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THE MAXIMAL UNRAMIFIED EXTENSIONS OF CERTAIN
COMPLEX ABELIAN NUMBER FIELDS

by

Siman Wong

Abstract. — We combine root discriminant bounds with a ramification argument to show
unconditionally that Q(

√
−7,
√

61) has no nontrivial unramified extension, a result first proved
by Yamamura under the generalized Riemann hypothesis (GRH). This renders unconditional
his determination of the maximal unramified extensions of the complex quadratic fields with
class number 2. Assuming the GRH, we prove an analogous result for the degree 14 subfield
of the cyclotomic field Q(ζ49), a case previously not handled by conditional root discriminant
bounds alone.

Résumé. — Nous combinons les minorations des discriminants avec des considérations por-
tant sur la ramification pour montrer, inconditionnellement, que le corps Q(

√
−7,
√

61) n’a pas
d’extension non-ramifiée non-triviale (ce résultat a été montré par Yamamura avec l’aide de
GRH). Cela rend inconditionnelle la détermination des extensions non-ramifiées maximales des
coprs quadratiques complexes de nombre de classes 2. Sous GRH, nous montrons un résultat
analogue pour le sous-corps de degré 14 de Q(ζ49) (corps non étudié même sous GRH).

1. Introduction

There are many examples of real quadratic fields with class number one that admit non-trivial
extensions unramified at all finite places (for examples and discussion see [8, p.121], [16], [19],
[22]), but we have no analogous example of complex Abelian number fields with class number
one [17, p. 914ff]. Yamamura [17] shows that there are 172 complex Abelian number fields
with class number one. Using the unconditional Odlyzko bound of root discriminants [10], we
find that 132 of these fields K are unramified-closed, i.e. K = Kur, the maximal unramified
extension of K. The stronger form of the Odlyzko bound under the generalized Riemann
hypothesis for zeta functions of number fields (GRH) shows that an additional 23 of these
172 fields are also unramified-closed. Combining root discriminant bounds with the theory
of group extensions, Yamamura [21] has since verified unconditionally that five additional
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94 Maximal unramified extensions of complex Abelian fields

complex Abelian fields are unramified-closed (and two more under GRH). In this paper we
augment this approach with a ramification argument to study Kur for two additional cases.

Theorem 1. — (a) Unconditionally the complex Abelian number field Q(
√
−7,
√

61) is
unramified-closed.
(b) Assume the generalized Riemann hypothesis for the zeta functions of number fields. Then
the degree 14 subfield of the cyclotomic field Q(ζ49) is unramified closed.

Note that Q(
√
−7,
√

61) is the Hilbert class field of Q(
√
−427). By [9], there are 18 complex

quadratic fields Q(
√
−d) with class number 2; specifically

−d = 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427.

In a later work, Yamamura [18] shows that except for −d = 115, 235, 403 and 427, the Hilbert
class field H−d of these quadratic fields (which turn out to be the genus fields) are unramified
closed, and that for each of −d = 115, 235 and 403, the second Hilbert class field of Q(

√
−d)

(i.e. the Hilbert class fields of H−d) is unramified closed. Finally, using the GRH form of the
Odlyzko bound, he shows that H−427 is unramified-closed. Thanks to theorem 1 we can now
remove this GRH condition.

Theorem 2. — The Hilbert class field of Q(
√
−427) has no nontrivial unramified extension,

whence the maximal unramified extensions of imaginary quadratic fields of class number 2 as
determined by Yamamura are valid unconditionally. �

We now give an outline of the proof. Thanks to the unconditional Odlyzko bound, [Kur : K]
is finite for Q(

√
−7,
√

61); the same is true for the field in theorem 1(b) under GRH, thanks
to the conditional Odlyzko bound. Suppose Kur 6= K. Since K has class number one and is
complex, Gal(Kur/K) must admit a simple quotient. From the root discriminant of K we
find that Gal(Kur/K) is either A5 or PSL2(F7). Using the theory of group extensions and
explicit knowledge of the groups Gal(Kur/K) and Gal(K/Q), we deduce from the hypothesis
Kur 6= K the existence of a subfield k/Q of degree ≤ 8 and with known Galois closure. For
the two fields in Theorem 1, careful analysis of their ramification data leads to a sharp bound
of |Disc(k/Q)|. For the degree 14 field, the bound is sharp enough that we can rule out the
existence of k/Q by looking up tables of number fields [7]. For Q(

