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WEBER’S FORMULA FOR THE BITANGENTS OF A SMOOTH
PLANE QUARTIC

by

Alessio Fiorentino

Abstract. — In a section of his 1876 treatise Theorie der Abel’schen Functionen vom Geschlecht 3 Weber
proved a formula that expresses the bitangents of a non-singular plane quartic in terms of Riemann theta
constants (Thetanullwerte). The present note is devoted to a modern presentation of Weber’s formula.
In the end a connection with the universal bitangent matrix is also displayed.

Résumé. — (Formule de Weber pour les bitangentes d’une quartique plane lisse) Dans une section de son
traité Theorie der Abel’schen Functionen vom Geschlecht 3, paru en 1876, Weber a démontré une formule
qui permet de déterminer les équations des bitangentes d’une quartique plane non singulière à partir des
constantes theta de Riemann (Thetanullwerte). Le but de cette note est de présenter la formule de Weber
en langage moderne. On aussi montre une connexion avec la matrice universelle des bitangentes.

1. Introduction

The problem of characterizing those complex principally polarized abelian varieties of dimen-
sion g which are Jacobian varieties of smooth projective curves of genus g is a long-standing
research subject that dates back to Riemann and Schottky. In fact, the question can be sim-
ply answered whenever g ≤ 3, as in this case every indecomposable principally polarized
abelian variety is known to be the Jacobian variety of an irreducible smooth projective curve
(uniquely determined up to isomorphisms). A naturally related question is how to explicitly
recover the curve from a given principally polarized abelian variety. A solution to this problem
is classically known for non-hyperelliptic curves of genus 3. One of the first mathematicians
who succeeded in establishing a link between the geometry of the curve and the algebraic
structure defined by its period matrix was Heinrich Martin Weber. In his work [16] he actually
provided both a formula for recovering the bitangents of the curve from its period matrix and
a reverse formula for recovering the fourth powers of theta constants (Thetanullwerte), valued
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6 Weber’s formula for the bitangents of a smooth plane quartic

at the point corresponding to the period matrix of the curve, from its bitangents (a detailed
explanation of the latter formula, along with a modern proof of it, can be found in [14]). Once
the bitangents have been expressed in terms of theta constants thanks to Weber’s formula, an
equation for the curve itself can be written by resorting to the Riemann model of the curve
associated with Steiner complexes of bitangents (cf. [10] and [16]). What this note aims to
do is prove Weber’s formula for the bitangents of the curve from a modern point of view.

Acknowledgments. —The author wishes to thank Christophe Ritzenthaler for bringing
Weber’s work to his attention as well as for all the enlightening discussions. He is also grateful
to Riccardo Salvati Manni for several fruitful conversations on the subject. Finally, the author
would like to express his gratitude to the referee whose remarks and comments contributed
to improving the original manuscript.

2. Quadratic forms on symplectic vector spaces over F2

This brief section is devoted to outlining some of the basic elements concerning the theory
of quadratic forms over the finite field F2 and is motivated by the need for a coordinate-free
presentation of Weber’s formula; a more detailed explanation of the subject can be found in
Dolgachev’s book [4] and in Gross and Harris’s paper [8].
Let g ≥ 1 be an integer and V a vector space of dimension 2g over F2 provided with a
symplectic form 〈 · , · 〉. A quadratic form q on the symplectic vector space (V, 〈 · , · 〉) is a map
q : V 7→ F2 such that:

q(v + w) = q(v) + q(w) + 〈v, w〉 ∀ v, w ∈ V ;

There are 22g distinct quadratic forms on (V, 〈 , 〉). Any pair of quadratic forms q, q′ ∈ Q(V )
is easily seen to satisfy q′ − q = α2 where α is a linear form on V 1; therefore, for any
q, q′ ∈ Q(V ) there exists a unique v ∈ V such that:

(1) q′(w) = q(w) + 〈v, w〉 ∀ w ∈ V ;

Thanks to (1), a free and transitive action of V on Q(V ) is well defined by setting v+q := q′,
hence the setQ(V ) is an affine space over V , which means it can be identified with V whenever
a quadratic form is fixed as origin. Furthermore, the disjoint union V ∪̇Q(V ) can be thought
as a vector space of dimension 2g + 1 over F2. Once a symplectic basis e1, . . . , eg, f1, . . . , fg
is chosen for V , a quadratic form q0 is naturally defined as origin for the affine space Q(V ):

