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INTRODUCTION TO MONO-ANABELIAN GEOMETRY

by

Yuichiro Hoshi

Abstract. — The present article is based on the four hours mini-courses “Introduction to Mono-anabelian
Geometry” which the author gave at the conference “Fundamental Groups in Arithmetic Geometry”
(Paris, 2016). The purpose of the present article is to introduce mono-anabelian geometry by focusing on
mono-anabelian geometry for mixed-characteristic local fields, which provides elementary but nontrivial
examples of typical arguments in the study of mono-anabelian geometry.

Résumé. — (Introduction à la géométrie mono-anabélienne) Cet article est basé sur les 4 heures de
mini-cours « Introduction to Mono-anabelian Geometry » que l’auteur a données lors de la conférence
« Fundamental Groups in Arithmetic Geometry » (Paris, 2016). L’objectif est de présenter la géométrie
mono-anabélienne en se concentrant sur les corps locaux de caractéristique mixte ce qui permet de fournir
des exemples élémentaires mais non-triviaux du type d’arguments présents dans l’étude de géométrie
mono-anabélienne.

Introduction

The present article is based on the four hours mini-courses “Introduction to Mono-anabelian
Geometry” which the author gave at the conference “Fundamental Groups in Arithmetic
Geometry” (Paris, 2016). In the present article, we discuss mono-anabelian geometry.
Anabelian geometry is, in a word, an area of arithmetic geometry in which one studies the
geometry of geometric objects of interest from the point of view of arithmetic fundamental
groups. Put another way, roughly speaking, anabelian geometry discusses the issue of how
much information concerning the geometry of geometric objects of interest is contained in
the knowledge of the arithmetic fundamental groups.
The classical point of view of anabelian geometry (i.e., more precisely, of Grothendieck’s an-
abelian conjecture) centers around a comparison between two geometric objects of interest
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6 Introduction to Mono-anabelian Geometry

via the arithmetic fundamental groups. In fact, in a discussion of anabelian geometry, typ-
ically, one fixes two geometric objects and discusses the relationship between a certain set
of morphisms (e.g., the set of isomorphisms) between the fixed two objects and a certain
set of homomorphisms (e.g., the set of isomorphisms) between the étale fundamental groups.
In particular, roughly speaking, the classical point of view of anabelian geometry may be
summarized as the study of some properties such as faithfulness/fullness of the (restriction,
to a certain suitable category of geometric objects, of the) functor of taking arithmetic fun-
damental groups. Moreover, the term “group-theoretic” (that often appears in discussions of
anabelian geometry) is, in the classical point of view, defined simply to mean “preserved by
an arbitrary isomorphism between the arithmetic fundamental groups under consideration”.
In [6], this classical point of view is referred to as “bi-anabelian geometry”.

bi-anabelian geometry
πét

1 (X◦)
∼−→ πét

1 (X•)
?=⇒ (objects related to) X◦

∼−→ (objects related to) X•
By contrast, mono-anabelian geometry centers around the task of establishing a “group-
theoretic software” (i.e., “group-theoretic algorithm”) whose input data consists of a single
abstract topological group isomorphic to the arithmetic fundamental group of a single geo-
metric object of interest.
In particular, a mono-anabelian reconstruction algorithm (i.e., a “group-theoretic algorithm”
discussed in mono-anabelian geometry) has the virtue of being free of any mention of some
“fixed reference model” copy of geometric objects (as the above “X◦” for “πét

1 (X◦)” in the
case of bi-anabelian geometry). In the point of view of mono-anabelian geometry, the term
“group-theoretic algorithm” is used to mean that “the algorithm in a discussion is phrased in
language that only depends on the topological group structure of the arithmetic fundamental
group under consideration” (cf., e.g., [6, Introduction, Remark 1.9.8, and Remarks following
Corollary 3.7] for more details concerning bi-anabelian/mono-anabelian geometry).

mono-anabelian geometry
a topological group isomorphic to πét

1 (X)
?
ww�

object(s) isomorphic to (objects related to) X
The purpose of the present article is to introduce mono-anabelian geometry by focusing on
mono-anabelian geometry for mixed-characteristic local fields, i.e., MLF’s (cf. Definition 1.1),
which provides elementary but nontrivial examples of typical arguments in the study of
mono-anabelian geometry.
In Section 1, we introduce some notational conventions related to MLF’s and recall some
basic facts concerning objects that arise from MLF’s. These basic facts will be applied in
other sections of the present article. In Section 2, we recall some results in bi-anabelian
geometry for MLF’s. Some of the fundamental results in bi-anabelian geometry for MLF’s
are as follows (cf. Theorem 2.2):

• The isomorphism class of an MLF is not determined by the isomorphism class of the
absolute Galois group of the MLF.

