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AN INTRODUCTION TO CLASSICAL AND FINITE MULTIPLE
ZETA VALUES

by

Masanobu Kaneko

Abstract. —We review some basic properties of multiple zeta values, in particular the theory of regular-
ization and its connection to an identity between certain integral and series discovered in collaboration
with S. Yamamoto. We also introduce the two “finite” versions of multiple zeta values, and a conjectural
connection between them, which were discovered jointly with D. Zagier.

Résumé. — (Une introduction aux valeurs des fonctions zétas multiples)Nous décrivons certaines pro-
priétés basiques des valeurs de fonctions zétas multiples. Nous explicitons en particulier la théorie des
régularisations et son lien avec une identité, obtenue en collaboration avec S. Yamamoto, entre certaines
intégrales et séries. Nous présentons également les deux versions � finies � des valeurs zétas multiples et
un lien conjectural entre elles découvert conjointement avec D. Zagier.

1. Introduction

The multiple zeta value (MZV) is defined by the nested series

(1.1) ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1
mk1

1 · · ·m
kr
r

,

where ki (1 ≤ i ≤ r) are arbitrary positive integers with kr ≥ 2 (for convergence), and the
sum is over r ordered positive integers.
The study of MZVs goes back to C. Goldbach and L. Euler, who investigated the case when
r = 2. Since 1990’s, these numbers have appeared in a variety of branches of mathematics
and mathematical physics as well, and a vast amount of work has been and still being done
from various viewpoints and interests. In particular, it has turned out that relations among
MZVs often reflected the structures of mathematical objects in various areas, and a great
number of interesting relations have been found. However, we cannot yet say such and such
relations describe all relations among MZVs, although several conjectural candidate sets of
relations are known.

2010 Mathematics Subject Classification. — 11M32, 11B68.
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104 An introduction to classical and finite multiple zeta values

The first part (from Section 2 to Section 6) of this expository article is devoted to review some
basic properties of MZVs, and then explain the relation called the “extended double shuffle
relations” and their connection to simpler, but equivalent “integral = series” type relations
of S. Yamamoto and the author. In the second part (from Section 7 to Section 9), we explain
about our joint work with D. Zagier on two types of “finite” analogues of classical multiple
zeta values and their conjectural interrelation.

2. Definitions and the algebra of MZVs

Before discussing the multiple zeta value, we briefly mention the multiple zeta function

(2.1) ζ(s1, . . . , sr) =
∑

0<m1<···<mr

1
ms1

1 · · ·m
sr
r

of r complex variables si. About the region of convergence, the following was first stated and
proved in [19].

Proposition 2.1. — The series (2.1) is absolutely convergent in the region <(sj+· · ·+sr) >
r − j + 1 (j = 1, 2, . . . , r).

Proof. — Set mi := n1 + · · ·+ ni and σi := <(si), and look at the series∑
0<m1<···<mr

∣∣∣∣ 1
ms1

1 · · ·m
sr
r

∣∣∣∣ =
∞∑

n1=1
· · ·

∞∑
nr=1

1
nσ1

1 (n1 + n2)σ2 · · · (n1 + · · ·+ nr)σr
.

Using the simple estimate
∞∑
n=1

1
(a+ n)σ ≤

∫ ∞
0

1
(a+ x)σ dx = 1

σ − 1
1

aσ−1

for a > 0, σ > 1, we have, by the assumption σr > 1,
∞∑

nr=1

1
(n1 + · · ·+ nr)σr

≤ C

(n1 + · · ·+ nr−1)σr−1

with some positive constant C. Then, by σr + σr−1 > 2, there exists a constant C ′ > 0 such
that

∞∑
nr−1=1

∞∑
nr=1

1
(n1 + · · ·+ nr−1)σr−1

1
(n1 + · · ·+ nr−1 + nr)σr

≤
∞∑

nr−1=1

C

(n1 + · · ·+ nr−1)σr−1+σr−1 ≤
C ′

(n1 + · · ·+ nr−2)σr−1+σr−2

holds. We may proceed similarly and finally end up with the estimate∑
0<m1<···<mr

∣∣∣∣ 1
ms1

1 · · ·m
sr
r

∣∣∣∣ ≤ ∞∑
n1=1

C ′′

n
σ1+···+σr−(r−1)
1

for some C ′′ > 0, and we are done because σ1 + · · ·+ σr − (r − 1) > 1. �
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M. Kaneko 105

Theorem 2.2. — The function ζ(s1, . . . , sr) is meromorphically continued to the whole Cr,
with poles at

sr = 1,
sr + sr−1 = 2, 1, 0,−2,−4,−6, . . .

sr + sr−1 + sr−2 = 3, 2, 1, 0,−1,−2,−3, . . . (∈ Z≤3)
...

sr + · · ·+ s1 = r, r − 1, . . . (∈ Z≤r).

Proof. — We refer the reader e.g. [1] for a proof. �

Let us come back to the MZV, and we hereafter consider only positive integers as arguments
in (1.1).

Definition 2.3. — For an index set k = (k1, . . . , kr) ∈ Nr, the quantities |k| := k1 + · · ·+kr
and dep(k) := r are respectively called weight and depth. When kr > 1, the index k is said
to be admissible. By Proposition 2.1, the defining series (1.1) of the MZV converges if and
only if k = (k1, . . . , kr) is admissible. We often say the value ζ(k1, . . . , kr) also has weight
k = k1 + · · ·+ kr and depth r.

It is an easy exercise to see that the number of admissible indices of weight k and depth r is
equal to

(k−2
r−1
)
, and the total number of admissible indices of weight k is 2k−2.

wt=2 wt=3 wt=4 wt=5
dep=1 ζ(2) ζ(3) ζ(4) ζ(5)
dep=2 ζ(1, 2) ζ(1, 3), ζ(2, 2) ζ(1, 4), ζ(2, 3), ζ(3, 2)
dep=3 ζ(1, 1, 2) ζ(1, 1, 3), ζ(1, 2, 2), ζ(2, 1, 2)
dep=4 ζ(1, 1, 1, 2)

We introduce the Q-vector space spanned by MZVs.

Definition 2.4. — We define the Q-vector space Zk (k = 0, 1, 2, . . .) as the subspace of R
spanned by MZVs of weight k:

Z0 = Q, Z1 = {0},

Zk =
∑

1≤r≤k−1
k1,...,kr−1≥1,kr≥2

k1+···+kr=k

Q · ζ(k1, . . . , kr) (k ≥ 2).

And further, put

Z =
∞∑
k=0
Zk.

Let us look at examples in small weights. There is only one element ζ(2) of weight 2 and thus
Z2 = Q · ζ(2) (one dimensional). For weight 3, Euler’s famous identity ζ(1, 2) = ζ(3) shows
that Z3 = Q · ζ(1, 2) +Q · ζ(3) = Q · ζ(3) (one dimensional). We will see later that Z4 is also
one dimensional spanned by ζ(4). No value of k is known for which the dimension of Zk is
strictly bigger than one, because of the difficulty to show the independence, for example of
ζ(5) and ζ(2, 3) over Q.
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106 An introduction to classical and finite multiple zeta values

As for the dimension of Zk, the following remarkable conjecture of Zagier is widely known.
Let the sequence dk (k = 0, 1, 2, . . .) be defined by the recursion

(2.2) d0 = 1, d1 = 0, d2 = 1, dk = dk−2 + dk−3 (k ≥ 3).

Conjecture 2.5 (Zagier [38]). — We have dimQZk = dk.

The ultimate upper bound result is established by A. Goncharov and T. Terasoma. As said
above, no non-trivial lower bound is known so far.

Theorem 2.6 (Goncharov [5], Terasoma [33], Deligne–Goncharov [4]). — We have
dimQZk ≤ dk.