(2) q0(w) := λ · µ = λ1µ1 + · · ·+ λgµg ∀ w = (λ, µ) =
g∑
i=1

λiei +
g∑
i=1

µifi

Then, by (1), each q ∈ Q(V ) can be identified with the unique column vector v = [m′
m′′ ] such

that:

(3) q(w) = λ · µ+ λ ·m′ +m′′ · µ ∀ w = (λ, µ)

Furthermore, since the subgroup of GL(V ) that preserves the symplectic form 〈 · , · 〉 is iso-
morphic to SP(2g,F2), an action of SP(2g,F2) on the affine space Q(V ) is well defined by

1Such a linear form is well defined, as each element of F2 has exactly one square root which actually coincides
with the element itself.
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A. Fiorentino 7

setting γ · q(v) := q(γ−1v) for any v ∈ V . The orbits of Q(V ) under this action are described
in terms of the Arf invariant of a quadratic form:

a(q) :=
g∑
i=1

q(ei)q(fi) ∀ q ∈ Q(V );

which does not depend on the choice of the symplectic basis. Then, Q(V ) is seen to decompose
into two orbits: the set Q(V )+ of even quadratic forms, namely those whose Arf invariant is
equal to 0 (the cardinality of this orbit is equal to 2g−1(2g + 1)) and the set Q(V )− of odd
quadratic forms, namely those whose Arf invariant is equal to 1 (the cardinality of this orbit
is equal to 2g−1(2g − 1)). A straightforward computation shows that the quadratic form q0
defined in (2) is even and that a(q) = m′ ·m′′ for any quadratic form q whose coordinates
with respect to q0 are [m′

m′′ ], as in (3).
Remarkable orbits of non-ordered collections of quadratic forms are also characterized in
terms of the Arf invariant; in particular, a triple q1, q2, q3 ∈ Q(V ) is called syzygetic (resp.
azygetic) if a(q1) + a(q2) + a(q3) + a(q1 + q2 + q3) = 0 (resp. = 1). Likewise, a collection
of quadratic forms q1, . . . , qn ∈ Q(V ) with n ≥ 4 is called syzygetic (resp. azygetic) if each
sub-triple {qi, qj , qk} ⊂ {q1, . . . , qn} is syzygetic (resp. azygetic).
Notable azygetic collections of quadratic forms are the so-called Aronhold systems. An Aron-
hold system is a collection of 2g + 1 quadratic forms q1, . . . , q2g+1 ∈ Q(V ) which is a basis
for the vector space V ∪̇Q(V ) and such that for any q =

∑2g+1
i=1 λiqi ∈ Q(V ) the following

expression holds:

(4) a(q) = 1
2

2g+1∑
i=1

λi − 1

+
{

0 if g ≡ 0, 1mod 4
1 if g ≡ 2, 3mod 4

Note that (4) implies that any sub-triple of quadratic forms of an Aronhold system is actually
azygetic.
Aronhold systems exist and the action of SP(2g,F2) on them is transitive. Moreover, any
ordered Aronhold system (q1, . . . , q2g+1) corresponds to a vector basis (v1, . . . , v2g) for V
where 〈vi, vj〉 = 1 for any i 6= j, with the vectors vi being such that qi = vi + q2g+1.

3. Theta characteristics and quadratic forms

This section is intended to recall the link between the above mentioned algebraic settings and
the geometry of the projective curves. Classical references for this subject are [1] and [7]. We
will also follow the exposition outlined in [9] and [14].
Let C be a smooth complex non-hyperelliptic curve of genus g canonically embedded in Pg−1

by means of a basis ω1, . . . , ωg of the cohomology space H0(C,Ω1), and let Sg denote the
Siegel upper-half space of degree g, namely the tube domain of complex symmetric g × g
matrices with positive definite imaginary part. Once a symplectic basis δ1, . . . , δg, δ

′
1, . . . , δ

′
g

of the homology space H1(C,Z) is chosen, the g×2g period matrix of the curve (
∫
δj
ωi,
∫
δ′
j
ωi)

defines a lattice in Cg and consequently a complex torus whose isomorphism class has a
representative of the form JC := Cg/(Zg + τZg) with τ ∈ Sg. This complex torus is known as
the Jacobian variety of the curve C and is a principally polarized abelian variety, whose set of
2-torsion points JC [2] can be clearly identified with the set of the representatives 1