√
−7,
√

61), we are led
to a hypothetical field k of degree 8 and of discriminant ±74614 ∼ ±3.3 × 1010, which lies
outside the range of [7]. To eliminate this remaining case we combine our construction with
an argument of Roberts [13].
There are four more fields in [17] which are known to be unramified closed only under GRH,
and 17 more which are not known to be unramified closed even conditionally. To handle these
fields requires new ideas; see Section 6 for details.

2. Preliminaries on group theory

In this section we recall the basic theory of group extensions and perform a calculation for
later use. For more details, see [14, Chap. 11].
For any integer n > 0, denote by Cn the cyclic group of order n. For any positive integers
n1, . . . , nk, set Cn1,...,nk

:= Cn1 × · · · × Cnk
. All groups will be written multiplicatively. In
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particular, the identity element of Cn is denoted 1. An extension of a group N by another
group H is a short exact sequence
(1) 1 −→ N −→ E −→ H −→ .

A computation using the theory of group extensions and outer automorphisms of finite simple
groups yields the following result [18, Prop. 2, Prop. 3].

Proposition 1 (Yamamura). — (a) For each of the following pairs of groups N,H, the
isomorphism classes of groups G which are extensions of N by H are as follows:

N = A5
H C2,2 C14
G A5 × C2,2 A5 × C7

S5 × C2 S5 × C7

N = PSL2(F7)
H C2,2 C7
G PSL2(F7)× C2,2 PSL2(F7)× C7

PGL2(F7)× C2 PGL2(F7)× C7

(b) With the notation as above,

– if N ' A5 then G always contains an index 5 subgroup;

– if G ' PSL2(F7)× C2,2 or PSL2(F7)× C7 then G contains an index 7 subgroup;

– if G ' PGL2(F7)× C2 or PGL2(F7)× C7 then G contains an index 8 subgroup. �

The following elementary facts about PGL2(F7) will be needed later on.

Lemma 1. — (a) PGL2(F7) has two conjugacy classes of order 2 elements. One of the two
classes is contained in PSL2(F7). The other class is disjoint from PSL2(F7), has size 28,
and the normalizer of any one of them is conjugate to
(2) H := 〈

( ∗ 0
0 1
)
,
( 0 1

1 0
)
〉 ⊂ PGL2(F7).

(b) PGL2(F7) has 28 C6 subgroups. They are pairwise conjugate.
(c) Let B ⊂ PGL2(F7) be the projective image of a Borel subgroup. For any C6 subgroup
S ⊂ PGL2(F7), either S ⊂ B or S ∩B is trivial.
(d) PGL2(F7) has 42 C2,2 subgroups not contained in PSL2(F7); they are pairwise conjugate.
Every order 2 element in PGL2(F7)− PSL2(F7) is contained in three C2,2 subgroups.

Proof. — (a) Every order 2 element in PGL2(F7) is represented by a matrix m ∈ GL2(F7)
such that m2 = ±I. So the possible choices for eigenvalues of m are ±1,±

√
−1 ∈ F72 . Since

m is not a scalar matrix and
√
−1 6∈ F7, the characteristic polynomial of m (necessarily F7-

rational) must be one of x2 ± 1. Both cases occur: Consider for example the matrices
( 0 −1

1 0
)

and γ :=
(−1 0

0 1
)
. Thus we get two PGL2(F7)-conjugacy classes of order 2 elements, one of

which is in PSL2(F7) and the other one is disjoint from PSL2(F7). The latter contains the
projective image of γ which as a matrix in GL2(F7) is contained in a split Cartan subgroup.
So the PGL2(F7)-normalizer of γ is (2) above (cf. [15, prop. 17]). Since #H = 12, the
PGL2(F7)-class of γ has size 336/12 = 28.
(b) The C6 subgroups of PGL2(F7) are projective image of split Cartan subgroups. Thus
they are pairwise conjugate, and the number of such subgroups is equal to the number of
unordered pairs of distinct lines through the origin of a 2-dimensional F7-vector space. There
are 8 such lines, so there are 8 · (8− 1)/2 = 28 such unordered pairs.
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96 Maximal unramified extensions of complex Abelian fields

