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A STRATEGY AND A NEW OPERATOR TO GENERATE
COVARIANTS IN SMALL CHARACTERISTIC

by

Florent Ulpat Rovetta

Abstract. — We present some new results about covariants in small characteristic. In Section 1,
we give a method to construct covariants using an approach similar to Sturmfels. We apply our
method to find a separating system of covariants for binary quartics in characteristic 3. In
Section 2, we construct a new operator on covariants when the characteristic is small compared
to the degree of the form.

Résumé. — (Une stratégie et un nouvel opérateur pour générer des covariants en petite carac-
téristique) Nous présentons quelques résultats nouveaux sur les covariants en petite caractéris-
tique. Dans la section 1, nous expliquons une méthode pour construire des covariants en utilisant
une approche similaire à celle de Sturmfels. Nous appliquons notre méthode pour obtenir un
système séparant pour les covariants des formes quartiques binaires en caractéristique 3. Dans
la section 2, nous construisons un nouvel opérateur sur les covariants lorsque la caractéristique
est petite par rapport au degré des formes.

Introduction

We are interested in the computation of covariants of binary forms in small characteristic
with a similar point of view to [1] and in association with the moduli space of hyperelliptic
curves. Although in characteristic 0 or in large characteristic it is a classic problem (but still
formidable in practice when the degree of the form is higher than 10), in small characteris-
tic the approach based on transvections (which are differential operators) collapses. In this
context, we wanted to test the effectiveness of an alternative method following [4] and [9].
The idea is to consider the algebra of covariants of n-points of P1 under the action of GL2(k)
(cf. Definition 1.1). The main advantage of this algebra is that it admits a generating system
of covariants which are explicit and independent of the characteristic. The covariants for the
binary forms are then obtained as the subalgebra symmetrised by Sn, the symmetric group.

2010 Mathematics Subject Classification. — 13A50, 14H45.
Key words and phrases. — Positive and small characteristic, syzygies, generating system of covariants,
separating system of covariants.



86 A strategy and a new operator to generate covariants in small characteristic

Although attractive in theory, our current implementation is extremely limited. Indeed the
computation of the action of the group Sn, in the modular case (i.e when the characteristic
divides the order of the group), under the covariants of n points fails with generic algorithms
of Magma as soon as n = 6 (cf. [10, Sec. 5.2.6]). However, this method was used to determine
a separating set (a weaker condition than being a generating system, see Definition 1.10) in
the characteristic 3 binary quartic case. Along the way, we realized that some of the invari-
ants/covariants appearing in small characteristic could be derived from classical covariants
by a new easy differential operation (cf. Section 2.2) under certain conditions that we clarify.
For octavics, we get the new invariant of degree 1 found by [1] and new covariants in degree 4
and 6 (cf. page 96). This operation, while it enriches the algebra of covariants obtained by
reduction of those in characteristic zero, is not sufficient to get all the covariants (as we will
see in an example in degree 4 at the end of this paper). The question of efficient generation
in small characteristic remains wide open.

Notation. — Let p be a prime number or 0, k be an algebraically closed field of characteristic
p and Cn the algebra of binary covariants defined over k.

1. A strategy to construct covariants in small characteristic

Except for quartics (cf. [1, Sec. 2.10.2]) and Igusa invariants for sextics, we do not know a
generating system of invariants in every characteristic. Thanks to clever reductions and many
computations, Basson exhibited in his thesis a “separating” system1. He conjectures that it
is generator in characteristic 3 and 7 for octavics. For characteristic p ≥ 11, generating
systems are known thanks to the results of [8]. To get new results for covariants, we will
establish a totally different computation method following [4] and [9]. We obtain new results
for covariants of binary quartics in characteristic 3.

1.1. Strategy. —The study of covariants of n-points of P1(k) under the action of GL2(k)
is a classical framework and we recall here the principal results. The main advantage of
this work is that there exists an explicit generating system of covariants independent of the
characteristic. Then the covariants for binary forms come from the subalgebra symmetrised
by Sn.
We slightly modify the results of Sturmfels [9, Chap 3. Sec. 6] in order to be valid in every
characteristic. In the case of invariants, this is exactly Geyer’s method [4]. Let n > 1 be a
positive integer. Consider the binary form:

f(x, z) =
n∑
k=0

akx
kzn−k

= (µ1x− ν1z)(µ2x− ν2z) . . . (µnx− νnz).

The “roots” (µi, νi) can be seen as points (µi, νi) ∈ P1.