2(h+ τ · k)
with h, k ∈ Zg2. Hence, JC [2] admits a vector space structure over Z2 and is furthermore
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8 Weber’s formula for the bitangents of a smooth plane quartic

endowed with a symplectic form given by the Weyl pairing. The affine space Q(JC [2]) of the
quadratic forms on JC [2] can be therefore identified with Zg2 × Zg2, once a quadratic form is
fixed as origin. This affine space is strictly related to the geometry of the curve, since its
points can be identified with the so-called theta characteristics. A theta characteristic on C
is a divisor D such that 2D ∼ KC where KC is the canonical divisor of the curve. Once a
point P0 ∈ C is fixed, the well known Abel–Jacobi map φP0 : Div(C)→ JC is defined on the
group Div(C) of the equivalence classes of divisors; since p = φP0(D′ −D) ∈ JC [2] whenever
the divisors D and D′ are theta characteristics, a free transitive action of the vector space
JC [2] is well defined on the set of theta characteristics as well, by setting D+ p := D′. Then,
for any theta characteristic D a quadratic form in Q(JC [2]) is uniquely defined by setting:

qD(p) := [dimL(D + p) + dimL(D)]mod 2

where L(D) and L(D + p) are the Riemann–Roch spaces respectively associated with the
divisors D and D + p. This gives a bijection between the set of theta characteristics and
Q(JC [2]). The theta characteristics can be therefore identified with the vectors in Zg2×Zg2 as
long as a theta characteristic D0 is fixed; a canonical choice for such a D0 is suggested by
Riemann’s theorem on the geometry of the theta divisor, as we will briefly recall.
A Riemann theta function of level 2 with characteristic m = (m′

m′′), where m′,m′′ ∈ Zg is a
holomorphic function θm : Sg × Cg 7→ C defined by the series:

θm(τ, z) :=
∑
n∈Zg

e
[
t
(
n+ m′

2

)
· τ ·

(
n+ m′

2

)
+ 2

(
n+ m′

2

)
·
(
z + m′′

2

)]
where e(z) := exp(πiz) and the symbol · stands for the usual inner product. As a consequence
of the reduction formula:

(5) θm+2n(τ, z) = (−1)m′·n′′
θm(τ, z) ∀ m = (m′

m′′), ∀ n = (n′
n′′)

these functions are uniquely determined up to a sign by the so-called reduced characteristics
[m] := [m′

m′′ ] with m′,m′′ ∈ Zg2. The theta constant (Thetanullwert) with characteristic m is
the function defined by setting θm(τ) := θm(τ, 0). Riemann theta functions with characteris-
tics satisfy the classical addition formula (cf. [11] for a general formulation in terms of real
characteristics):

(6) θm1(τ, u+ v)θm2(τ, u− v)θm3(τ)θm4(τ)

= 1/2g
∑

[a]∈Z2g/2Z2g

e(m′1 · a′′)θn1+a(τ, u)θn2+a(τ, u)θn3+a(τ, v)θn4+a(τ, v)

where the sum runs over a set of representatives for Z2g/2Z2g and {n1, n2, n3, n4} and
{m1,m2,m3,m4} are any two collections of four characteristics that satisfy the following
identity:

(n1, n2, n3, n4) = 1
2(m1,m2,m3,m4) ·


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


For a given τ ∈ Sg the zero locus {z ∈ Cg | θ0(τ, z) = 0} turns out to be invariant under shift
by elements of the lattice Zg + τZg and therefore defines a divisor Θ on the Jacobian variety
JC identified with τ . Such a divisor is known as the theta divisor, and the Chern class of the
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A. Fiorentino 9

corresponding holomorphic line bundle gives a principal polarization on JC . The following
classical theorem holds:

Theorem 3.1 (Riemann’s theorem). — There exists a theta characteristic D0 on the
curve C such that:

Wg−1 = Θ +D0

where Wg−1 := {D ∈ Div(C) | deg(D) = g − 1, dimL(D) > 0}. Furthermore, dimL(D0) is
even, and multp(Θ) = dimL(D0 + p) for any p ∈ JC [2]

If such a theta characteristic D0 is fixed, a quadratic form q0 in Q(JC [2]) is fixed as well; then,
any theta characteristic on the curve is of the form D0 + v with v = [m′

m′′ ] and m′,m′′ ∈ Zg2
and the corresponding quadratic form is q0 + v. A Riemann theta function θ[m] with reduced
characteristic [m] = [m′

m′′ ] can be therefore regarded as a function θ[q] associated with the
quadratic form q = q0 + [m′

m′′ ]. The function z → θ[q](τ, z) is even (resp. odd) whenever
q is even (resp. odd), hence the theta constant θ[q] is non-trivial if and only if q is even;
furthermore, for any q = q0 + [m′

m′′ ] and for any (k, h) ∈ Zg2 × Zg2 the following transformation
law holds (cf. [15]):