(c) Let S′ be a non-trivial subgroup of a C6 subgroup S ⊂ PGL2(F7). Then S′ is the projective
image of a non-trivial, non-cyclic subgroup S′ of a split Cartan subgroup S ⊂ GL2(F7) (whose
projective image is S). Now, S corresponds to a unique, unordered pair of distinct lines {`1, `2}
of F2

7 (and two S correspond to the same unordered pair if and only if both subgroups are
contained in the same (maximal) split Cartan subgroup). Since S′ is not cyclic, with respect
to the ordered basis {`1, `2} the only Borel subgroups B ⊂ GL2(F7) that contain S′ are
〈
( 1 ∗

0 1
)
〉 and 〈

( 1 0
∗ 1
)
〉, in which case S ⊂ B as well, whence S ⊂ B.

(d) Let T be a C2,2 subgroup of PGL2(F7) not contained in PSL2(F7). By part (a), T
contains a conjugate of γ =

(−1 0
0 1

)
, and hence T is conjugate to a C2,2 subgroup of the

centralizer of γ. Since γ has order 2, this centralizer is in fact the normalizer of γ. We readily
check that (2) contains the following three C2,2 subgroups:

(3)
{(±1 0

0 1
)
,
( 0 ±1

1 0
)}

;
{(±1 0

0 1
)
,
( 0 ±2

1 0
)}

;
{(±1 0

0 1
)
,
( 0 ±4

1 0
)}
.

So every order 2 element in PGL2(F7)− PSL2(F7) is contained in three C2,2 subgroups.
Since PSL2(F7) has index 2 in PGL2(F7), a C2,2 subgroup not in PSL2(F7) contains exactly
two elements not in PSL2(F7), and these two unordered pair of elements uniquely determine
this C2,2 subgroup. Combine part (a) with the previous paragraph and we see that there are
(28× 3)/2 = 42 C2,2 subgroups not in PSL2(F7).
Finally, from the description (3) we see that the C2,2 subgroups not in PSL2(F7) are the
projective image of a split Cartan subgroup, and hence they are pairwise conjugate. �

3. Proof of the theorem: Basic setup

Let K be one of the fields in Theorem 1. Denote by Kur the maximal unramified extension
of K. In the table below we list the root discriminant of K, as well as an upper bound of
the degree of Kur/Q furnished by the unconditional (resp. conditional) Odlyzko bound ([4,
§2.2]; [10]). For odd m and for n|ϕ(m), denote by Lnm the degree n subfield of Q(ζm), so L14

49
is the degree 14 subfield of Q(ζ49).

K Gal(K/Q) root discriminant [Kur : Q] [Kur : K] Odlyzko bound

Q(
√
−7,
√

61) C2,2
√

7 · 61 = 20.664 < 786 < 196 unconditional
L14

49 C14 7 25/14 = 32.293 < 4800 < 343 conditional

By Galois theory, Gal(Kur/K) is an extension of Gal(Kur/K) by Gal(K/Q). The next result
puts restrictions on Gal(Kur/K) (cf. also [18, Prop. 2]).

Lemma 2. — Let K be one of the fields in the table. Assume GRH if K = L14
49.

(a) Let K ′/K be a non-Abelian, simple, unramified finite Galois extension. Then K ′/Q is
Galois.
(b) Suppose the extensions K ′/K in part (a) do not exist. Then Kur = K.

