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A THREE-PARAMETER CLAN OF HURWITZ–BELYI MAPS

by

David P. Roberts

Abstract. — We study a collection of Hurwitz–Belyi maps depending on three integer param-
eters, finding formulas uniform in the parameters.

Résumé. — (Une famille d’applications d’Hurwitz–Belyi à trois paramètres) Nous étudions
une certaine collection d’applications d’Hurwitz–Belyi dépendant de trois paramètres avec l’ob-
tention de formules uniformes.

1. Introduction

This paper is a companion to Hurwitz–Belyi maps [6]. It makes use of some of the terminology
and notation set up in the first three sections there, but is otherwise self-contained. The main
fact a reader familiar with Belyi maps has to know from [6] is that Hurwitz–Belyi maps are
a particularly interesting type of Belyi map that arise in moduli problems.
A well-known phenomenon is that certain infinite collections of Belyi maps can be profitably
studied simultaneously by means of parameters. We informally refer to such a collection as a
clan. For example, the recent papers [4],[5] study Belyi maps which are uniquely determined
by partition triples (λ0, λ1, λ∞), with λ∞ of the form (m, 1, . . . , 1). These papers find ten
clans and ten sporadic examples.
Twenty years ago in [1], Couveignes found what in our language we call a four-parameter clan
of Hurwitz–Belyi maps. To our knowledge, it is the only such clan systematically studied in
the literature. However we are convinced from preliminary computations that there are many
other natural clans of Hurwitz–Belyi maps.
Our purpose in this paper is to call attention to the mostly unexplored topic of clans of
Hurwitz–Belyi maps. We aim to indicate the general nature of all clans by studying the
Couveignes clan further. Naturally, we focus on aspects of this clan which are not simple
consequences of the results of [1].
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70 A three-parameter clan of Hurwitz–Belyi maps

While the study of Belyi maps always has a very number-theoretic feel, the study of clans of
Belyi maps also brings in many notions from the theory of special functions. For example,
Jacobi polynomials, Padé approximants, and differential equations are all prominent in [5].
Unlike the cases of [5], a Hurwitz–Belyi map in a clan is typically not determined by its
partition triple. As a consequence, the special functions from Hurwitz–Belyi maps can be
quite far removed from classical special functions.
Section 2 sets the stage by reviewing some of Couveignes’ results. Sections 3-7 pursue topics
that would be natural to study in any clan. Section 3 first reduces to one fewer parameter to
simplify this whole paper, defining Hurwitz–Belyi maps
(1.1) πa,b,c : Xa,b,c → P1.

of degree m = 3(a + b + 2c). It then gives a uniform algebraic description of these maps.
Section 4 describes the monodromy group of πa,b,c in Sm, identifying exactly when it is
primitive. Section 5 obtains a discriminant formula from which one obtains the exact set of
primes at which πa,b,c has bad reduction. Section 6 discusses wall-crossing phenomena which
arise naturally when studying clans. Section 7 compares the Hurwitz–Belyi maps (1.1) with
other Belyi maps sharing the same ramification partitions. Some of the more complicated
formulas in this paper are available in the Mathematica file TPC.m on the author’s homepage.

Acknowledgements. —This work was partially supported by the Simons Foundation
through grant #209472 and, in its final stages, by the National Science Foundation through
grant DMS-1601350. I thank Kay Magaard for his contribution to Section 4.3.

2. Couveignes’ cubical clan

In this section we define Couveignes’ clan, using notation adapted to our context, and present
some of his results.

2.1. Direct description. — Let a, b, c, and d be distinct positive integers and set n =
a+b+c+d. Consider maps F from the complex projective y-line P1

y to the complex projective
t-line P1

t given by

(2.1) t = F (y) = (1− x1y)a(1− x2y)b(1− x3y)c(1− x4y)d.
Here the xi are currently unspecificed distinct complex numbers. Clearly, the preimage of
0 ∈ P1

t consists of the points 1/x1, 1/x2, 1/x3, 1/x4 in P1
y of respective multiplicities a, b, c,

and d. Accordingly, the ramification partition for 0 is λ0 = (a, b, c, d). Likewise, the preimage
of∞ ∈ P1

t is simply∞ ∈ P1
y, giving the ramification partition λ∞ = (n). Note that F (0) = 1.

