε]. Then ε = η, except in
the following cases:

1. The infinite family of exceptions for which Πε(X) = X3 −M2X2 − 2MX − 1, M ≥ 1,
in which case ε = η2 where η = ε2 −M2ε−M ∈ Z[ε] is the real root of X3 −MX2 − 1,
Z[η] = Z[ε] and dε = dη = 4M3 + 27.

2. The 8 following sporadic exceptions:
(a) (i) Πε(X) = X3 − 2X2 +X − 1, in which case ε = η2 where η = ε2 − ε ∈ Z[ε].

(ii) Πε(X) = X3 − 3X2 + 2X − 1, in which case ε = η3 where η = ε− 1 ∈ Z[ε].
(iii) Πε(X) = X3−2X2−3X−1, in which case ε = η4 where η = ε2−2ε−2 ∈ Z[ε],
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46 Fundamental units for orders generated by a unit

(iv) Πε(X) = X3−5X2 +4X−1, in which case ε = η5 where η = ε2−4ε+1 ∈ Z[ε].
(v) Πε(X) = X3−12X2−7X−1, in which case ε = η9 where η = −3ε2+37ε+10 ∈

Z[ε].
In these five cases, η > 1 is the real root of Πη(X) = X3 −X − 1, Z[η] = Z[ε] and
dη = dε = 23.

(b) (i) Πε(X) = X3−4X2 +3X−1, in which case ε = η3 where η = ε2−3ε+1 ∈ Z[ε].
(ii) Πε(X) = X3−6X2−5X−1, in which case ε = η5 where η = −2ε2 +13ε+5 ∈

Z[ε].
In these two cases, η > 1 is the real root of Πη(X) = X3 −X2 − 1, Z[η] = Z[ε] and
dη = dε = 31.

(c) Πε(X) = X3−7X2 +5X−1, in which case ε = η3, where 1 < η = −ε2 +7ε−3 ∈ Z[ε]
is the real root of Πη(X) = X3 −X2 −X − 1, Z[η] = Z[ε] and dη = dε = 44.

3.2. Sketch of proof. — Let ε > 1 be a real but non-totally real cubic unit. Then ε is not
a fundamental unit of the order Z[ε] if and only if there exists p ≥ 2 a prime and η ∈ Z[ε]
such that ε = ηp (the main feature that makes it easier to deal with this cubic case than with
the totally imaginary quartic case dealt with below is that −1 and +1 are the only complex
roots of unity in Z[ε]). Now, if ε = ηn for some η ∈ Z[ε], then Z[η] = Z[ε] and dε = dη, by
Lemma 2.
1. Assume that ε = ηn for some non-totally real cubic unit 1 < η ∈ Z[ε] and some n ≥ 3.
Using η ≥ η0 = 1.32471 · · · (Lemma 7) and a double bound (7) for dε similar to (4), we will
obtain in Corollary 12 that 1 < η ≤ 4.5 and n ≤ 10.
2. In contrast with the quadratic case, this double bound (7) does not prevent ε from being
infinitely many often a square in Z[ε]. Hence, we characterize in Lemma 13 when this is
indeed the case.
3. Finally, to determine all the 1 < ε’s that admit a p-th root in Z[ε] for some p ∈ {3, 5, 7},
and to determine this p-th root η > 1, we make a list of all the cubic polynomials Πη(X) =
X3 − AX2 + BX − 1 ∈ Z[X] of type (T) with 0 ≤ A ≤ 6 < 4.5 + 2, by (5), for which
there exist p ∈ {3, 5, 7} such that Z[η] = Z[ηp], i.e. such that Dη = Dηp , where Πηp(X) =
X3 − aX2 + bX − 1 is computed as the resultant of Πη(Y ) and X − Y n, considered as poly-
nomials of the variable Y . A Maple Program 1 settling this step is given below. We found 6
such occurrences, of discriminants −23, −31 or −44. Taking also into account the points 2
and 3 of Lemma 13, both of discriminant −23, and singling out the only case of point 1 of
Lemma 13 of discriminant in {−23,−31,−44}, namely the case M = 1 of discriminant −31,
we obtain Table 1, which completes the proof of Theorem 8:
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p Πη(X) Πηp(X) Dη = Dηp

2 X3 −X − 1 X3 − 2X2 + X− 1 −23
2 X3 − 2X2 + X− 1 X3 − 2X2 − 3X − 1 −23
3 X3 −X − 1 X3 − 3X2 + 2X− 1 −23
3 X3 − 3X2 + 2X− 1 X3 − 12X2 − 7X − 1 −23
5 X3 −X − 1 X3 − 5X2 + 4X − 1 −23
2 X3 −X2 − 1 X3 −X2 − 2X − 1 −31
3 X3 −X2 − 1 X3 − 4X2 + 3X − 1 −31
5 X3 −X2 − 1 X3 − 6X2 − 5X − 1 −31
3 X3 −X2 −X − 1 X3 − 7X2 + 5X − 1 −44

Table 1.

Program 1:
for A from 0 to 6 by 1 do
borneB := isqrt(4A+ 4):
for B from −borneB to min(borneB,A− 1) by 1 do
p := x3 −A · x2 +B · x− 1;
if irreduc(p) then
Dp := discrim(p, x);
if Dp < 0 then
for n in [3,5,7] do
q := resultant(subs(x = y, p), x− yn, y);
Dq := discrim(q, x);
if Dq = Dp then print(n, sort(p, x), sort(q, x), Dp) end if
end do
end if
end if
end do
end do:

3.3. Bounds on discriminants. —

Theorem 9. — Let α be a real cubic algebraic unit of negative discriminant. Then
(7) max(|α|3/2, |α|−3/2)/2 ≤ dα ≤ 4(|α|+ |α|−1)3 ≤ 32 max(|α|3, |α|−3).
Hence, if P (X) = X3 − aX2 + bX − c ∈ Z[X], c ∈ {±1}, is Q-irreducible and of negative
discriminant DP (X) < 0, then

(8) H∞(P (X))3/2/2 ≤ |DP (X)| ≤ 4H1(P (X))3 ≤ 32H∞(P (X))3.

Proof. — Clearly, (8) follows from (7): if α (real), β and β̄ (not real) are the roots of P (X),
then |α||β|2 = 1, hence Hp(P (X)) = (|α|p + |α|−p)1/p = (|β|2p + |β|−2p)1/p and H∞(P (X)) =
max(|α|, |α|−1) = max(|β|2, |β|−2).
Since (7) remains unchanged if we change α into −α, 1/α and −1/α, we may assume that
α > 1, i.e. that Πα(X) is of type (T). Let β = α−1/2eiφ and β̄ = α−1/2e−iφ be the non-real
complex roots of Πα(X) = X3 − aX2 + bX − 1 ∈ Z[X]. Then

(9) dα = −(α− β)2(α− β̄)2(β − β̄)2 = 4(α3/2 − 2 cosφ+ α−3/2)2 sin2 φ.
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48 Fundamental units for orders generated by a unit

Hence, setting Xα = α3/2 + α−3/2 ≥ 2, we have

dα = X2
α + 4− (Xα cosφ+ 2 sin2 φ)2 − 4 cos2 φ ≤ X2

α + 4 = α3 + α−3 + 6 ≤ (α+ α−1)3.

Let us now prove the lower bound on dα. By (9) we have

dα ≥ 4(α3/4 − α−3/4)4 sin2 φ.

Assume that α > 16.2.
First, assume that sin2 φ ≥ 2α−3/2. Then we obtain dα ≥ 7α3/2.
Secondly, assume that sin2 φ < 2α−3/2. By (6), we have

−1 < −4α−1/2 − α−2 ≤ 4a− b2 = 4α sin2 φ+ 4α−1/2 cosφ− α−2 < 12α−1/2 < 3.

Since 4a − b2 ≡ 0 or 3 (mod 4), we obtain 4a = b2 and cosφ < 0 (otherwise 4a − b2 ≥
4α−1/2 sin2 φ+4α−1/2 cos2 φ−α−2 > 0). Hence, 0 = 4a−b2 = 4α sin2 φ−4α−1/2√1− sin2 φ−
α−2. Therefore, sin2 φ = α−3/2−α−3/4, cosφ = −1+α−3/2/2 (hence b = 2α1/2 cosφ+α−1 =
−2(α1/2 − α−1) < 0 and Πα(X) = X3 −B2X2 − 2BX − 1 for some B ≥ 1) and (9) yields

dα = 4(α3/2 + 2)2(α−3/2 − α−3/4) > 4α3/2.

Therefore, dα ≥ 4α3/2 for α > 16.2.
Finally, if 1 < α ≤ 16.2, then Πα(X) = X3 − aX2 + bX − 1 ∈ Z[X] is of type (T) with
0 ≤ a ≤ 18, by (5). Using (5) we obtain that there are 211 such cubic polynomials. By
computing approximations to the real root α > 1 of each of these 211 cubic polynomials,
we check that the lower bound on dα given in (7) holds true for each of these 211 cubic
polynomials. �

Remark 10. — The exponents 3/2 and 3 in (7) are optimal. Indeed,
if Πα(X) = X3 −M2X2 − 2MX − 1, M ≥ 1, then M2 < α < M2 + 1, and dα = 4M3 + 27
is asymptotic to 4α3/2.
If Πα(X) = X3−MX2− 1, M ≥ 1, then M < α < M + 1, and dα = 4M3 + 27 is asymptotic
to 4α3.

Remark 11. — We can reformulate the lower bound on dα in (7) as follows: let γ be a non-
real cubic algebraic unit of negative discriminant satisfying |γ| > 1. Then |=(γ)| � |γ|−1/2

(explicitly). We wish we understood beforehand why such a lower bound must hold true.

Corollary 12. — Let ε > 1 be a real cubic algebraic unit of negative discriminant. If ε = ηn

for some 1 < η ∈ Z[ε] and some n ≥ 3, then η ≤ 4.5 and n ≤ 10. In particular, by (5), if
Πη(X) = X3 − aX2 + bX − 1 ∈ Z[X] is of type (T), then 0 ≤ a ≤ 6 and |b| ≤

√
4a+ 4.