• There exists an outer automorphism of the absolute Galois group of an MLF which does
not arise from any automorphism of the MLF.
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These results lead us to an interest in a study of conditions for an outer isomorphism between
the absolute Galois groups of MLF’s to arise from an isomorphism between the original MLF’s.
In Section 2, we also recall such conditions (cf. Theorem 2.3, Remark 2.3.2).
In Sections 3 and 4, we establish some mono-anabelian reconstruction algorithms for MLF’s,
i.e., some “group-theoretic algorithms” whose input data consist of a group of MLF-type
(i.e., an abstract group isomorphic to the absolute Galois group of an MLF — cf. Defini-
tion 3.1). For instance, by applying the mono-anabelian reconstruction algorithms discussed
in Section 4, one may construct, from a group G of MLF-type, G-monoids

O×(G) ⊆ OB(G) ⊆ k×(G)
which “correspond” to the Gal(k/k)-monoids

O×
k̄
⊆ OB

k̄
⊆ k×,

where k is an MLF, and k is an algebraic closure of k (i.e.,

• the multiplicative Gal(k/k)-module O×
k̄

of units of the ring of integers of k,

• the multiplicative Gal(k/k)-monoid OB
k̄
of nonzero integers of k, and

• the multiplicative Gal(k/k)-module k× of nonzero elements of k),

respectively (cf. Summary 3.15, Summary 4.3).
One important aspect of mono-anabelian geometry is the technique of mono-anabelian trans-
port. In order to explain mono-anabelian transport, in Section 5, we introduce the notion
of an MLF-pair (cf. Definition 5.3). Some types of MLF-pairs are discussed in the present
article. For instance, an MLF×-pair is defined to be a collection of data G y M consisting
of a monoid M , a group G, and an action of G on M such that there exists an isomorphism
(in the evident sense) of GyM with the collection of data

Gal(k/k) y O×
k̄

for some MLF k and some algebraic closure k of k. If GyM is an MLF-pair, then we shall
refer to the group G, the monoid M as the étale-like portion, the Frobenius-like portion of
GyM , respectively (cf. Definition 5.4).
In Section 6, we discuss a phenomenon of cyclotomic synchronization for MLF-pairs. Let us
recall that a cyclotome refers to an “object isomorphic to the object Ẑ(1)”. Various (a priori
independent) cyclotomes often appear in studies of arithmetic geometry. For instance, if Ω is
an algebraically closed field of characteristic zero, then each of

• the cyclotome
Λ(Ω) def= lim←−

n

Ker(Ω× n→ Ω×)

— where the projective limit is taken over the positive integers n — associated to Ω and

• the dual
Λ(C) def= HomẐ

(
H2

ét(C, Ẑ), Ẑ
)

over Ẑ of the second étale cohomology H2
ét(C, Ẑ) of a projective smooth curve C over Ω
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8 Introduction to Mono-anabelian Geometry

gives an example of a cyclotome.
If one works with certain scheme/ring structures of objects related to cyclotomes under
consideration, then one may obtain a phenomenon of cyclotomic synchronization, i.e., syn-
chronization of cyclotomes. For instance, in the case of the above examples Λ(Ω) and Λ(C),
the homomorphism Pic(C) → H2(C,Λ(Ω)) obtained by considering the first Chern classes
yields an isomorphism(

Pic(C)/Pic0(C)
)
⊗Z Ẑ ∼−→ HomẐ

(
Λ(C),Λ(Ω)