Couveignes’ starting point is to require also F ′(0) = F ′′(0) = 0. Explicitly this requirement
translates to the following elegant conditions on the xi from [1, §5.1]:

ax1 + bx2 + cx3 + dx4 = 0,(2.2)
ax2

1 + bx2
2 + cx2

3 + dx2
4 = 0.(2.3)

The point 0 ∈ P1
y, always in the preimage of 1 ∈ Pt, now has multiplicity 3. For generic

(x1, x2, x3, x4) satisfying (2.2) and (2.3), the ramification partition λ1 is (3, 1, . . . , 1). There
is then a single remaining critical point ycrit on P1

y. It maps to some point v ∈ P1
t , and the

ramification partition for v is λv = (2, 1, . . . , 1). The isomorphism type of F depends only on
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(x1, x2, x3, x4) in the projective curve Xa,b,c,d defined by (2.2) and (2.3). There is a natural
map

(2.4) πa,b,c,d : Xa,b,c,d → P1
v.

Namely a point (x1, x2, x3, x4) ∈ Xa,b,c,d is taken into its unique extra critical value v.

2.2. Hurwitz parameter. —The previous paragraph fits into the formalism of [6, §3.1]
as follows. The Hurwitz parameter describing the desired functions F is

h(a, b, c, d) = (Sn, (2 1n−2, a b c d, 3 1n−3, n), (1, 1, 1, 1)).

Attention is thoroughly focused at the moment on the local ramification partitions (λv, λ0,
λ1, λ∞). The multiplicity vector (1, 1, 1, 1) will remain trivial even in our modifications below.
While we only consider F if its global monodromy group is all of Sn, this condition turns out
to be forced by the local ramification partitions. The maps (2.4), arising as they do from a
moduli problem, are Hurwitz–Belyi maps.

2.3. Braid monodromy and degree. —As a Belyi map, πa,b,c,d has its own ramification
partitions. We call them β0, β1, and β∞, to distinguish them from the earlier λt. This notation
is used throughout [6], with the letter β being a reminder that partition triples of Hurwitz–
Belyi maps can always be computed by braids.
The braid ramification partitions are deducible from the figure in [1, §5.2], being

β0 = (a+ b)2(a+ c)2(a+ d)2(b+ c)2(b+ d)2(c+ d)2,

β1 = 4616n−24,(2.5)
β∞ = (a+ b+ c)2(a+ b+ d)2(a+ c+ d)2(b+ c+ d)2.

In particular the degree of πa,b,c,d is m = 6n.
The total number of parts in (2.5) is 12 + (6 +m− 24) + 8 = m+ 2, and so Xa,b,c,d has genus
zero. For other clans of Hurwitz–Belyi maps, the degree can grow faster than linearly in the
parameters, unlike m = 6(a+ b+ c+ d). The genus of the covering curves can be larger than
0, unlike the genus of Xa,b,c,d. In these senses, the Couveignes clan is particularly simple.
In the current context, it is better to modify the standard visualization conventions of [6,
§2.3], to exploit that the number of parts in β0 and β∞ is small and independent of the pa-
rameters. Accordingly, we now view the interval [−∞, 0] in the projective line P1

v as the simple
bipartite graph •−−−◦. The dessin π−1

a,b,c,d([−∞, 0]) ⊂ Xa,b,c,d, capturing Couveignes’ determina-
tion [1, §5.2 and §9] of the permutation triple (b0, b1, b∞) underlying (β0, β1, β∞), is indicated
schematically by Figure 2.1. Note that our visualization is dual to that of Couveignes, as our
dessin is formatted on a cube rather than an octahedron.

2.4. Failure of rationality. —The Q-curve Xa,b,c,d underlying the Riemann surface
Xa,b,c,d = Xa,b,c,d(C) is naturally given in the projective space P3 by the system (2.2), (2.3).
The second equation has no solution in P3(R) and so Xa,b,c,d(R) is empty. This non-splitting
of X over R, which forces non-splitting over Qp for an odd number of primes p, is one of the
main focal points of [1].
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Figure 2.1. Schematic indication of Couveignes’ dessin with parameters
(a, b, c, d) based on the combinatorics of a cube. The actual dessin is obtained
by replacing each •−−u−−◦ by u parallel edges.

2.5. More general parameters. —Note finally that our requirement that a, b, c, and d
are all distinct is just so that the above considerations fit immediately into the formalism
of Hurwitz–Belyi maps. One actually has natural covers Xa,b,c,d → P1 of degree 6n even
when this requirement is dropped. These covers have extra symmetries, as illustrated by the
rotation ι discussed in the next section. Couveignes allowed the parameters to become zero
and negative, and we will do the same in Section 6.

3. The semicubical clan

Couveignes does not explicitly give the map Xa,b,c,d → P1
v. The map cannot be given simply

by a rational function in Q(x), because, as just discussed in §2.4, the curve Xa,b,c,d is not
isomorphic to P1 over Q. The fact that all multiplicities are even in the triple (2.5) is necessary
for this somewhat rare obstruction.
In this section, we simplify by modifying the situation so that the covering curves become
isomorphic to P1 over Q. Then we give corresponding rational functions.