Proof. — By (7) we have

η9/2/2 ≤ η3n/2/2 = ε3/2/2 ≤ dε = dη ≤ 4
(
η + η−1

)3
,

that implies η ≤ 4.5. Moreover, we have η ≥ η0 = 1.32471 · · · (Lemma 7). Hence, by (7), we
have

1 = dη/dε ≤
4
(
η + η−1)3
ε3/2/2

= 8
(
η + η−1

ηn/2

)3

≤ 8
(
η0 + η−1

0

η
n/2
0

)3

,

that implies n < 11. �
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3.4. Being a square. —

Lemma 13. — Let ε > 1 be a real cubic algebraic unit of negative discriminant. Then
ε = η2 for some 1 < η ∈ Z[ε] if and only if we are in one of the following three cases:

1. Πε(X) = X3 − M2X2 − 2MX − 1 with M ≥ 1, in which case ε = η2 where η =
ε2 −M2ε−M ∈ Z[ε], Πη(X) = X3 −MX2 − 1 and dη = dε = 4M3 + 27.

2. Πε(X) = X3 − 2X2 − 3X − 1, in which case ε = η2 where η = −ε2 + 3ε + 2 ∈ Z[ε],
Πη(X) = X3 − 2X2 +X − 1 and dη = dε = 23.

3. Πε(X) = X3 − 2X2 + X − 1, in which case ε = η2 where η = ε2 − ε ∈ Z[ε], Πη(X) =
X3 −X − 1 and dη = dε = 23.

Proof. — Assume that ε = η2 for some 1 < η ∈ Z[ε] with Πη(X) = X3−aX2+bX−1 ∈ Z[X]
of type (T). Then Z[ε] = Z[η] and dε = dη (Lemma 2). Clearly, the index (Z[η] : Z[η2]) is equal
to |ab−1|, where Πη(X) = X3−aX2 + bX−1. Hence, we must have |ab−1| = 1, and we will
have η = (ε2−(a2−b)ε−a)/(1−ab) and Πε(X) = Πη2(X) = X3−(a2−2b)X2+(b2−2a)X−1.
First, assume that ab = 2. Then a = 2 and b = 1 (for a ≥ 0 and b ≤ a − 1), Πη(X) =
X3 − 2X2 +X − 1 and Πε(X) = X3 − 2X2 − 3X − 1.
Secondly, assume that ab = 0. If a = 0, then b ≤ a − 1 = −1 and dη = 4b3 + 27 > 0 yields
b = −1, Πη(X) = X3 − X − 1, and Πε(X) = X3 − 2X2 + X − 1. If a 6= 0, then b = 0,
Πη(X) = X3 − aX2 − 1, dη = 4a3 + 27 and Πε(X) = X3 − a2X2 − 2aX − 1. �

3.5. Computation of explicit nth roots. — Let θ be an algebraic integer of degree n.
Suppose that θ = αm for some α ∈ Q(θ) and some m ≥ 2. Let us explain how to compute
the coordinates of α in the canonical Q-basis of Q(θ), provided that Πα(X) is known. First,
we compute the matrix P := [pi,j ]1≤i,j≤m ∈Mn(Z) such that

θj−1 = αm(j−1) =
n∑
i=1

pi,jα
i−1 (1 ≤ j ≤ n).

Since Q(α) ⊆ Q(θ) = Q(αn) ⊆ Q(α), we have Q(α) = Q(θ). Therefore, detP 6= 0 and we can
compute P−1 = [qi,j ]1≤i,j≤n ∈Mn(Q). Clearly, we have α =

∑n
i=1 qi,2α

m(i−1) =
∑n
i=1 qi,2θ

i−1.
For example, if Πα(X) = X3 − uX2 + vX − w ∈ Z[X] is the minimal polynomial of a cubic
algebraic number α, then θ = α2 is also a cubic algebraic number, Πα2(X) = X3 − (u2 −
2v)X2 + (v2 − 2uw)X − w2 ∈ Z[X] and α = (θ2 + (v − u2)θ − uw)/(w − uv).

4. The totally imaginary quartic case

The aim of this Section 4 is to prove Theorem 18. Indeed, after having found a completely
different proof of Nagell’s result we thought it should now be possible to settle this third case
where the rank of the group of units of the order Z[ε] is equal to 1. In [Lou08a] we partially
solved this problem and conjectured Theorem 18. We could not prove it because we could not
come up with lower bounds on discriminants of totally imaginary quartic algebraic units (see
Theorem 24). Such a lower bound was then obtained in [PL] and their proof was simplified
in [Lou10].
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Let ε be an algebraic quartic unit which is not a complex root of unity, and for which the rank
of the group of units of the quadratic order Z[ε] is equal to 1. Hence, ε is totally imaginary
and |ε| 6= 1 (use [Was, Lemma 1.6]). Notice that if ε1, ε2 = ε1, ε3 and ε4 = ε3 are the four
complex conjugates of ε, then 1 = ε1ε2ε3ε4 = |ε1|2|ε3|2). By changing ε into −ε, 1/ε, or −1/ε
if necessary, we may and we will assume that its minimal polynomial Πε(X) is of type (T):

Definition 14. — A quartic polynomial of type (T) is a Q-irreducible monic quartic poly-
nomial P (X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X] which satisfies |c| ≤ a and which has no
real root (see Lemma 15 for a characterization). It is of positive discriminant DP (X).

Lemma 15. — Let εP be any complex root of a quartic polynomial P (X) = X4 − aX3 +
bX2 − cX + 1 ∈ Z[X] of type (T). Then

(10) − 1 ≤ b ≤ |εP |2 + 1/|εP |2 + 4 and |c| ≤ a ≤
√

4b+ 5.

Proof. — Let ρeiφ, ρe−iφ, ρ−1eiψ and ρ−1e−iψ be the four complex roots of P (X). Then
a = 2ρ cosφ+ 2ρ−1 cosψ and

(11) b = ρ2 + ρ−2 + 4(cosφ)(cosψ).

Hence,

(12) 4b− a2 = 4(sinφ)2ρ2 + 4(sinψ)2ρ−2 + 8(cosφ)(cosψ) > −8.

Since 4b− a2 ≡ 0 or 3 (mod 4), we have 4b− a2 ≥ −5. �

Lemma 16. — Let P (X) = X4 − aX3 + bX2 − cX + d ∈ Q[X] be Q-irreducible. Then
P (X) has no real root if and only if DP (X) > 0 and either A := 3a2 − 8b < 0 or B :=
3a4 − 16a2b+ 16ac+ 16b2 − 64d < 0.
Assume moreover that d = 1 and let η = ρeiα, η̄, η′ = ρ−1eiβ and η̄′ be these four non-real
roots. Then ρ2 + 1/ρ2 ≥ 2, 2 cos(α+ β) and 2 cos(α− β) are the roots of

R(X) = X3 − bX2 + (ac− 4)X − (a2 − 4b+ c2) ∈ Q[X],

of positive discriminant DR(X) = DP (X) = dη.

Proof. — Write P (X) = (X − α1)(X − α2)(X − α3)(X − α4) in C[X].
1. Set β1 = (α1 + α2 − α3 − α4)2, β2 = (α1 − α2 + α3 − α4)2 and β3 = (α1 − α2 − α3 + α4)2.
Then Q(X) := (X − β1)(X − β2)(X − β3) = X3−AX2 +BX −C, where A and B are given
in the statement of Lemma 16 and C = (a3 − 4ab+ 8c)2. Moreover, DQ(X) = 212DP (X).
(i) If P (X) has two real roots, say α1 and α2, and two non-real roots, say α3 and α4 = ᾱ3,
then β1 > 0, whereas β2 and β3 = β̄2 are non-real. Hence DQ(X) < 0. (ii). If P (X) has four
non-real roots, say α1, α2 = ᾱ1, α3 and α4 = ᾱ3, then Q(X) has three real roots β1 > 0,
β2 < 0 and β3 < 0. Hence DQ(X) > 0 and Q′(X) = 3X2 − 2AX +B has a negative real root
γ ∈ (β2, β3), which implies A < 0 or B < 0. (iii). If P (X) has four real roots, say α1, α2, α3
and α4, then Q(X) has three real roots β1 > 0, β2 > 0 and β3 > 0. Hence DQ(X) > 0 and
Q′(X) = 3X2 − 2AX + B has two positive real roots γ1 and γ2, which implies A ≥ 0 and
B ≥ 0.
The proof of the first part is complete.
2. Set γ1 = α1α2 + α3α4, γ2 = α1α3 + α2α4 and γ3 = α1α4 + α2α3. Then R(X) := (X −
γ1)(X − γ2)(X − γ3) = X3 − bX2 + (ac− 4d)X − (a2d− 4bd+ c2), and DR(X) = DP (X). In
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our situation, d = 1 and we may assume that α1 = η, α2 = η̄, α3 = η′ and α4 = η̄′. Hence,
γ1 = |η|2 + 1/|η|2 ≥ 2, γ2 = 2<(ηη′) = 2 cos(α+ β) and γ3 = 2<(ηη̄′) = 2 cos(α− β). �

Notice that (10) and the first part of Lemma 16 make it easy to list of all the quartic
polynomials of type (T) whose roots are of absolute values less than or equal to a given
upper bound B. Using the second part of Lemma 16 we can compute these absolute values.
Taking B = 2, we obtain:

Lemma 17. — Let η be a totally imaginary quartic unit. If |η| > 1 then |η| ≥ |η0| =
1.18375 · · · , where Πη0(X) = X4 −X3 + 1.

4.1. Statement of the result for the quartic case. —

Theorem 18. — Let ε be a totally imaginary quartic unit with Πε(X) of type (T). Assume
that ε is not a complex root of unity. Let η be a fundamental unit of Z[ε]. We can choose
η = ε, except in the following cases:

1. The infinite family of exceptions for which Πε(X) = X4− 2bX3 + (b2 + 2)X2− (2b−
1)X + 1, b ≥ 3, in which cases ε = −1/η2 where η = ε3− 2bε2 + (b2 + 1)ε− (b− 1) ∈ Z[ε]
is a root of Πη(X) = X4 − X3 + bX2 + 1 of type (T), Z[η] = Z[ε] and dη = dε =
16b4 − 4b3 − 128b2 + 144b+ 229.

2. The 14 following sporadic exceptions
(a) (i) Πε(X) = X4−3X3 +2X2 +1, in which case ε = −η−2 where η = −ε2 +ε+1 ∈

Z[ε] is a root of Πη(X) = X4 − 2X3 + 2X2 −X + 1 of type (T), Z[η] = Z[ε]
and dε = dη = 117.

(ii) Πε(X) = X4 − 3X3 + 5X2 − 3X + 1, in which case ε = η2 where η = −ε3 +
2ε2 − 2ε ∈ Z[ε] is a root of Πη(X) = X4 − X3 − X2 + X + 1 of type (T),
Z[η] = Z[ε] and dε = dη = 117.