Proof. — (a) Suppose otherwise; denote by M/Q the Galois closure of K ′/Q. The simplicity
of Gal(K ′/K) then implies that the intersection of any two conjugates of K ′/Q is exactly
K, so [M : Q] ≥ [K ′ : K]2[K : Q]. But M is the compositum of all conjugates of K ′/Q and
K ′/K is unramified, so M/K is also unramified. Thus M has the same root discriminant as
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K, which is too small, by the unconditional Odlyzko bound [4] for K = Q(
√
−7,
√

61), and
by the conditional Odlyzko bound [11] for K = L14

49.
(b) If Gal(Kur/K) is not trivial then it has a simple quotient, by Jordan-Hölder. But K
has class number 1 and is totally complex, so Gal(Kur/K) has trivial Abelianization. The
hypothesis then implies that K = Kur. �

Let K be one of the Abelian number fields in the table above, so [Kur : K] < 343. So
if Kur 6= K then Gal(Kur/K) is either A5 or PSL2(F7). Thanks to Proposition 1 and
Lemma 2, we are reduced to study number fields k/Q unramified outside the bad primes of
K/Q, such that

(4) [k : Q] =
{ 5 if [Kur : K] = 60,

7 if Gal(Kur/Q) contains a direct factor of PSL2(F7),
8 otherwise.

Moreover, when [k : Q] = 8 the Galois group of k/Q is PGL2(F7). In each case we exploit the
arithmetic of K and the group theoretical properties of the Galois group of these hypothetical
fields k to show that k cannot exist, and hence K must be unramified-closed.

4. The case of L14
49

Lemma 3. — Let F/Q be a degree 7 number field with Galois group PSL2(F7). Then
Disc(F/Q) is a perfect square.

Proof. — By [3], S7 contains a single conjugacy class of transitive subgroups isomorphic
to PSL2(F7). Furthermore, such subgroups are all contained in A7. So if f ∈ Q[x] is a
septic polynomial with F as its splitting field, then disc(f) is a perfect square. Polynomial
discriminant differs from the field discriminant by a square, so we are done. �

For the rest of this section we will focus on the case K = L14
49. This C14 extension is totally

ramified at 7 and is unramified at all other finite primes. Suppose K 6= Kur, and consider the
associated extension k/Q in (4) (furnished under GRH). If [k : Q] = 5 then Disc(k/Q) must
divide 74. By the database of Jones and Roberts [7] (where the result is proven complete
in this case), there is no such quintic field. Next, suppose [k : Q] > 5 and that 7 is tamely
ramified in k/Q. Then the ramification index of any prime of k lying above 7 is ≤ 2, whence
Disc(k/Q) divides 74. Again this is not possible, thanks to [7].
Finally, suppose [k : Q] = 7 or 8 and that 7 is wildly ramified. Then exactly one prime p in
k/Q lying above 7 ramifies, with ramification index 7. The completion kp of k at p is contained
in the completion of L14

49 at its unique prime above 7, so kp/Q7 is a degree 7 Abelian extension
with conductor 72. The conductor-discriminant formula then says that this Abelian degree
7 extension kp/Q7 has discriminant (72)6, and hence |Disc(k/Q)| = 712. By the database of
Jones and Roberts [7] (where the result is proven complete in this case), there is no such field
of degree of 7. To handle the case where [k : Q] = 8 we now give an argument applicable to
the case [k : Q] = 7 as well.
Denote by L/Q the Galois closure of k/Q. Since Gal(L/Q) ⊂ PGL2(F7), that means
Gal(L/Q) has no order 14 element. Since k/Q already has a prime with ramification in-
dex 7 and the inertia group of any ramified prime in Kur/Q is C14, the inertia group of any
ramified prime in L/Q is C7. Since Q has no non-trivial extension unramified at all finite
places, the Galois group of any finite Galois extension of over Q is generated by the inertia
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98 Maximal unramified extensions of complex Abelian fields

groups of the extension. Since the order 7 subgroups of PGL2(F7) are transvections and they
generate PSL2(F7), it follows that Gal(L/Q) ' PSL2(F7). Thus [k : Q] = 7 and L14

49L/k is
unramified, whence the root discriminant of L14

49L/Q is 712/7 = 28.102. That is too small, by
the GRH Odlyzko bound [11]. Thus k/Q does not exist, whence Kur = K.

Remark 1. — Recall that in the outset we need to use the GRH Odlyzko bound to deduce
that [Kur : K] is finite for K = L14

49, so even if we replace the last line above with the database
search as at the end of the previous paragraph, our argument for K = L14

49 would still be
conditional.