3.1. Restriction to three parameters. — For our modified clan, we still require that a,
b, and c are distinct. But now we essentially set d = c in Couveignes’ situation, so that the
degree takes the asymmetric form n = a+ b+ 2c. We thus are now considering the Hurwitz
parameters

(3.1) h(a, b, c) = (Sn, (2 1n−2, a0 b1 c
2, 3x 1n−3, n∞), (1, 1, 1, 1)).

The four subscripts are present for the purposes of normalization and coordinatization. They
will enter into our proof of Theorem 3.1 below.
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The fact that two distinguishable points have now become indistinguishable implies that
Xa,b,c = Xa,b,c,c/ι, where ι is the rotation interchanging c and d in Figure 2.1. The fixed points
of this rotation are the upper-left and lower-right white vertices, each with valence c+d = 2c.
Thus Xa,b,c has degree 3n over P1

v. The new braid partition triple is

β0 = (a+ b)∞(a+ c)2(b+ c)2c2,

β1 = 4313n−12,(3.2)
β∞ = (a+ b+ c)2(a+ 2c)0(b+ 2c)1.

There are three singletons, namely the parts subscripted 0, 1, and ∞. So not only is the
Q-curve Xa,b,c split, but also our choice of subscripts gives it a canonical coordinate. Because
of the equation Xa,b,c = Xa,b,c,c/ι, we call the clan indexed by h(a, b, c) the semicubical clan.

3.2. Explicit rational functions. —To compute πa,b,c for given integers a, b, c as an
explicit rational function, we follow the standard procedure illustrated by simple examples in
Sections 2 and 4 of [6]. Remarkably, this computation can be done for all a, b, and c at once:

Theorem 3.1. — For distinct positive integers a, b, c, let n = a+ b+ 2c and
A = −2nx(a+ c) + (a+ c)(a+ 2c) + nx2(n− c),
B = a(a+ c)− 2anx+ nx2(−(c− n)),
C = x2(a+ b)(n− c)− 2ax(n− c) + a(a+ c),
D = nx2(a+ b) + a(a+ 2c)− 2anx.

Then the Hurwitz–Belyi map for (3.1) is

(3.3) πa,b,c(x) = aabbAa+cBb+cDc

2cc2cnnxa+2c(1− x)b+2cCn−c
.

Proof. — The polynomial

(3.4) Fx(y) = ya(y − 1)b(y2 + ry + s)c

xa(x− 1)b(x2 + rx+ s)c

partially conforms to (3.1), including that Fx(x) = 1. From the 3x we need also that F ′x(x) = 0
and F ′′x (x) = 0. The derivative condition is satisfied exactly when

r = −nx
3 + (a+ 2c)x2 − (a+ b)sx+ as

((a+ b+ c)x2 − (a+ c)x) .

The second derivative condition is satisfied exactly when

s = n(a+ b+ c)x4 − 2n(a+ c)x3 + (a+ c)(a+ 2c)x2

(a+ b)(a+ b+ c)x2 − 2a(a+ b+ c)x+ a(a+ c) .

The identification of r and s completely determines the maps Fx : P1
y → P1

t .
From a linear factor in the numerator of F ′x(y), one gets that the critical point corresponding
to the 2 in the first class 2 1n−2 in (3.1) is

yx = as

nx2 .

Substantially simplifying Fx(yx) gives the right side of (3.3). �
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From the form of the normalized partition tuple (3.2), one knows a priori that
(3.5) πa,b,c(1− x) = πb,a,c(x).
Indeed, one can check that the simultaneous interchange a↔ b, x↔ 1−x interchanges A and
B and fixes C and D. Given this fact, the symmetry (3.5) is visible in the main formula (3.3).

3.3. Dessins. —As with Couveignes’ cubical clan, the semicubical clan gives covers πa,b,c
even when a, b, and c are not required to be distinct. For example, the simplest case is the
dodecic cover

π1,1,1(x) = −
(
6x2 − 8x+ 3

)2 (
8x2 − 8x+ 3

) (
6x2 − 4x+ 1

)2

28x3(x− 1)3 (3x2 − 3x+ 1)3 .

An example representing the main case of distinct parameters is

π7,6,4(x) =
(
119x2 − 154x+ 55

)11 (
13x2 − 14x+ 5

)4 (
51x2 − 42x+ 11

)10

214x15(x− 1)14 (221x2 − 238x+ 77)17 .

Let γ(a, b, c) = π−1
a,b,c([−∞, 0]) ⊂ P1

x. The left part of the Figure 3.1 is a view on γ(1, 1, 1).
To obtain the general γ(a, b, c) topologically, one replaces each segment of γ(1, 1, 1) by the
appropriate number a, b, or c of parallel segments, so as to create m = 3n = 3a + 3b + 6c
edges in total. As an example, the right part of the figure draws the degree sixty-three dessin
γ(7, 6, 4).