)
;

thus, an invertible sheaf on C of degree one determines a cyclotomic synchronization (i.e., an
isomorphism between cyclotomes) Λ(C) ∼→ Λ(Ω) by means of which one usually (i.e., in the
usual point of view of arithmetic geometry) identifies Λ(C) with Λ(Ω). On the other hand,
observe that such a phenomenon of cyclotomic synchronization usually depends, at least in
an a priori sense, on a certain scheme/ring structures of objects related to cyclotomes under
consideration. Thus, if one works in a situation in which objects related to cyclotomes under
consideration lose a certain portion of the rigidity that arises from scheme/ring structures,
then one cannot apply the “scheme/ring-theoretic” construction of the cyclotomic synchro-
nization.
In our study of MLF-pairs, one may construct, from a single MLF-pair, (a priori independent)
two cyclotomes, i.e., a cyclotome constructed from the étale-like portion and a cyclotome
constructed from the Frobenius-like portion (cf. Definition 5.9, Proposition 5.10). In Section 6,
we establish a cyclotomic synchronization which relates the Frobenius-like cyclotome to the
étale-like cyclotome (cf. Definition 6.6, Proposition 6.7).
In Section 7, we discuss Kummer poly-isomorphisms and mono-anabelian transport. A Kum-
mer poly-isomorphism relates (monoids constructed, via some functorial algorithms, from)
Frobenius-like portions to mono-anabelian étale-like monoids (i.e., monoids constructed, via
some mono-anabelian reconstruction algorithms, from étale-like portions). In Section 7, we
establish Kummer poly-isomorphisms for MLF-pairs (cf. Definition 7.4). Finally, we discuss
the technique of mono-anabelian transport (cf. Remark 7.6.1).
Some details of discussions given in the portion from Sections 3 to 7 of the present article
may be found in, for instance, [4, §1, §2], [6, §3, §5], [7, §2], [2, §1].

Acknowledgments. —The present article is based on the mini-courses which the author
gave at the conference “Fundamental Groups in Arithmetic Geometry”. The author would
like to thank the organizers of the conference for the time and effort they spent to make
the conference a success. The author would like to thank especially Anna Cadoret, who is
one of the organizers, for inviting me to the conference. The author also would like to thank
some participants of the conference for their interest in and some discussions concerning the
mini-courses. Finally, the author would like to thank the referee for some helpful comments.

0. Notational Conventions

Sets. — If S is a finite set, then we shall write ]S for the cardinality of S. If G is a group,
and T is a set equipped with an action of G, then we shall write TG ⊆ T for the subset of
G-invariants of T .
Publications mathématiques de Besançon – 2021
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Monoids. — In the present article, every “monoid” is assumed to be commutative. Let M
be a monoid. (The monoid operation of M will be written multiplicatively). We shall write
M× ⊆ M for the abelian group of invertible elements of M . We shall write Mgp for the
groupification of M (i.e., the abelian group obtained by forming the monoid of equivalence
classes with respect to the relation ∼ on M ×M defined by, for (a1, b1), (a2, b2) ∈ M ×M ,
(a1, b1) ∼ (a2, b2) if there exists an element c ∈ M of M such that ca1b2 = ca2b1). We shall
write Mpf for the perfection of M (i.e., the monoid obtained by forming the injective limit
of the injective system of monoids

· · · −→M −→M −→ · · ·

given by assigning to each positive integer n a copy ofM , which we denote by In, and to each
two positive integers n, m such that n divides m the homomorphism In = M → Im = M

given by multiplication by m/n). We shall write M~ def= M ∪ {∗M}; we regard M~ as a
monoid (that contains M as a submonoid) by setting ∗M · ∗M

def= ∗M and a · ∗M
def= ∗M for

every a ∈M . We shall write N for the additive monoid of nonnegative integers.
Modules. — Let M be a module. If n is a positive integer, then we shall write M [n] ⊆ M
for the submodule obtained by forming the kernel of the endomorphism of M given by
multiplication by n. We shall write Mtor

def=
⋃
n≥1 M [n] ⊆ M for the submodule of torsion

elements of M and

M∧
def= lim←−

n

M/(n ·M),

where the projective limit is taken over the positive integers n. (So if M is finitely generated,
then M∧ is nothing but the profinite completion of M .)
Topological Groups. — Let G be a topological group. Then we shall write Gab for the abelian-
ization of G (i.e., the quotient of G by the closure of the commutator subgroup of G),
Gab-tor def= (Gab)tor ⊆ Gab, and Gab/tor for the quotient of Gab by the closure of Gab-tor ⊆ Gab.
Suppose that G is a profinite group. Then we shall say that G is slim if, for every open
subgroup H ⊆ G of G, the centralizer of H in G is trivial. If n is a nonnegative integer, and
M is a topological G-module, then we shall write Hn(G,M) for the n-th continuous group
cohomology of G with coefficients in M and