5. The case of Q(
√
−7,
√

61)

For the rest of this section we take K = Q(
√
−7,
√

61). Suppose K 6= Kur. Let k/Q be
as in (4). Then Kur/K is unramified, and the ramification index of 7 or 61 in K/Q is 2.
Consequently,
(5) the ramification index of each ramified prime in k lying above 7 or 61 is 2.
When [k : Q] = 5, by (5) we see that k has either at most two ramified primes of residual
degree 1 lying above p, or it has exactly one ramified prime of residual degree 2. Thus
Disc(k/Q) divides 72612. When [k : Q] = 7, Lemma 3 plus (5) together imply that Disc(k/Q)
divides 72612 as well. There is no such quintic or septic field, by [7].
Finally, suppose [k : Q] = 8. The argument above shows that Disc(k/Q) divides 74614, which
is too large for us to handle. By Proposition 1, Kur/Q has Galois group PGL2(F7)× C2. It
has a unique PGL2(F7) subfield L/Q which is the Galois closure of k/Q. To get a sharper
estimate of Disc(k/Q) we now analyze closely the ramification of L/Q.

Lemma 4. — Let p ⊂ OL be a prime lying above p ∈ {7, 61}.
(a) The inertia group I(p) has order 2 and is not contained in PSL2(F7).
(b) The decomposition group D(p) is isomorphic to one of C2, C2,2 or C6.

Proof. — (a) Let p ⊂ OL be a prime lying above p ∈ {7, 61}. Since L ⊂ Kur and Kur/K
is unramified, so #I(p) = 2. Inertia groups of conjugate primes are PGL2(F7)-conjugate,
so I(p) ⊂ PSL2(F7) if and only if I(p′) ⊂ PSL2(F7) for every p′ lying above p. But
Gal(Kur/K) ' PSL2(F7) and Gal(Kur/Q) ' PGL2(F7), so if I(p) ⊂ PSL2(F7) then p
is unramified in K/Q, a contradiction. Thus I(p) 6⊂ PSL2(F7).
(b) D(p) normalizes I(p) ' C2 and I(p) 6⊂ PSL2(F7), so by Lemma 1(a), it is conjugate to a
subgroup of H := 〈

(
a 0
0 d
)
,
( 0 1

1 0
)
〉 ⊂ PGL2(F7). In particular, #D(p) = 2m where m = 1, 2, 3,

or 6. Since D(p)/I(p) is cyclic and I(p) ' C2, we see that D(p) is one of the following
subgroups of the order 12 dihedral group H:

m D(p)
1 C2

2 C2,2, C4

3 C6

Since I(p) 6⊂ PSL2(F7) and PGL2(F7)−PSL2(F7) contains no order 4 element, we can rule
out C4. �
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Lemma 5. — We have Disc(k/Q) = ±73613.

Proof. — Let p ∈ {7, 61}, and let p ⊂ OL be a prime lying above p. Note that we can take
Gal(L/k) to be the normalizer of

( 1 1
0 1
)
in PGL2(F7), i.e. a projective Borel subgroup. Such a

subgroup has at least one but not all C6 subgroups, so by Lemma 1(c), if D(p) ' C6 then at
least one prime in k lying above p has inertia degree 1 and ramification index 1, and at least
one other prime in k has inertia degree 3 and ramification index 2. As [k : Q] = 8, that means
pOk = P2

0P1P2 with Norm(P0) = p3 and Norm(P1) = Norm(P2) = p, whence p3||Disc(k/Q).
To handle the two remaining cases of D(p), we use the classical fact (cf. [6, Lemma 5]) that
if

(6) PGL2(F7) =
∐
τ∈T

Gal(L/k) τ I(p),

is the double-coset decomposition of PGL2(F7) by Gal(L/k) and I(p), then there are exactly
#T primes in k lying above p, and that the ramification index of the prime corresponding to
τ ∈ T is the index

(7) [τI(p)τ−1 : Gal(L/k) ∩ τI(p)τ−1].