Figure 3.1. Left: γ(1, 1, 1). Right: γ(7, 6, 4).

The view on γ(a, b, c) given by (3.1) was obtained via the involution s(x) = x/(2x− 1) which
fixes 0 and 1 and interchanges ∞ and 1/2. The sequence of white, black, and white vertices
on the real axis are the points 0, ∞, and 1 in the Riemann sphere. Thus the point not in
the plane of the paper is the point x = 1/2. The involution (3.5) corresponds to rotating the
figure one half-turn about its central point ∞.
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4. Monodromy

A degree m Belyi map X → P1 has a monodromy group, which is a subgroup of Sm well-
defined up to conjugation. A natural question is to determine this monodromy group. This
section essentially answers this question for members of the semicubical clan, and also for all
other Belyi maps sharing the same ramification partition triple.

4.1. Three imprimitive cases. — Suppose in general that X is connected, as all our Xa,b,c
are. Group-theoretically, we are supposing that the monodromy group is transitive. Then a
natural first question is whether X→ P1 has strictly intermediate covers. As preparation for
the next subsection, we exhibit three settings where there is such an intermediate cover

(4.1) Xa,b,c
δ→ Y ε→ P1

v.

The monodromy group is imprimitive exactly when there exists a Y as in (4.1), and primitive
otherwise.
Case 1. Let e = gcd(a, b, c). If e > 1 then the explicit formula (3.3) says that

(4.2) πa,b,c(x) = πa/e,b/e,c/e(x)e.

Thus one has imprimitivity here, with the cover ε naturally coordinatized to y 7→ ye.
Case 2. Suppose a = b. As a special case of (3.5), the cover πa,a,c has the automorphism
x 7→ 1−x, corresponding to rotating dessins as in Figure 3.1. To coordinatize Y, we introduce
the function y = δ(x) = x(1− x). Then ε(y) works out to

(4.3) πVa,c(y) = (4ay − a+ 4cy − 2c)c
(
4y2(2a+ c)2 − 4ay(2a+ 3c) + a(a+ 2c)

)a+c

c2c22a+3cya+2c(4ay − a+ 2cy − c)2a+c .

The superscript V indicates that πVa,c comes from πa,a,c,c by quotienting by a noncyclic group
of order four. The ramification partitions and the induced normalization of πVa,c are

α0 = a∞ c (a+ c)2,

α1 = 4 24 11.5n−6,(4.4)
α∞ = (a+ 2c)0, (2a+ c).

The covers πVa,c and πVc,a are isomorphic, although our choice of normalization obscures this
symmetry.
Case 3. Suppose c ∈ {a, b}. Via (3.5), it suffices to consider the case b = c. Then while the
cover πa,c,c does not have any automorphisms, the original cubical cover πa,c,c,c has automor-
phism group S3, This implies that πa,c,c has a subcover ε = πSa,c of index three. To coordinatize
Y in this case, we use the function

y = δ(x) = (x− 1)3(a+ c)(a+ 2c)
x (x2(a+ c)(a+ 2c)− 2ax(a+ 2c) + a(a+ c)) .

Then

(4.5) πSa,c(y) = (−a)a(y − 1)a+c (
a3y2(a+ c) + 2a2cy(5a+ 9c) + 27c2(a+ c)(a+ 2c)

)c
2cccnnyc .
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76 A three-parameter clan of Hurwitz–Belyi maps

So the ramification partitions and the induced normalization of πSa,c are

α0 = (a+ c)1 c
2

α1 = 4 1n−4,(4.6)
α∞ = (a+ 2c)∞ c0.

4.2. Primitivity. —The next theorem says in particular that all πa,b,c not falling into
Cases 1-3 of the previous subsection have primitive monodromy.

Theorem 4.1. — Let a, b, c be distinct positive integers with gcd(a, b, c) = 1. Let π : X→ P1

be a Belyi map with the same ramification partition triple (3.2) as πa,b,c. Then π has primitive
monodromy.

Note that the hypothesis gcd(a, b, c) = 1 excludes Case 1 from the previous subsection.
The distinctness hypothesis excludes Cases 2 and 3. Since these cases all have imprimitive
monodromy, we will have to use these hypotheses.

