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JACOBI SUMS AND GRÖSSENCHARACTERS

by

Mark Watkins

Abstract. — In 1952, Weil published a paper describing how to interpret Jacobi sums in terms
of Hecke Grössencharacters of cyclotomic fields. We describe an explicit version of this, with
reference to our previous work concerning algorithmic implementation of Grössencharacters.
We correct various errors involving root numbers in the latter, and also indicate how Jacobi
sum methods can be used to understand tame primes of hypergeometric motives.

Résumé. — (Sommes de Jacobi et Grössencharacters) En 1952, Weil a publié un article dans
lequel il donne une interprétation des sommes de Jacobi en terme de Hecke Grössencharacters
de corps cyclotomiques. Nous décrivons une version explicite de cette interprétation en lien avec
un travail précédent sur l’implantation algorithmique des Grössencharacters. Nous corrigeons à
ce sujet quelques erreurs liées au root numbers. Nous expliquons également comment la méthode
des sommes de Jacobi peut être utilisée pour comprendre le comportement de la ramification
modérée des motifs hypergéométriques.

1. Introduction

Starting in the 1940s, André Weil carried out a programme of study concerning numbers
of solutions of equations in finite fields [16]. As a part of this, in 1952 he wrote a brief
paper [17] showing that Jacobi sums were canonically related to Hecke Grössencharacters.
Armed with our previous work [15] on the latter, we describe how to carry out this correspon-
dence explicitly. In particular, we find that there are many practical advantages in dealing
with Grössencharacters, as they can be computed much more readily.
We have chosen to phrase our work in the more modern language of Anderson [1] and Schap-
pacher [13], the former of whom describes how to construct a motive attached to a Jacobi
sum, thus providing an arithmetic-geometric interpretation of them as alluded to in Weil’s in-
troduction [17]. In §2 we recall both Weil’s and Anderson’s setup, and then after giving some
basic examples, in §4 describe how to compute the Jacobi sums in two different ways, the first
using complex Gauss sums, and the second p-adic Gauss sums and the Gross–Koblitz formula.
We then indicate (§5) how Kummer twists (as dubbed by D. P. Roberts) can easily be added
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to Jacobi sum picture, and describe (§6) how to distinguish the associated Grössencharacter
to a Kummer-twisted Jacobi sum.
We can then use the Grössencharacter to read off various information about the Jacobi sum
motive, such as its conductor and local root numbers. Unfortunately, our previous work [15]
had a number of inaccuracies regarding root numbers, and we take the opportunity (§6.1) to
correct them here, following work of Rohrlich [12].
We then describe some formal operations on Jacobi sum motives in §7, which are one vestige
of various identities for Gauss and Jacobi sums (such as the Gross–Koblitz formula again).
Finally in §8 we show how Jacobi sums can be used to understand tame prime behavior of
hypergeometric motives, which was actually the original motivation for this work.

1.1. Magma implementation. —The methods we describe here have been implemented
in the Magma computer algebra system [3] maintained by the University of Sydney. The
Hypergeometric Motives chapter of the Magma Handbook [2] provides more information
about usage.

Acknowledgments. —The author wishes to thank D. P. Roberts for frequent help over
the timeline of this article (including an initial Magma implementation of some Jacobi sum
computations), and both him and F. Rodriguez Villegas for the context of the section regard-
ing hypergeometric motives. T. Dokchitser also provided useful comments regarding some
L-function questions. The referee helped clarify a discrepancy between Weil’s definition of
Jacobi sums and ours.

2. Background

2.1. Weil’s setup. —Given an integer m > 1, Weil [17] first considers power sum charac-
ters. For prime ideals p coprime to m in Q(ζm) and x with p - x, we define χp(x) as the root
of unity in Q(ζm) that satisfies

χp(x) ≡ x(q−1)/m (mod p),

where q is the norm of p. This χp is a multiplicative character, and we extend the definition
so that χp(x) = 0 for p|x.
Weil takes a vector ~a of r integers (aj) modulo m, with at least one of the aj nonzero, and
for a prime ideal p coprime to m in Q(ζm) defines the Jacobi sum(1)

J~a(p) = (−1)r+1 ∑
x1,...,xrmod p∑

i
xi≡−1 (p)

∏
j

χp(xk)aj .