Definition 1.1. — Let M be a monomial in k[µ1, ν1, µ2, ν2, . . . , µn, νn, x, z] such that:
M = µu1

1 µu2
2 · · ·µ

un
n νv1

1 νv2
2 · · · ν

vn
n xw1zw2

and P be a polynomial in k[µ1, ν1, µ2, ν2, . . . , µn, νn, x, z]. We say that:
1i.e. separating the orbits (cf. Definition 1.10)
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F. Ulpat Rovetta 87

– M is regular of degree d if u1 + v1 = u2 + v2 = · · · = un + vn = d. The integer d is called
the regularity degree of M .

– P is regular of degree d if all of its monomials are regular of degree d. When P is regular
for a degree d, we say that P is regular.

– P is symmetric if, for all permutation σ ∈ Sn:
P (µ1, ν1, µ2, ν2, . . . , µn, νn, x, z) = P (µσ(1), νσ(1), µσ(2), νσ(2), . . . , µσ(n), νσ(n), x, z).

A regular monomial is reducible if it can be expressed as the product of two regular monomials
of regularity degree greater than or equal to 1.

We define the action of GL2(k) on k[µ1, ν1, µ2, ν2, . . . , µn, νn, x, z] in the following way: let
M ∈ GL2(k), (

νi
µi

)
7→
(
νi
µi

)
= M−1 ·

(
νi
µi

)
(
x
z

)
7→
(
xi
zi

)
= M−1 ·

(
x
z

)
.

A regular polynomial P is a covariant (of n points) if there exists w ∈ Z such that:
P (µ1, ν1, µ2, ν2, . . . , µn, νn, x, z) = det(M)wP (µ1, ν1, µ2, ν2, . . . , µn, νn, x, z).

The polynomial P is called an invariant (of n points) if it does not depend on x and z. It is
easy to define covariants quantities thanks to the brackets. Let 1 ≤ i < j ≤ n, we call bracket
the following quantities:

[ij] := µiνj − νiµj ,
[iu] := µix− νiz.

The subring B(n) generated by these brackets in k[µ1, ν1, µ2, ν2, . . . , µn, νn, x, z] is called
the bracket ring. We also denote Breg(n) the subring of B(n) of polynomials in the brackets
which are regular of degree d for d ≥ 0. The latter is generated by the monomials of the form:∏

i<j

[ij]mij ,

where the integers mij verify d =
∑i−1
j=1mji +

∑n+1
j=i+1mij (the value j = n + 1 represents a

bracket [iu]). The polynomial ring of regular covariants is equal to Breg(n) (consequence of
the first fundamental theorem, cf. [11]). When the acting group is GL2(C), Theorem 3.2.1
and Lemma 3.6.5 of [9] provide a demonstration. When the group is arbitrary, the proof is
in [2]. Note also that [4, Satz 5] gives an elementary proof in the case of GL2(k).
In Section 1.2, we present an example of computation of generators of Breg(n). What remains
to describe is the final stage to get the of binary forms. Let:

Ψ : k[a0, a1, . . . , an, x, z]→ k[µ1, ν1, µ2, ν2, . . . , µn, νn, x, z]

an−k 7→ (−1)nµ1 · · ·µn · σk
(
ν1
µ1
, . . . ,

νn
µn

)
.

Here σk represents the k-th elementary symmetric polynomial function in n variables. The
following theorem (from [9, Th. 3.6.6]) is an elementary consequence of the previous theorem.
Let Breg(n)Sn be the subring of Breg(n) of polynomials in the brackets which are symmetric.
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88 A strategy and a new operator to generate covariants in small characteristic

Theorem 1.2. — The mapping Ψ is an isomorphism between the ring Cn of covariants of
binary forms on k[a0, . . . , an, x, z] and the subring Breg(n)Sn of symmetric and regular poly-
nomial brackets functions of k[µ1, ν1, µ2, ν2, . . . , µn, νn, x, z]. If C(a0, . . . , an) is a covariant
of degree d and order r then Ψ(C) is a symmetric polynomial bracket function such that:

1. in every monomial of Ψ(C), the index 1, 2, . . . , n appears d times,

2. in every monomial of Ψ(C), the letter u appears r times.

1.2. Computation of Breg(n). — In order to have a clearer view of a generating system of
Breg(n), the monomials will be represented by weighted graphs such that the vertices form a
regular polygon. We represent:

– a monomial of B(n) by a graph with n vertices numbered from 1 to n and a vertex called
u ,

– the bracket [ij] by an edge connecting the vertex i to the vertex j with i < j ∈ {1, . . . , n},

– the bracket [iu] by an edge connecting the vertex u to the vertex i.