Proof. — The hypothesis gcd(a, b, c) = 1 has implications on the parts of β0 and β∞ in (3.2).
For β0 it implies gcd(a+b, a+c, b+c, c) = 1 while for β∞ it implies gcd(a+b+c, a+2c, b+2c) ∈
{1, 3}. As before, let n = a+ b+ 2c and m = 3n. The two hypotheses together say that the
smallest possible degree m is twenty-one, coming from (a, b, c) = (3, 2, 1).
Let Y be a strictly intermediate cover as in (4.1), with Xa,b,c replaced by X. Let e be the degree
of Y → P1 and write its ramification partition triple as (α0, α1, α∞). Because gcd(a+b, a+c, b+
c, c) = 1, the cover Y cannot be totally ramified over 0. Because gcd(a+ b+ c, a+2c, b+2c) ∈
{1, 3}, it can be totally ramified over infinity only if e = 3. There are then two possibilities, as
(α0, α1, α∞) could be ((1, 1, 1), (3), (3)) or ((2, 1), (2, 1), (3)). The α1 = 3 in the first possibility
immediately contradicts β1 = (43, 1m−12). The α1 = (2, 1) in the second possibility allows
two possible forms for β1, namely (43, 16) and (43). But both of these have degree less than
twenty-one. So e = 3 is not possible, and thus Y cannot be totally ramified over ∞ either.
Since α0 and α∞ both have at least two parts, the minimally ramified partition (2, 1e−2) is
eliminated as a possibility for α1, by the Riemann–Hurwitz formula. The candidates (22, 1e−4)
and (23, 1e−6) for α1 both force X to be a double cover of Y, so that e = m/2; but both are
then incompatible with β1 = (43, 1m−12). This leaves (4, 2, 1m/2−6) and (4, 1m/3−4) as the
only possibilities for α1. In the first case, the two critical values of the double cover X → Y
would have to correspond to the 2 in α1 and the image of the singleton a+ b of β0; the parts
of β∞ would have to be those of α∞ with multiplicities doubled; from the form of β∞ in (3.2)
this forces a = b, putting us in Case 2 and contradicting the distinctness hypothesis. In the
second case, the combined partition α0α∞ would have the form (k1, k2, k3, k4, k5) and the com-
bined partition β0β∞ would have the form (3k1, 2k2, k2, 2k3, k3, k

3
4, k

3
5) or (3k1, 3k2, k

3
3, k

3
4, k

3
5).

From (3.2), the first possibility occurs exactly when a or b equals c, putting us into Case 3
and contradicting the distinctness hypothesis; the second possibility cannot occur as it is
incompatible with the shape of β0β∞ in (3.2). We have now eliminated all possibilities for α1
and so X→ P1 has to be primitive. �

4.3. Fullness. — In [6] we heavily emphasized full Belyi maps, meaning maps with mon-
odromy group the alternating or symmetric group on the degree m. A natural question is
whether primitive in Theorem 4.1 can be strengthened to full. In the setting of Theorem 4.1,
only Sm can appear because β1 = 431m−12 in (3.2) is an odd partition.
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The two smallest degrees of covers as in Theorem 4.1 are m = 21 and m = 24. There are
nine primitive groups in degree 21 and five in degree 24, all accessible via Magma’s database
of primitive groups. None of them, besides S21 and S24, contain an element of cycle type
431m−12.
In an e-mail to the author on July 5, 2016, Kay Magaard has sketched a proof that, for
all m ≥ 25, likewise 431m−12 is not a cycle partition for a primitive proper subgroup of Sm.
Magaard’s proof appeals to Theorem 1 of [2], which has as essential hypothesis that the 1’s in
431m−12 contribute more than half the degree. Special arguments are needed to eliminate the
other possibilities that parts 1, 2, and 3 of Theorem 1 of [2] leave open. Thus, Theorem 4.1
can indeed be strengthened by replacing primitive by full.

5. Primes of bad reduction

A natural problem for any Belyi map defined over Q is to identify its set P of primes of bad
reduction. In this section, we identify this set for the maps πa,b,c.

5.1. Eleven sources of bad reduction. —The dessins γ(a, b, c) have four white vertices:
0, 1, and the roots of D. They have seven black vertices: ∞ and the roots of ABC. If any of
these eleven points agree modulo a prime p, then the map πa,b,c has bad reduction at p. To
study bad reduction, one therefore has to consider some special values, discriminants, and
resultants. Table 5.1 gives the relevant information, with “value at∞” meaning the coefficient
of x2 in the quadratic polynomial heading the column.

A B C D

Value at 0 (a+ c)(a+ 2c) a(a+ c) a(a+ c) a(a+ 2c)
Value at 1 b(b+ c) (b+ c)(b+ 2c) b(b+ c) b(b+ 2c)
Value at ∞ (a+ b+ c)n (a+ b+ c)n (a+ b)(a+ b+ c) (a+ b)n

Disc. −4bc(a+ c)n −4ac(b+ c)n −4abc(a+ b+ c) −8abcn
Res. with A 4c3n2e 4b2c3e b2c2(a+ 2c)2n2

Res. with B 4a2c3e a2c2(b+ 2c)2n2

Res. with C a2b2(a+ b)2c2

Table 5.1. Special values, discriminants, and resultants of the four quadratic
polynomials A, B, C, D from Theorem 3.1, using the abbreviation e = (a +
c)(b+ c)(a+ b+ c).