(iii) Πε(X) = X4−5X3 +8X2−4X+1, in which case ζ3 = ε3−4ε2 +5ε−2 ∈ Z[ε]
and ε = ζ3η

3 where η = −ε2 + 3ε− 1 ∈ Z[ε] is a root of Πη(X) = X4− 2X3 +
2X2 −X + 1 is of type (T), Z[η] = Z[ε] and dη = dε = 117.

(b) Πε(X) = X4 − 5X3 + 9X2 − 5X + 1, in which case ε = −η2 where η = −ε3 + 4ε2 −
6ε+ 2 ∈ Z[ε] is a root of Πη(X) = X4 −X3 + 3X2 −X + 1 of type (T), Z[η] = Z[ε]
and dη = dε = 189.

(c) (i) Πε(X) = X4−X3+2X2+1, in which case ε = η2 where η = −ε3+ε2−ε ∈ Z[ε].
(ii) Πε(X) = X4−3X3 +3X2−X+1, in which case ε = 1/η3 where η = −ε+1 ∈

Z[ε].
(iii) Πε(X) = X4 − 4X3 + 6X2 − 3X + 1, in which case ε = −1/η4 where η =

ε3 − 3ε2 + 3ε ∈ Z[ε].
(iv) Πε(X) = X4 − 5X3 + 5X2 + 3X + 1, in which case ε = −η6 where η =

ε2 − 2ε− 1 ∈ Z[ε].
(v) Πε(X) = X4 − 7X3 + 14X2 − 6X + 1, in which case ε = −1/η7 where η =

ε2 − 4ε+ 2 ∈ Z[ε].
In these five cases, Πη(X) = X4 −X3 + 1 is of type (T), Z[η] = Z[ε] and dη = dε =
229.

(d) (i) Πε(X) = X4 − 2X3 + 3X2 − X + 1, in which case ε = −1/η2 where η =
ε3 − 2ε2 + 2ε ∈ Z[ε].
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(ii) Πε(X) = X4−3X3 +X2 +2X+1, in which case ε = 1/η3 where η = ε2−2ε ∈
Z[ε].

(iii) Πε(X) = X4−5X3 +7X2−2X+1, in which case ε = −η4 where η = ε2−2ε ∈
Z[ε].

In these three cases, Πη(X) = X4 − X3 + X2 + 1 is of type (T), Z[η] = Z[ε] and
dη = dε = 257.

(e) Πε(X) = X4−4X3 +7X2−4X+1, in which case ζ4 = −ε3 +4ε2−6ε+2 ∈ Z[ε] and
ε = ζ4η

2, where η = −ε3 +3ε2−4ε+1 ∈ Z[ε] is a root of Πη(X) = X4−2X3 +X2 +1
of type (T), Z[η] = Z[ε] and dη = dε = 272.

(f) Πε(X) = X4−13X3 +43X2−5X+1, in which case ε = −η3 where η = −ε3 +6ε2 +
3ε ∈ Z[ε] is a root of Πη(X) = X4 − 2X3 + 4X2 −X + 1 of type (T), Z[η] = Z[ε]
and dη = dε = 1229.

4.2. Sketch of proof. — Let ε be a totally imaginary quartic unit which is not a complex
root of unity. Compared with the non-totally real cubic case, this quartic case is more tricky.
The first problem is that the totally imaginary quartic order Z[ε] may contain complex roots of
unity. Let µ(ε) denote the cyclic group of order 2N ≥ 2 of complex roots of unity contained
in Z[ε]. Since the cyclotomic field of conductor 2N and degree φ(2N) is contained in the
quartic field Q(ε), we obtain that φ(2N) divides 4, hence that 2N ∈ {2, 4, 6, 8, 10, 12}.
We will devote Section 4.4 to the case that 2N ∈ {8, 10, 12} and will settle our problem in
this situation.
Hence we may and we now assume that 2N ∈ {2, 4, 6}.
We want to determine when ε = ζηp for some ζ ∈ µ(ε), some η ∈ Z[ε] and some prime
p ≥ 2. We may and we will assume that η is also a totally imaginary quartic unit which is
not a complex root of unity (if η is not totally imaginary then it is a real quadratic unit and
ζ 6= ±1, and we have ε = ζ ′η′p with η′ = ζη ∈ Z[ε] a totally imaginary quartic unit and
ζ ′ = ζ1−p ∈ µ(ε)).
Clearly there are three subcases.

1. For p = 2 we determine when ε = ±η2 (Lemma 20), and when ε = ζ4η
2 where ζ4 is a

complex root of unity of order 4 in Z[ε] (Lemma 22).

2. For p = 3 we determine when ε = η3 (next subcase), and when ε = ζ3η
3 where ζ3 is a

complex root of unity of order 3 in Z[ε] (Lemma 22).

3. For p ≥ 3 we determine when ε = ηp for some η ∈ Z[ε]. Using |η| ≥ |η0| = 1.18375 · · ·
(Lemma 17) and a double bound (13) for dε similar to (4) and (7), we will obtain in
Corollary 29 that p ∈ {3, 5, 7}.

In the cubic case, if ε = ηp > 1 and Πε(X) is of type (T), then so is Πη(X). This is no longer
true in the present quartic case. For example, if Πε(X) = X4 − 3X3 +X2 + 2X + 1, of type
(T), and η = −ε2 + ε+ 1 ∈ Z[ε], then ε = η3 and Πη(X) = X4 +X2 −X + 1 is not of type
(T). Since we want η to be of type (T) in all our statements, we may have to present our
results in using −η, 1/η or −1/η instead, as in Lemma 20.
Putting together the results of Lemma 20, Lemma 22 and Corollary 29, we obtain Table 2
(similar to Table 1 of section 3.2, where we single out the cases b = 1 and b = 2 of point
1 of Lemma 20, of discriminants D = 257 and D = 229), which completes the proof of
Theorem 18:
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p Πη(X) Q(X) D
2 X4 −X3 −X2 +X + 1 Πη2(X) = X4 − 3X3 + 5X2 − 3X + 1 117
2 X4 − 2X3 + 2X2 −X + 1 Π−1/η2(X) = X4 − 3X3 + 2X2 + 1 117
3 X4 − 2X3 + 2X2 −X + 1 Πζ3η3(X) = X4 − 5X3 + 8X2 − 4X + 1 117
2 X4 −X3 + 3X2 −X + 1 Π−η2(X) = X4 − 5X3 + 9X2 − 5X + 1 189
3 X4 −X3 + 1 Π1/η3(X) = X4 − 3X3 + 3X2 −X + 1 229
2 X4 − 3X3 + 3X2 −X + 1 Π−1/η2(X) = X4 − 5X3 + 5X2 + 3X + 1 229
2 X4 −X3 + 1 Πη2(X) = X4 −X3 + 2X2 + 1 229
2 X4 −X3 + 2X2 + 1 Π−1/η2(X) = X4 − 4X3 + 6X2 − 3X + 1 229
3 X4 −X3 + 2X2 + 1 Π−η3(X) = X4 − 5X3 + 5X2 + 3X + 1 229
7 X4 −X3 + 1 Π−1/η7(X) = X4 − 7X3 + 14X2 − 6X + 1 229
2 X4 −X3 +X2 + 1 Π−1/η2(X) = X4 − 2X3 + 3X2 −X + 1 257
2 X4 − 2X3 + 3X2 −X + 1 Π−1/η2(X) = X4 − 5X3 + 7X2 − 2X + 1 257
3 X4 −X3 +X2 + 1 Π1/η3(X) = X4 − 3X3 +X2 + 2X + 1 257
2 X4 − 2X3 +X2 + 1 Πζ4η2(X) = X4 − 4X3 + 7X2 − 4X + 1 272
3 X4 − 2X3 + 4X2 −X + 1 Π−η3(X) = X4 − 13X3 + 43X2 − 5X + 1 1229

Table 2.

Remark 19. — Contrary to the non-totally real cubic case, here ε = ζηn, with η ∈ Z[ε]
and ζ ∈ µ(ε), does not always imply Z[ε] = Z[η]. For example for ε = ζ5η = 1 + ζ2

5 with
η = ζ5 + ζ4

5 ∈ Q(
√

5) we have Z[ε] = Z[ζ5] 6= Z[η] = Z[(1+
√

5)/2] (notice that ζ5 = (ε−1)3 ∈
Z[ε] and η = ζ5 + ζ4

5 ∈ Z[ζ5] ⊆ Z[ε]). Indeed, for this conclusion to hold true we need to have
Q(ε) = Q(η), i.e. η must also be a totally imaginary quartic unit. But it is not quite clear
to us whether this necessary condition for the conclusion to hold true is also sufficient. But
in the case that η is also a totally imaginary quartic unit, then Z[η] ⊆ Z[ε] implies that dε
divides dη.

4.3. Being a square. —

Lemma 20. — Let ε be a totally imaginary quartic algebraic unit which is not a complex
root of unity, with Πε(X) of type (T). Then ±ε is a square in Z[ε] if and only if we are in
one of the seven following cases:

1. Πε(X) = X4−2bX3 + (b2 + 2)X2− (2b−1)X+ 1, b ≥ 1, in which cases ε = −1/η2 where
η = ε3− 2bε2 + (b2 + 1)ε− (b− 1) ∈ Z[ε] is a root of Πη(X) = X4−X3 + bX2 + 1 of type
(T), and dε = dη = 16b4 − 4b3 − 128b2 + 114b+ 229.

2. Πε(X) = X4 −X3 + 2X2 + 1, in which case ε = η2 where η = −ε3 + ε2 − ε ∈ Z[ε] is a
root of Πη(X) = X4 −X3 + 1 of type (T), and dε = dη = 229.

3. Πε(X) = X4 − 3X3 + 2X2 + 1, in which case ε = −η−2 where η = −ε2 + ε+ 1 ∈ Z[ε] is
a root of Πη(X) = X4 − 2X3 + 2X2 −X + 1 of type (T), and dε = dη = 117.

4. Πε(X) = X4−3X3 +5X2−3X+1, in which case ε = η2 where η = −ε3 +2ε2−2ε ∈ Z[ε]
is a root of Πη(X) = X4 −X3 −X2 +X + 1 of type (T), and dε = dη = 117.