Below is the table of dk and the total number (= 2k−2) of indices of weight k.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dk 1 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28
2k−2 − − 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Note that the magnitude of dk is far smaller than 2k−2, and hence we expect many relations
among MZVs. What is the fundamental set of relations which is enough to deduce all rela-
tions? This is the basic question in the theory. There are several candidates of such a set:
associator relations, extended (or regularized) double shuffle relations, Kawashima’s relations,
etc.
The goal of the first part of this survey article is to introduce an elementary “integral-series
relations” of Yamamoto and the author, and to explain its relation to the extended double
shuffle relations.
We first show that the space Z has a structure of a Q-algebra.

Proposition 2.7. — The space Z is a Q-algebra, and the multiplication respects weights,
i.e., Zk · Zl ⊂ Zk+l.

Proof. — There are at least two ways to prove this, one by using defining series (1.1) of
MZVs, and the other using integral expressions. We introduce the integral expression in the
next section, and here we give a proof using series.
For an integer N , let ζN (k1, . . . , kr) be the truncated finite sum

(2.3) ζN (k1, . . . , kr) =
∑

0<m1<···<mr<N

1
mk1

1 · · ·m
kr
r

.

When kr > 1, this converges to ζ(k1, . . . , kr) as N →∞.
For two indices k = (k1, . . . , kr) and l = (l1, . . . , ls), we prove by induction on the sum r + s
of depths that

ζN (k)ζN (l) is a sum of ζN (m)’s with some indices m’s.
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When r + s = 2, i.e., r = s = 1, this is true because

ζN (k)ζN (l) =
∑

0<m<N

1
mk

∑
0<n<N

1
nl

=
∑

0<m,n<N

1
mknl

=
( ∑

0<m<n<N
+

∑
0<n<m<N

+
∑

0<m=n<N

)
1

mknl

= ζN (k, l) + ζN (l, k) + ζN (k + l).

Let r + s > 2 and suppose the assertion is true for the product of lesser sum of depths. We
compute the product in a similar manner as

ζN (k)ζN (l) =
∑

0<m1<···<mr<N
0<n1<···<ns<N

1
mk1

1 · · ·m
kr
r n

l1
1 · · ·n

ls
s

=
( ∑

0<ns<mr<N
0<m1<···<mr
0<n1<···<ns

+
∑

0<mr<ns<N
0<m1<···<mr
0<n1<···<ns

+
∑

0<mr=ns<N
0<m1<···<mr
0<n1<···<ns

)
1

mk1
1 · · ·m

kr
r n

l1
1 · · ·n

ls
s

=
∑

0<mr<N

ζmr (k−)ζmr (l) 1
mkr
r

+
∑

0<ns<N

ζns(k)ζns(l−) 1
nlss

+
∑

0<mr<N

ζmr (k−)ζmr (l−) 1
mkr+ls
r

,

where k− = (k1, . . . , kr−1), l− = (l1, . . . , ls−1), and ζ•(∅) = 1. By the induction hypothesis,
the product ζmr (k−)ζmr (l) is a sum of ζmr (m)’s, and

∑
0<mr<N ζmr (m) 1

mkr
r

= ζN (m, kr),
and similarly for other two terms. This proves the assertion by induction. If both k and l are
admissible, all m’s that appear are clearly admissible. Hence by taking the limit N → ∞,
we obtain the first claim of the proposition. The second on weight is also clear from this
computation. �

For later use, we introduce a formal space R of indices, and equip R with a product ∗ coming
from the above multiplication rule of MZVs in series form.
Let R :=

⊕
r≥0 Q[Nr] be the space of finite Q-linear combination of symbols [k] = [k1, . . . , kr]

with k = (k1, . . . , kr) ∈ Nr. We set Q[N0] = Q[∅] and let R0 be the subspace spanned by
admissible (i.e. kr ≥ 2) [k]’s. On R, we define the “stuffle” (or harmonic, or quasi-shuffle)
product ∗ inductively by the following.

– It is Q-bilinear,

– [∅] ∗ [k] = [k] ∗ [∅] = [k] for any k,

– [k] ∗ [l] =
[
[k−] ∗ [l], kr

]
+
[
[k] ∗ [l−], ls

]
+
[
[k−] ∗ [l−], kr + ls

]
, where k = (k1, . . . , kr),

l = (l1, . . . , ls), and we put k− = (k1, . . . , kr−1) and l− = (l1, . . . , ls−1).

Hoffman [9] shows that this product is associative and commutative. We write R∗ if we
think of R as a Q-algebra with the product ∗. As is easily seen, the subspace R0 becomes
a subalgebra of R∗ and this subalgebra is denoted by R0

∗. In the next section, we introduce
another product x on R coming from the integral expression of the MZV.
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108 An introduction to classical and finite multiple zeta values

If we extend the association [k] 7→ ζ(k) Q-linearly to the map ζ : R0 → R (using the same
letter ζ), then what we showed in the proof of Proposition 2.7 can be written as

(2.4) ζ(k)ζ(l) = ζ([k] ∗ [l])

for all admissible k and l, i.e., the Q-linear map ζ is an algebra homomorphism from R0
∗ to

R. We often write ζ([k] ∗ [l]) as ζ(k ∗ l) for notational simplicity.

3. Integral expression

In this section, we review integral expressions of multiple zeta and multiple zeta-star values,
by introducing a more general theory of Yamamoto on the integrals associated to 2-labeled
posets [36].

Definition 3.1. — A 2-poset is a pair (X, δX) of a finite partially ordered set (poset for
short) X and a “label map” δX from X to {0, 1}.
A 2-poset (X, δX) is admissible if δX(x) = 0 for all maximal elements x ∈ X and δX(x) = 1
for all minimal elements x ∈ X.

It is convenient to use a Hasse diagram to describe a 2-poset, in which an element x with
δX(x) = 0 (resp. δX(x) = 1) is represented by ◦ (resp. •). For instance, the diagram

corresponds to the 2-poset X = {x1, x2, x3, x4, x5} with the order x1 < x2 > x3 < x4 < x5
and label (δX(x1), . . . , δX(x5)) = (1, 0, 1, 0, 0). This is an admissible 2-poset.

Definition 3.2. — For an admissible 2-poset X, we associate the integral

(3.1) I(X) =
∫

∆X

∏
x∈X

ωδX(x)(tx),

where
∆X =

{
(tx)x ∈ [0, 1]X

∣∣ tx < ty if x < y
}

and

ω0(t) = dt
t
, ω1(t) = dt

1− t .

Note that the admissibility of a 2-poset ensures the convergence of the associated integral.
When an admissible 2-poset is totally ordered, the corresponding integral is exactly the well-
known iterated integral expression for a multiple zeta value. To be precise, for an index
k = (k1, . . . , kr), we write

k
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for the totally ordered diagram

k1

kr−1

kr

.

If ki = 1, we understand the notation
ki

as a single •, and if k = ∅, we regard the diagram as the empty 2-poset.

Theorem 3.3 (attributed to Kontsevich [38]). — If k is an admissible index, we have

ζ(k) = I

(
k
)

(3.2)

=
∫

0<t1<···<t|k|<1

dt1
1− t1

dt2
t2
· · · dtk1

tk1︸ ︷︷ ︸
k1

· · ·
dt|k|−kr+1

1− t|k|−kr+1

dt|k|−kr+2
t|k|−kr+2

· · ·
dt|k|
t|k|︸ ︷︷ ︸

kr

.

An immediate corollary of this integral expression is an identity called “duality”. To describe
this, first note that any admissible index can be written uniquely in the form

k = (1, . . . , 1︸ ︷︷ ︸
a1−1

, b1 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
ah−1

, bh + 1) (a1, bi ≥ 1).