5.2. A discriminant formula. —Combining the explicit formula (3.3), the general dis-
criminant formula [3, (7.14)], and the elementary facts collected in Table 5.1, one gets the
following discriminant formula.
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Corollary 5.1. — Let aabbAa+cBb+cDc − v2cc2cnnxa+2c(1− x)b+2cCn−c be the polynomial
whose vanishing defines πa,b,c. Its discriminant is

D(a, b, c) = (−1)(a−1)a/2+(b−1)b/2+c2n(c+2n)

a2n2−a2+2an−nb2n2−b2−n+2bnc(10n2−(1+a+b)(a+b+3n))/2

(a+ b)(a+b+c−1)n(a+ c)an+a+cn+c+n2−n(b+ c)bn+b+cn+c+n2−n

(a+ 2c)(a+2c)2(b+ 2c)(b+2c)2(a+ b+ c)(a+b+c)(2(a+b+c)+1)nn(3n+2)v3n−7(v − 1)9.

In particular, the set Pa,b,c of bad primes of πa,b,c is the set of primes dividing

(5.1) abc(a+ b)(a+ c)(b+ c)(a+ b+ c)(a+ 2c)(b+ 2c)(a+ b+ 2c).

Because of the nature of [3, (7.14)], each factor in the discriminant formula has specific
sources on Table 5.1. The discriminants corresponding to πVa,c and πSa,c are given by similar
but slightly simpler formulas.

5.3. Responsiveness to the inverse problem of [6]. — Let a, b, c be distinct positive
integers without a common factor. The fullness conclusion of §4.3 and the identified prime
set (5.1) combine to say that the explicit rational Hurwitz–Belyi maps πa,b,c of Theorem 3.1
respond in a uniform way to the inverse problem of §1.3 of [6].
All the clans we have looked at seem to share the property that the analog to Pa,b,c is relatively
sparse, but nevertheless grows with the parameters. In [6], we were most interested in fixing
a small P and providing examples of full rational covers in degrees as large as possible. In
this direction, clans do not seem to be helpful. The fundamental problem is that in clans
the groups G in the Hurwitz parameters are An or Sn and one is increasing n. To obtain a
sequence establishing Conjecture 11.1 of [6], we expect that instead one has to fix G, and
consider moduli problems in which the number of critical values, always four in this paper,
tends to infinity.

6. Allowing negative parameters

The formula (3.3) for πa,b,c makes sense for arbitrary integer parameters satisfying abcn 6= 0,
although individual factors may switch from numerator to denominator or vice versa. We have
seen this extendability in other clans as well, and it is typically associated with complicated
wall-crossing phenomena. In this section, we discuss some of the extra Hurwitz–Belyi maps
obtained by allowing negative parameters. As a special case of (4.2), one has the formula
π−a,−b,−c(x) = πa,b,c(x)−1. Using this symmetry, we can and will restrict attention to the
half-space c ≥ 0.

6.1. Chambers. —Assuming none of the quantities in Table 5.1 vanish, the degree
N(a, b, c) of πa,b,c is the total of those quantities on the list 2(c − n), 2(a + c), 2(b + c),
2c, −a− 2c, −b− 2c, and a+ b which are positive. This continuous, piecewise-linear function
is homogeneous in the parameters a, b, and c, and so it can be understood by its restriction
to c = 1 via N(a, b, c) = cN(a/c, b/c, 1). The left half of Figure 6.1 is a contour plot of
N(α, β, 1). Thus, for c ≥ 4 fixed, the minimum degree for πa,b,c is 4c, occurring for all (a, b, c)
with (a/c, b/c) in the middle black triangle.
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Figure 6.1. Left: the formal degree of πα,β,1, meaning the quantity
degree(παc,βc,c)/c, drawn in the α-β plane. Contours range from 4 (middle tri-
angle) to 24 (upper right corner). Right: The discriminant locus of the semicu-
bical clan, drawn in the same (α, β) plane. Points are particular (a/c, b/c)-
values giving covers appearing in Table 7.1.