After using multiplicativity to extend the definition of J~a to all ideals coprime to m, Weil
proves this a Hecke Grössencharacter on Q(ζm), with m2 a defining ideal for it (though not
necessarily minimal).

(1)There are various normalisations of Jacobi/Gauss sums extant in the literature.
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2.1.1. Reformulation in terms of Gauss sums. —Weil also notes that one can rewrite the
above Jacobi sum in terms of Gauss sums. For a prime p with gcd(p,m) = 1, we take a
nontrivial additive character ψ on Fp, and for prime ideals p above p in Q(ζm) we let q be
the norm of p and define the ath Gauss sum (with Fp = Fq) as(2)

Gψa/m(p) = −
∑
x∈F×

p

χp(x)a ψ
(
TrFp

Fp x
)
.

As with [17, (7)] (see [16, p. 501ff]), we have that

J~a(p) = (−1)r+1q−1 ·
r∏
i=1

Gψai/m(p) ·Gψ−s/m(p),

where s is the sum of the ai. This alternative definition of the Jacobi sum as a product of
Gauss sums is independent of the choice of ψ.
We can also (here and below) consider prime ideals q in subfields of Q(ζm): namely when
the J(p) are equal for all primes p in Q(ζm) above q, then we take this common value as J(q)
also.

2.2. Anderson’s formalism. —We can reformulate(3) Weil’s setup by replacing the vec-
tor ~a by a parallel notion ([1, §2.2]). Let θ be an integral formal linear combination of
elements of Q/Z whose projected sum to Q/Z is zero. Writing θ =

∑
j nj〈yj〉 with nj ∈ Z

and yj ∈ Q/Z, we then let m be the least common multiple of the denominators of the yj .
Our Jacobi sum evaluation is then the product of Gauss sums

Jθ(p) =
∏
j

Gψyj (p)nj ,

and this can be shown to be independent of the choice of additive character ψ due to our
requirement on θ that

∑
j njyj = 0 in Q/Z. Moreover, we shall take this to be the “correct”

extension of Jθ to the case where θ is empty, as we then get Jθ(p) is identically 1. Similarly,
for yj = 0 the Gauss sum is 1, which can be ignored for computational purposes. Indeed, it
is often better to simply omit such yj in θ, as they do not contribute to the weight.
2.2.1. Comparison to Weil’s setup. —We can make explicit the correspondence between
Weil’s ~a and the θ (of Anderson) that we use. Namely θ = 〈−s/m〉+

∑
i〈ai/m〉 has J~a(p) =

(−1)r+1q−1Jθ(p).

2.3. Jacobi motives. —Anderson’s formalism allows one to construct a motive J(θ) corre-
sponding to θ (see [1] and [13, §1]). We do not describe this here, but note some consequences.
2.3.1. Field of definition. —We introduce the scaling u◦θ of θ by u, which is defined by u◦θ =∑
j nj〈uyj〉. The natural field of definition Kθ is the subfield of Q(ζm) that corresponds by

class field theory to quotienting out (Z/mZ)? by elements which leave θ fixed when scaling
by them. The field Kθ is totally real when scaling by −1 fixes θ, and otherwise it is a CM
field.