The dual index k† of k is then given by

k† = (1, . . . , 1︸ ︷︷ ︸
bh−1

, ah + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
b1−1

, a1 + 1),

and the duality of MZVs asserts that

ζ(k†) = ζ(k).

The proof is done by a simple change of variables ti → 1− si.
Another corollary is a different product rule of MZVs. We only illustrate this by the simplest
example ζ(2)2 = 2ζ(2, 2) + 4ζ(1, 3). The integral expression of ζ(2) is

ζ(2) =
∫

0<t1<t2<1

dt1
1− t1

dt2
t2
.
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110 An introduction to classical and finite multiple zeta values

Multiplying and dividing the domain of integration, we obtain

ζ(2)2 =
∫

0<t1<t2<1

dt1
1− t1

dt2
t2

∫
0<s1<s2<1

ds1
1− s1

ds2
s2

=
∫

0<t1<t2<1
0<s1<s2<1

dt1
1− t1

dt2
t2

ds1
1− s1

ds2
s2

=
(∫

0<t1<t2<s1<s2<1
+
∫

0<t1<s1<t2<s2<1
+
∫

0<s1<t1<t2<s2<1
+
∫

0<t1<s1<s2<t2<1

+
∫

0<s1<t1<s2<t2<1
+
∫

0<s1<s2<t1<t2<1

) dt1
1− t1

dt2
t2

ds1
1− s1

ds2
s2

=
∫

0<t1<t2<s1<s2<1

dt1
1− t1

dt2
t2

ds1
1− s1

ds2
s2

+
∫

0<t1<s1<t2<s2<1

dt1
1− t1

ds1
1− s1

dt2
t2

ds2
s2

+
∫

0<s1<t1<t2<s2<1

ds1
1− s1

dt1
1− t1

dt2
t2

ds2
s2

+
∫

0<t1<s1<s2<t2<1

dt1
1− t1

ds1
1− s1

ds2
s2

dt2
t2

+
∫

0<s1<t1<s2<t2<1

ds1
1− s1

dt1
1− t1

ds2
s2

dt2
t2

+
∫

0<s1<s2<t1<t2<1

ds1
1− s1

ds2
s2

dt1
1− t1

dt2
t2

= ζ(2, 2) + ζ(1, 3) + ζ(1, 3) + ζ(1, 3) + ζ(1, 3) + ζ(2, 2)
= 2ζ(2, 2) + 4ζ(1, 3).

The general case goes in exactly the same way, writing the Cartesian product of the simplices
{0 < t1 < · · · < tk < 1} × {0 < s1 < · · · < sl < 1} as a union of k + l dimensional simplices.
We may formalize this product rule and define the shuffle product x on R. For instance,
the product [2]x[2] = 2[2, 2] + 4[1, 3] corresponds to the above example. The standard way
to define x rigorously is to introduce the non-commutative algebra Q〈e0, e1〉 and transport
the shuffle of words into a product of indices by assigning the word e1e

k1−1
0 · · · e1e

kr−1
0 to

(k1, . . . , kr). This association is the same as that of totally ordered poset, the correspondence
being e1 ↔ • ↔ dt

1−t , e0 ↔ ◦ ↔ dt
t . See for example [35] for more detail.

We denote by Rx and R0
x respectively the Q-algebra (R,x) and its subalgebra (R0,x). The

Q-linear map ζ : R0 → R is also an algebra homomorphism from R0
x to R, i.e.,

(3.3) ζ(k)ζ(l) = ζ([k] x [l])
(we often write the right-hand side as ζ(k x l)) for any admissible indices k and l.
Combining the two products (2.4) and (3.3), we obtain the so-called (finite) double shuffle
relations.

Theorem 3.4 (finite double shuffle relation). — For any admissible indices k and l,
we have

ζ(k ∗ l) = ζ(k x l).

We remark that the depth of any term in k x l is the sum of those of k and l, whereas k ∗ l
always contains the term with lesser depth. Therefore, the double shuffle relation always gives
a non-trivial identity. For instance, if we take k = l = (2), we have ζ([2]∗ [2]) = 2ζ(2, 2)+ζ(4)
and ζ([2] x [2]) = 2ζ(2, 2) + 4ζ(1, 3), and hence 4ζ(1, 3) = ζ(4).
Since the double shuffle relation comes from the product and the product respects the weight,
the least weight of the relation obtained by the double shuffle relation is four. We cannot
obtain Euler’s ζ(1, 2) = ζ(3) in this way. The theory of regularization remedies this deficiency.
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To have an idea, let us disregard the divergence for the moment and try to compute ζ(1)ζ(2)
formally in two ways. By the ∗-product, we have ζ(1)ζ(2) = ζ(1, 2) + ζ(2, 1) + ζ(3), and by
x, we have ζ(1)ζ(2) = 2ζ(1, 2) + ζ(2, 1) (compute

∫
0<t<1

dt
1−t

∫
0<s1<s2<1

ds1
1−s1

ds2
s2

as above).
Equating these, we see the divergent term ζ(2, 1) cancels out and obtain ζ(3) = ζ(1, 2).
The theory of regularization explained in the next section makes this procedure rigorous. But
before going into the next section, we give an integral expression of multiple zeta-star values.
For an admissible index l = (l1, . . . , ls), the multiple zeta-star value (MZSV) ζ?(l) is defined by

ζ?(l) =
∑

0<n1≤···≤ns

1
nl11 · · ·n

ls
s

.

We set ζ?(∅) = 1. For an index l = (l1, . . . , ls), we write

l

for the diagram
ls l2 l1

,

where the symbol � represents either ◦ or •. For example,

(2,3) = , (3,1,1) = .

Note our convention in the case when some li is 1: the line from the • corresponding to li = 1
goes down (from left to right).
Then, if l is an admissible index, we have

(3.4) ζ?(l) = I
(

l
)
.

As an example, let us compute the simplest case l = (1, 2). The corresponding diagram is

.

I
(

) =
∫

0<t1<t2>t3>0,t2<1

dt1
1− t1

dt2
t2

dt3
1− t3

=
∫

1>t2>t3>0

∞∑
n=1

tn2
n

dt2
t2

dt3
1− t3

=
∫ 1

0

∞∑
n=1

1− tn3
n2

dt3
1− t3

=
∫ 1

0

∞∑
n=1

1
n2

n∑
m=1

tm−1
3 dt3

=
∑

n>m≥1

1
n2m

= ζ?(1, 2).

Dividing the domain of integration according as t1 < t3 and t3 < t1, we easily see that

I
( )

= 2I
( )

, which implies ζ?(1, 2) = 2ζ(1, 2). On the other hand, we have

ζ?(1, 2) = ζ(1, 2) + ζ(3) from the series expressions. Hence we deduce Euler’s ζ(1, 2) = ζ(3).
This time we only used finite integral and the argument is completely rigorous.
We refer the reader to [36] for a proof of (3.4) in general, but it can be done similarly as
above by repeated integrations from left to right.
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4. Regularization and the extended double shuffle relation

In this section, we recall the theory of regularization of MZVs. The key fact is that both of the
algebras R∗ and Rx are freely generated by [1] over the subalgebras R0

∗ and R0
x respectively:

R∗ ' R0
∗
[
[1]
]

and Rx ' R0
x
[
[1]
]
.

For proofs, see [9] and [24]. These isomorphisms assert that any element in R can be written
uniquely as a polynomial in the simplest divergent index [1] of weight 1 with admissible
coefficients in R∗ and in Rx respectively, examples being

[3, 1] = [3] ∗ [1]− [1, 3]− [4]
= [3] x [1]− 2[1, 3]− [2, 2],

[2, 1, 1] = 1
2[2] ∗ [1]∗2 − ([1, 2] + [3]) ∗ [1] + [1, 1, 2] + [1, 3] + 1

2[4]

= 1
2[2] x [1]x2 − 2[1, 2] x [1] + 3[1, 1, 2].