If (a+ c)(a+ 2c)(b+ c)(b+ 2c)(n+ c)(n+ 2c) = 0, then there is a cancellation among at least
a pair of factors, and πa,b,c has degree strictly less than N(a, b, c). If abcn = 0 then, taking a
limit, πa,b,c is still naturally defined, and again has degree strictly less than N(a, b, c). Taking
c = 1, the lines given by the vanishing of the other nine linear factors in the discriminant
formula are drawn in the right half of Figure 6.1. The complement of these lines has 31
connected components, called chambers. The middle chamber is the interior of the triangle
given by N(a, b, 1) = 4. As indicated by the caption of Figure 6.1, one can also think of
the right half of Figure 6.1 projectively. From this viewpoint, the line at infinity is given by
the vanishing of the remaining linear form, i.e., by c = 0. Our main reference [1] already
illustrates some of this wall-crossing behavior in the context of distinct a, b, c, and d: the
dessins with all parameters positive are described as being a chardon, while the dessins with
parameters in certain other chambers are described as being a pomme.

6.2. The central chamber and symmetric coordinates. — Each chamber corresponds
to a different family of Hurwitz parameters, with corresponding rational functions πa,b,c being
uniformly given by (3.4). To study the middle chamber, switch to new parameters (u, v, w) =
(c+ a, c+ b, c−n). In the new parameters, the quantity c = u+ v+w is still convenient, and
we will use it regularly as an abbreviation. The middle chamber is given by the positivity of
u, v, and w. We indicate the presence of the new parameters by capital letters, changing h
to H, π to Π, and γ to Γ.
The normalized Hurwitz parameter (3.1) gets replaced by

(6.1) H(u, v, w) = (S2c, (2 12c−2, c2, 3x 12c−3, (c− u)0 (c− v)1(c− w)∞), (1, 1, 1, 1)).
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Simply writing factors with the new parameters in different places corresponding to the new
signs, (3.3) becomes

(6.2) Πu,v,w(x) = (−1)c−wAuBvCwDc

2cc2c(c− u)c−u(c− v)c−v(c− w)c−wxc+u(1− x)c+v .

The degree is 4c and the partition triple (3.2) changes to
β0 = u2v2w2c2,

β1 = 4314c−12,(6.3)
β∞ = (c+ u)0(c+ v)1(c+ w)∞.

The symmetry (3.5) in the new parameters takes the similar form Πu,v,w(1− x) = Πv,u,w(x).
But now the symmetry
(6.4) Πu,v,w(1/x) = Πw,v,u(x)
is equally visible.
In terms of a sheared version of Figure 6.1 in which the central triangle is equilateral, the
symmetries just described generate the S3 consisting of rotations and flips of this triangle.
One has quadratic reduction as in (4.3) whenever two of the parameters are equal. One has
cubic reduction as in (4.5) whenever one of the parameters is 2c.

Figure 6.2. Left: Γ(1, 1, 1). Right: Γ(4, 3, 2).

For dessins, we take Γ(u, v, w) = Π−1
u,v,w([−∞, 0]) with [−∞, 0] = •−−−◦ as before. Figure 6.2

is then direct analog of Figure 3.1. The black points on the real axis from left to right are,
as before 0, ∞, 1. The unique white point above this axis is connected to 0, ∞, and 1 by
respectively u, w, and v edges. To pass from Γ(1, 1, 1) to Γ(u, v, w), one replaces each edge
by either u, v, or w parallel edges, illustrated by the example of Γ(4, 3, 2).

6.3. Degenerations. —While symmetric parameters are motivated by the central cham-
ber, they are often better for analysis of the entire clan. As an example, we consider an aspect
about degenerations over discriminantal lines, always excluding the intersections of these lines.
To begin, consider the numerator of the logarithmic derivative Π′u,v,w(x)/Πu,v,w(x). In con-
formity with β1 = 431m−12, one gets that this numerator is the cube of a cubic polynomial
∆(u, v, w, x). An easy computation gives

(6.5) ∆(u, v, w, x)
= wx3(w − c)(w + c) + 3w(u− c)(w − c)x2 + 3u(u− c)(w − c)x− u(u− c)(u+ c).
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Its discriminant has the completely symmetric form

discx(∆(u, v, w, x)) = 2233uvw(u+ c)2(v + c)2(w + c)2c3.

By symmetry, to understand the degenerations at the nine lines visible on the right half of
Figure 6.1, one needs only to understand the degenerations at the horizontal lines. From
bottom to top, the lines are given by u = −c, u = 0, and u = c. Visibly from (6.5) the
polynomials ∆(−c, v, w, x), ∆(0, v, w, x), and ∆(c, v, w, x) have 0 as a root of multiplicity 1,
2, and 3. Continuing this analysis, the Hurwitz–Belyi maps with parameter on these lines has
β1 of the form 42 1m−8, 4 2 1m−6, and 3 1m−1. The only discriminantal line not discussed yet is
the line c = 0 at infinity. Here again by symmetry, we need to consider only the case (u, v,−m)
with u and v positive satisfying u+v = m. In this case, one has (β0, β1, β∞) = (u v, 2 1m−2,m).