5. Πε(X) = X4−5X3 +9X2−5X+1, in which case ε = −η2 where η = −ε3 +4ε2−6ε+2 ∈
Z[ε] is a root of Πη(X) = X4 −X3 + 3X2 −X + 1 of type (T), and dε = dη = 189.
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6. Πε(X) = X4−5X3 +5X2 +3X+1, in which case ε = −η−2 where η = −ε2 +2ε+2 ∈ Z[ε]
is a root of Πη(X) = X4 − 3X3 + 3X2 −X + 1 of type (T), dη = dε = 229 .

7. Πε(X) = X4−5X3+7X2−2X+1, in which case ε = −η−2 where η = ε3−4ε2+4ε ∈ Z[ε]
is a root of Πη(X) = X4 − 2X3 + 3X2 −X + 1 of type (T), and dη = dε = 257.

Proof. — Assume that ε = ±η2 or ±η−2 for some η ∈ Z[ε], with Πη(X) = X4−aX3 +bX2−
cX + 1 ∈ Z[X] of type (T). Hence,

−1 ≤ b and |c| ≤ a ≤
√

4b+ 5.
The index (Z[η] : Z[η2]) is equal to |a2 + c2 − abc|. Hence, we must have

|a2 + c2 − abc| = 1,
and we will have Πη2(X) = X4−AX3 +BX2−CX+ 1, where A = a2−2b, B = b2−2ac+ 2
and C = c2 − 2b.
Assume that c = 0. Then 1 = |a2 + c2 − abc| = a2, hence a = 1 and we are in the first or the
second case.
Assume that c 6= 0. Then a ≥ 1 and a2 + c2 − abc = ±1 yield |b| ≤ f(|c|), where f(x) =
a
x + x

a + 1
ax is convex. Hence,

|b| ≤ g(a) := max(f(1), f(a)) = max(a+ 2/a, 2 + 1/a2) = a+ 2/a.

Since g is convex we obtain |b| ≤ max(g(1), g(
√

4b+ 5)) = max(3, 4b+7√
4b+5). Hence, b ≤ 5.

There are 9 triplets (a, b, c) satisfying −1 ≤ b ≤ 5 and 1 ≤ |c| ≤ a ≤
√

4b+ 5 for which
|a2+c2−abc| = 1. Getting rid of the three of them for which Πη(X) = X4−aX3+bX2−cX+1
is of negative discriminant and of the one of them for which η is a 5th complex root of unity,
namely (a, b, c) = (1, 1, 1), we fall in one of the five remaining last cases.
Finally, by choosing between the four units ε = ±η2 or ε = ±η−2 the ones for which Πε(X) =
X4 −AX3 +BX2 − CX + 1 satisfies |C| ≤ A, we complete the proof of this Lemma. �

4.4. The case that µ(ε) is of order 8, 10 or 12. —

Lemma 21. — Let ε be a totally imaginary quartic algebraic unit which is not a complex
root of unity. If ζ2N ∈ Z[ε], with 2N ∈ {8, 10, 12}, then ε is a fundamental unit of the order
Z[ε].

Proof. — We have Z[ε] ⊆ Z[ζ2N ] (Z[ζ2N ] is the ring of algebraic integers of Q(ζ2N )). Hence,
Z[ε] = Z[ζ2N ] and dε = dζ2N . Let η2N be a fundamental unit of Z[ζ2N ]. Then η2N ∈ Z[ε] and
ε = ζm2Nη

n
2N , with m ∈ Z and 0 6= n ∈ Z. We want to prove that |n| = 1. We prove that

|n| ≥ 2 implies dε > dζ2N . Set ρ = |η2N |. Let σt be the Q-automorphism of Q(ζ2N ) such that
σt(ζ2N ) = ζt2N , where gcd(t, 2N) = 1 and t 6≡ ±1 (mod 2N), i.e. σt is neither the identity nor
the complex conjugation. Then ε1 = ε, ε2 = σt(ε), ε3 = ε1 and ε4 = ε2 are the four complex
conjugates of ε. Since |ε1|2|ε2|2 = ε1ε2ε3ε4 = NQ(ζ2N )/Q(ε) = 1, we have |ε2| = 1/|ε1| = 1/ρn
and

dε = ((ε1 − ε2)(ε1 − ε3)(ε1 − ε4)(ε2 − ε3)(ε2 − ε4)(ε3 − ε4))2

= 16=2(ε1)=2(ε2)|ε1 − ε2|4|ε1 − ε2|4 ≥ 16=2(ε)=2(σt(ε))|ρn − 1/ρn|8.
Notice that if η2N is real, then 16=2(ε)=2(σt(ε)) = 16 sin2(πmN ) sin2( tπmN ).
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1. If 2N = 8, we may take η8 = 1 +
√

2 = ρ and t = 3 and we obtain

dε ≥ 16 sin2(πm4 ) sin2(3πm
4 )(ρn − ρ−n)8 ≥ 4(ρ2 − ρ−2)8 = 222 > 256 = dζ8

(since ε is totally imaginary, we have m 6≡ 0 (mod 4)).
2. If 2N = 10, we may take η10 = (1 +

√
5)/2 = ρ and t = 3 and we obtain

dε ≥ 16 sin2(πm5 ) sin2(3πm
5 )(ρn − ρ−n)8 ≥ 5(ρ2 − ρ−2)8 = 55 > 125 = dζ10

(since ε is totally imaginary, we have m 6≡ 0 (mod 5)).
3. If 2N = 12, then ε0 = 2 +

√
3 = |1 + ζ12|2 = NQ(ζ12)/Q(

√
3)(1 + ζ12) is the fundamental unit

of Z[
√

3]. Hence, we may take η12 = 1 + ζ12, ρ = ε
1/2
0 and t = 5. Noticing that η12 = ζ24(ζ24 +

ζ−1
24 ) = ζ24ρ and σ(η12) = 1 + ζ5

12 = ζ3
12

1+ζ12
= ζ3

12/η12 = ζ5
24/ρ, we obtain 16=2(ε)=2(σt(ε)) =

16 sin2( (2m+n)π
12 ) sin2(5(2m+n)π

12 ) ∈ {1, 4, 9, 16} and

dε ≥ (εn/20 − ε−n/20 )8 ≥ (ε0 − 1/ε0)8 = 1442 > 144 = dζ12

(since ε is totally imaginary, we have 2m+ n 6≡ 0 (mod 12)). �

4.5. The case that ε = ζ4η
2 or ε = ζ3η

3. —

Lemma 22. — Let ε be a totally imaginary quartic unit which is not a complex root of
unity such that Πε(X) = X4 − aX3 + bX2 − cX + 1 satisfies |c| ≤ a.

1. Assume that ε = ζ3η
3 for some totally imaginary quartic unit η ∈ Z[ε] and some complex

root of unity ζ3 ∈ Z[ε] of order 3. Then Πε(X) = X4 − 5X3 + 8X2 − 4X + 1, in which
case ε = ζ3η

3, where η = −ε2 + 3ε−1 ∈ Z[ε] and ζ3 = ε3−4ε2 + 5ε−2 ∈ Z[ε]. Moreover,
Πη(X) = X4 − 2X3 + 2X2 −X + 1 is of type (T) and dε = dη = 117 and Z[ε] = Z[η].

2. Assume that ε = ζ4η
2 for some totally imaginary quartic unit η ∈ Z[ε] and some complex

root of unity ζ4 ∈ Z[ε] of order 4. Then Πε(X) = X4 − 4X3 + 7X2 − 4X + 1, in which
case ε = ζ4η

2, where η = −ε3 + 3ε2 − 4ε+ 1 ∈ Z[ε] and ζ4 = −ε3 + 4ε2 − 6ε+ 2 ∈ Z[ε].
Moreover, Πη(X) = X4 − 2X3 +X2 + 1 is of type (T), dε = dη = 272 and Z[ε] = Z[η].

Proof. — Set K := Q(ζ3) and A := Z[ζ3]. Since η is quadratic over K, there exist α and β in
A such that η2 − αη + β = 0. Clearly, β ∈ A∗ and α 6= 0. Moreover, A[η] ⊆ A[ε] = A[ζ3η

3] =
A[η3] ⊆ A[η] yields A[η] = A[η3]. Since, η3 = (α2 − β)η − αβ and since η3 6∈ A (otherwise η
would be a complex root of unity), we obtain α2−β ∈ A∗. Now, 1 ≤ |α|2 ≤ |α2−β|+ |β| = 2
yields |α|2 = 1 (there is no element of norm 2 in A) and α ∈ A∗. Hence, α, β and α2−β are in
A∗. Setting β = −α2γ with γ ∈ A∗, we have 1+γ ∈ A∗ = {±1,±ζ3,±ζ2

3}. Hence, γ ∈ {ζ3, ζ
2
3}

and η2−αη−α2γ = 0 yields that ε = ζ3η
3 is a root of P (X) = X2−δζ3(3γ+1)X−ζ2

3 ∈ K[X]
(use α6 = γ3 = 1), where δ = α3 ∈ {±1}. Hence,

Πε(X) = P (X)P (X) =
{
X4 + 4δX3 + 8X2 + 5δX + 1 if γ = ζ3,
X4 − 5δX3 + 8X2 − 4δX + 1 if γ = ζ2

3 .

Set K := Q(ζ4) and A := Z[ζ4]. Since η is quadratic over K, there exist α and β in A such that
η2 − αη + β = 0. Clearly, β ∈ A∗ and α 6= 0. Moreover, A[η] ⊆ A[ε] = A[ζ4η

2] = A[η2] ⊆ A[η]
yields A[η] = A[η2]. Since, η2 = αη − β and since η2 6∈ A we obtain α ∈ A∗. Hence, α and β
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are in A∗. Setting β = −α2γ with γ ∈ A∗, we obtain η2 − αη − α2γ = 0, with α, γ ∈ A∗ =
{±1,±ζ4}. It follows that ε = ζ4η

2 is a root of P (X) = X2 − δζ4(1 + 2γ)X − γ2 ∈ K[X] (use
α4 = 1), where δ = α2 ∈ {±1}. Hence,

Πε(X) = P (X)P (X) =


X4 −X2 + 1 if γ = −1,
X4 + 4δX3 + 7X2 + 4δX + 1 if γ = ζ4,

X4 − 4δX3 + 7X2 − 4δX + 1 if γ = −ζ4,

X4 + 7X2 + 1 if γ = 1.