(2)Our definition differs from Weil’s by a minus sign.
(3)It may seem that we “extend” Weil’s ansatz by additionally allowing negative coefficients in θ, but in fact
these can already be handled by Jacobi sum identities.
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For example, with θ = 〈1/13〉+ 〈3/13〉+ 〈9/13〉 there is a self-scaling by 3, and the motive is
defined over the quartic subfield of Q(ζ13).
2.3.2. Weight and Hodge structure. —The weight w of the motive is given by

∑
j nj where

the sum is over j with yj 6= 0, and the local Hodge weight(4) associated to a coprime residue
class u mod m is given by

∑
j nj{uyj}, where {·} is the fractional part. In the totally real

case (when scaling by −1 fixes θ) the individual weights at each u must all be the same while
the action of complex conjugation on Hp,p is (−1)p at each infinite place. In the alternate
case of complex multiplcation, the Hodge structure is obtained by pairing u and −u, with
(p, p,+) and (p, p,−) occurring equally when applicable.
For instance, for θ = 5〈1/5〉 the local weights for u = (1, 2, 3, 4) are simply (1, 2, 3, 4), so as-
suming that the embeddings are taken in the order (ζ5, ζ̄5, ζ

2
5 , ζ̄

2
5 ) the∞-type will be (1, 4, 2, 3).

The weight is 5, while the Hodge structure has h1,4 = h4,1 = h2,3 = h3,2 = 1 so that the
effective weight is 3, being the largest difference between weights at conjugate embeddings.
Note that scaling θ changes the local weights by permuting them, which as in [15] corresponds
to choosing embeddings, and so keeps the same motive over Q.

3. Small examples

There are various special cases of Jacobi sum motives, particularly when small numbers occur,
and we recall a few of these. The case of θ empty gives the unital motive (over Q) correspond-
ing to the Riemann ζ-function. The first interesting case is 2〈1/2〉, when the weight is 2, the
Hodge type is (1, 1,−), the field of definition is the totally real subfield of Q(ζ4) (namely Q),
and computation gives us that we have a Tate twist of the Kronecker character χ−4. Sim-
ilarly 〈1/3〉 + 〈2/3〉 gives a Tate twist of χ−3, and 〈1/4〉 + 〈3/4〉 gives a Tate twist of χ−8,
while 〈1/5〉+ 〈4/5〉 gives a Tate twist of the nontrivial Hecke character of modulus p5∞1∞2
for Q(

√
5).

Schappacher notes that 2〈2/3〉−〈1/3〉 corresponds to a canonical Grössencharacter of modu-
lus p2

3 over Q(ζ3) which in turn also corresponds to an elliptic curve (isogeny class) of conduc-
tor 27, and similarly 〈1/2〉+ 〈3/4〉−〈1/4〉 for the Grössencharacter of modulus p3

2 over Q(ζ4),
or an elliptic curve of conductor 32. The final example of this nature is 〈5/8〉+ 〈7/8〉 − 〈1/2〉
with stability upon scaling by 3, and the field of definition is thus Q(

√
−2), with the Grössen-

character of modulus p5
2, and the corresponding elliptic curve of conductor 256.

4. Computing Euler factors at good primes

In this section we describe a couple of methods to compute Jθ(p) reasonably efficiently for a
given p. However, the method is still slow compared to Grössencharacter evaluation, which
can be done in polynomial time. While in a later section we will indicate how to identify Jθ
as a Grössencharacter (which then allows faster methods to be used), we will still need to use
the methods given here as a “bootstrap” at sufficiently many primes of small norm.
We first give a complex method for computing good Euler factors, and then also a p-adic
method (communicated to us by D. P. Roberts). There are advantages and disadvantages
for each.
(4)The uth residue class corresponds to sending ζm → ζum, and in a computer implementation of Grössenchar-
acters one must specify the corresponding weight for each embedding when evaluating as complex numbers.
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4.1. Complex method. —This method simply computes the Gauss sums in §2.1.1 over C.
There is still a choice of how to identify the ζm from the power residue symbols into C, though
this just involves fixing the embeddings. This gives a way of mapping a (good) prime ideal
to a complex number, and thus a pre-L-function(5) for θ exhibited from GL1 /Kθ, explicitly
given as

L?(Jθ, s) =
∏
p-m

(
1− Jθ(p)/qs

)−1
,

where the prime ideals p are from Kθ ⊆ Q(ζm). This method essentially takes time propor-
tional to q, namely the length of the Gauss sums.(6)

4.2. p-adic method(7). —We can alternatively determine the Euler factor for primes p - m
as follows.(8) Determine the smallest positive f with m|(pf − 1), and consider the splitting
by scaled orbit sets as {

{ape ◦ θ}f−1
e=0 : 1 ≤ a ≤ m− 1, gcd(a,m) = 1

}
.