For example, the bracket product [12][14]3[34][1u][2u]2 ∈ B(4) is represented by the following
weighted graph:

u

•1

•2

•
3•

4

3

2

Previous comments allow us to formulate five remarks which are very useful to construct a
generating system for Breg(n). The next point follows from the definition of Breg(n).

Point 1.3. — Every regular monomial of order m and of regularity degree d is represented
by a graph with m connexions with u and every numbered vertex has a valence d.

Moreover, by Kempe’s lemma ([9, Th. 3.7.3 p. 132]), the covariant algebra of n points is
generated by elements of regularity degree at most 2. Also, by [6, Th. 2.3, p. 7], the invariants
of n points are generated by the regularity degree 1, hence the following point:

Point 1.4. — The numbered vertices have a valence at most 2. The graph corresponding to
invariants has a valence 1.

By its definition, if a graph is expressed as a union of subgraphs corresponding to graphs of
smaller degree and smaller order already computed, the associated covariant is reducible.

Point 1.5. — The graphs having a subgraph already calculated are excluded.
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F. Ulpat Rovetta 89

Proposition 1.6. — Let 1 ≤ i < j < k < l ≤ n, we have:

[ik][jl] = [ij][kl] + [il][jk],

[ik][ju] = [ij][ku] + [iu][jk].
These relations are called the syzygies.

When the vertices are in a regular polygon, Proposition 1.6 causes the following point (see [7,
Th. 6.2 p. 73] for a proof):

Point 1.7. — The graphs of our generating system have no edges crossing.

Thanks to Point 1.4, the number of adjacent edges of u is bounded. Moreover, when n is
even, Point 1.3 imposes another condition on the edges adjacent to u .

Point 1.8. — The vertex u has at most 2n adjacent edges. When n is even, u has an even
number of adjacent edges.

Example 1.9. — Using the five points above and considering increasing orders, we get the
following generators of Breg(n) when n = 4, called t0, t1, u0, u1, u2 and f .

u

•1

•2

•
3•

4

Figure 1. t0

u

•1

•2

•
3•

4

Figure 2. t1

u

•1

•2

•
3•

4

Figure 3. u0

u

•1

•2

•
3•

4

Figure 4. u1

u

•1

•2

•
3•

4

Figure 5. u2

u

•1

•2

•
3•

4

Figure 6. f
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90 A strategy and a new operator to generate covariants in small characteristic

1.3. Symmetrization. —We wish to compute Cn as Breg(n)Sn . If b1, . . . , bt is a generating
system of bracket monomials for Breg(n), then we have a surjective morphism:

k[x1, . . . , xt] → Breg(n).
xi 7→ bi

The kernel I of this morphism is obviously generated by the syzygies which are pulled back
by this morphism. The action of Sn on the bi induces a representation Gn of Sn in GLt(k).
There are algorithms for computing k[x1, . . . , xt]Gn = Rn (cf. [3]). They are also valid in the
modular case (i.e when p | |Gn|), we use them “naively” through their Magma implementations.
However this process generates a limitation when n ≥ 6. What remains to clarify is the link
between Rn and Cn.
When p does not divide |Sn|, Sn is a linearly reductive group (cf. [3, Def. 2.2.1]) and the
existence of Reynolds operators (cf. [3, Th. 2.2.5]) preserves the surjectivity of the morphism
k[x1, . . . , xt] → Breg(n) in the symmetrization process. Thanks to [9, Lem. 3.7.2], the image
of a generating system of Rn by the canonical surjection k[x1, . . . , xt] 7→ k[x1, . . . , xt]/I ∼=
Breg(n) is a generating system of Cn = Breg(n)Sn . In particular, if p > n, we get a generaliza-
tion of the result of Geyer: the covariant ring Cn is the reduction modulo p of the covariant
ring in characteristic 0. In particular, the bigraduate Poincaré series are identical.
When p | |Sn|, Sn is only a reductive group (cf. [3, Sec. 2.2.2]) and the previous result is no
longer valid in the general case. To overcome this, we recall the following concept:

Definition 1.10. — Let X be an affine variety and G an automorphism group of k[X]. A
subset S ⊆ k[X]G is called separating if, for every pair of points (x, y) of X, we have the
following property: if there exists an element f ∈ k[X]G such that f(x) 6= f(y), there exists
an element g in S such that g(x) 6= g(y).