If γ = −1 then ε is a complex root of unity of order 12, a contradiction. If γ = 1 then
ζ4 ∈ {±(ε3 + 8ε)/3} is not in Z[ε]. �

Remark 23. — Whereas there are only finitely many cases for which the quartic order Z[ε]
contains a complex root of unity of order 8, 10 or 12, by Lemma 21, it happens infinitely often
that it contains a complex root of unity of order 3 or 4. For example, if Πε(X) = X4−2AX3+
(A2−1)X2 +AX+1, A ≥ 0, then ζ3 = −ε2 +Aε ∈ Z[ε]. If Πε(X) = X4−2AX3 +A2X2 +1,
A ≥ 0, then ζ4 = ε2 −Aε ∈ Z[ε].

4.6. Bounds on discriminants. —

Theorem 24. — Let α be a totally imaginary quartic algebraic unit. Then

(13) 7 max(|α|4, |α|−4)/10 ≤ dα ≤ 16(|α|2 + |α|−2)4 ≤ 256 max(|α|8, |α|−8).

Hence, if P (X) = X4− aX3 + bX2− cX + 1 ∈ Z[X] is Q-irreducible of positive discriminant
DP (X) > 0 and with no real root, then

(14) 7H∞(P (X))2/10 ≤ DP (X) ≤ 16H1(P (X))4 ≤ 256H∞(P (X))4.

Proof. — Clearly, (14) follows from (13): if α, ᾱ, β and β̄ are the (non-real) roots of P (X),
then |α|2|β|2 = 1, hence Hp(P ) = (|α|2p + |α|−2p)1/p = (|β|2p + |β|−2p)1/p and H∞(P (X)) =
max(|α|2, |α|−2) = max(|β|2, |β|−2).
Since both terms of (13) remain unchanged if we change α into −α, 1/α and −1/α, we may
assume that Πα(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X] satisfies |c| ≤ a. By taking an
appropriate choice of the root of Πα(X), we may also assume that ρ := |α| ≥ 1.
Let α = ρeiφ, ᾱ, α′ = ρ−1eiψ and ᾱ′ be the four complex roots of Πα(X) (use |α|2|α′|2 = 1).
Then

dα =
(
(α− ᾱ)(α− α′)(α− ᾱ′)(ᾱ− α′)(ᾱ− ᾱ′)(α′ − ᾱ′)

)2
= 16(sinφ)2(sinψ)2|ρ− ρ−1ei(ψ−φ)|4|ρ− ρ−1ei(ψ+φ)|4.

Setting X = ρ2 + ρ−2, we have dα = 4 (F (cos(ψ − φ), cos(ψ + φ)))2 ≤ 16X4, by Lemma 25
below.
(Notice that dα = 256 = 16(|α|2 + |α|−2)4 = 256 max(|α|8, |α|−8) if α = ζ8).
Asssume that ρ ≥

√
3 and a ≥ 37.

Then |2ρ−1 cosφ+ 2ρ cosψ| = |c| ≤ a = 2ρ cosφ+ 2ρ−1 cosψ implies cosφ ≥ | cosψ| and

dα ≥
(
4(ρ− ρ−1)4 sin2 φ

)2
.

First, if sin2 φ ≥ 3
4ρ
−2, then dα ≥

(
3(1− ρ−2)

)2
ρ4 ≥ 4ρ4 (use ρ ≥

√
3).
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Secondly, assume that sin2 φ < 3
4ρ
−2. Since ρ ≥ 1, we have

−8 < 4b− a2 < 3 + 4 sin2 ψ + 8
√

1− sin2 ψ ≤ 11,

by (12) (α is totally imaginary, hence sinφ 6= 0 and sinψ 6= 0, and
√

1− t ≤ 1−t/2 for 0 ≤ t =
sin2 ψ ≤ 1). Since 4b−a2 ≡ 0 or 3 (mod 4), we obtain J := 4b−a2 ∈ {−5,−4,−1, 0, 3, 4, 7, 8}
and we are in the situation of Lemma 26. By Lemma 27 we have dα ≥ 4 max(|α|4, |α|−4) = 4ρ4.
Finally, since |c| ≤ a ≤

√
4b+ 5 and −1 ≤ b ≤ ρ2 + ρ−2 + 4, it is easy to list all the possible

polynomials Πα(X) for which 1 ≤ ρ ≤
√

3 or for which a ≤ 36 and b = (a2 + J)/4 with
J ∈ {−5,−4,−1, 0, 3, 4, 7, 8} and also to check that the lower bound for dα in (13) holds true
for these polynomials, by using Lemma 16. �

Lemma 25. — For X ≥ 2 we have sup|x|,|y|≤1 F (x, y) ≤ 2X2, where F (x, y) := |x− y|(X −
2x)(X − 2y).

Proof. — First, for X ≥ 2 we have
S1 := sup

|x|,|y|≤1
xy≥0

F (x, y) = sup
0≤x≤y≤1

(y − x)(X + 2x)(X + 2y)

= sup
0≤x≤1

(1− x)(X + 2x)(X + 2) = X(X + 2) ≤ 2X2.

Secondly, for X ≥ 2 we have
S2 := sup

|x|,|y|≤1
xy≤0

F (x, y)

= sup
0≤x,y≤1

(x+ y)(X − 2x)(X + 2y) = sup
0≤x≤1

(x+ 1)(X − 2x)(X + 2).

IfX ≥ 6 then S2 = 2(X−2)(X+2)≤ 2X2. If 2 ≤ X ≤ 6 then f(x) := (x+1)(X−2x)(X+2) ≤
f((X − 2)/4) = (X + 2)3/8 ≤ 2X2. �

Lemma 26. — Fix J ∈ {−5,−4,−1, 0, 3, 4, 7, 8}. For a ∈ Z with a2 ≡ −J (mod 4), i.e.
with a even if J ≡ 0 (mod 4) and a odd if J ≡ 3 (mod 4), set

ΠJ(X) = X4 − aX3 + a2 + J

4 X2 − cX + 1 ∈ Z[X].

Assume |c| ≤ a, that a ≥ 15 and that ΠJ(X) is Q-irreducible with no real roots, hence is of
positive discriminant D(a, J, c) (a quartic polynomial in c). Set

B :=


a− 1 if J = 8
Ja/8 if J ∈ {−4, 0, 4}
(Ja− 1)/8 if J ∈ {−5,−1, 3, 7}.

Then −a ≤ c ≤ B and D(a, J, c) ≥ F (a, J) := min(D(a, J,−a), D(a, J,B)).

Proof. — Assume that a = 2A is even. Then J = 4j and ΠJ(A) = jA2−cA+1 > 0 (for ΠJ(X)
has no real root) yields c ≤ jA = Ja/8. Moreover, since X4−2AX3 +(A2 +2)X2−2AX+1 =
(X2 −AX + 1)2 is not irreducible, we obtain that c 6= a = Ja/8 for J = 8. Hence, c ≤ B.
Now, assume that a is odd. Then 0 < 16ΠJ(a/2) = Ja2 − 8ac + 16 ≡ 3 (mod 4) yields
Ja2 − 8ac+ 16 ≥ 3. Hence, 8c ≤ Ja+ 13/a < Ja+ 1 for a ≥ 15. Hence, c ≤ (Ja− 1)/8 = B.
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Numerical investigations suggest that D(a, J, c) as a function of c has four real roots close to
−a, Ja/8, a and a3/54 + Ja/24. Set e = 0 if J is even and e = 1 if J is odd, and

∆(a, J, c) = −27(c+ a)
(
c− Ja− e

8

)(
c−

(
a− 1 + e

8
))(

c− a3

54 −
Ja

24 − 1
)
.

Using any software of symbolic computation, we check that D(a, J, c) = ∆(a, J, c)+P (a, J, c),
where P (a, J, c) = α(a, J)c2 +β(a, J)c+ γ(a, J) is a quadratic polynomial in c whose leading
coefficient

α(a, J) =

−
a3

2 +
(
3 + J2

64

)
a2 +

(
27− 9J

8

)
a− J3

16 + 36J − 27 J even
−a3

2 +
(
3 + J2

64

)
a2 +

(
189
8 −

45J
64

)
a− J3

16 + 36J − 1539
64 J odd

is less than or equal to 0 for J ∈ {−5,−4,−1, 0, 3, 4, 7, 8} and a ≥ 14.
Clearly, we have ∆(a, J, c) ≥ 0 for −a ≤ c ≤ B (notice that a3/54 − Ja/24 − 1 ≥ a3/54 −
a/3− 1 ≥ a− 1 ≥ B for a ≥ 9). Hence, D(a, J, c) ≥ P (a, J, c). Since α(a, J) ≤ 0, we have

P (a, J, c) ≥ min(P (a, J,−a), P (a, J,B)) for − a ≤ c ≤ B.

Finally, we have ∆(a, J,−a) = ∆(a, J,B) = 0. So, D(a, J,−a) = P (a, J,−a) and D(a, J,B) =
P (a, J,B). The desired result follows. �

Lemma 27. — Assume that Πα(X) = X4 − aX3 + a2+J
4 X2 − cX + 1 ∈ Z[X] is a quartic

polynomial of type (T) with J ∈ {−5,−4,−1, 0, 3, 4, 7, 8}, a ∈ Z and a ≡ J (mod 2). Assume
that a ≥ 37. Then dα ≥ 4 max(|α|4, |α|−4).

Proof. — Set M = max(|α|, |α|−1). Using (11), we obtain

(15) (a2 + J − 16)/8 ≤M2 ≤ (a2 + J + 16)/4.