θ[q]
(
τ, z + 1

2h+ 1
2τ · k

)
= e

(
−1

2k · (m
′′ + h)− k · z − 1

4
tk · τ · k

)
θ[q + [kh]](τ, z)

Thanks to this formula the zero locus of any Riemann theta function θ[q] also defines a
divisor Θ[q] on JC and mult0(Θ[q + v]) = multv(Θ) for any v ∈ JC [2]. Riemann’s theorem
thus implies that the effective theta divisors are those associated with odd quadratic forms.
Whenever q ∈ Q(JC [2])− is an odd quadratic form whose associated theta characteristic Dq

satisfies the condition dimL(Dq) = 1, the divisor Dq is of the type P1 + · · · + Pg−1 and is
actually the divisor that is cut on the canonical curve by a hyperplane tangent at the image
points of P1, . . . , Pg−1 in Pg−1 under the canonical map; the direction of such a hyperplane
in Pg−1 is then given by the gradient of the corresponding Riemann theta function valued at
z = 0:

grad0
z θ[q](τ) :=

(
∂θ[q]
∂z1

(τ, 0), . . . , ∂θ[q]
∂zg

(τ, 0)
)

which is non-trivial if and only if q is odd. The Jacobian determinant of g Riemann theta
functions valued at z = 0 will be henceforward denoted by:
(7) D[q1, . . . , qg](τ) := (grad0

z θ[q1] ∧ · · · ∧ grad0
z θ[qg])(τ)

The algebraic link between theta constants and Jacobian determinants is displayed by Igusa’s
conjectural formula (cf. [12]), which has been proved up to the case g = 5 (cf. [5] and [6]).
In the next section we shall resort to a coordinate-free version of the formula for ratios of
determinants with explicit signs, which can be derived from the addition formula.

4. Bitangents of a plane quartic: Weber’s formula

For the rest of the paper we will be only concerned with the g = 3 case. The canonical model
of a non-singular curve C of genus 3 is a smooth plane quartic. Since any theta characteristic
D such that dimL(D) > 0 is necessarily of the type P1 + P2, then dimL(D) = 1 and the
geometrical link recalled in the previous section holds. Therefore, the curve has 28 bitangents
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10 Weber’s formula for the bitangents of a smooth plane quartic

that are in bijection with the 28 odd quadratic forms on JC [2] and there exist homogeneous
coordinates (Z1 : Z2 : Z3) in P2 such that the equations of the 28 bitangents are:

(8)
3∑
i=1

∂θ[q]
∂Zi

(τ, 0)Zi = 0, ∀ q ∈ Q(JC [2])−

In this case, an Aronhold system is a collection of seven odd quadratic forms q1, . . . , q7 such
that each sub-triple {qi, qj , qk} ⊂ {q1, . . . , q7} is azygetic, which means qi + qj + qk is even;
there exist exactly 288 distinct Aronhold systems when g = 3. Once an Aronhold system is
fixed, the remaining 21 odd quadratic forms can be simply described in terms of it as follows:

(9) qij := qS + qi + qj ∀ i 6= j

where qS :=
∑7
i=1 qi is an even quadratic form. The other 35 even quadratic forms different

form qS are easily seen to be described in terms of the Aronhold system as follows:

(10) qijk := qi + qj + qk ∀ i, j, k distinct.

An Aronhold system of bitangents for the plane quartic is then a collection of seven bitangents
associated with an Aronhold system of quadratic forms; this geometrically translates into the
condition that for any collection of three bitangents out of the seven, the six corresponding
points of tangency on the quartic do not lie in the same conic. The datum of an Aronhold
system is enough to recover an equation for the plane quartic along with equations for the
remaining 21 bitangents; this is basically done by means of the Steiner complexes of bitangents
determined by the sub-collections of six bitangents in the Aronhold system. We will only recall
here the main features of the method of reconstruction with a particular focus on the Riemann
model of the curve (cf. [16] for details and [4] for a modern exposition of the subject).
The following statement holds:

Proposition 4.1. — Let q be a non-null quadratic form on JC [2] and let {q1, q
′
1}, {q2, q

′
2}

and {q3, q
′
3} be three pairs of odd quadratic forms on JC [2] such that qi + q′i = q for any

i = 1, 2, 3. Then, for any two of these pairs there exists a conic that passes through the eight
points of tangency; in particular, an equation for the quartic is given by:

(11) 4f1ξ1f2ξ2 − (f1ξ1 + f2ξ2 + f3ξ3)2 = 0

or, in Weber’s notation: √
f1ξ1 +

√
f2ξ2 +

√
f3ξ3 = 0

where {fi, ξi} is a suitable pair of linear forms associated with the bitangents corresponding
to the pair {qi, q′i}.