The relation with the invariant ring is the following (cf. [3, Prop. 2.3.10]):

Proposition 1.11. — Suppose that X is irreducible and k[X]G is finitely generated. Let
A ⊆ k[X]G be a finitely generated and separating subalgebra. Then Frac(k[X]G) is a purely
inseparable finite extension of Frac(A). In particular, if the characteristic of k is zero then:

Frac(A) = Frac(k[X]G).

Definition 1.10 has the advantage to preserve the surjectivity on transition to invariants. Let
G be a linear algebraic group. Thanks to [3, p. 59], if G is reductive, G acts regularly on an
affine variety X and Y ⊆ X is a G-stable subvariety, then the restriction map k[X] → k[Y ]
sends a separating subset of k[X]G to a separating subset of k[Y ]G. So with G = Gn (see
the beginning of this section), Rn is generated by separating system of Cn but we do not
necessarily have an equality between Rn and Cn (we only have Rn ⊂ Cn). We will see, in the
following case of quartics in characteristic 3, when the inclusion is strict.

Example 1.12. — In Example 1.9, we have seen that the covariant algebra of 4 points is
generated by t0, t1, u0, u1, u2 and f . We will make the group S4 act and, using the function
InvariantRing of Magma, we will compute a separating system of the covariant algebra C4.
Knowing that S4 is generated by σ = (1234) and τ = (12), the action of S4 on t0, t1, u0, u1,
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F. Ulpat Rovetta 91

u2 and f is given by the following equalities:
tτ0 = −t0 and tσ0 = −t1,
tτ1 = t1 + t0 and tσ1 = −t0,
uτ0 = u0 and uσ0 = −(u0 + u1 + u2),
uτ1 = u1 + u2 and uσ1 = u0,
uτ2 = −u2 and uσ2 = u1,
f τ = f and fσ = f.

Using the Magma code of Appendix 2.2, we get the following generating system of covariants
in characteristic 0 which is also generating in characteristic ≥ 5:

c0,2 = −3a1a3 + a2
2 + 12a4a0,

c0,3 = −27/2a2
1a4 + 9/2a1a2a3 − a3

2 + 36a2a4a0 − 27/2a2
3a0,

c4,1 = a0z
4 + a1xz

3 + a2x
2z2 + a3x

3z + a4x
4,

c4,2 = (a2
1 − 8/3a2a0)z4 + (4/3a1a2 − 8a3a0)xz3 + (4/3a2

2 − 2a1a3 − 16a4a0)x2z2

+ (4/3a2a3 − 8a1a4)x3z + (a2
3 − 8/3a2a4)x4,

c6,3 = (a3
1 − 4a1a0a2 + 8a0a3)z6 + (2a2

1a2 + 4a0a1a3 − 8a0a
2
2 + 32a2

0a4)xz5

+ (5a2
1a3 + 40a0a1a4 − 20a0a2a3)x2z4 + (20a2

1a4 − 20a0a
2
3)x3z3

+ (20a1a2a4 − 5a1a
2
3 − 40a0a3a4)x4z2 + (8a2

2a4 − 4a1a3a4 − 2a2a
2
3 − 32a0a

2
4)x5z

+ (4a2a3a4 − 8a1a
2
4 − a3

3)x6.

We recover the classic covariants of characteristic zero.
We apply the same process in characteristic 3 (we change FF:= Rationals(); in the Magma
code by FF:= GF(3);) and we get
c0,1 = a2,

c0,6 = a3
0a

3
4 + a2

0a
2
2a

2
4 + a0a1a

2
2a3a4 + a0a

4
2a4 + 2a0a

3
2a

2
3 + 2a3

1a
3
3 + 2a2

1a
3
2a4 + a2

1a
2
2a

2
3,

c4,1 = a0z
4 + a1xz

3 + a2x
2z2 + a3x

3z + a4x
4,

c4,4 = a2c4,3,

c6,3 = (2a2
0a3 + 2a0a1a2 + a3

1) + (2a2
0a4 + a0a1a3 + a0a

2
2 + 2a2

1a2)x
+ (a0a1a4 + a0a2a3 + 2a2

1a3)x2 + (a0a
2
3 + 2a2

1a4)x3 + (2a0a3a4 + 2a1a2a4 + a1a
2
3)x4

+ (a0a
2
4 + 2a1a3a4 + 2a2

2a4 + a2a
2
3)x5 + (a1a

2
4 + a2a3a4 + 2a3

3)x6,

c8,4 = c4,1(c4,3 − a2
2c4,1),

c8,6 = (c4,3 − a2
2c4,1)c4,3

where

c4,3 = (a0a
2
4 + 2a1a3a4 + 2a2

2a4 + a2a
2
3)x4 + (a0a3a4 + a1a2a4 + 2a1a

2
3)x3z

+ (a0a1a4 + a0a2a3 + 2a2
1a3)xz3 + (a2

0a4 + 2a0a1a3 + 2a0a
2
2 + a2

1a2)z4.