Here, [1]∗2 = [1] ∗ [1], [1]x2 = [1] x [1], and hereafter we use the notation [1]•n to denote
[1] • · · · • [1]︸ ︷︷ ︸

n times

for • = ∗ or x.

Definition 4.1. — For any index k, write

[k] =
m∑
i=0

ai ∗ [1]∗i ∈ R0
∗
[
[1]
]

(ai ∈ R0)

and

[k] =
n∑
j=0

bjx[1]xj ∈ R0
x
[
[1]
]

(bj ∈ R0).

Define ∗- and x- regularized polynomials ζ∗(k;T ) and ζx(k;T ) in R[T ] (T : indeterminate)
respectively by

ζ∗(k;T ) =
m∑
i=0

ζ(ai)T i and ζx(k;T ) =
n∑
j=0

ζ(bj)T j .

When k is admissible, we have ζ∗(k;T ) = ζx(k;T ) = ζ(k). The map k 7→ ζ∗(k;T ) (resp. k 7→
ζx(k;T )) is a unique homomorphism R∗ → R[T ] (resp. Rx → R[T ]) extending ζ : R0

∗ → R
(resp. ζ : R0

x → R) with ζ∗([1];T ) = T (resp. ζx([1];T ) = T ).

Example 4.2. — From the above, we have

ζ∗(3, 1;T ) = ζ(3)T − ζ(1, 3)− ζ(4), ζx(3, 1;T ) = ζ(3)T − 2ζ(1, 3)− ζ(2, 2)

and

ζ∗(2, 1, 1;T ) = 1
2ζ(2)T 2 − (ζ(1, 2) + ζ(3))T + ζ(1, 1, 2) + ζ(1, 3) + 1

2ζ(4),

ζx(2, 1, 1;T ) = 1
2ζ(2)T 2 − ζ(1, 2)T + 3ζ(1, 1, 2).
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The fundamental theorem of regularizations of MZVs says that the two polynomials ζx(k;T )
and ζ∗(k;T ) are related with each other by a simple R-linear map coming from the Taylor
series of the gamma function Γ(z). Define an R-linear map ρ on R[T ] by the equality

(4.1) ρ(eTu) = A(u)eTu

in the formal power series algebra R[T ][[u]] on which ρ acts coefficientwise, where

A(u) = exp
( ∞∑
n=2

(−1)n

n
ζ(n)un

)
∈ R[[u]].

Note that A(u) = eγuΓ(1 + u), where γ is Euler’s constant.

Example 4.3. — Since we have

A(u) = 1 + ζ(2)u
2

2 − 2ζ(3)u
3

3! + (6ζ(4) + 3ζ(2)2)u
4

4! + · · · ,

multiplying

eTu = 1 + Tu+ T 2u
2

2! + T 3u
3

6 + T 4u
4

24 + · · ·

we find
ρ(1) = 1,
ρ(T ) = T,

ρ(T 2) = T 2 + ζ(2),
ρ(T 3) = T 3 + 3ζ(2)T − 2ζ(3),
ρ(T 4) = T 4 + 6ζ(2)T 2 − 8ζ(3)T + 6ζ(4) + 3ζ(2)2.

Theorem 4.4 ([11, Theorem 1]). — For any index k, we have
(4.2) ζx(k;T ) = ρ

(
ζ∗(k;T )

)
.

It is conjectured that this relation (or more precisely the relations obtained by comparing
the coefficients), together with the double shuffle relations
(4.3) ζ(k)ζ(l) = ζ(k ∗ l) = ζ(k x l)
describes all (algebraic and linear) relations of MZVs over Q. These relations as a whole are
referred to as the extended (or regularized) double shuffle relations. For a complete set of
linear relations, it is conjectured in [11] that either

ζ∗(k ∗ l− k x l; 0) = 0 (∀ k ∈ R0 and ∀ l ∈ R)
or

ζx(k ∗ l− k x l; 0) = 0 (∀ k ∈ R0 and ∀ l ∈ R)
gives such a set. These too are sometimes called the extended double shuffle relations. For
instance, if we take k = (2) and l = (1), we have

k ∗ l− k x l = [3]− [1, 2]
and so

ζ∗(k ∗ l− k x l;T ) = ζx(k ∗ l− k x l;T ) = ζ(3)− ζ(1, 2).
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This gives ζ(3) = ζ(1, 2). Further, if we take k = (2) and l = (1, 1), we have
k ∗ l− k x l = [1, 3] + [3, 1]− 2[1, 1, 2]− [1, 2, 1].

A little computation shows
ζ∗(k ∗ l− k x l;T ) = (ζ(3)− ζ(1, 2))T − ζ(4) + ζ(1, 3) + ζ(2, 2)

and
ζx(k ∗ l− k x l;T ) = (ζ(3)− ζ(1, 2))T − ζ(1, 3)− ζ(2, 2) + ζ(1, 1, 2).

Therefore, from ζ∗(k ∗ l−kx l; 0) = 0 we have ζ(1, 3) + ζ(2, 2) = ζ(4) and from ζx(k ∗ l−kx
l; 0) = 0 we have ζ(1, 3) + ζ(2, 2) = ζ(1, 1, 2). These relations together with 4ζ(1, 3) = ζ(4)
obtained after Theorem 3.4 (finite double shuffle relation) give ζ(1, 3) = 1

4ζ(4), ζ(2, 2) =
3
4ζ(4), ζ(1, 1, 2) = ζ(4), and thus we conclude Z4 = Q · ζ(4).

5. Integral-series identity

For a non-empty index k = (k1, . . . , kr), we write k? for the formal sum of 2r−1 indices of the
form (k1© · · · © kr), where each © is replaced by “ , ” or “+”. We also put ∅? = ∅. Then k?
is identified with an element of R, and we have ζ?(k) = ζ(k?) for admissible k.
We introduce the Q-bilinear “circled stuffle product” ~ : (R \ Q[∅]) × (R \ Q[∅]) → R0 de-
fined by

[k−, kr]~ [l−, ls] = [k− ∗ l−, kr + ls] (k−, l− ∈ R, kr, ls ≥ 1).
We readily see from the definition that, for non-empty indices k = (k1, . . . , kr) and l =
(l1, . . . , ls), we have the series expression

(5.1) ζ
(
k~ l?

)
=

∑
0<m1<···<mr=ns≥···≥n1>0

1
mk1

1 · · ·m
kr
r n

l1
1 · · ·n

ls
s

.

To see this, we put n = mr(= ns) and write the right-hand side as
∞∑
n=1

( ∑
0<m1<···<mr−1<n

1
mk1

1 · · ·m
kr−1
r−1

)( ∑
0<n1≤···≤ns−1≤n

1
nl11 · · ·n

ls−1
s−1

) 1
nkr+ls ,

and note that the product of truncated sums for a fixed n obey the stuffle product rule, as
seen in the proof of Proposition 2.7.
The formula (5.1) includes MZV and MZSV as special cases:

ζ
(
k~ (1)?) = ζ(k1, . . . , kr−1, kr + 1)

and
ζ
(
(1)~ l?) = ζ?(l1, . . . , ls−1, ls + 1).

For non-empty indices k = (k1, . . . , kr) and l = (l1, . . . , ls), the diagram

k1

kr

ls

ls−1 l1

Publications mathématiques de Besançon – 2019/1



M. Kaneko 115

is denoted by

k
l
.

This is a combination of the symbols introduced in Section 3 for integral expressions of ζ(k)
and ζ?(l). When s = 1, we understand this as

k1

kr

l1

.

In [17], we proved the following identity which generalizes both (3.2) and (3.4).