For each orbit, sum a representative as
∑
e ap

e ◦ θ =
∑
e

∑
j nj〈apeyj〉 and compute

R(a) = (−p)v
f−1∏
e=0

∏
j

Γp
(
{apeyj}

)nj where v =
f−1∑
e=0

∑
j

nj{apeyj},

with each Γp-evaluation being invertible in Zp. The R(a) are roots of the Euler factor at p,
which is given by the product

∏
a(1−R(a)T z)−1, where z is the degree of Kθ divided by the

number of a-orbits. As usual, one computes R(a) by p-adic methods to sufficient precision
to be able to recognise the coefficients of the Euler factors as integers in a suitable Weil
interval (depending on the weight), after scaling by the known valuation. Also, in the case
where z = deg(Kθ) so there is just one orbit, we find that R(a) is a scaled product of trivial
Gauss sums.
The computation time is dominated by computing Γp at all multiples of 1/m, each evaluation
of which takes time proportional to p and the desired precision. When q is significantly larger
than p, this is thus superior than the complex method. However, with this method it is
more difficult to exhibit the resulting Euler product over Kθ. By making suitable choices,
it is possible to associate to each prime ideal p a p-adic number in a coherent manner, in
particular so that one can take tensor products of such objects over Kθ, but there is still
some choice involved with identifying such p-adic numbers to complex evaluations.

(5)We don’t know the Euler factors at bad primes p|m, and they can be nontrivial; below we note that
θ = 〈1/5〉+ 〈4/5〉− 〈2/5〉− 〈3/5〉 corresponds to the Dedekind ζ-function of Q(

√
5), for which the Euler factor

at p5 is nontrivial.
(6)When q = p is prime, one might hope to use functional equation methods to reduce the time to √p, but
this is not an important issue for us.
(7)As noted above, this was first communicated to us as a Magma implementation by D. P. Roberts. See
also [1, §2] and [13, §0.8.2.2] for similar considerations.
(8)This implicitly uses the Gross–Koblitz formula [8] to rewrite the above Gauss sums in terms of the p-adic
Γ-function.
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4.3. Conductors. —The conductor of Jacobi sum motives is known to differing levels of
explicitness in various cases [11, 5, 9], whereas Weil [17] already gives the general upper
bound(9) that the conductor divides m2 as an ideal in Kθ.

5. Kummer twists

We can also consider (Kummer) twists of Jacobi motives. We twist by tρ with t ∈ Q?

and ρ ∈ Q/Z, where we canonicalise by taking t not to be a nontrivial power and ρ ∈ [0, 1).
The m-value must now also include denominator of ρ, and the field of definition Ktρ

θ similarly
requires the u-scalings to additionally fix ρ ∈ Q/Z. The Hodge structure stays the same,
except that the central hp,p signs are switched when ρ = 1/2 and t is negative.
For p with vp(t) = vp(m) = 0 the Kummer-twisted Jacobi sum is

J t
ρ

θ (p) = χp(tρm) · Jθ(p) = χp(tρm) ·
∏
j

Gψyj (p)nj .

When using the p-adic method, we multiply R(a) by ωp(t) raised to the ρ(pf − 1)
∑
e ap

e

power, where here ωp is the Teichmüller character.
The introduction of the character χp(tρm) implies that the conductor bound (as a Ktρ

θ -ideal)
is now m2 multiplied by the primes at which t has nonzero valuation.

5.1. Twists of the Fermat cubic, and congruent number curve. —Recall from above
that θ = 2〈2/3〉− 〈1/3〉 corresponds to an elliptic curve of conductor 27. We can take various
twists of this by choosing t and ρ appropriately. In particular, with ρ = 1/2 we will obtain
quadratic twists (note that these do not enlarge the field Kθ), while ρ = ±1/3 will give cubic
twists, with ρ = ±1/6 for sextic twists. Similarly, for θ = 〈1/2〉+ 〈3/4〉 − 〈1/4〉 we can take
quartic twists of the associated congruent number curve (of conductor 32) via ρ = ±1/4.