The quantity c4,3 is a covariant of degree 3 and order 4 in characteristic 3. This system does
not generate the algebra of covariants because we cannot find c4,3 as polynomial in the c2i,j .
This case provides an example of a separating subset which is not a generating system of the
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92 A strategy and a new operator to generate covariants in small characteristic

covariant algebra. We point out that {c0,1, c0,6, c4,1, c4,3, c6,3} is a separating system of C4 and
one wonders if it is also a generating system. Theorem [3, Th. 2.3.12] would in theory lead
to an algorithm to test this hypothesis but the algorithm is not efficient enough to run in
practice.

2. A new way to generate covariants in small characteristic

Here we introduce a new way to build covariants in small characteristic. To show the validity
of our approach, our first idea was to use the differential characterization of covariants, as
in [5, p. 43]. It turns out however that the result of Hilbert (Theorem 2.1), originally shown in
characteristic 0, admits counterexamples in small characteristic, as discussed in Section 2.1.
So we approach the proof of Theorem 2.3 directly. First we recall the result of Hilbert and
then we give our proof. In the following, f is a binary form defined over the field k :

f =
n∑
i=0

aix
izn−i.

2.1. Hilbert’s differential characterization of covariants. — Let :

– k[a0, . . . , an]d be the homogeneous polynomial algebra of degree d,

– T be the subgroup of diagonal matrices of SL2(k),

– Γ be the subgroup of upper triangular matrices and diagonal equal to 1 of SL2(k),

– Γ∗ be the subgroup of lower triangular matrices and diagonal equal to 1 of SL2(k).

These three subgroups are important because they generate SL2(k) and thus permit to break
down the issues of invariance under the action of these groups. Let M = aρ0

0 a
ρ1
1 . . . aρn

n be a
monomial of k[a0, . . . , an]. We define the weight of M by w =

∑n
i=0 iρi. We say that a non

zero element I of k[a0, . . . , an] is isobaric if all of its monomials have the same weight. We
define two differential operators on I that preserve the degree. The operators ∆ and D are
given by:

∆ =
n∑
i=1

iai
∂

∂ai−1
,

D =
n−1∑
i=0

(n− i)ai
∂

∂ai+1
.

Theorem 2.1. — Suppose p = 0 or p > nd + m. The polynomial C =
∑m
i=0Cix

izm−i

is a covariant of the binary form f under the action of SL2(k) if and only if the following
conditions are satisfied:

1. C0, . . . , Cm are homogeneous functions of degree d and isobaric of weight w,w+1, . . . , w+
m with nd− 2w = m,

2. DC = x∂C∂z ,
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F. Ulpat Rovetta 93

3. ∆C = z ∂C∂x .

This result is not available in every characteristic. Let f =
∑16
i=0 aix

iz16−i be a binary form
of degree n = 16 in characteristic 3. Note C = a11x

6 a homogeneous polynomial of degree

m = 6. The polynomial C is not a covariant of f because for M =
(

1 1
0 1

)
∈ SL2(k) we

have
C(M.f,M.(x, z)) = (x+ 2z)6(a11 + a14) 6= C.

Nonetheless

1. C0, . . . , Cm are homogeneous functions of degree d = 1 and isobaric of weight w =
5, 6, . . . , 11 with nd− 2w = 16 · 1− 2 · 5 = 6 = m,

2. DC = 6a10x
6 = 0 = x∂C∂z ,

3. ∆C = 12a6x
6 = 0 = z ∂C∂x .

Hence, Hilbert’s theorem cannot be used to prove our next result. However we will revise
some elements of the proof using the three subgroups Γ, Γ∗ and T.

2.2. A new way to build covariants in positive characteristic. — Before showing our
theorem, we set some notations. Let M ∈ SL2(k). We have

f(M.(x, z)) =
n∑
i=0

a′ix
izn−i.

In the following, we note X = (x, z), X ′ = M−1(x, z), a = (a0, . . . , an) and a′ = (a′0, . . . , a′n).
We start with a lemma.

Lemma 2.2. — An homogenous polynomial C ∈ k[a0, . . . , an]d[x, z] is a covariant under
the action of T if and only if the Ci are isobaric of weight w + i and nd− 2w = m.

Proof. — Write

C =
m∑
i=0

Cix
izm−i.