To compute this double-coset decomposition, we will use the fact [2, p. 213] that PGL2(F7)
is realizable as a subgroup of S8 generated by the permutations γ := (2687453) and δ :=
(13867542).
First, take D(p) = I(p) ' C2. Using the computer algebra package GAP [5] we find that N ,
the normalizer of the 7-cycle γ in 〈γ, δ〉, contains the order two element µ := (16)(24)(58).
Since PSL2(F7) is the commutator subgroup of PGL2(F7), and hence necessarily even,
while µ is odd, it follows that µ 6∈ PSL2(F7). By Lemma 1(d), the order 2 elements in
PGL2(F7) − PSL2(F7) are pairwise conjugate, so we can µ take to be the generator of
I(p) = D(p). Using this explicit description

PGL2(F7) = 〈γ, δ〉, Gal(L/k) = N, and D(p) = I(p) = 〈µ〉,

we use GAP to find that the double coset decomposition (6) has size 5. Thus there are exactly
five primes in k lying above p, each with inertia degree 1 and ramification index ≤ 2. Since
[k : Q] = 8, the only possibility is that pOk = P2

1P2
2P2

3P4P5 with every Norm(Pi) = p,
whence p3||Disc(k/Q). Note that we do not need to invoke (7).
Finally, suppose D(p) ' C2,2. Using GAP we find that the centralizer of µ contains the per-
mutation ω := (14)(26)(37). Taking 〈µ, ω〉 as a model of D(p) we now find that the double
coset decomposition has size 3, with representatives

τ1 = (), τ2 = (13)(27)(58), τ3 = (15628473).

Using (7), we check that the ramification indices of the corresponding primes of k are 1, 2
and 2, respectively. Since [k : Q] = 8 and each such prime has inertia degree ≤ 2, the only
possibility is that pOk = P1P2

2P2
3 with Norm(P1) = Norm(P2) = p2 and Norm(P3) = p,

whence p3||Disc(k/Q). This completes the proof of the lemma. �

Lemma 5 improves the trivial estimate Disc(k/Q)|(74614), but it still lies outside the range
of the database [7]. We now augment this with an argument of Roberts [13] to eliminate k.
Fix an order 2 element σ ∈ PGL2(F7)−PSL2(F7), and denote by Lσ the fixed field of L by
σ.
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100 Maximal unramified extensions of complex Abelian fields

Lemma 6. — (a) The field discriminant of Lσ/Q is ±7786181,±7816178, or ±7816181.
(b) Suppose Lσ is not totally real and that the unique quadratic subfield of L/Q is complex
quadratic. Then Lσ has at least six distinct real places.

Proof. — (a) Let p be either 7 or 61, and let p ⊂ OL be a prime lying above p.
First, supposeD(p) = C2. By Lemma 1(a), PGL2(F7) has 28 order 2 subgroups not contained
in PSL2(F7). For any one of them, call it J2, there are (336/2)/28 = 6 primes in L with
J2 as its inertia group. Exactly one of the 28 choices of J2 is Gal(L/Lσ). Thus there are
(28− 1) · 6 · 1

2 = 81 ramified primes in Lσ lying above p, each with ramification index 2 and
inertia degree 1. Thus the p-part of the field discriminant of Lσ is p81.
Next, suppose D(p) = C6. By Lemma 1(b), there are 28 C6 subgroups J6, each one being
the decomposition group of (336/6)/28 = 2 primes in L. Thus there are (28− 1) · 2 · 1

2 = 27
ramified primes in Lσ lying above p, each with ramification index 2 and inertia degree degree
3. Thus the p-part of the field discriminant of Lσ is (p3)27 = p81.
Finally, suppose D(p) = C2,2. By Lemma 1(d), there are (336/4)/42 = 2 primes in L with
a given C2,2 as its decomposition group, and three of the 42 C2,2 contain σ. Thus there are
(42− 3) · 2 · 1