By Lemma 26, for J ∈ {−4, 0, 4, 8} we have

D(a, J, c) ≥ min(D(a, J,−a), D(a, J,B))
≥ D(a, 4, a/2) = 9((a2 − 8)2 + 192)/16

((i) check the quartic polynomials with positive leading coefficientD(a, J,−a)−D(a, 4, a/2) =
(J+5)(J+11)

16 a4 + · · · are non-negative for J ∈ {−4, 0, 4, 8} and a ≥ 1, (ii) check that D(a, 8, a−
1)−D(a, 4, a/2) ≥ 0 for a ≥ 0 and (iii) check that the quartic polynomials with non-negative
leading coefficient D(a, J, Ja/8)−D(a, 4, a/2) = (16−J2)(112−J2)

4096 a4 + · · · are non-negative for
J ∈ {−4, 0, 4} and a ∈ Z).
Using (15), we have M2 ≥ (a2 − 20)/8 > 8 and a2 − 8 ≥ 4(M2 − 8) > 0. Hence, dα ≥
9((M2 − 8)2 + 12) ≥ 4M4.
In the same way, for J ∈ {−5,−1, 3, 7} we have

D(a, J, c) ≥ min(D(a, J,−a), D(a, J, (Ja− 1)/8))
≥ D(a,−5,−a) = 9((a2 + 19)2 − 192)/16

(check (i) that the quartic polynomials with non-negative leading coefficient D(a, J,−a) −
D(a,−5,−a) = (J+5)(J+11)

16 a4 + · · · are non-negative for J ∈ {−5,−1, 3, 7} and a ≥ 1
and (ii) that the quintic polynomials with positive leading coefficient D(a, J, (Ja − 1)/8) −
D(a,−5,−a) =

(
1− J2

64

)
a5

16 + · · · are positive for J ∈ {−5,−1, 3, 7} and a ≥ 36).
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Using (15), we have M2 ≥ (a2 − 21)/8 > 1 and 4(M2 − 1) ≤ a2 + 19. Hence, dα ≥
9((M2 − 1)2 − 12) ≥ 4M4. �

Remark 28. — The exponents 4 and 8 in (13) are optimal. Indeed, if Πα(X) = X4−2bX3+
(b2 + 2)X2 − (2b − 1)X + 1, b ≥ 3, then |α|2 + 1/|α|2 is the root greater than 2 of R(X) =
X3−(b2 +2)X2 +(4b2−2b−4)X−4b2 +4b+7 (Lemma 16), hence is asymptotic to b2. Hence,
max(|α|, |α|−1) is asymptotic to b and dα is asymptotic to 16b4, hence to 16 max(|α|4, |α|−4).
If Πβ(X) = X4 −X3 + bX2 + 1, b ≥ 3, then β2 = α and dβ = dα. Hence, dβ is asymptotic
to 16 max(|β|8, |β|−8).

Corollary 29. — Let ε be a totally imaginary quartic algebraic unit which is not a complex
root of unity. If ε = ηn for some η ∈ Z[ε] and some n ∈ Z, then max(|η|, |η|−1) < 2.27 and
|n| ≤ 9. In particular, by (10), if Πη(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X] is of type (T),
then −1 ≤ b ≤ 9 and |c| ≤ a ≤

√
4b+ 5.

Proof. — We may assume that |ε| ≥ 1, that |η| ≥ 1 and that n ≥ 3. Notice that η is
necessarily a totally imaginary quartic algebraic unit which is not a complex root of unity.
By (13), we have

7|η|12/10 ≤ 7|η|4n/10 = 7|ε|4/10 ≤ dε = dη ≤ 16
(
|η|2 + |η|−2

)4
,

that implies |η| ≤ 2.27. Moreover, we have |η| ≥ |η0| = 1.18375 · · · (Lemma 17). Hence, by
(13), we have

1 = dη/dε ≤
16
(
|η|2 + |η|−2)4
7|ε|4/10 = 160

7

(
|η|2 + |η|−2

|η|n

)4

≤ 160
7

(
|η0|2 + |η0|−2

|η0|n

)4

,

that implies n < 10. �

5. The totally real cubic case

The aim of this Section 5 is to prove Theorem 36. After having settled in Sections 2, 3 and
4 the problem of the determination of a fundamental unit of any order Z[ε] generated by a
unit ε whenever the rank of the group of units is equal to 1 we attacked the general situation
in [Lou12] . We solved this problem in the case that ε is a totally real cubic algebraic unit,
in which case the rank of the group of units of the order Z[ε] is equal to 2. We managed to
prove the best result one could expect, namely that there should exist a second unit η ∈ Z[ε]
such that {ε, η} is a system of fundamental units of the cubic order Z[ε] (and unbeknown
to us this problem was simultaneously solved in [BHMMS] and [MS]). We present here a
streamlined proof of this result, once again based on lower bounds for discriminants of totally
real algebraic cubic units (Theorem 33).
Let ε be a totally real cubic unit of Q-irreducible minimal polynomial Πε(X) = X3 − aX2 +
bX − c ∈ Z[X], c ∈ {±1}, of positive discriminant Dε = dε = DΠε(X). Since the rank of the
group of units of the cubic order Z[ε] is equal to 2, the natural question becomes: does there
exist a unit η ∈ Z[ε] such that {ε, η} is a system of fundamental units of Z[ε]? Clearly, there
exists η ∈ Z[ε] such that {ε, η} is a system of fundamental units of Z[ε] if and only if ±ε are
not an nth power in Z[ε] for any n ≥ 2 (e.g., see [Lou12, end of proof of Lemma 7]).
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5.1. Cubic units of type (T+). —We may assume that |ε| ≥ |ε′| ≥ |ε′′| > 0, where ε, ε′
and ε′′ are the three conjugates of ε, i.e. the three real roots of Πε(X). By changing ε into
1/ε′′, we may assume that |ε| > 1 > |ε′| ≥ |ε′′| > 0 (use εε′ε′′ = c = ±1). Finally, by changing
ε into −ε, we obtain that at least one of the four polynomials equivalent to Πε(X) is of type
(T+) (notice that if ε is of type (T+) and ε = ηn for some odd n ≥ 3 and some η ∈ Z[ε],
then η is clearly also of type (T+), whereas if ε is reduced then it is not clear whether η is
also necessarily reduced):

Definition 30. — A cubic polynomial of type (T+) is a monic cubic polynomial P (X) =
X3−aX2+bX−c ∈ Z[X], c ∈ {±1}, which is Q-irreducible (⇔ b 6= a+c−1 and b 6= −a−c−1),
of positive discriminant DP (X) > 0 and whose three real roots εP , ε′P and ε′′P can be sorted
so as to satisfy

(16) εP > 1 > |ε′P | ≥ |ε′′P | > 0.

In that situation, Hp(P (X)) = (εpP + ε−pP )1/p and H∞(P (X)) = εP .

Lemma 31. — (See [Lou12, Lemma 3]). P (X) = X3−aX2 + bX− c ∈ Z[X] with c ∈ {±1}
is of type (T+) if and only if (i) DP (X) > 0 and (ii) −a − c ≤ b ≤ a + c − 2. It implies
0 ≤ a ≤ H∞(P (X)) + 2.

Lemma 31 makes it easy to list of all the cubic polynomials of type (T+) whose real roots
are less than or equal to a given upper bound B. Taking B = 3, we obtain:

Lemma 32. — The real root η0 = 2.24697 · · · greater than one of Π(X) = X3−2X2−X+1
of type (T+) is the smallest totally real cubic unit greater than 1 that satisfies (16).

5.2. Bounds on discriminants. —

Theorem 33. — Let α be a totally real cubic algebraic unit satisfying (16). Then

(17) α3/2/2 ≤ Dα ≤ 4(α+ α−1)4 ≤ 64α4.

Hence, if P (X) = X3 − aX2 + bX − c ∈ Z[X], c ∈ {±1}, is Q-irreducible and of positive
discriminant DP (X) > 0, then

(18) H∞(P (X))3/2/2 ≤ DP (X) ≤ 4H1(P (X))4 ≤ 64H∞(P (X))4.

Proof. — Write α′ = t/
√
α and α′′ = c/t

√
α, with 1 ≤ |t| ≤

√
α. Then a = α+ (t+ c/t)/

√
α,

b = (t+ c/t)
√
α+ c/α and

(19) b2 − 4ac = (t− c/t)2α− 2c(t+ c/t)/
√
α+ 1/α2.

Let us prove the upper bound. We have

Dα = (α− α′)2(α− α′′)2(α′ − α′′)2.
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Hence, writing x =
√
α > 1, and 1 ≤ y = |t| ≤ x, we have√

Dα ≤
(
x2 + y

x

)(
x2 + 1

xy

)(y
x

+ 1
xy

)
= (x3 + y + 1/y + 1/x3)(y + 1/y)
≤ (x3 + x+ 1/x+ 1/x3)(x+ 1/x)
= (x2 + 1/x2)(x+ 1/x)2 ≤ 2(x2 + x−2)2 = 2H1(P (X))2.

Let us now prove the lower bound. We have

Dα ≥ (α− 1)4(α′ − α′′)2 = (α− 1)4(t− c/t)2/α.

Assume that α ≥ 44.
First, assume that | t− c/t|2 ≥ 1/(3α). Then Dα ≥ (α− 1)4/(3α2) ≥ 2α3/2.
Secondly, assume that |t − c/t|2 < 1/(3α). Then |t − c/t| < 2. Hence c = 1, |t| ≥ 1 and
|t− 1/t| ≤ 5/6, hence 1 ≤ |t| ≤ 3/2 and 2|t+ c/t| = 2|t+ 1/t| ≤ 13/3 and (19) yields

−1 < −13/3√
α
< b2 − 4a < 1

3 + 13/3√
α

+ 1
α2 < 1.

Hence, b2 − 4a = 0, T = t+ 1/t 6∈ (−2, 2), αT 2 − 2T/
√
α + 1/α2 − 4α = 0, T = 2 + 1/α3/2,

t− 1/t =
√

4/α3/2 + 1/α3 and

Dα = 4α3/2
(

1− 2
α5/2 + 1

α3 −
1
α4

)2 (
1 + 1

4α3/2

)
> 2α3/2

(and b = 2B = (t + 1/t)
√
α + 1/α = 2

√
α + 2/α > 2 is even, a = B2 and P (X) =

X3 −B2X2 + 2BX − 1, B ≥ 3).
Therefore, Dα ≥ 2α3/2 for α ≥ 44.
Finally, using Lemma 31 to find the 3236 cubic polynomials P (X) = X3 − aX2 + bX − c ∈
Z[X] of type (T+) with 0 ≤ a ≤ 45 (for 1 < εP < 44 implies a < 46), and checking that
DP (X) ≥ H∞(P (X))3/2/2 for each of these polynomials (which is equivalent to checking that
P ((2DP (X))2/3) > 0), we end up with the desired result. �

Remark 34. — The exponents 3/2 and 4 in Theorem 33 are optimal. Indeed, if P (X) =
X3−B2X2+2BX−1, B ≥ 3, (of type (T+) by Lemma 31), then DP (X) = 4B3−27 is asymp-
totic to 4B3 and H∞(P (X)) is asymptotic to B2, i.e. DP (X) is asymptotic to 4H∞(P (X))3/2.
If P (X) = X3 − aX2 − (a+ 3)X − 1, a ≥ −1, (of type (T+) by Lemma 31), then DP (X) =
(a2 +3a+9)2 is asymptotic to a4 and H∞(P (X)) is asymptotic to a, i.e. DP (X) is asymptotic
to H∞(P (X))4.