As any subtriple qi, qj , qk of an Aronhold system is an azygetic triple, it can be completed to
three pairs {qi, q′i}, {qj , q′j} and {qk, q′k} such as in the statement of Proposition 4.1. Thus,
any three bitangents in an Aronhold system cannot intersect at a same point, because such
a point would be a singular point of the curve by (11), while the curve is smooth; this proves
the following:
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Corollary 4.2. — Up to a projective transformation, an Aronhold system of bitangents for
the quartic is given by the following equations in P2:

(12)

β1 : X1 = 0 β5 : a11X1 + a12X2 + a13X3 = 0
β2 : X2 = 0 β6 : a21X1 + a22X2 + a23X3 = 0
β3 : X3 = 0 β7 : a31X1 + a32X2 + a33X3 = 0
β4 : X1 +X2 +X3 = 0

for suitable (ai1 : ai2 : ai3) ∈ P2.

A proof of the following classical result will be omitted here, as it can be found in [16]:

Proposition 4.3 (Riemann’s model). — Let β1, . . . , β7 an Aronhold system of bitangents
for the curve as in (12) and q1, . . . , q7 the corresponding quadratic forms. The three pairs
{q1, q23}, {q2, q13} and {q3, q12} (cf. (9)) are such as in the statement of Proposition 4.1, and
an equation for the curve is given by:

4X1ξ23X2ξ13 = (X1ξ23 +X2ξ13 +X3ξ12)2

where ξij are linear forms associated with the bitangents corresponding to qij and determined
by the linear system:

(13)
{
ξ23 + ξ13 + ξ12 +X1 +X2 +X3 = 0;
ξ23
ai1

+ ξ13
ai2

+ ξ12
ai3

+ ki(ai1X1 + ai2X2 + ai3X3) = 0 i = 1, 2, 3
with k1, k2, k3 ∈ C∗ unique solution of the linear system:

(14)

λ1a11 λ2a21 λ3a31
λ1a12 λ2a22 λ3a32
λ1a13 λ2a23 λ3a33

k1
k2
k3

 =

−1
−1
−1


where λ1, λ2, λ3 ∈ C∗ are such that:

1
a11

1
a21

1
a311

a12
1
a22

1
a321

a13
1
a23

1
a33


λ1
λ2
λ3

 =

−1
−1
−1


Note that the curve is known to be uniquely determined by its bitangents as a consequence
of the results proved by Caporaso and Sernesi (cf. [2]) and by Lehavi (cf. [13]).
As the curve C is fixed, for the sake of simplicity we shall omit the symbol of the variable τ
in the expressions of theta functions and theta constants throughout the rest of this section.
Furthermore, by a slight abuse of notation we shall denote by (q) = (q′, q′′) the non-reduced
characteristic that corresponds to the coordinates of the quadratic form q with respect to the
fixed quadratic form q0 corresponding to the theta characteristic D0 appearing in Riemann’s
theorem, and by (

∑
i qi) the non-reduced characteristic

∑
i(qi). To prove Weber’s formula we

need the following Proposition first.

Proposition 4.4. — Let {q1, q2, q3, q4} any azygetic 4-tuple of odd quadratic forms, and let
{q5, q6, q7} one of the two distinct triples which complete the 4-tuple to an Aronhold system
{q1, q2, q3, q4, q5, q6, q7}. Then:
D[q4, q2, q3]
D[q1, q2, q3] = −e((q5 + q6 + q7)′ · (q1 + q4)′′)θ(q5 + q6 + q1)θ(q5 + q7 + q1)θ(q6 + q7 + q1)

θ(q5 + q6 + q4)θ(q5 + q7 + q4)θ(q6 + q7 + q4)
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12 Weber’s formula for the bitangents of a smooth plane quartic

where D[qi, qj , qk] are the Jacobian determinants of the corresponding Riemann theta func-
tions with reduced characteristics valued at z = 0, as in (7).