If M =
(λ−1 0

0 λ

)
∈ T, then a′i = λn−2iai and Cl(a′) =

∑l
i=1

∏n
j=0 a

′
j
εi,j,l (resp. Cl(a) =∑l

i=1
∏n
j=0 aj

εi,j,l) with l ∈ {0, . . . ,m} and εi,j,l ∈ N. We have

Cl(a′) =
l∑

i=1

n∏
j=0

λ(n−2j)εi,j,laj
εi,j,l =

l∑
i=1

λ
∑n

j=0(n−2j)εi,j,l

n∏
j=0

aj
εi,j,l

=
l∑

i=1
λ
nd−2

∑n

j=0 jεi,j,l

n∏
j=0

aj
εi,j,l .

Since M also acts on (x, z) by M−1.(x, z), we get

M.C(a,X) = C(a′0, . . . , a′n, λx, λ−1z) =
m∑
l=0

λ2l−mCl(a′)xlzm−l.
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94 A strategy and a new operator to generate covariants in small characteristic

Suppose that C is a covariant. — Then M.C = C, so for all l ∈ {0, . . . ,m}

Cl(a) = λ2l−mCl(a′).
This implies that for all l and for all i

nd− 2
n∑
j=0

jεi,j,l + 2l −m = 0.

In particular,
∑n
j=0 jεi,j,l − l does not depend on the l or i. So, we can define w by putting

w =
∑n
j=0 jεi,j,l − l. We get then nd− 2w = m. Moreover, the integer w is the weight of C0.

The weight of Cl is
∑n
j=0 jεi,j,l = w + l.

Conversely we want to prove that Cl(a) = λ2l−mCl(a′). — Since the weight of Cl is∑n
j=0 jεi,j,l, we have w =

∑n
j=0 jεi,j,l − l. Moreover, nd− 2w = m, hence :

nd− 2
n∑
j=0

jεi,j,l + 2l −m = 0.

This implies that:
Cl(a) = λ2l−mCl(a′).

So, C is a covariant under the action of T. �

Since, starting from C0, we get the weight of Ci of the covariant C, we can say that w is the
weight of C.

Theorem 2.3. — Let Q =
∑m0
i=0Qixizm0−i be a covariant of f of order m0, degree d0 and

weight ω0. Let l be an integer smaller than m0/2 and p. The polynomial

C = 1
zl
∂lQ
∂xl

is a covariant of f if and only if m0 − l + 1 is congruent to 0 modulo p. When C is a non
zero covariant, its order is m0 − 2l and its degree is d0.

Remark 2.4. — The operator was already known by Hilbert (cf. [5, Th. p. 103]). But the
way to use it in small characteristic with the previous condition is new.

To show that C is a covariant under the action of SL2(k), we consider the action of T, Γ and
Γ∗. First we analyse the action of this three subgroups on C and then we give the proof of
Theorem 2.3. Write again

C =
m∑
i=0

Cix
izm−i.

Lemma 2.5 (Action of T.) — C is covariant under the action of T if and only if
p | (m0 − l + 1).

Proof. — By definition of C, the polynomials C0, . . . , Cm are homogeneous functions of de-
gree d0 and isobaric of weight l + ω0, l + ω0 + 1, . . . , l + ω0 + m. We express C according to
the coefficients of Q

C =
m0∑
i=l

i!
l!Qix

i−lzm0−i−l.
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If p | (m0 − l + 1), then for all i ∈ {m0 − l + 1, . . . ,m0},

p | i!
l! .

In this case, if C is non zero, C is a homogeneous polynomial of degreem = m0−2l. Moreover,
Q being a covariant, Lemma 2.2 ensures that m0 = nd0−2w0. The order of C can be written
m = nd0− 2(ω0 + l). So, by Lemma 2.2, C is a covariant under the action of T. The converse
is also given by Lemma 2.2. The condition p | (m0 − l + 1) is then a necessary and sufficient
condition for C to be a covariant under the action of T. �

Lemma 2.6 (Action of Γ). — C is covariant under the action of Γ.

Proof. — We set g : (a,X) 7→ (a′, (x+µz, z)), were µ ∈ k. We aim at showing that C ◦g = C,
meaning that: (

1
zl
∂lQ
∂xl

)
◦ g = 1

zl
∂lQ
∂xl

.

This is equivalent to
∂lQ
∂xl
◦ g = ∂lQ

∂xl
.

However, Q being a covariant under the action of Γ, we have
∂Q
∂x

= ∂Q ◦ g
∂x

.

Moreover,
∂Q ◦ g
∂x

= ∂Q
∂x
◦ g.