5.3. Being a square. —

Lemma 35. — Let ε be a reduced totally real algebraic cubic unit, i.e. such that Πε(X) =
X3 − uX2 + vX − w ∈ Z[X] with Dε > 0, w ∈ {±1} and |v| ≤ u. Then ε = ±η2 for some
η ∈ Z[ε] if and only if we are in one of the two following cases:

1. Πε(X) = X3 − 6X2 + 5X − 1, in which case ε = η2, where η = ε2 − 5ε + 2, Πη(X) =
X3 − 2X2 −X + 1 and Dε = Dη = 49.
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2. Πε(X) = X3−B2X2+2BX−1 with B ≥ 3, in which case ε = η2, where η = −ε2+B2ε−B,
Πη(X) = X3 −BX2 + 1 and Dε = Dη = 4B3 − 27.

In both cases, η is reduced and η is not a square in Z[η] = Z[ε].

Proof. — Assume that ε = ±η2 for some η ∈ Z[ε]. By changing η into −η if necessary,
we may assume that Πη(X) = X3 − aX2 + bX − 1 ∈ Z[X], which gives Πη2(X) = X3 −
(a2 − 2b)X2 + (b2 − 2a)X − 1 and Π−η2(X) = X3 + (a2 − 2b)X2 + (b2 − 2a)X + 1. Then
Z[η2] = Z[ε] = Z[η] (Lemma 2), hence (Z[η] : Z[η2]) = |ab − 1| = 1, and we will have
η = (ε2 ∓ (a2 − b)ε− a)/(1− ab).
First, assume that ab = 2. We are in one of the following eight cases, with X3−6X2 +5X−1
being the only reduced polynomials of positive discriminant among these eight polynomials:

a b Πη2 (X) Π−η2 (X)
2 1 X3 − 2X2 − 3X − 1 X3 + 2X2 − 3X + 1
1 2 X3 + 3X2 + 2X − 1 X3 − 3X2 + 2X + 1
−2 −1 X3 − 6X2 + 5X − 1 X3 + 6X2 + 5X + 1
−1 −2 X3 − 5X2 + 6X − 1 X3 + 5X2 + 6X + 1

Secondly, assume that ab = 0.
If a = 0, then Πε(X) = Πη2(X) = X3+2bX2+b2X−1 with |b2| ≤ −2b implies b ∈ {−2,−1, 0},
and Πε(X) = Π−η2(X) = X3− 2bX2 + b2X + 1 with |b2| ≤ 2b implies b ∈ {−0, 1, 2}. In these
six cases, either Πε(X) is reducible, a contradiction, or of negative discriminant, another
contradiction.
If b = 0 and a 6= 0, then Πε(X) = Π−η2(X) = X3 + a2X2 + 2aX + 1 with 0 6= |2a| ≤ −a2

is impossible, and Πε(X) = Πη2(X) = X3 − a2X2 − 2aX − 1 with 0 6= |2a| ≤ a2 and
Dε = −4a3 − 27 > 0 implies a = −B with B ≥ 3. �

5.4. Statement and proof of the result for the totally real cubic case. —

Theorem 36. — Let ε be a reduced totally real algebraic cubic unit, i.e. such that Πε(X) =
X3 − uX2 + vX − w ∈ Z[X] with Dε > 0, w ∈ {±1} and |v| ≤ u.
If Πε(X) = X3 − 6X2 + 5X − 1, set ξ1 = ε2 − 5ε+ 2 for which ξ2

1 = ε.
If Πε(X) = X3 −B2X2 + 2BX − 1 with B ≥ 3, set ξ1 = −ε2 +B2ε−B for which ξ2

1 = ε.
Otherwise, set ξ1 = ε.
Hence, ξ1 is always reduced, by Lemma 35.
Then there exists another unit ξ2 ∈ Z[ε] such that {ξ1, ξ2} is a system of fundamental units
of the cubic order Z[ε].

Proof. — By Lemma 35, it suffices to prove that if ξ satisfies (16), then there does not exist
any prime p ≥ 3 and any η ∈ Z[ξ] such that ξ = ηp. Notice that such an η must also satisfy
(16). We would have Z[ξ] = Z[η] and Dξ = Dη. Theorem 33 would yield

η9/2/2 ≤ η3p/2/2 ≤ ξ3/2/2 ≤ Dξ = Dη ≤ 4(η + η−1)4,

that implies 1 < η ≤ 64.2. If η0 is as in Lemma 32, we then obtain

1 = Dη/Dξ ≤
4(η + η−1)4

ξ3/2/2
= 8

(
η + η−1

η3p/8

)4

≤ 8
(
η0 + η−1

0

η
3p/8
0

)4

,

that implies p < 5, hence p = 3, ξ = η3 and Dη = Dη3 .
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It remains to computationally check that Dη3 6= Dη for the 7271 cubic polynomial Πη(X) =
X3 − aX2 + bX − c ∈ Z[X] of type (T+) with 0 ≤ a ≤ 66 (for 1 < εP ≤ 64.2 implies
0 ≤ a ≤ 66). Noticing that

Dη3/Dη = |a3c+ b3 − a2b2|2

and using Lemma 31, this is a straightforward verification �

Remark 37. — For several parametrized families of totally real cubic orders, an explicit
system of 2 fundamental units is known (e.g., see [Tho]). By [Lou12, Theorem 2], if ε is a
totally real cubic unit for which (i) the cubic number field Q(ε) is Galois and (ii) the order
Z[ε] is invariant under the action of the Galois group Gal(Q(ε)/Q), then it was reasonable
to conjecture that ε and any one of its two other conjugates ε′ should form a system of
fundamental units of the cubic order Z[ε] (allowing for safety a finite number of exceptions).
Surprisingly, in [LL15] we found that such a cubic order Z[ε] is almost never invariant under
the action of the Galois group Gal(Q(ε)/Q). And proving that {ε, ε′} is in general a system
of fundamental units of the larger Galois-invariant totally real cubic order Z[ε, ε′] is hopeless
(see however [LL14] for related results). In contrast, we still think that if ε > 1 is a real cubic
unit of negative discriminant with complex conjugates η and η̄, then the group < −1, ε, η >
is of bounded index in the group of units of the totally imaginary sextic order Z[ε, η, η̄] (see
[LL14] and use Theorem 8 for a partial solution to this problem).

6. A conjecture in a quartic case of unit rank 2

Let ε be a quartic algebraic unit which is neither totally real nor totally imaginary, i.e. a
quartic unit of negative discriminant Dε < 0. Here again, the rank of the group of units of
the quartic order Z[ε] is equal to 2 and the only complex root of unity in Z[ε] are ±1. As in
Section 5 we would like to prove that, in general, there exists a second unit η ∈ Z[ε] such that
{ε, η} is a system of fundamental units of Z[ε]. Since we can assume that Πε(X) is reduced,
we would like to prove the very precise statement Conjecture 38:

Conjecture 38. — Let ε be a reduced quartic unit of negative discriminnant, i.e. such that
Πε(X) = X4 −AX3 +BX2 − CX +D ∈ Z[X] with Dε < 0, D ∈ {±1} and |C| ≤ A. Let us
define a unit ξ1 ∈ Z[ε] as follows:

1. An infinite family: if Πε(X) is one of the four polynomials equivalent to Π
ξ2

1
(X) = X4 −

(a2−2b)X3 +(b2−2ac+2d)X2−(c2−2bd)X+1, where Πξ1
(X) = X4−aX3 +bX2−cX+

d ∈ Z[X] with d ∈ {±1} and |c| ≤ a is a Q-irreducible reduced polynomial of negative
discriminant different from the ones that appear in the two sporadic cases 3f and 3g below
and such that |a2d + c2 − abc| = 1, then we may assume that ε ∈ {±ξ2

1 ,±1/ξ2
1} and we

have

ξ1 = −aξ
6
1 + (a3 − 2ab+ c)ξ4

1 + (a2c− ab2 − ad+ bc)ξ2
1 − (ab− c)d

a2d+ c2 − abc
∈ Z[ε],

2. An infinite family: if Πε(X) = X4 − a3X3 + 3a2dX2 − 3aX + d, d ∈ {±1} and a ≥ 2,
set ξ1 = ε3 − a3ε2 + 3a2dε − 2a ∈ Z[ε], for which ε = ξ3

1, Πξ1
(X) = X4 − aX3 + d and

Dε = Dξ1
= −27a4 + 256d.

3. The following 8 sporadic cases:
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(a) If Πε(X) = X4 − 5X3 − 9X2 − 5X − 1, set ξ1 = ε3 − 6ε2 − 3ε ∈ Z[ε], for which
ε = ξ3

1, Πξ1
(X) = X4 − 2X3 +X − 1 and Dε = Dχ1 = −275.

(b) If Πε(X) = X4 − 3X3 + 3X2 −X − 1, set ξ1 = −ε+ 1 ∈ Z[ε] for which ε = −1/ξ3
1,

Πξ1
(X) = X4 −X3 − 1 and Dε = Dχ1 = −283.

(c) If Πε(X) = X4 − 5X3 + 7X2 −X − 1, set ξ1 = ε2 − 2ε ∈ Z[ε], for which ε = −ξ3
1,

Πξ1
(X) = X4 −X3 +X2 +X − 1 and Dε = Dχ1 = −331.

(d) If Πε(X) = X4−11X3+15X2−7X+1, for which ε = ξ3
1 with ξ1 = ε3−10ε2+5ε ∈ Z[ε]

and Πξ1
(X) = X4 − 2X3 −X + 1, in which case Dε = Dχ1 = −643.

(e) If Πε(X) = X4− 19X3 + 91X2− 7X − 1, set ξ1 = −ε3 + 10ε2− 5ε ∈ Z[ε], for which
ε = −ξ3

1, Πξ1
(X) = X4 − 2X3 + 4X2 +X − 1 and Dε = Dχ1 = −5987.

(f) If Πε(X) = X4 − 5X3 + 6X2 − 4X + 1, set ξ1 = ε3 − 4ε2 + 2ε− 1 ∈ Z[ε], for which
ε = ξ4

1, Πξ1
(X) = X4 −X3 − 1 and Dε = Dχ1 = −283.

(g) If Πε(X) = X4 − 15X3 + 17X2 − 7X + 1, set ξ1 = ε3 − 15ε2 + 17ε − 5 ∈ Z[ε], for
which ε = ξ4

1, Πξ1
(X) = X4 −X3 −X2 −X − 1 and Dε = Dχ1 = −563.