Proof. — If we set u = 0 in the formula (6) and choose n1 = (q5 + q6), n2 = (q5 + q7),
n3 = (q6 + q7) and n4 = 0, we get for any z ∈ Cg:

0 =
∑

q∈Q(JC [2])
χ(q)θ(q5 + q6 + q)θ(q5 + q7 + q)θ(q6 + q7 + q)(z)θ(q)(z)

where χ(q) := e((q5+q6+q7)′·q′′). The right side of the identity is the sum of two terms S− and
S+, obtained by letting q run respectively over Q(JC [2])− and over Q(JC [2])+. Thanks to the
labelling introduced in (9) for the elements of Q(JC [2])− one easily derives S− = S

(4)
− + S

(6)
− ,

where:

S
(4)
− =

4∑
i=1

χ(qi) θ(q5 + q6 + qi)θ(q5 + q7 + qi)θ(q6 + q7 + qi)(z)θ[qi](z)

S
(6)
− =

∑
j,k∈{1,2,3,4}

s.t. j<k

χ(qjk)θ(q5 + q6 + qjk)θ(q5 + q7 + qjk)θ(q6 + q7 + qjk)(z)θ[qjk](z)

As for S+, the labelling introduced in (10) for the elements of Q(JC [2])+ shows that S+ =
S

(4)
+ + S

(6)
+ where S(4)

+ is the term given by summing on the four quadratic forms qi67 with
i ∈ {1, 2, 3, 4}, while S(6)

+ is the term given by summing on the six quadratic forms q5jk with
j, k ∈ {1, 2, 3, 4} and j < k. A straightforward computation with the reduction formula shows
that S(6)

+ and S(6)
− cancel out, whereas:

S
(4)
+ =

4∑
i=1

e(a(q6) + a(q7))χ(qi) θ(q5 + q6 + qi)θ(q5 + q7 + qi)θ(q6 + q7 + qi)(z)θ[qi](z) = S
(4)
−

Therefore, one finally obtains the following identity for any z ∈ Cg :

(15)
4∑

k=1
χ(qk)θ(q5 + q6 + qk)θ(q5 + q7 + qk)θ(q6 + q7 + qk)(z)θ[qk](z) = 0

By taking the derivative with respect to each zj for j = 1, 2, 3 and evaluating the resulting
expression at z = 0 one obtains:

4∑
k=1

χ(qk)θ(q5 + q6 + qk)θ(q5 + q7 + qk)θ(q6 + q7 + qk)
∂θ[qk]
∂zj z=0

= 0 j = 1, 2, 3

from which the statement clearly follows. �

Note that (15) is actually a version with explicit signs of an identity of the type described
in [15, Theorem 17, II, p. 51] (it is the one induced by the azygetic 4-tuple corresponding to
{q1, q2, q3, q4} once the variable is shifted by the half-period 1

2v
′′ + 1

2τ · v
′ where (v′, v′′) is a

representative for q5 + q7).
We can now state the main theorem of this note:
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Theorem 4.5 (Weber’s formula). — Let τ ∈ S3 the period matrix of a smooth plane
quartic C. If q1, · · · q7 is an Aronhold system of quadratic forms on the 2-torsion points of
the Jacobian variety C3/(Z3 + τZ3), then for the coefficients in (12) one has:

aij = ηi e(q′j · (q4 + q4+i)′′)
θ(q4 + qr + qj)θ(q4 + qs + qj)

θ(q4+i + qr + qj)θ(q4+i + qs + qj)
i, j = 1, 2, 3

where r and s are such that {4+ i, r, s} = {5, 6, 7} and ηi is a non-zero scalar factor that only
depends on the index i, which is due to the fact that the equations for β5, β6 and β7 in (12)
are defined up to a scalar.

Remark 4.6. — The reduction formula (5) can be used in Weber’s formula to express the
coefficients of the bitangents in terms of reduced characteristics. In this case one has:

aij = ρij · ηi e(q′j · (q4 + q4+i)′′)
θ[q4 + qr + qj ]θ[q4 + qs + qj ]

θ[q4+i + qr + qj ]θ[q4+i + qs + qj ]
i, j = 1, 2, 3

where, for any i and j, ρij is the product of the reduction signs (cf. (5)) of the four theta
constants appearing in the expression of aij .