Theorem 5.1. — For any non-empty indices k and l, we have

(5.2) I

 k
l
 = ζ

(
k~ l?

)
.

The proof is done by a straightforward calculation of the multiple integral as a repeated
integral from left to right. The following example is taken from [17].

Example 5.2. — Take k = (1, 1) and l = (2, 1). Then, omitting the condition 0 < ti < 1
from the notation, we have

I

( )
=
∫
t1<t2<t3>t4<t5

dt1
1− t1

dt2
1− t2

dt3
t3

dt4
1− t4

dt5
t5

=
∫
t2<t3>t4<t5

∞∑
l=1

tl2
l

dt2
1− t2

dt3
t3

dt4
1− t4

dt5
t5

=
∫
t3>t4<t5

∞∑
l,m=1

tl+m3
l(l +m)

dt3
t3

dt4
1− t4

dt5
t5

=
∫
t4<t5

∞∑
l,m=1

1− tl+m4
l(l +m)2

dt4
1− t4

dt5
t5

=
∫
t4<t5

∑
0<m1<m2

1
m1m2

2

m2∑
n=1

tn−1
4 dt4

dt5
t5

=
∫ 1

0

∑
0<m1<m2

1
m1m2

2

m2∑
n=1

tn5
n

dt5
t5

=
∑

0<m1<m2≥n>0

1
m1m2

2n
2 =

∑
0<m1<m2=n2≥n1>0

1
m1m2n2

1n2

= ζ
(
k~ l?

)
.
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By dividing the domain of integration into the ones corresponding to the totally ordered
posets, we see that

I

( )
= 6I


+ 2I


+ I




and

k~ l? = [1, 1]~ [2, 1] + [1, 1]~ [3] = [[1] ∗ [2], 2] + [1, 4] = [1, 2, 2] + [2, 1, 2] + [3, 2] + [1, 4].

Hence the identity (5.2) gives a linear relation

6ζ(1, 1, 3) + 2ζ(1, 2, 2) + ζ(2, 1, 2) = ζ(1, 2, 2) + ζ(2, 1, 2) + ζ(3, 2) + ζ(1, 4).

The integral on the left-hand side of (5.2) is a sum of MZVs (sum over all integrals associated
to possible total-order extension of the 2-poset in (5.2), see [36, Corollary 2.4]), whereas the
right-hand side is also a sum of MZVs in the usual way. Hence, for any given (non-empty)
indices k and l, the identity gives a linear relation among MZVs. We conjecture that the
totality of these relations (5.2) gives all linear relations among MZVs:

Conjecture 5.3. — Any linear dependency of MZVs over Q can be deduced from (5.2) with
some ks and ls.

Rather surprisingly, the relation (5.2), which involves no process of regularization and is
simply an identity between convergent integral and sum, is equivalent to the fundamental
theorem of regularization (4.2) under (4.3). This fact gives a strong support to Conjecture 5.3,
in addition to a numerical evidence. For a precise statement and proof, see [17].

6. Relation between the double shuffle space and the integral-series space in R

In this section, we consider the following three subspaces of R0 and their interrelations.

I∗ := 〈 reg∗(k ∗ l− k x l) | k ∈ R0, l ∈ R〉Q,
Ix := 〈 regx(k ∗ l− k x l) | k ∈ R0, l ∈ R〉Q,
J := 〈µ(k, l)− k~ l? | k, l ∈ R \ {∅}〉Q.

Here, reg∗ and regx are the maps from R to R0 obtained via the isomorphisms R∗ ' R0
∗ [[1]]

and Rx ' R0
x [[1]] by taking the “constant terms” (a0 and b0 in Definition 4.1). The symbol

µ(k, l) refers to an element in R0 associated to the poset on the left-hand side of (5.2). For
instance, in Example 5.2 we took k = (1, 1) and l = (2, 1) and for this we have µ(k, l) =
6[1, 1, 3] + 2[1, 2, 2] + [2, 1, 2].
Now, our theorems show that all these three spaces are contained in the kernel Ker ζ of the
map ζ : R0 → R, and our conjecture is that any one of them coincides with Ker ζ. If this
were true, then these spaces would not only be sub Q-vector spaces but also ideals of R0

with respect to both multiplications ∗ and x. However, this fact (being an ideal in either
multiplication) is not yet known if true, as far as the author knows.
In the following, we give a partial result in this direction.
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Proposition 6.1. — Let Ĩ∗ and J̃∗ be ∗-ideals of R0
∗ generated respectively by I∗ and J .

Similarly let Ĩx and J̃x be x-ideals of R0
x generated by Ix and J . Then these four ideals are

identical as sets:
Ĩ∗ = J̃∗ = Ĩx = J̃x.

Proof. — We freely use identities proved in [17]. From equations (Ax), (A∗) in Lemma 5.2
of [17], we have

(6.1)
s−1∑
i=0

(−1)iµ(k, li) x←−li =
s−1∑
i=0

(−1)i
(
k~ (li)?

)
∗
←−li .

Here, k, l are non-empty indices, li and li are indices obtained by dropping and taking the
first i components of l respectively, and ←−li is the reversal of the index li. By separating the
terms for i = 0, we obtain

(6.2) µ(k, l)− k~ l? =
s−1∑
i=1

(−1)i
((

k~ (li)?
)
∗
←−li − µ(k, li) x←−li

)
,

which can be written as

µ(k, l)− k~ l? =
s−1∑
i=1

(−1)i
((

k~ (li)? − µ(k, li)
)
∗
←−li + µ(k, li) ∗←−li − µ(k, li) x←−li

)
.

Take reg∗ of both sides. Setting j(k, l) := µ(k, l) − k ~ l? and noticing this is an element in
R0 (and hence unchanged by taking reg∗), we may conclude by induction on the length of l
that j(k, l) ∈ Ĩ∗. In fact, if the length of l is 0, then j(k, l) = 0 and the assertion is trivial. If
the length of l is s ≥ 1, then the length of li is s− i and the induction hypothesis gives

reg∗(
(
k~ (li)? − µ(k, li)

)
∗
←−li ) =

(
k~ (li)? − µ(k, li)

)
∗ reg∗(

←−li ) ∈ Ĩ∗

(this is because reg∗ is a ∗-homomorphism, k~ (li)? − µ(k, li) ∈ R0, and reg∗(µ(k, li) ∗←−li −
µ(k, li) x←−li ) ∈ I∗). Hence we have J ⊆ Ĩ∗ and J̃∗ ⊆ Ĩ∗. Likewise, writing (6.2) as

µ(k, l)− k~ l? =
s−1∑
i=1

(−1)i
((

k~ (li)?
)
∗
←−li −

(
k~ (li)?

)
x
←−li +

(
k~ (li)? − µ(k, li)

)
x
←−li
)

and taking regx of both sides, we obtain J̃x ⊆ Ĩx.
Next, let k = (k1, . . . , kr) be an admissible index and l = (l1, . . . , ls) be any index. Replace k
and l in (6.1) by k̃ = (k1, . . . , kr−1, kr − 1) and l̂ = (ls, . . . , l1, 1) respectively. Then we have

s∑
i=0

(−1)iµ(k̃, l̂i) x ls−i =
s∑
i=0

(−1)i
(
k̃~ (̂li)?

)
∗ ls−i,

and by separating the terms for i = s and multiplying (−1)s, we have

(6.3) k ∗ l− k x l =
s−1∑
i=0

(−1)s−i
(
µ(k̃, l̂i) x ls−i −

(
k̃~ (̂li)?

)
∗ ls−i

)
.

Write this as

k ∗ l− k x l =
s−1∑
i=0

(−1)s−i
(
µ(k̃, l̂i) x ls−i − µ(k̃, l̂i) ∗ ls−i +

(
µ(k̃, l̂i)−

(
k̃~ (̂li)?