7. Moduli algebras

In Section 2 of [6], we saw some splitting of moduli algebras for two partition triples, with the
unique factor of Q coming from a Hurwitz–Belyi map. The triples coming from the degener-
ation (4.4) and the semicubical clan itself (2.5) give us many moduli algebras which likewise
have Q a factor. We computationally investigate small degree members of this collection here,
as a further illustration that Hurwitz–Belyi maps are very special among all Belyi maps.

m a c β0 β1 β∞ µ D

9 1 2 3321 4 2 13 54 18 + 1 − 237 326 512 72

12 1 3 4431 4 2 16 75 39 + 1 284 341 530 726 1110

15 1 4 5541 4 2 19 96 60 + 1 2105 3107 555 717 1110

15 2 3 5532 4 2 19 87 60 + 1 − 2151 360 555 744 1314

m u v w β0 β1 β∞ µ D

7 0 3 −1 322 4 2 1 511 3 + 1 − 23 3 52 7
9 0 2 1 3321 4 2 13 54 18 + 1 − 237 326 512 72

10 5 −4 0 5311 4 2 14 64 28 + 1 256 341 520 72

10 0 4 −1 433 4 2 14 721 28 + 1 250 334 514 719

10 5 −3 0 5221 4 2 14 73 31 + 1 266 330 523 78

10 3 1 −2 33211 4 4 12 532 33 + 1 + 1 269 342 523 721

11 0 5 −2 533 4 2 15 821 38 + 1 2113 345 528 75 1110

12 0 3 1 4431 4 2 16 75 39 + 1 284 341 530 726 1110

12 5 −1 −2 552 4 4 14 72111 41 + 1 274 318 531 731 1115

12 6 −5 0 6411 4 2 16 75 42 + 1 286 344 527 730 1120

Table 7.1. Degrees µ and discriminants D of the moduli algebras coming
from the partition triple (4.4) of πVa,c and the partition triple of Πu,v,w. The
primes which are bad for the Hurwitz–Belyi map are in boldface.
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Note for comparison that from (4.6), the dessin of πS1,1 has the shape •−◦−•〈◦◦ . The dessin

of πSa,c is obtained by replacing the middle edge by a parallel edges and the remaining three
edges by c parallel edges. There are no other dessins that share the partition triple (4.6). So all
moduli algebras of (4.6) are simply Q. In fact the πSa,c form a subclan of the four-parameter
clan labeled C in [4]. Its dessins are obtained from Figure 13 of [4] by setting the indices
(k, l, s, t) there equal to (1, 1, c, a).

From (4.4), the dessin of πV1,1 is not a tree, being ◦−•〈◦◦〉•−◦. The theory from [4] does not apply,

and as a and c increase, more and more dessins share the partition triple (4.4). The four cases
with 0 < a < c and a+ c ≤ 5 are in the top part of Table 7.1.
For our main case of πa,b,c, the triple satisfying the conditions of Theorem 4.1 giving the
lowest degree m = 3(a + b + 2c) is (a, b, c) = (3, 2, 1) with m = 21. This case is beyond
our computational reach. Allowing a and/or b to be negative, but staying off the discrimi-
nantal hyperplanes, the lowest degree is m = 16 from (−1,−2, 4). This case may be easier,
but instead we allow (a, b, c) to be on a discriminantal hyperplane, excluding the extreme
degenerations abdn = 0, as they give mass µ ≤ 2. We still require that the a, b, and c are
distinct without a common factor. We switch to symmetric coordinates, so as to see the S3
symmetries of the previous section clearly. Modulo these symmetries, Table 7.1 gives all cases
with m ≤ 12. The top line is the septic example from Sections 2 and 4 of [6] yet again.
The behavior summarized in Table 7.1 is similar to the behavior discussed in Section 2 of [6],
but now the (β0, β1, β∞) have been chosen to ensure splitting from the very beginning. In all
cases but one, there is just one Belyi map defined over Q with the given partition triple, the
Hurwitz–Belyi map. All the other Belyi maps are conjugate, the relevant Galois group being
as large as possible, namely the symmetric group Sµ−1. In the only case where there is extra
splitting, the two rational Belyi maps are

Π3,1,−2(x) = (8x− 5)2 (
8x2 − 24x+ 15

)3 (
8x2 − 8x+ 3

)
214(x− 1)3x5(4x− 3)2 ,(7.1)

π(x) = −(8x− 5)2 (
464x2 − 840x+ 375

)3 (
2528x2 − 4400x+ 1875

)
21655(x− 1)3x5(4x− 3)2 .(7.2)

Like Π3,1,−2(x), the unexplained rational factor π(x) has bad prime set just {2, 3, 5} and
monodromy group S10. An interesting problem of whether the moduli algebras Ku,v,w just
discussed can be treated in a uniform way with u, v and w appearing as parameters.
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