By immediate induction, we obtain the desired result. So, C is covariant under the action
of Γ. �

Lemma 2.7 (Action of Γ∗). — If p | (m0 − l + 1) then C is invariant under the action
of Γ∗.

We set g : (a,X) 7→ (a′, (x, µx+ z)), where µ ∈ k. We want to prove that C ◦ g = C, meaning
that: (

1
zl
∂lQ
∂xl

)
◦ g = 1

zl
∂lQ
∂xl

.

This is equivalent to

zl
(
∂lQ
∂xl

)
◦ g = (µx+ z)l ∂

lQ
∂xl

.

Using the fact that ∂
lQ
∂xl
◦ g =

l∑
i=0

(
l

i

)
· (−µ)l−i · ∂lQ

∂xi∂l−iz
, this amounts to show

zl
l∑

i=0

(
l

i

)
∂lQ

∂xi∂zl−i
(−µ)l−i =

l∑
i=0

(
l

i

)
∂lQ
∂xl

µl−ixl−izi.

This is still equivalent to
l∑

i=0

(
l

i

)
µl−i

[∂lQ
∂xl

xl−izi + (−1)l−i+1 ∂lQ
∂xi∂zl−i

zl
]

= 0
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i.e. for all i ∈ {0, . . . , l}

∂lQ
∂xl

xl−izi + (−1)l−i+1 ∂lQ
∂xi∂zl−i

zl = 0.

Proof of Lemma 2.7. — Assume that p | (m0 − l + 1). We develop the left-hand side of the
expression and we get

0 =
m0∑
j=l
Qjj(j − 1) . . . (j − l + 1)xj−izm0+i−j

+ (−1)l−i+1
m0−l+i∑
j=i

Qjj(j − 1) . . . (j − i+ 1)xj−i(m0 − j)(m0 − j − 1) . . .

. . . (m0 − j − l + i+ 1)zm0−j+i.

For all j ∈ {m0 − l, . . . ,m}, p divides j(j − 1) . . . (j − l + 1). In the same way, for all
j ∈ {m0 − l, . . . ,m0 − l + i}, p divides j(j − 1) . . . (j − i + 1). So the sums shall stop at
m0 − l. For all j ∈ {i, . . . , l − 1}, p divides (m0 − j)(m0 − j − 1) . . . (m0 − j − l + i + 1).
Therefore the two sums begin at l. Finally, since p divides (m0 − l + 1), we have

(m0 − j)(m0 − j − 1) . . . (m0 − j − l + i+ 1) ≡ (l − 1− j)(l − 2− j) . . . (−j + i)
≡ (−1)l−i(j − i) . . . (j − l + 1) (mod p).

This proves the vanishing of the expression. So it has been shown that if p | (m0− l+ 1) then
C is invariant under the action of Γ∗. �

Proof of Theorem 2.3. — According to Lemma 2.5 (Action of T), C is a covariant under the
action of T if and only if p | (m0 − l + 1). According to Lemma 2.6 (Action of Γ), C is a
covariant under the action of Γ. According to Lemma 2.7 (Action of Γ∗), if p | (m0 − l + 1)
then C is a covariant under the action of Γ∗. Since SL2(k) is generated by T, Γ and Γ∗, if
p | (m0 − l + 1) then C is a covariant under the action of SL2(k).
Conversely, assume that C is a covariant under the action of SL2(k). The invariance under
the action of T (Lemma 2.5) shows that p | (m0 − l + 1).
Finally C is a covariant under the action of SL2(k) if and only if p | (m0 − l + 1). �

Thanks to this theorem, we can construct new covariants which do not appear in characteristic
zero.

– For binary quartics in characteristic 3 (cf. Example 1.12), we find c0,1 (Q = f and l = 2)
and c4,3 (Q = c6,3 and l = 1) ;

– For binary sextics in characteristic 3 (cf. [10, Sec. 5.2.6]), we find the covariant q (Q = f
and l = 1) of degree 1 and order 4 ;

– For binary sextics in characteristic 5 (cf. [10, Sec. 5.2.6] and [10, Sec. 6.6.2.3]), we find
the covariant c (Q = f and l = 2) of degree 1 and order 2 ;

– For binary octavics in characteristic 5, we find the same invariants, C = a4 (Q = f and
l = 4) of degree 1 identified by Basson and Lercier.
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It is tempting to wonder whether it is possible, in small characteristic, to get a generating
system of covariants by adding this new operation. A first difficulty is the following. Let
Q1, . . . ,Qr be covariants, l1, . . . , lr be integers such that

Ci = 1
zli
∂liQi
∂xli

are the covariants obtained by this new operation starting from Qi. Let Q be an element of
k[Q1, . . . ,Qr, C1, . . . , Cr]. The expression 1

zl
∂lQ
∂xl is not necessarily in k[Q1, . . . ,Qr, C1, . . . , Cr].