))
∗ ls−i

)
,
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and take reg∗ of both sides to conclude Ĩ∗ ⊆ J̃∗ by induction on the length of l. Similarly,
write

k∗ l−kx l =
s−1∑
i=0

(−1)s−i
((
µ(k̃, l̂i)− k̃~ (̂li)?

)
x ls−i +

(
k̃~ (̂li)?

)
x ls−i −

(
k̃~ (̂li)?

)
∗ ls−i

)
and take regx to obtain Ĩx ⊆ J̃x. Therefore, we have Ĩ∗ = J̃∗ and Ĩx = J̃x.
Finally, for m ∈ R0 and j(k, l) ∈ J(⊂ R0), we have m∗ j(k, l)−mx j(k, l) ∈ J̃x by Ix ⊂ J̃x
and hence m ∗ j(k, l) ∈ J̃x, i.e., J̃∗ ⊆ J̃x. The same argument implies J̃x ⊆ J̃∗ and we
conclude J̃∗ = J̃x. Thus we are done. �

7. A-finite multiple zeta values

Consider the ring A defined by

A :=
∏
p Z/pZ⊕
p Z/pZ

= {(a(p))p | a(p) ∈ Z/pZ}/ ∼ .

Here, p runs over all prime numbers, and the relation (a(p))p ∼ (b(p))p indicates that the
equality a(p) = b(p) in Z/pZ holds for all large enough p. Component-wise addition and
multiplication equip A with the structure of a ring. Moreover, the well-defined injective map
Q 3 r 7→ (r mod p)p ∈ A makes A into a Q-algebra. Alternatively, A is isomorphic to(∏

p Z/pZ
)
⊗Z Q or

∏
p Z/pZ modulo torsion. We often identify a representative a = (a(p))p

with the element in A that it defines, where a(p) denotes the p-component of a.

Definition 7.1. — For an index k = (k1, . . . , kr), define the A-finite multiple zeta value
ζA(k) = ζA(k1, . . . , kr) ∈ A by

(7.1) ζA(k1, . . . , kr)(p) =
∑

0<m1<···<mr<p

1
mk1

1 · · ·m
kr
r

mod p.

With the notation adopted in (2.3), the right-hand side is written as ζp(k) mod p.

Similarly as in the case of ordinary real MZVs, we are interested in the Q-vector space in A
spanned by ζA(k1, . . . , kr).

Definition 7.2. — For each integer k ≥ 0, define the Q-vector space ZA,k ⊂ A by ZA,0 = Q
and

ZA,k :=
∑

k1+···+kr=k
r≥1, ki≥1

Q · ζA(k1, . . . , kr) (k ≥ 1).

Further, we set

ZA :=
∞∑
k=0
ZA,k.

Although components ki of an index may be 0 or negative because there is no convergence
issue in this setting, we restrict ourselves to positive integer components. In fact, it can be
easily seen that the space ZA does not enlarge if we allow non-positive components. For
instance, we see

ζA(−1, 3, 2) = 1
2ζ
A(1, 2)− 1

2ζ
A(2, 2)
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by using the Seki–Bernoulli formula for sum of powers. However, the notion of weight does
not behave well if there is a non-positive component, as the above example indicates.
Since the stuffle relation like

ζA(k1)ζA(k2) = ζA(k1, k2) + ζA(k2, k1) + ζA(k1 + k2)

holds for ζA(k) (this is because the finite truncation ζp(k) satisfies the stuffle product rule
as shown in the proof of Proposition 2.7), the space ZA is a Q-algebra.
As for the dimension of each ZA,k, again Zagier numerically observed

Conjecture 7.3. — Let dk be the sequence defined in (2.2). Then we would have

dimQZA,k = dk−3 ( = dk − dk−2) (∀ k).

This is in accordance with our “main conjecture”

ZA ' Z/ζ(2)Z,

where Z is the Q-algebra of classical MZVs. If Conjecture 2.5 is true and the weight gives a
grading on Z, then the weight k piece of Z/ζ(2)Z should have dimension dk − dk−2 = dk−3.
We shall state the main conjecture in a more precise form in Section 9.
Let us look at some examples of ζA(k) in low depths.

Example 7.4. —

(1) Depth 1 case: If k 6= 0, then ζA(k) = 0. This is because we have

∑
0<m<p

1
mk
≡ 0 (mod p)

when p− 1 - k, and for a fixed k this is satisfied by all p greater than k + 1. For k = 0,
we obviously have ζA(0) = −1.

(2) Depth 2 case: We have

(7.2) ζA(k1, k2) = (−1)k2

(
k1 + k2
k1

)
Z(k1 + k2) (∀ k1, k2 ≥ 1).

Here, for k ≥ 2, the element Z(k) ∈ A is defined by setting its p-component as

Z(k)(p) = Bp−k
k

mod p (Bp−k : Bernoulli number).

To show (7.2), we proceed as follows using Fermat’s little theorem and the Seki–
Bernoulli formula (see e.g. [2, Chapter 1]) for sum of powers (assuming p is large
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enough).

∑
0<m1<m2<p

1
mk1

1 m
k2
2
≡

p−1∑
m2=1

m2−1∑
m1=1

mp−1−k1
1

m−k2
2 mod p

≡
p−1∑
m2=1

1
p− k1

p−1−k1∑
i=0

(
p− k1
i

)
Bi ·mp−k1−i−k2

2 mod p

≡ 1
k1

(
p− k1

p− k1 − k2

)
Bp−k1−k2 mod p

≡ (−1)k2

(
k1 + k2
k2

)
Bp−(k1+k2)
k1 + k2

mod p.

In the third congruence, we have used
∑p−1
m2=1m

p−k1−i−k2
2 ≡ 0 mod p except for i =

p − k1 − k2. This kind of computation, as well as more identities on ζA(k)(p), was
already appeared in M. Hoffman [10] and J. Zhao [39]. The special case ζA(1, k − 1)(p)
can be found in even earlier H. S. Vandiver [34].

As seen above, the naive analogue ζA(k) of the Riemann zeta value ζ(k) is 0. However, there
are a good many reasons to believe that the “true” analogue of ζ(k) in A should be Z(k).
We shall see the supporting evidences in the sequel, but an intuitive “explanation” (with no
rigor) is this:

ζ(k) “ ≡
Fermat

” ζ(k − (p− 1)) =
Euler

−Bp−k
p− k

≡ Z(k)(p) mod p.

Since the odd-indexed Bernoulli numbers Bn are 0 when n > 1, Z(k) = 0 for even k ≥ 2.
This corresponds via our main conjecture to the fact that ζ(k) is in ζ(2)Z when k is even
(Euler). The following question looks very interesting, and seems still open.

Question. — Is Z(k) 6= 0, or more strongly, Z(k) 6∈ Q if k > 1 is odd?

8. Various identities

In this section, we list several known relations of A-finite multiple zeta values. The list is
not at all complete and we refer the reader to the references cited in the sequel for further
examples.
Perhaps the simplest is the reversal formula

ζA(kr, . . . , k1) = (−1)k1+···+krζA(k1, . . . , kr),
which can be seen by replacing mi in the definition (7.1) with p−mi.
S. Saito and N. Wakabayashi [26] proved an analogue of the classical sum formula:

(8.1)
∑

k1+···+kr=k
kr≥2

ζA(k1, . . . , kr) =
(

1 + (−1)r
(
k − 1
r − 1

))
Z(k).