2 = 39 ramified primes in Lσ lying above p, each with ramification index 2 and
inertia degree degree 2. Thus the p-part of the field discriminant of Lσ is (p2)39 = p78.
(b) Since the unique quadratic subfield of L/Q is complex, complex conjugation gives rise to
an order 2 element in Gal(L/Q) ' PGL2(F7) not contained in PSL2(F7). Conjugate number
fields have the same number of real places, and the conjugates of Lσ are precisely Lσ′ where
σ′ are PGL2(F7)-conjugate to σ. Recall Lemma 1(a) and we see that to prove part (b) we
can take σ ∈ Gal(L/Q) to be complex conjugation. Then Lσ ⊂ R, and we are reduced to
find six distinct field automorphisms of Lσ.
In the course of proving the D(p) ' C2 case of Lemma 5, we saw that PGL2(F7) is realizable
as a subgroup of S8 generated by the permutations (2687453) and (13867542), and that
µ := (16)(24)(58) is an order 2 element of this permutation representation of PGL2(F7) not
contained in PSL2(F7). Using the computer algebra system GAP, we find that the centralizer of
µ has order 12. That means there are twelve elements α1, . . . , α12 in Gal(L/Q) that commute
with σ.
Fix a a normal basis of L/Q, i.e. fix an element ω ∈ L so that {gω : g ∈ Gal(L/Q)} is a Q-
basis of L. Let g1, . . . , g168 be a complete set of right coset representatives of 〈σ〉 ⊂ Gal(L/Q).
Then the elements

(8) giω + σgiω (1 ≤ i ≤ 168)

are Q-linearly independent, and hence they form a Q-basis of Lσ/Q. Since each αi above
commutes with σ, left-multiplication by αi takes the set of elements in (8) to itself. We claim
that

(9) αm and αn induce the same
action on the elements (8) ⇐⇒ αm = σiαn for some i ∈ {0, 1}.

The set of αi, being the centralizer of σ, is closed under multiplication by σ. It then follows
that the restriction of these twelve αi ∈ Gal(L/Q) to Lσ define six pairwise distinct field
automorphisms of Lσ ⊂ R, and hence Lσ has at least six distinct real embeddings.
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It remains to verify the claim (9). To say that αm and αn induce the same action on the
elements (8) is to say that

(αm + αmσ − αn − αnσ)(giω) = 0 for all i.
Since σ has order 2, it follows that

(αm + αmσ − αn − αnσ)(σgiω) = 0 for all i.
Recall that the gi is a complete set of right coset representatives of 〈σ〉 ⊂ Gal(L/Q) and that
{gω : g ∈ Gal(L/Q)} is a Q-basis of L/Q, that means

(αm + αmσ − αn − αnσ)(x) = 0 for all x ∈ L.
By the linear indepdendency of field automorphisms [1, Cor. on p. 84], that means αm = σiαn
for some i ∈ {0, 1}, as desired. �

Finally, we apply Roberts’ argument [13] to deduce a contradiction from Lemma 6, and
therefore Q(

√
−7,
√

61) must be unramified-closed.
First, suppose |Disc(Lσ/Q)| 6= ±7816181. Then the root discriminant of Lσ is ≤ 17.912. This
is not possible, since Diaz y Diaz [4] shows unconditionally that a degree 168 extension has
root discriminant ≥ 17.98.
Next, suppose Lσ/Q has field discriminant ±7816181. Note that Lσ has a unique quadratic
subfield which is one of Q(

√
−7× 61),Q(

√
61) or Q(

√
−7). In the first two cases, Lσ/Q is

linearly disjoint from Q(
√
−7), and hence Lσ(

√
−7)/Q(

√
−7) is unramified at the prime of

Q(
√
−7) above 7. Then in these two cases the root discriminant of Lσ(

√
−7)/Q is

(716861162)1/336 = 19.20 . . .
This is not possible, since Diaz y Diaz [4] shows unconditionally that a degree 336 extension
has root discriminant ≥ 19.47, so we are done.
Finally, suppose |Disc(Lσ/Q)| = 7816181 and that Q(

√
−7) is the unique quadratic subfield

of the PGL2(F7)-extension L/Q. Then lemma 6(b) says that Lσ/Q has at least six distinct
real places. For any degree 168 field with r1 real places and r2 pairs of complex places, using
b = 9.000 in [11, Table 4] yields the unconditional root discriminant lower bound (see [11,
description of tables] for details)

> 53.047 r1/16820.710 2r2/168e−24.001/168.