5.2. Various examples. —One can Kummer-twist the unital Jacobi motive J(θ) for θ
empty and already obtain non-trivial results. For instance, twisting by t1/2 gives the Kro-
necker character for t, and 21/3 will yield the nontrivial 2-dimensional Artin representation of
Q(21/3). Similarly, with θ = 〈1/5〉+ 〈4/5〉 taking the Kummer twist by 51/5 results in a Tate
twist of the irreducible 4-dimensional Artin representation for Q(51/5), with the Grössenchar-
acter having conductor p6

5 in Q(ζ5). This same conductor appears with the Kummer twist
by 51/5 of θ = 2〈3/5〉 − 〈1/5〉. Moreover, the four conjugate Kummer twists here all have
congruent Euler factors mod 5.

6. Grössencharacter reciprocity

Given Weil’s above bound for the conductor and the knowledge of the ∞-type as in §2.3.2,
it is a finite problem to identify a Jacobi–Kummer motive with a Hecke Grössencharacter, as
the set of possibilities for the latter is limited. The process can be carried out by choosing
enough(10) good primes of small norm and comparing Euler factors.
(9)See [11] for references to later works that improve Weil’s bound, though it must be noted that (for simplicity)
some authors consider a restricted class of θ.
(10)One can give an explicit bound (if desired) via estimates from analytic number theory, but this is likely
much larger than is needed in practise.
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Note there can be more than one Hecke Grössencharacter over Ktρ
θ that corresponds to a

motive over Q. For instance with θ empty and tρ = 21/3, there are two conjugate Hecke
characters that can be distinguished over Ktρ

θ but not over Q. In this case, we find it more
useful to work with the complex method to compute the Euler factors.
In practise, it is definitely best to identify the Jacobi motive as a Grössencharacter, as the
Euler factors at good primes can be computed in time polynomial in (log p), and moreover one
can obtain the relevant information about local conductors at bad primes using the method
of [15, §2.2 and §5.3].

6.1. Root numbers. —Unfortunately, the author’s paper [15] contains many infelicities
in its description of Grössencharacter root numbers. For instance, the formula in [15, §3.6.1]
for the local root number is garbled (at best), and the statement in [15, §5.3.1] also contains
some mystification. Fortunately, a parallel analysis has been given by Rohrlich, with a correct
expression for root numbers being found in [12, (2.42)]. We take the opportunity to give
corresponding corrections to [15] here.
We begin by first recalling the notation of [15, §5.2]. For a given Grössencharacter G, we
have an ∞-type T = (nσ)σ where σ runs over complex embeddings and nσ are integral,
and a Hecke–Dirichlet pair (ψ, χ) of characters(11) with the Dirichlet character inverse to the
evaluation of the∞-type on units, so that χ(ε)−1 = T(ε) =

∏
σ(εσ)nσ for units ε. Furthermore,

for elements α ∈ K of the base field, we have G(α) = T(α) ·χ(α) ·ψ(α), so that ψχ, or more
properly ψ̌χ, namely the product of χ with the Dirichlet restriction ψ̃ of ψ, can be said
to have the same local components at finite primes as G; indeed this is how one computes
the conductor of G (cf. [15, §5.3]). We write the Dirichlet decomposition of the character
as ψ̌χ =

∏
p(ψ̌χ)p. However, note that with Proposition 2.1 of Rohrlich [12] (coming from

equation 2.17) the adelic components are reciprocal to our Dirichlet components, which can
cause some confusion. In particular, we have that Gp = (ψ̌χ)−1

p on Z×p , where the former is
an adelic component of G à la Rohrlich.
At a given prime ideal p we write d for the exponent of the different ideal and e for that of
the conductor. Letting u be a uniformiser, from [12, (2.42)] the local root number is

Wp(G) = G̃p(ud+e) · 1√
qe

∑
a∈(Zp/pe)×

(ψ̃χ)p(a) · exp
(
2πiTr

(
a/ud+e)).