For instance, over k = F5, for r = 1 consider only the sextic binary formQ1 = f . The covariant
of f

1
z3
∂3f2

∂x3 = (a3a6 + a4a5)x6 + (4a2a6 + 4a3a5 + 2a2
4)x5z

+ (a0a4 + a1a3 + 3a2
2)xz5 + (4a0a3 + 4a1a2)z6

is not in the algebra generated by f and C1 = 1
z2
∂2f
∂x2 . Indeed, if it was in this algebra, it

would be a linear combination of f2, fC1 and C2
1 since these are the only terms of degree 2

in ai. However the terms that do not depend on x in these three covariants are a2
0, 2a0a2 and

4a2
2. We cannot generate the coefficient (4a0a3 + 4a1a2). So, it is difficult to see when the

new operation will saturate the algebra. Actually we even have an example where it does not.
Consider the invariant c0,6 ∈ I4 in characteristic 3 of Example 1.12. It cannot be obtained
using our new operator. To get it by our operation, it would have to be the l-th derivative
starting from a certain covariant of order m and degree 6. The integers m and l have to verify
l < m/2, m− 2l = 0 and m− l + 1 is a multiple of 3. So we get this invariant by taking the
second derivative of a certain covariant c4,6 of order 4 and degree 6. However by performing
the computations, we find that the algebra of covariant of degree less than 6 generated by our
operator on the reduction of covariants of characteristic zero is generated by c0,1, f = c4,1,
c4,3 and c6,3. The only two options for c4,6 are c5

0,1c4,1 and c3
0,1c4,3. These two options do not

give c0,6.

Acknowledgement. — It is a pleasure to thank Christelle Klein Scholz for her proofreading.

Appendix

symmetrisation:=function(C,P4)
P:=Parent(C);
F:=BaseRing(P);
r:=Rank(P);
P2:=PolynomialRing(F,r-1);
P3:=PolynomialRing(F,r-1);
f:=hom<P -> P2 | [P2.i : i in [1..r-1]] cat [1]>;
x:=P.r;
L:=f(Coefficients(C,x));
L2:=[];
for s in L do
b,t:=IsSymmetric(s,P3);
if b then
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L2:=L2 cat [t];
else
return "not symmetric";
end if;
end for;
f2:=hom< P3 -> P4 | [P4.i : i in [1..r-1]]>;
return &+[f2(L2[i])*(-P4.r)^(i-1) : i in [1..#L2]];
end function;

FF:= Rationals();
// FF:= GF(3);
A<x1,x2,x3,x4,x>:= PolynomialRing(FF,5);
// Order 0
t0 := (x2-x1)*(x4-x3);
t1 := (x4-x1)*(x3-x2);
//Order 2
u0 := (x-x1)*(x-x2)*(x4-x3);
u1 := (x-x1)*(x-x4)*(x3-x2);
u2 := (x-x3)*(x-x4)*(x2-x1);
//Order 4
f := (x-x1)*(x-x2)*(x-x3)*(x-x4);
M1:= Matrix(FF,[
[0,-1,0,0,0,0],
[-1,0,0,0,0,0],
[0,0,-1,-1,-1,0],
[0,0,1,0,0,0],
[0,0,0,1,0,0],
[0,0,0,0,0,1]
]);
// representation of the action of the cycle (123456)

M2:=Matrix(FF,[
[-1,0,0,0,0,0],
[1,1,0,0,0,0],
[0,0,1,0,0,0],
[0,0,0,1,1,0],
[0,0,0,0,-1,0],
[0,0,0,0,0,1]
]);
// representation of the action of the cycle (12)

GT := MatrixGroup<6, FF| [M1,M2]>;
// Group generated by the matrices M1 and M2

R:=InvariantRing(GT);
// Invariant ring of the group G on a set of 6 points
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F:=FundamentalInvariants(R);
// Invariants who generate the ring R

L:=[Evaluate(g,[t0,t1,u0,u1,u2,f]) : g in F];
L2:=MinimalAlgebraGenerators(L);
P4<a1,a2,a3,a4,z>:=PolynomialRing(FF,5);
L3:=[symmetrisation(C,P4) : C in L2];
// L3 is the list of elements of B_{reg,sym} expressed with the
// coefficients of ai f

[Factorization(C): C in L3];
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