In particular, if r1 ≥ 6 then the root discriminant is ≥ 18.566, contradicting our hypothesis
|Disc(Lσ/Q)|1/168 = (7816181)1/168 = 18.5456. This completes the proof of the theorem.

6. Remaining cases

As we pointed out in the introduction, among the 172 complex Abelian number fields with
class number one, 132 of them are known to be unramified closed under the unconditional
Odlyzko, 23 of them are known to be unramified closed under the conditional Odlyzko bound
(we will call these GRH fields), and the status of the 17 remaining fields are open (we will
call these unknown fields). In this paper we determine the unramified closure of three of the
23 GRH fields and three of the 17 unknown field. We now discuss the remaining fields.
The unconditional Odlyzko bound for the root discriminant of a degree n field is |D|1/n >
22.38161+o(1) [12, (2.5)]. The root discriminant of 16 of the GRH fields exceed this value, so
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for these 16 fields we do not even know unconditionally if [Kur : Q] is finite. Of the seven
remaining GRH fields, Yamamura [21] has since verified unconditionally that Kur = K for
Q(
√
−53− 2

√
53), Q(

√
−3,
√
−11, cos(2π/7)), and Q(

√
−61− 6

√
61). Theorem 1(a) handles

the case Q(
√
−7,
√

163). The three remaining GRH fields are as follows (in this table the
degree [Kur : Q] is computed using the unconditional Odlyzko bound):

K Gal(K/Q) root discriminant [Kur : Q] [Kur : K]
L3

43(
√
−3) C6 (33434)1/4 = 21.26 < 1524 < 254

Q(
√
−3,
√
−163) C2,2

√
3 · 163 = 22.11 < 13538 < 3384

Q(
√
−11, i sin(2π/8)) C2,4 (222114)1/8 = 22.31 < 102183 < 12772

The smallest case above, L3
43(
√
−3), is almost reachable by the techniques here. The remaining

cases seem to be out of reach by current technology.
We now turn to the 17 unknown fields. Four of them,

Q(
√
−43,

√
−67), Q(

√
−19,

√
−163), Q(

√
−43,

√
−163), Q(

√
−67,

√
−163)

have root discriminants that exceed the GRH Odlyzko bound [12, (2.6)]. For these fields we
do not even know if Kur is a finite extension. Yamamura [21] has since verified uncondi-
tionally that Kur = K for Q(

√
−1,
√
−163) and Q(

√
−11,

√
−67), and under GRH, the field

L4
37(
√
−1). Theorem 1(b) resolves the case L14

49 under GRH, and we list the nine remaining
unknown fields in the table below. In this table the degree [Kur : Q] is computing using the
conditional Odlyzko bound; specifically, for root discriminant up to 41.122 we use [11, Table
1], and for root discriminant > 41.122 we use the bound

|Disc(M/Q)|1/[M :Q] > Be−E/[M :Q],

where B = 43.425 and E = 3.5263 × 108 are given by [11, Table 3] using b = 25 (see [11,
description of tables] for details.) These fields seem to be beyond current technology.

K Gal(K/Q) root discriminant [Kur : Q] [Kur : K]
Q(
√
−7,
√
−163) C2,2

√
7 · 163 = 33.78 < 10000 < 2500

Q(
√
−19,

√
−67) C2,2

√
19 · 67 = 35.68 < 31970 < 7993

Q(
√
−11,

√
−163) C2,2

√
11 · 163 = 43.34 < 1012 < 1012/4

L6
67 C6 675/6 = 33.25 < 4800 < 800

L4
29(
√
−2) C2,4 293/423/2 = 35.35 < 31970 < 3997

L12
61 C12 6111/12 = 43.31 < 1012 < 1012/5

L6
43(
√
−3) C2,6 435/631/2 = 39.79 < 106 < 83334

L3
7L

3
13(
√
−2) C2,2,3 (7686138)1/12 = 41.37 < 1012 < 1012/9

L14
43 C14 4313/14 = 32.97 < 4800 < 343
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