(They proved a little more general identity.) The restriction kr ≥ 2 may look artificial because
there seems to be no reason to exclude the absolutely well-defined values with kr = 1.
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However, by a theorem of Hoffman [9] and by ζA(k) = 0, one finds the symmetric sum
allowing kr = 1 as well becomes 0. Recently, S. Seki and Yamamoto look at this sum modulo
p2 and obtain a connection to Z(k + 1). It is amusing to remark that the right-hand side
of (8.1) is a kind of hybrid of the classical sum formula∑

k1+···+kr=k
kr≥2

ζ(k1, . . . , kr) = ζ(k)

and its analogue for the multiple zeta-star values
∑

k1+···+kr=k
kr≥2

ζ?(k1, . . . , kr) =
(
k − 1
r − 1

)
ζ(k).

The analogue (8.1) clearly suggests that Z(k) should correspond to ζ(k).
Analogues of the Le–Murakami relation and the Aoki–Ohno relation are

∑
k∈I(k,s)

(−1)dep(k)ζA(k) = 2
(
k − 1
2s− 1

)
(1− 21−k)Z(k)

and ∑
k∈I(k,s)

ζA,?(k) = 2
(
k − 1
2s− 1

)
(1− 21−k)Z(k),

which were conjectured by the author and were proved by K. Oyama and Saito [16]. Here,
I(k, s) is the set of admissible indices of weight k and height (number of components greater
than 2) s, and dep(k) denotes the depth of an index k, and the A-multiple zeta-star value
ζA,?(k) is defined in the obvious way. The original Aoki–Ohno relation is

∑
k∈I(k,s)

ζ?(k) = 2
(
k − 1
2s− 1

)
(1− 21−k)ζ(k),

and here too the analogy between Z(k) and ζ(k) is obvious.
There is a duality relation due to Hoffman [10]. For a (not necessarily admissible) index
(k1, . . . , kr), its Hoffman’s dual, denoted by (k1, . . . , kr)∨, is the index obtained by writing
each component ki as a sum of 1 and then interchanging commas “ , ” and plus signs “+”. For
example,

(n)∨ = (1 + · · ·+ 1)∨ = (1, . . . , 1︸ ︷︷ ︸
n

), (2, 3)∨ = (1 + 1, 1 + 1 + 1)∨ = (1, 1 + 1, 1, 1) = (1, 2, 1, 1).

Then, Hoffman’s duality is

(8.2) ζA,?(k1, . . . , kr) = −ζA,?((k1, . . . , kr)∨).

This identity is equivalent to the following identity among non-star A-finite multiple zeta
values (see Hoffman [10, Theorem 4.7]). For any k = (k1, . . . , kr), we have

ζA(k) = (−1)r
∑

k′�k
ζA(k′).
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Here, for two indices k and k′, the relation k′ � k means the index k is obtained by replacing
some commas in k′ = (k′1, . . . , k′s) by plus signs, examples being

(1, 3, 2, 1) � (1 + 3, 2, 1) = (4, 2, 1), (1, 3, 2, 1) � (1 + 3, 2 + 1) = (4, 3),
(1, 3, 2, 1) � (1 + 3 + 2 + 1) = (7).

Ohno’s relation has also an analogue. Let (k1, . . . , kr) and (k′1, . . . , k′r′) be admissible indices
which are dual with each other in the usual sense. For these and a given integer l ≥ 0, the
classical Ohno relation is∑

e1+···+er=l
ei≥0

ζ(k1 + e1, . . . , kr + er) =
∑

e′1+···+e′
r′=l

e′i≥0

ζ(k′1 + e′1, . . . , k
′
r′ + e′r′).

A ζA-analogue of this was conjectured by the author and proved by Oyama [23]. Let
(k1, . . . , kr) and (k∗1, . . . , k∗r∗) be indices which are dual with each other in Hoffman’s sense.
For these and a given integer l ≥ 0, we have∑

e1+···+er=l
ei≥0

ζA(k1 + e1, . . . , kr + er) =
∑

e∗1+···+e∗
r∗=l

e∗i≥0

ζA
(
(k∗1 + e∗1, . . . , k

∗
r∗ + e∗r∗)∨

)
.

Note that we need to take Hoffman’s dual on the right, so that the case l = 0 becomes trivial.
In recent years, many other relations as well as generalizations in various settings are proved
and investigated. We refer [6], [12], [14], [15], [20], [21], [22], [25], [27], [29], [28], [31], [32],
[40], among others. This is not at all an exhaustive list, and the readers are advised to visit
the web page of Hoffman [8] which provides an extensive literature on multiple zeta values
and related subjects.
To conclude this section, we present analogues of the double shuffle relation. First, we already
mentioned that ζA(k) satisfies the stuffle product rule:

(8.3) ζA(k)ζA(l) = ζA(k ∗ l) (∀ k, l ∈ R).
In particular, when l = (l), this gives linear relations

(8.4) ζA(k ∗ [l]) = 0 (∀ k ∈ R,∀ l ≥ 1).
As for the shuffle x, we do not have a formula involving products, but we have the following
relation.

Theorem 8.1. — For any k and l in R,

(8.5) ζA(k x l) = (−1)|l|ζA(k,←−l ),

where |l|, ←−l are respectively the weight and the reversal of l, and (k,←−l ) on the right is the
concatenation of k and ←−l .

Proof. — This is easily proved by using the shuffle product of the multiple polylogarithm

Lik(x) = Lik1,...,kr (z) =
∑

0<m1<···<mr

zmr

mk1
1 · · ·m

kr
r

.

As is well known, this satisfies
Lik(z) Lil(z) = Likxl(z).
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M. Kaneko 123

Here, the right-hand side is the sum
∑

m Lim(z) where k x l =
∑

m[m] in Rx. Since

ζp(k) =
∑

0<m1<···<mr<p

1
mk1

1 · · ·m
kr
r

=
∑

0<m<p
(coefficient of zm in Lik(z)) ,

we can compute
ζp(k x l) =

∑
0<m<p

(coefficient of zm in Likxl(z))

=
∑

0<i,j<p
0<i+j<p

(
coefficient of zi in Lik(z)

)
·
(
coefficient of zj in Lil(z)

)

=
∑

0<i,j,i+j<p

 ∑
0<m1<···<mr−1<i

1
mk1

1 · · ·m
kr−1
r−1 i

kr

 ∑
0<n1<···<ns−1<j

1
nl11 · · ·n

ls−1
s−1 j

ls


≡

∑
0<i,j,i+j<p

 ∑
0<m1<···<mr−1<i

1
mk1

1 · · ·m
kr−1
r−1 i

kr


×

 ∑
p−j<p−ns−1<···<p−n1<p

(−1)|l|

(p− n1)l1 · · · (p− ns−1)ls−1(p− j)ls

 mod p

≡
∑

0<m1<···<mr−1<i<j<ns−1<···<n1<p

(−1)|l|

mk1
1 · · ·m

kr−1
r−1 i

krjnsn
ls−1
s−1 · · ·n

l1
1

mod p

= (−1)|l|ζA(k,←−l )(p).

�

We propose the following conjecture based on the numerical evidence up to weight 18 (thanks
to T. Machide). But the word “conjecture” may be too strong because a theoretical support
is still missing.

Conjecture 8.2. — Any relations in ZA of finite multiple zeta values can be deduced
from (8.3) and (8.5). Moreover, any linear relations are consequences of (8.4) and (8.5).

9. Symmetric multiple zeta values

Consider the following sums for any index k = (k1, . . . , kr) ∈ R.

ζS,∗(k) :=
r∑
i=0

(−1)ki+1+···+krζ∗(k1, . . . , ki;T )ζ∗(kr, . . . , ki+1;T ) ,

ζS,x(k) :=
r∑
i=0

(−1)ki+1+···+krζx(k1, . . . , ki;T )ζx(kr, . . . , ki+1;T ).

Here, ζ∗ and ζx are regularized polynomials introduced in Section 4. A priori, the right-hand
sides depend on T , but actually they do not.