Here the tilde in G̃p indicates the unitary part is taken, while Gp(ud+e) itself is determined
by pulling back ud+e to a K-element α coprime to the modulus mΩ, or equivalently to a
principal ideal (α) = pd+ea satisfying gcd(p, a) = gcd(a,m) = 1. More explicitly, by the adelic
formulation (see [12, §2.2]) and product formula for α we have

1 = Gp(α) ·
∏
q|m
q6=p

Gq(α) ·
∏
r|a

Gr(α) ·G∞(α),

(11)The terminology is that ψ is a Hecke character on ideals, while χ is a Dirichlet character on K-elements.
Note that a Dirichlet character has a Chinese remainder decomposition into prime power moduli, while a Hecke
character need not, and that a Hecke character can always restrict to a Dirichlet character, but a Dirichlet
character only lifts to a Hecke character if it is trivial on the units.
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and then rewriting the right side gives
1 = Gp(ud+e) ·

∏
q|mΩ
q6=p

(ψ̌χ)−1
q (α) ·G(a) ·T(α)−1,

with the last three factors directly computable. This gives Gp(ud+e) as a complex number,
and dividing by its norm gives the unitary part. Note that in the case where G is unramified
at p the above local root number formula still holds with the convention that the sum is 1,
and since e = 0 we then get Wp(G) = G̃p(ud) = G̃(α)/G̃(a) = G̃(pd) in terms of the local
different.(12)
Also, in §3.6.1 of [15] the root number at a ramified real place should be reciprocated
to e−2πi/4, as Deligne uses ψ(x) = exp(2πix) while Rohrlich in his (2.56) uses the conju-
gate of this. In a similar manner, with [15, §5.3.1] the local root number at a complex place
should be ip−q.
The author wishes to thank D. P. Roberts for helping him sort out the various discrepancies
in the root number formulæ. Also, note that the Magma code internally uses χ−1 in place
of χ, so one must be careful if using more functionality than is immediately exposed.
6.1.1. Examples. —Consider the Gros̈sencharacter G of the elliptic curve isogeny class of
conductor 27, which has modulus p2

3 in Q(
√
−3) and ∞-type (1, 0). Then

Wp3(Go) =
{

+i when o mod 12 ∈ {1, 9, 11},
−i when o mod 12 ∈ {3, 5, 7},

while W∞(Go) = (−i)o. As with [7] we find that

W (Go) =
{

+1 when o mod 12 ∈ {1, 3, 7},
−1 when o mod 12 ∈ {5, 9, 11}.

The conductor is trivial when 6|o, is p3 when otherwise 3|o, and else p2
3.

6.1.2. Another example. — In Exercise 5.5 of [12], one starts with the Grössencharacter G
corresponding to the elliptic curve 49a, namely with modulus p7 in Q(

√
−7) and∞-type (1, 0),

and twists it by the quadratic character ψ corresponding to extending Q(
√
−7) by the square

root of −118 − 18
√
−7. For G we have the root numbers Wp7(G) = +i and W∞(G) = −i,

while the conductor of ψ is p11p23, with Wp7(ψ) = 1, Wp11(ψ) = +i, and Wp23(ψ) = −i. Thus
both ψ and G have global root number +1 and are self-dual.
However, the product Gψ is not self-dual, and while the root numbers at p7 and ∞ are the
same as with G, at p11 and p23 they become roots of 11T 4− 6T 2 + 11 and 23T 4 + 18T 2 + 23
respectively.(13) But at the same time, the central L-value still vanishes,(14) as the Mordell–
Weil rank increases upon making this quadratic extension of Q(

√
−7).