Proof of Weber’s formula. — Let fi = fi(X1, X2, X3) be linear forms associated with the
bitangent βi for any i = 1, . . . 7; the equations (12) yield the following linear system for
the fi:

(16)


f4 = f1 + f2 + f3;
f5 = a11f1 + a12f2 + a13f3

f6 = a21f1 + a22f2 + a23f3

f7 = a31f1 + a32f2 + a33f3

By (8), there also exists a projective transformation ϕ : P2 7→ P2 such that:

fi(X1, X2, X3) = hi

3∑
j=1

∂θ[qi]
∂Zj z=0

ϕj(X1, X2, X3) ∀ i = 1, . . . , 7

with suitable coefficients hi ∈ C∗. Thus, each equation in (16) yelds linear systems in the
variables hi and aij :

(17) h4
∂θ[q4]
∂Zj z=0

=
3∑
i=1

hi
∂θ[qi]
∂Zj z=0

j = 1, 2, 3

(18) h4+i
∂θ[q4+i]
∂Zj z=0

=
3∑
l=1

ailhl
∂θ[ql]
∂Zj z=0

j = 1, 2, 3 i = 1, 2, 3

From (17) one has:

h1 = D[q4, q2, q3]
D[q1, q2, q3]h4; h2 = D[q1, q4, q3]

D[q1, q2, q3]h4; h3 = D[q1, q2, q4]
D[q1, q2, q3]h4;

By replacing these solutions into (18), one gets the coefficients for β4+i for i = 1, 2, 3:

(19) ai1 = µi
D[q4+i, q2, q3]
D[q4, q2, q3] ; ai2 = µi

D[q1, q4+i, q3]
D[q1, q4, q3] ; ai3 = µi

D[q1, q2, q4+i]
D[q1, q2, q4] ;
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14 Weber’s formula for the bitangents of a smooth plane quartic

where µi := h4+i/h4 ∈ C∗. Therefore, the bitangents β4+i are uniquely determined as points
in P2 by duality. By repeating the same procedure as before with equations (13), one obtains
for suitable coefficients h23, h13, h12 ∈ C∗:

h4
∂θ[q4]
∂Zj z=0

= h23
∂θ[q23]
∂Zj z=0

+ h13
∂θ[q13]
∂Zj z=0

+ h12
∂θ[q12]
∂Zj z=0

kih4+i
∂θ[q4+i]
∂Zj z=0

= h23
ai1

∂θ[q23]
∂Zj z=0

+ h13
ai2

∂θ[q13]
∂Zj z=0

+ h12
ai3

∂θ[q12]
∂Zj z=0

with i, j = 1, 2, 3. By solving these linear systems, one has likewise:

1
ai1

= kiµi
D[q4+i, q13, q12]
D[q4, q13, q12] ; 1

ai2
= kiµi

D[q23, q4+i, q12]
D[q23, q4, q12] ; 1

ai3
= kiµi

D[q23, q13, q4+i]
D[q23, q13, q4] ;

Thus, by applying Proposition 4.4 to the azygetic 4-tuples of the two Aronhold systems:

{q1, q2, q3, q4, q5, q6, q7} {q23, q13, q12, q4, q5, q6, q7}

one gets an explicit expression for the square power of the constant factor in terms of theta
constants:

µ2
i = 1

ki

D[q4, q2, q3]D[q4, q13, q12]
D[q4+i, q2, q3]D[q4+i, q13, q12]

= 1
ki

e((q4 + q4+i)′ · (q4 + q5 + q6 + q7)′′)θ
2(q4+i + qr + qs)
θ2(q4 + qr + qs)

i = 1, 2, 3

where r and s are such that {4 + i, r, s} = {5, 6, 7}. Therefore, by replacing this expression
into (19) one finally has:

aij = −εie
π
2 i(q4+q4+i)′·(q4+q5+q6+q7)′′e((qj + qr + qs)′ · (q4 + q4+i)′′)

× θ(q4 + qr + qj)θ(q4 + qs + qj)
θ(q4+i + qr + qj)θ(q4+i + qs + qj)

where εi is a fixed root of 1/ki for any i = 1, 2, 3, and −e((qr + qs)′ · (q4 + q4+i)′′) is a sign
that can be absorbed into the definition of the root, as it only depends on the index i. This
proves the statement. �

The following corollary follows as a straightforward consequence:

Corollary 4.7. — By setting in Weber’s formula:

ηi := εie
π
2 i(q4+q4+i)′·(q4+q5+q6+q7)′′

i = 1, 2, 3

where εi is a chosen sign that only depends on i, the corresponding choice of representatives
for the points (ai1 : ai2 : ai3) in P2 for i = 1, 2, 3 is such that (k1, k2, k3) = (1, 1, 1) is the
unique solution of (14).
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Proof. — By the proof of Weber’s formula one has ηi = σie
π
2 i(q4+q4+i)′·(q4+q5+q6+q7)′′ where