∞H
n(G,M) def= lim−→

H⊆G
Hn(H,M),

where the injective limit is taken over the open subgroups H ⊆ G of G.
Rings. — In the present article, every “ring” is assumed to be unital, associative, and com-
mutative. If R is a ring, then we shall write R+ for the underlying additive module of R and
R× ⊆ R for the multiplicative module of units of R. If R is an integral domain, then we shall
write RB ⊆ R for the multiplicative monoid of nonzero elements of R.

Fields. — Let K be a field. Then we shall write µ(K) def= (K×)tor for the group of roots of
unity in K and K× = K× ∪ {0} for the underlying multiplicative monoid of K. (So we have
a natural isomorphism (K×)~ ∼→ K× of monoids that maps ∗K× ∈ (K×)~ to 0 ∈ K×). If,
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10 Introduction to Mono-anabelian Geometry

moreover, K is algebraically closed and of characteristic zero, then we shall write

Λ(K) def= lim←−
n

µ(K)[n] = lim←−
n

K×[n]

(where the projective limits are taken over the positive integers n) and refer to Λ(K) as the
cyclotome associated to K. Thus, the cyclotome has a natural structure of profinite, hence
also topological, module and is, as an abstract topological module, isomorphic to Ẑ+.
Categories. — Let A be an object of a category. Then we shall refer to an object of the
category isomorphic to A as an isomorph of A.
Let A, B, and C be objects of a category. Then we shall refer to a nonempty set of iso-
morphisms from A to B in the category as a poly-isomorphism (from A to B). (So one may
regard a single isomorphism as a poly-isomorphism, i.e., of cardinality one.) Let f : A ∼→ B

be a poly-isomorphism (i.e., from A to B) and g : B ∼→ C a poly-isomorphism (i.e., from B

to C). We shall write g ◦ f : A ∼→ C for the poly-isomorphism (i.e., from A to C) obtained by
forming the set { g ◦ f | f ∈ f, g ∈ g } and refer to g ◦ f as the composite of f and g. We shall
write f−1 : B ∼→ A for the poly-isomorphism (i.e., from B to A) obtained by forming the set
{ f−1 | f ∈ f } and refer to f−1 as the inverse of f .

1. Generalities on MLF’s

In the present section, let us introduce some notational conventions related to mixed-char-
acteristic local fields, i.e., MLF’s (cf. Definition 1.1 below), and recall some basic facts con-
cerning objects that arise from MLF’s. These basic facts will be applied in other sections of
the present article.

Definition 1.1. — We shall refer to a finite extension of Qp, for some prime number p, as
an MLF. Here, “MLF” is to be understood as an abbreviation for “mixed-characteristic local
field”.

In the remainder of the present section, let k be an MLF. Then we shall write

• Ok ⊆ k for the ring of integers of k,

• mk ⊆ Ok for the maximal ideal of Ok,

• k def= Ok/mk for the residue field of Ok,

• O≺nk
def= 1 + mn

k ⊆ O
×
k (where n is a positive integer) for the n-th higher unit group of k,

• O≺k
def= O≺1

k ⊆ O
×
k for the group of principal units of k,

• µk for the (uniquely determined) Haar measure on (the locally compact topological mod-
ule) k+ such that µk((Ok)+) = 1, and

• pk
def= char(k) for the residue characteristic of k.

Publications mathématiques de Besançon – 2021
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Thus, one verifies easily that [k : Qpk
] and [k : Fpk

] are finite. We shall write

• dk
def= [k : Qpk

] and

• fk
def= [k : Fpk

].

We shall write, moreover,

• ek
def= ](k×/(O×k ·Q×pk

)) for the absolute ramification index of k,

• logk : O×k → k+ for the pk-adic logarithm, and

• Ik
def= (2pk)−1 · logk(O×k ) ⊆ k+ for the log-shell of k.