(12)We can note that [15, §3.6.1] appends a reciprocal on the right side, but as previously indicated, we do not
consider this to be a reliable source for local root numbers. Indeed, already with the Q( 3√175) example given
there one can see the discrepancy with the correct formula given here.
The confusion was likely due to inept glueing of various formulæ in the literature. For instance, when reading
(7.1.60) and (7.1.61a) in [14] one must realise that W (ρ) relates to τ(ρ̄), so W (ρ) corresponds to ρ(d), not its
reciprocal.
(13)Note [15, §5.3.1 (4)] again has a wrong reciprocation, as W (Gψ) = G(p11p23).
(14)Rohrlich emphasizes that the work of Coates and Wiles [4] allows one to prove that the central L-value
vanishes in this case.

Publications mathématiques de Besançon – 2018



M. Watkins 119

7. Relations between motives

We next describe how some natural operations on θ’s correspond to motivic operations.
Firstly we look at the sum of elements. Assuming for simplicity that θ1 and θ2 have the same
defining field Kθ, we then have that

J(θ1 + θ2) = J(θ1) ⊗
Kθ

J(θ2).

This follows (e.g.) simply from analysis of the local degree 1 Euler factors at each prime ideal,
as adding θ1 and θ2 multiplies the Jacobi sum evaluations (a.k.a. the local eigenvalues), which
is exactly the tensor operation on the motivic side. In the general case, one must first induce
the motives to a common defining field.
The negation operation on θ yields reciprocation on the eigenvalues, which can also be rep-
resented as a Tate twist of conjugation. Note that J ⊗ J−1 is the unital motive, as all the
resulting eigenvalues are 1.
As noted previously, scaling θ retains the same motive over Q, but over Kθ can result in
conjugation.

7.1. An example. —Consider θ1 = 〈1/5〉 + 〈4/5〉 and θ2 = 〈2/5〉 + 〈3/5〉. The field of
definition of each of these is Q(

√
5). We have 2 ◦ θ1 = θ2, and thus the motives are the same

over Q. In fact, they are the same over Q(
√

5), as the local weights do not change under the
scaling. We can then note that

J(θ1 − θ2) = J(θ1) ⊗
Q(
√

5)
J(θ2)−1 = J(θ1) ⊗

Q(
√

5)
J(θ1)−1 = UQ(

√
5),

where the last motive is the unital motive over Q(
√

5), whose L-function is the Dedekind
ζ-function for this field.
We can also note that J(θ1 + θ2) = U(−2)

Q(
√

5), namely the Tate twist by −2 of the aforesaid
unital motive. The computation here can either go through a similar formalism, or note that
the Jacobi sums (at p of norm q) for J(θ1) = J(θ2) are ±q, which thus always square to q2

when taking the tensor product.
From this starting point, we can derive more relations herein. The Q-motives for η1 = 2〈1/5〉−
〈2/5〉 and η2 = 〈1/5〉+ 〈2/5〉−〈3/5〉 can then be seen to be equal since η1 = 3◦η2 +(θ1−θ2).
Indeed as rank 1 motives on Q(ζ5) we have

J(η1) = J(3 ◦ η2) ⊗
Q(ζ5)

J(θ1 − θ2),

and the latter motive is unital. Thus J(η1) = J(3 ◦ η2) as motives over Q(ζ5), and upon
removing the scaling from η2 we find that their Q-realizations are the same.
Similarly, we can note θ3 = 〈1/7〉+ 〈6/7〉 and θ4 = 〈2/7〉+ 〈5/7〉 has J(θ3 − θ4) as the unital
motive over the real cubic subfield of Q(ζ7), again since J(θ3) = J(θ4) over this field, for the