σi is a non-zero factor that reduces to a sign for each i = 1, 2, 3 if and only if k1 = k2 =
k3 = 1. �

As an example, we can fix a system of coordinates for the quadratic forms as in (3) and
consider the following Aronhold system in terms of reduced characteristics:

n1 =
[
111
111

]
; n2 =

[
001
011

]
; n3 =

[
011
001

]
; n4 =

[
101
100

]
; n5 =

[
100
101

]
; n6 =

[
110
010

]
; n7 =

[
010
110

]
;

Then, we can apply Weber’s formula with the choice made in Corollary 4.7 and compute the
reduction signs (see Remark 4.6):

ρ11 = +1; ρ21 = +1; ρ31 = +1;
ρ12 = +1; ρ22 = +1; ρ32 = +1;
ρ13 = +1; ρ23 = −1; ρ33 = −1;

so as to obtain Weber’s result (cf. [16]):

a11 = ε1i
θ

[
100
001

]
θ

[
000
101

]
θ

[
101
000

]
θ

[
001
100

] ; a21 = ε2i
θ

[
110
110

]
θ

[
000
101

]
θ

[
101
000

]
θ

[
011
011

] ; a31 = −ε3
θ

[
110
110

]
θ

[
100
001

]
θ

[
001
100

]
θ

[
011
011

] ;

a12 = ε1i
θ

[
010
101

]
θ

[
110
001

]
θ

[
011
100

]
θ

[
111
000

] ; a22 = ε2i
θ

[
000
010

]
θ

[
110
001

]
θ

[
011
100

]
θ

[
101
111

] ; a32 = ε3

θ

[
000
010

]
θ

[
010
101

]
θ

[
111
000

]
θ

[
101
111

] ;

a13 = ε1i
θ

[
000
111

]
θ

[
100
011

]
θ

[
001
110

]
θ

[
101
010

] ; a23 = ε2i
θ

[
010
000

]
θ

[
100
011

]
θ

[
001
110

]
θ

[
111
101

] ; a33 = ε3

θ

[
010
000

]
θ

[
000
111

]
θ

[
101
010

]
θ

[
111
101

] ;

Remark 4.8. — The formula in (19) for the Aronhold system (12) is in accordance with
the modular description of the universal matrix of bitangents obtained in [3]. If a system of
coordinates for the quadratic forms is fixed as in (3), an Aronhold system q1, . . . , q7 such that
q0 =

∑7
i=1 qi is given by:

n1 =
[
111
111

]
; n2 =

[
110
100

]
;n3 =

[
101
001

]
;n4 =

[
100
110

]
;n5 =

[
010
011

]
;n6 =

[
001
101

]
;n7 =

[
011
010

]
;
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16 Weber’s formula for the bitangents of a smooth plane quartic

Then the first row of the universal bitangent matrix (cf. [3]) gives the following modular
expressions for the corresponding bitangents:

β′1 : D[n1 + n4, n1 + n2, n1 + n3]
3∑
j=1

∂θn1

∂Zj z=0
Zj = 0

β′2 : D[n2 + n4, n1 + n2, n2 + n3]
3∑
j=1

∂θn2

∂Zj z=0
Zj = 0

β′3 : D[n1, n2, n4]
3∑
j=1

∂θn3

∂Zj z=0
Zj = 0

β′i : D[n1, n2, n3]
3∑
j=1

∂θni
∂Zj z=0

Zj = 0 i = 4, 5, 6, 7

where, as above, D[ni, nj , nk] := grad0
z θni ∧ grad0

z θnj ∧ grad0
z θnk . A straightforward compu-

tation shows that the ordered collection of bitangents β1, . . . β7 given by Weber’s formula is
sent to the ordered collection β′1, . . . β′7 by the projective transformation φ : P2 → P2, defined
by the matrix:

Aφ :=


D[n4, n2, n3]∂θn1

∂Z1 z=0 D[n1, n4, n3]∂θn2
∂Z1 z=0 D[n1, n2, n4]∂θn3

∂Z1 z=0
D[n4, n2, n3]∂θn1

∂Z2 z=0 D[n1, n4, n3]∂θn2
∂Z2 z=0 D[n1, n2, n4]∂θn3

∂Z2 z=0
D[n4, n2, n3]∂θn1

∂Z3 z=0 D[n1, n4, n3]∂θn2
∂Z3 z=0 D[n1, n2, n4]∂θn3

∂Z3 z=0


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