(h) If Πε(X) = X4 − 8X3 − 14X2 − 7X − 1, set ξ1 = 5ε3 − 43ε2 − 44ε − 9 ∈ Z[ε], for
which ε = ξ7

1, Πξ1
(X) = X4 −X3 − 1 and Dε = Dχ1 = −283.

4. Otherwise, set ξ1 = ε.

Hence, ξ1 is always reduced.
Then there exists another unit ξ2 ∈ Z[ε] such that {ξ1, ξ2} is a system of fundamental units
of the quartic order Z[ε].

The main problem is that we have not yet been able to prove useful lower bounds for dis-
criminants of such quartic units, even though we think it reasonable to conjecture that:

Conjecture 39. — Let P (X) = X4 − aX3 + bX2 − cX + d ∈ Z[X], d ∈ {±1}, be a Q-
irreducible quartic polynomial of negative discriminant DP (X) < 0. Then

(20) H∞(P (X))4/3 � |DP (X)| � H1(P (X))6,

where the implicit contants do not depend on P (X).

At least, we know that the exponent on the left hand side of (20) must be less than or equal
to 4/3 (take n = 3 in Theorem 44) and we can prove the easiest part of Conjecture 39:

Lemma 40. — Let P (X) = X4−aX3 + bX2− cX+d ∈ Z[X], d ∈ {±1}, be a Q-irreducible
quartic polynomial of negative discriminant DP (X) < 0. Then

|DP (X)| ≤ 212H1(P (X))6.

This exponent 6 is optimal: if P (X) = X4 − aX3 + X2 − aX + 1, a ≥ 2, then H1(P (X)) =
(a+

√
a2 + 4)/2 and −DP (X) = (4a2 − 9)(a2 + 4)2 > 0 is asymptotic to 4H1(P (X))6.

Proof. — Let ρ1 and ρ2 be the absolute values of the two real roots ε1 and ε2 of P (X). Let η
and η̄ be its two non-real roots. Set ρ = |η| = 1/√ρ1ρ2. By changing P (X) into its associate
dX4P (1/X), we may assume that ρ1 ≥ 1 and 1/ρ1 ≤ ρ2 ≤ ρ1. Then

H1(P (X)) ≥ H∞(P (X)) = max (ρ1, ρ1ρ2)
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and
D(X) =

(
(ε1 − ε2)|ε1 − η|2|ε2 − η|2(η − η̄)

)2

yields
|D(X)| ≤

(
(2ρ1)((2ρ1)2(ρ2 + ρ)2(2ρ))

)2
= 28ρ5

1(ρ2 + 1/√ρ1ρ2)4/ρ2.

First, if ρ2 ≤ 1/√ρ1ρ2, then ρ2 ≤ 1, H∞(P (X)) = ρ1, ρ2 +1/√ρ1ρ2 ≤ 2/√ρ1ρ2 and |D(X)| ≤
212ρ3

1/ρ
3
2 ≤ 212ρ6

1 = 212H∞(P (X))6.
Secondly, if 1/√ρ1ρ2 ≤ ρ2 ≤ 1, then H∞(P (X)) = ρ1, ρ2 + 1/√ρ1ρ2 ≤ 2ρ2 and |D(X)| ≤
212ρ5

1ρ
3
2 ≤ 212ρ5

1 = 212H∞(P (X))5.
Thirdly, if 1 ≤ ρ2 ≤ ρ1, then then H∞(P (X)) = ρ1ρ2, ρ2 + 1/√ρ1ρ2 ≤ 2ρ2 and |D(X)| ≤
212ρ5

1ρ
3
2 ≤ 212(ρ1ρ2)5 = 212H∞(P (X))5. �

If Conjecture 39 is true, then ε can be infinitely often an nth-power only for |n| ∈ {2, 3, 4}.
Hence a first step towards proving Conjecture 38 would be (i) to prove that ε > 1 cannot be
infinitely many often a 4th power, (ii) to prove that ε is infinitely often a 3rd power if and
only if we are in case 2 of Conjecture 38 and (iii) to write case 1 of Conjecture 38 much more
explicitly, i.e. to give a necessary and sufficient condition easy to check on the coeffcients of
Πε(X) = X4 −AX3 +BX2 − CX +D ∈ Z[X].

Remark 41. — Regarding Conjecture 39, we also did some numerical computation. For the
38 413 452 quartic Q-irreducible polynomials P (X) = X4 − aX3 + bX2 − cX + d ∈ Z[X],
d ∈ {±1}, |c| ≤ a ≤ 400, |b| ≤ 400, of negative discriminant DP (X) < 0 we have

|DP (X)| ≥ 15H∞(P (X))4/3,

except for the following 6 polynomials:
P (X) |DP (X)|/H∞(P (X))4/3

X4 − 8X3 − 14X2 − 7X − 1 13.97761 · · ·
X4 − 8X3 + 10X2 + 7X + 1 8.06342 · · ·
X4 − 9X3 + 22X2 − 8X + 1 5.81131 · · ·
X4 − 24X3 − 26X2 − 9X − 1 3.86062 · · ·
X4 − 95X3 + 64X2 − 14X + 1 1.49757 · · ·

X4 − 252X3 + 120X2 − 19X + 1 0.30925 · · ·

7. The general situation

The situation for number fields of degree ≥ 5 can be even worse. For example, nothing
prevents a quintic algebraic unit ε from being infinitely many often a square, a cube or a
fourth power in Z[ε]:

Proposition 42. — Let m > n ≥ 2 be coprime. Assume that

Xm − (aX + 1)n

is Q-irreducible. Then any of its complex roots ε is an n-th power in Z[ε].

Proof. — Ifmu−nv = 1 withm,n ≥ 1 rational integers, then ε = ηn with η = (aε+1)u/εv ∈
Z[ε]. Notice that η is a root of Xm−aXn− 1. Hence, Xm− (aX + 1)n is Q-irreducible if and
only if Xm − aXn − 1 is Q-irreducible �
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To be able to deal with the general situation of algebraic units of any degree, it is not that
unreasonable to put forward a conjecture generalizing Lemma 3 and Theorems 9, 24, and 33:

Conjecture 43. — Let P (X) = Xn − an−1X
n−1 + · · · + (−1)n−1a1X + (−1)na0 ∈ Z[X]

range over the monic Q-irreducible polynomials of a given degree n ≥ 3 with a0 ∈ {±1}. Then
for some positive constants β(n) ≥ α(n) > 0 it holds that

(21) H∞(P (X))α(n) � |DP (X)| � H1(P (X))β(n),

where the implicit contants depend on n only.

Clearly, the upper bound in (21) holds true with β(n) = n(n − 1) (any complex root α of
P (X) satisfies |α| ≤ H1(P (X))). More interestingly, if Conjecture 43 were true, then we
would have α(n) ≤ (n+ 1)/n:

Theorem 44. — Fix n ≥ 2. Let a range over the rational integers greater than 2. Then
the polynomials Rn(X) = Xn+1 − (aX + 1)n ∈ Z[X] are Q-irreducible, of discriminants
DRn(X) = (−1)n(n−1)/2(nnan+1 + (n + 1)n+1) of absolute values asymptotic to nnan+1 and
H∞(Rn(X)) is asymptotic to an. Hence, DRn(X) is asymptotic to nnH∞(Rn(X))(n+1)/n.
Moreover, any root ε of Rn(X) is an algebraic unit of degree n such that ε = ηn with η =
a+ ε−1 ∈ Z[ε].

Proof. — By Perron’s criterium Pn(X) = Xn+1−aXn− 1 ∈ Z[X] is Q-irreducible for a ≥ 3.
If η is a root of Pn(X) then ε := ηn that satisfies εn+1 = (ηn+1)n = (aηn + 1)n = (aε+ 1)n is
a root of Rn(X). Hence, Rn(X) is Q-irreducible, DRn(X) = DPn(X) = (−1)n(n−1)/2(nnan+1 +
(n+ 1)n+1) and H∞(Rn(X)) = H∞(Pn(X))n is asymptotic to an, by Lemma 45. �

Lemma 45. — Fix n ≥ 2, an integer, and a primitive 2n-th complex root of unity ζ2n. Let
a ≥ 3 range over the integers. Then the n + 1 complex roots ρ(k)

a , 0 ≤ k ≤ n, of Pn(X) =
Xn+1 − aXn − 1 ∈ Z[X] can be sorted so as to satisfy ρ

(0)
a = a + O(a−n) and ρ

(k)
a :=

ζ2k−1
2n a−1/n +O(a−1), 1 ≤ k ≤ n. Hence, H∞(Pn(X)) is asymptotic to a.

Proof. — If An(X) =
∑n+1
k=0 αk(a)Xk ∈ C[X], a ≥ 3, we write An(X) = O(ac) if αk(a) =

O(ac) for 0 ≤ k ≤ n+ 1. Set

Qn(X) := (X − a)
n∏
k=0

(X − θ(k)
a ), where θ(k)

a = ζ2k−1
2n
a1/n + ζ

2(2k−1)
2n

na(n+2)/n .

We want to prove that the coefficients of Qn(X) are very close to those of Pn(X) as a goes to
infinity, and that it implies that the roots of Pn(X) are close to that of Qn(X), hence implies
the desired result. Set

Rn(X) =
n∏
k=1

(
X − ζ2k−1

2n
a1/n

)
= Xn + a−1 and Sn(X) :=

n∏
k=1

(X − θ(k)
a ).

Clearly, we have

Sn(X) = Rn(X)−
n∑
k=1

Rn(X)

X − ζ2k−1
2n
a1/n

ζ
2(2k−1)
2n

na(n+2)/n +O(a−2(n+2)/n).
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Using the partial fraction decomposition over C

X

Rn(X) = X

Xn + a−1 = −a
n∑
k=1

ζ
2(2k−1)
2n
na2/n

X − ζ2k−1
2n
a1/n

,

we obtain Sn(X) = Xn + a−2X + a−1 + O(a−2(n+2)/n) and Qn(X) − Pn(X) = O(a−2).
Applying [Lou08b, (4) of Section 3] with α = 2, β = −1/n, γ = −1 and δ = −1/n we obtain
the approximations of the ρ(k)

a for 1 ≤ k ≤ n. Using Pn(a) = −1 < 0 and Pn(a + a−n) =
(1 + a−n−1)n − 1 > 0, we obtain the approximations of the ρ(0)

a . �
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