In the following lemma, let us recall some basic facts concerning the above objects.

Lemma 1.2. — The following hold:

(i) The topological module k× is isomorphic to the topological module(
Z+/(pfk

k − 1)Z+
)
⊕ (Z+/p

a
kZ+)⊕ (Zpk

)⊕dk
+ ⊕ Z+

for some nonnegative integer a. Moreover, the topological submodule O×k ⊆ k× of k×
corresponds, relative to such an isomorphism, to the kernel of the fourth projection(

Z+/(pfk
k − 1)Z+

)
⊕ (Z+/p

a
kZ+)⊕ (Zpk

)⊕dk
+ ⊕ Z+ −→ Z+.

(ii) The topological submodule O≺k ⊆ O
×
k of O×k is the maximal pro-pk submodule of O×k .

(iii) It holds that dk = fk · ek.

(iv) The pk-adic logarithm logk : O×k → k+ determines an isomorphism of topological modules

(O×k )pf ∼−→ k+.

(v) It holds that Ker(logk) = µ(k).

(vi) It holds that (Ok)+ ⊆ Ik.

Proof. — Assertions (i), (ii) follow immediately from [8, Chapter II, Proposition 5.3 and
Proposition 5.7(i)]. Assertion (iii) follows from [8, Chapter II, Proposition 6.8]. Assertions (iv),
(v) follow immediately from [8, Chapter II, Proposition 5.5], together with assertion (i). As-
sertion (vi) follows immediately from [8, Chapter II, Proposition 5.5], together with the (easily
verified) fact that ek > ek/(pk − 1) (respectively, 2ek > ek/(pk − 1)) if pk 6= 2 (respectively,
pk = 2). �

Next, let us recall some basic facts concerning the measure µk.
Publications mathématiques de Besançon – 2021



12 Introduction to Mono-anabelian Geometry

Lemma 1.3. — The following hold:

(i) Let S, T ⊆ k+ be compact open subsets of k+. Then the measure µk satisfies the following
conditions:
(a) If S ∩ T = ∅, then it holds that µk(S ∪ T ) = µk(S) + µk(T ).
(b) For each a ∈ k+, it holds that µk(S + a) = µk(S).
(c) If S is contained in O×k (⊆ k+), and the natural surjection S � logk(S) determined

by logk is bijective, then it holds that µk(logk(S)) = µk(S).

(ii) It holds that
µk(O×k ) = 1− p−fk

k = p−fk
k · (pfk

k − 1).

(iii) It holds that
µk(Ik) = pεk·dk−fk

k /]µ(k)(pk),

where we write

εk
def=
{

1 if pk 6= 2
2 if pk = 2

and µ(k)(pk) for the pk-Sylow subgroup of (the finite — cf. Lemma 1.2(i) — abelian
group) µ(k).

Proof. — First, we verify assertion (i). The assertion that µk satisfies conditions (a), (b)
follows from the definition of a Haar measure. Next, we verify the assertion that µk satisfies
condition (c). Let us recall that the system {O≺nk }n≥1 forms a basis of neighborhoods of the
identity element 1 ∈ O×k of O×k (cf. the discussion preceding [8, Chapter II, Proposition 3.10]).
Thus, it follows immediately — in light of the (easily verified) fact that the endomorphism of
k+ given by multiplication by an element of O×k is a topological automorphism which restricts
to an automorphism of (Ok)+ ⊆ k+ — from conditions (a), (b) that, to verify the assertion
that µk satisfies condition (c), it suffices to verify that there exists a positive integer n0 such
that if n > n0, then

µk
(
logk(O≺nk )

)
= µk(O≺nk ).

On the other hand, it follows from [8, Chapter II, Proposition 5.5], together with condition (b),
that if n > ek/(pk − 1), then

µk
(
logk(O≺nk )

)
= µk(mn

k) = µk(1 + mn
k) = µk(O≺nk ).