Proposition 9.1. —

(1) Both ζS,∗(k) and ζS,x(k) are in Zk (k = weight of k), independent of T .
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(2) We have ζS,∗(k)− ζS,x(k) ∈ ζ(2)Z.

We can prove these by using the identity
∞∑
s=0

ζ•(k, 1, . . . , 1︸ ︷︷ ︸
s

;T )xs = eTx
∞∑
i=0

ζ•(k, 1, . . . , 1︸ ︷︷ ︸
i

; 0)xi (• = ∗ or x)

for any admissible k ([11, Proposition 10]), and the fundamental relation (4.2). An alternative
way to prove (1)) is to work in R to show for instance

r∑
i=0

(−1)ki+1+···+kr [k1, . . . , ki] ∗ [kr, . . . , ki+1] ∈ R0
∗

directly. We refer [18] for details.
Where these strange-looking sums come from? An answer is the following fact:

(9.1) ζS,∗(k1, . . . , kr) = lim
M→∞

∑
m1≺···≺mr
0<|mi|<M

1
mk1

1 · · ·m
kr
r

,

where the order ≺ on non-zero integers is defined by

1 ≺ 2 ≺ 3 ≺ · · · ≺ (∞ = −∞) ≺ · · · − 3 ≺ −2 ≺ −1.

This order was suggested by M. Kontsevich to Zagier in a private communication indicating
the sum

∑
0<m1<m2<p to define ζA(k1, k2) becomes

∑
0<m1<m2<0 modulo p! If we divide the

sum on the right of (9.1) according as 0 < m1 < · · · < mi and mi+1 < · · · < mr < 0 for
i = 0, . . . , r, we are naturally led to the sum in the definition of ζS,∗(k). The details will be
discussed in [18]. Assuming (9.1), we immediately see the following proposition.

Proposition 9.2. — For any k and l in R, we have

(9.2) ζS,∗(k)ζS,∗(l) = ζS,∗(k ∗ l).

Again an alternative way is to work in R, though the computation becomes tedious.
In view of Proposition 9.1, we are naturally led to define an element ζS(k1, . . . , kr) in the
quotient algebra Z/ζ(2)Z of Z modulo the ideal generated by ζ(2) (or π2).

Definition 9.3. — For any k ∈ R, define

ζS(k) := ζS,•(k) mod ζ(2) ∈ Z/ζ(2)Z (• = ∗ or x).

We give examples in depths 1 and 2.

Example 9.4. —

(1) Depth 1 case: For k ≥ 1,

ζS,∗(k) = (−1)kζ∗(k) + ζ∗(k) =
{

2ζ(k) ≡ 0 mod ζ(2) k: even,
0 k: odd.

Hence ζS(k) = 0 in ZR/ζ(2)ZR. Recall ζA(k) = 0.
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(2) Depth 2 case:
ζS,∗(k1, k2)

= (−1)k1+k2ζ∗(k2, k1;T ) + (−1)k2ζ∗(k1;T )ζ∗(k2;T ) + ζ∗(k1, k2;T )

≡
mod ζ(2)


0 k1 + k2: even,

ζ∗(k1, k2;T )− ζ∗(k2, k1;T ) ≡ (−1)k2

(
k1 + k2
k1

)
ζ(k1 + k2) k1 + k2: odd.

Here we used a formula in [38, Proposition 7] to compute the odd weight case (even
case is easy by Euler). Since ζ(k1 + k2) = 0 in Z/ζ(2)Z when k1 + k2 is even, we may
uniformly write

ζS(k1, k2) = (−1)k2

(
k1 + k2
k1

)
ζ(k1 + k2) mod ζ(2) ∈ Z/ζ(2)Z.

Compare this with (7.2). Under the correspondence ζ(k)↔ Z(k), the right-hand sides
are exactly the same.

Now our main conjecture is stated as

Conjecture 9.5. — There is a Q-algebra isomorphism between ZA and Z/ζ(2)Z under
which ζA(k) corresponds to ζS(k) (∀ k ∈ R):

ZA
?' Z/ζ(2)Z

∈ ∈

ζA(k) ←→ ζS(k).

According to this conjecture, any relations among ζA(k) should hold in exactly the same
form in Z/ζ(2)Z by replacing ζA with ζS and vice versa. Many relations are in fact proved
both for ζA and ζS in the same forms. Notably, the shuffle relation (8.5) holds also for ζS .

Theorem 9.6. — For any k and l in R, we have the relation

(9.3) ζS(k x l) = (−1)|l|ζS(k,←−l )
in Z/ζ(2)Z.

In fact, we can prove the exact identity

ζS,x(k x l) = (−1)|l|ζS,x(k,←−l )
in Z, without taking modulo ζ(2). If we let k = (k1, . . . , ki) and l = (kr, . . . , ki+1), this
identity becomes
(9.4) ζS,x(k1, . . . , kr) = (−1)ki+1+···+krζS,x([k1, . . . , ki] x [kr, . . . , ki+1]).
We may prove this on the level of indices. Let R(r) be the Q-span of indices of depth r. Define
a linear map S

(r)
i from R(r) to itself by

S
(r)
i ([k1, . . . , kr]) : = (−1)ki+1+···+kr [k1, . . . , ki] x [kr, . . . , ki+1] (0 ≤ i ≤ r),

and set S(r) :=
∑r
i=0 S

(r)
i . Then we have ζS,x(k) = ζx(S(r)(k);T ), and the identity (9.4)

follows from the following.
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Proposition 9.7. — We have

S(r) ◦ S(r)
i = S(r).

To prove this, we use the generating function

F (x1, . . . , xr) : =
∑

k1,··· ,kr≥1
[k1, . . . , kr]xk1−1

1 · · ·xkr−1
r ∈ Rx[x1, . . . , xr]

and reduces the identity, by a similar consideration developed in [11, Section 8], to the
following identity in the group ring Z[Sr+1] of the symmetric group: Let

U
(r)
i : = {σ ∈ Sr+1 |σ(1) < · · · < σ(i+ 1) > · · · > σ(r + 1)}

be the set of “unimodal” elements and set

u
(r)
i =

∑
σ∈U(r)

i

σ

and

u
(r)
alt =

r∑
i=0

(−1)r−iu(r)
i .

Then we have the identity

(9.5) u
(r)
alt · (−1)r−iu(r)

i = u
(r)
alt

in Z[Sr+1]. It turns out that this is equivalent to an identity of Specht [30, (24)] in “descent
algebra” (see also [24, Lemma 8.18]), and the proof is completed. See [18] for more details.

Remark 9.8. —

(1) S. Yasuda supplied a proof of the identity (9.5) before the author learned that it was
actually a classical identity.

(2) D. Jarrosay proved (9.3) by using Drinfeld’s associator [13]. Recently, M. Hirose [7]
defined an object ζRS(k) in C which “lifts” ζS(k) by a simple integral. This new quantity
satisfies the shuffle product formula as an immediate consequence from the definition
as an integral, and by taking the real part of the formula, our (9.3) follows. Arguably
this is the most natural proof of (9.3). The ζRS(k) also appeared in a recent work
of H. Bachmann, Y. Takeyama, and K. Tasaka [3], where they discovered a unified
way to obtain both ζA(k) and ζS(k) from a single object, a q-multiple zeta value, by
specializations. This may shed light on our Conjecture 9.5.

We may pose the ζS-version of Conjecture 8.2. At least, to try to deduce various identities
from (9.2) and (9.3) may be a good challenge.
Finally, we remark that the conjecture implies ζS(k)’s generate Z/ζ(2)Z. But what’s more,
Yasuda proved in [37] that either of ζS,∗(k)’s or ζS,x(k)’s already generate the whole Z.
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