This example is slightly more complicated than those of [6], where one takes an elliptic curve and twists it by
(say) a cubic Dirichlet character. For instance, with 37b and a cubic character modulo 7, the curve increases
in rank over Q(ζ7)+, so there is again an expectation of central vanishing even though the motive is not self-
dual and the root number is unitary. However, the cubic character is itself unitary, while the corresponding
quadratic character in Rohrlich’s example is not.
Another example of unforced vanishing is with (e.g.) the weight 2 newform with Dirichlet character of mod-
ulus 61 and order 6 over Q(ζ3); the root number is a root of 61T 12 + 121T 6 + 61 and the vanishing can be
proven by modular symbols.
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scaling does not change the local weights. From this we determine (for instance) that κ1 =
2〈1/7〉−〈2/7〉 and κ3 = 〈1/7〉+〈3/7〉−〈4/7〉 yield the same Q-motive since κ1−5◦κ3 = θ3−θ4,
so that J(κ1) = J(5◦κ3) over Q(ζ7). However, κ2 = 〈1/7〉+ 〈2/7〉−〈3/7〉 must correspond to
a different motive, as there is no scaling u mod 7 such that κ1 − u ◦ κ2 has effective weight 0
(so in particular is not unital). One can presumably re-interpret these in terms of identities
for Gauss and Jacobi sums.

8. Tame primes of hypergeometric motives

We conclude by describing how Jacobi sums can be used to compute Euler factors at (pos-
sibly) tame primes of hypergeometric motives. This was one of the original motiviations for
our project with D. P. Roberts and F. Rodriguez Villegas, though by now an alternative
explanation has been given. We refer to [2] and [10] for a fuller context.
Consider a hypergeometric datum over Q given by the disjoint multisets A and B of cyclo-
tomic indices. We rewrite the defining quotient of cyclotomic polynomials by Möbius inversion
as ∏

a∈AΦa(T )∏
b∈B Φb(T ) =

∏
c∈C(T c − 1)∏
d∈D(T d − 1) ,

where again C and D are disjoint multisets. We also recall the natural scaling parameter
M =

∏
c∈C

cc
/ ∏
d∈D

dd.

At a rational parameter t 6= 0, 1, the (conjectural) hypergeometric motive has possibly tame
ramification at primes p with vp(t) 6= 0 which are in neither A nor B. In our normalization,
the t of positive valuation correspond to C and those of negative valuation to D. Letting v =
−vp(t) > 0 and t = t0/Mpv, we consider the s ∈ D with s|v. Writing m for the multiplicity
of s in A∪B, such an s (counted only once) contributes an Euler factor of weight w+ 1−m,
corresponding to the Kummer twisting by t1/s0 of the Jacobi motive given by∑

c∈C
〈c/s〉 −

∑
d∈D
〈d/s〉,

where we can ignore (as noted in §2.2) the occurrences of 〈0〉, and must in any case take a Tate
twist to get the correct (effective) weight. A similar characterisation holds true for vp(t) > 0
and C.

8.1. An example. —Consider the weight 3 hypergeometric motive given by the pair
(Φ2

1Φ2
2Φ3

3Φ6,Φ3
5), so that C = {1, 2, 3, 3, 6} and D = {5, 5, 5} and M = 28312/515. Let-

ting p = 11 and taking t = u/Mp5, we find that there should be a degree 4 Euler factor
of weight 3 + 1 − 3 = 1 at p (with the local conductor being 1112−4). The corresponding
Jacobi–Kummer motive is the u1/5-Kummer twist of 2〈1/5〉+ 〈2/5〉+ 2〈3/5〉, with the result
Tate-twisted by 2 to reduce its weight to 1. There are five possibilities for the Euler factor
depending on the residue class of ±u modulo 11. For instance, for u = ±4 the reciprocal
Euler factor is 1− 9T + 41T 2 − 99T 3 + 121T 4.
To describe the situation for t with positive valuation, we take p = 7 (taking a prime that
is 1 mod 6 simplifies somewhat). For both s = 1, 2 we get θ as empty, while for s = 3 it
is 〈1/3〉−2〈2/3〉 and for s = 6 it is 〈1/6〉+〈1/3〉+2〈1/2〉−3〈5/6〉. The weights for s = (1, 2, 3, 6)
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are respectively (2, 2, 1, 3). For instance, for t = 5p6/M we find that the reciprocal Euler
factor is

(1− 7T ) · (1 + 7T ) · (1 + 4T + 7T 2) · (1 + 20T + 343T 2),
with the factors corresponding to the s = (1, 2, 3, 6) contributions.
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