This completes the proof of the assertion that µk satisfies condition (c), hence also of asser-
tion (i).
Next, we verify assertion (ii). Since (one verifies easily that) O×k = (Ok)+ \mk, it follows from
condition (a) of assertion (i) that

µk(O×k ) = µk((Ok)+)− µk(mk) = µk((Ok)+) · (1− [(Ok)+ : mk]−1) = 1− p−fk
k ,

as desired. This completes the proof of assertion (ii).
Finally, we verify assertion (iii). Let us first recall from Lemma 1.2(v) that Ker(logk) = µ(k).
Thus, it follows from conditions (a), (c) of assertion (i) that

µk(Ik) = [Ik : logk(O×k )] · µk
(
log(O×k )

)
= [Ik : logk(O×k )] · ]

(
µ(k)

)−1 · µk(O×k ).
Publications mathématiques de Besançon – 2021
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In particular, since
]µ(k) = ]µ(k)(pk) · (pfk

k − 1)
(cf. Lemma 1.2(i)), it follows from assertion (ii) and Lemma 1.2(iv) that

µk(Ik) = pεk·dk
k · ]

(
µ(k)(pk))−1 · (pfk

k − 1)−1 · p−fk
k · (pfk

k − 1) = pεk·dk−fk
k /]µ(k)(pk),

as desired. This completes the proof of assertion (iii). �

Next, let k be an algebraic closure of k. Then we shall write

• Ok̄ ⊆ k for the ring of integers of k,

• k for the residue field of Ok̄,

• logk̄ : O×
k̄
→ k+ for the pk-adic logarithm,

• Gk
def= Gal(k/k) for the absolute Galois group of k with respect to k,

• Ik ⊆ Gk for the inertia subgroup of Gk, and

• Pk ⊆ Ik for the wild inertia subgroup of Gk.

Thus, k is an algebraic closure of k such that the absolute Galois group Gal(k/k) of k with
respect to k is naturally identified with the quotient Gk/Ik. We shall write

• Frobk ∈ Gal(k/k) ∼← Gk/Ik for the (]k-th power) Frobenius element.

We shall write, moreover,

• Br(k) def= H2(Gk, k×) (where we regard k× as a discrete Gk-module) for the Brauer group
of k.

The following lemma is one of fundamental results concerning the structure of the topological
group Gk.

Lemma 1.4. — The following hold:

(i) The topological group Gk is topologically finitely generated.

(ii) For a subgroup H ⊆ Gk of Gk, it holds that H is open in Gk if and only if H is of finite
index in Gk.

Proof. — Assertion (i) follows from [9, Theorem 7.4.1]. Assertion (ii) follows from [10, The-
orem 1.1], together with assertion (i). �

The following lemma is one of fundamental results concerning the structure of the tame
quotient Gk/Pk of Gk.

Lemma 1.5. — The following hold:

(i) The quotient Gk/Ik is topologically generated by Frobk ∈ Gk/Ik and, as an abstract
topological group, isomorphic to Ẑ+. In particular, the quotient Gk/Ik is abelian.

Publications mathématiques de Besançon – 2021



14 Introduction to Mono-anabelian Geometry

(ii) There exists an isomorphism of topological groups

Ik/Pk
∼−→ Λ(k)(p′k),

where we write Λ(k)(p′k) for the quotient of Λ(k) by the pro-pk-Sylow subgroup of Λ(k).
Moreover, such an isomorphism is always Gk-equivariant (i.e., with respect to the action
of Gk on Ik/Pk by conjugation and the natural action of Gk on Λ(k)(p′k)).

(iii) The action of Gk on Ik/Pk by conjugation determines an injection

Gk/Ik ↪→
∏

l: prime, l 6=pk

Z×l = Aut(Ik/Pk)

(cf. (ii)) which maps Frobk ∈ Gk/Ik to pfk
k ∈

∏
Z×l .

Proof. — Assertion (i) is discussed in the discussion following [9, Proposition 7.5.1]. Asser-
tion (ii) follows immediately from [9, Proposition 7.5.2]. Assertion (iii) follows immediately
— in light of assertion (ii) — from [9, Lemma 7.5.4(ii)], together with the definition of
Frobk ∈ Gk/Ik. �

Next, let us recall an explicit description of the Brauer group of an MLF as follows.

Lemma 1.6. — Write kur ⊆ k for the maximal unramified extension of k in k (i.e., kur =
kIk), Okur ⊆ kur for the ring of integers of kur, and V

def= k×ur/O×kur
. Then the following hold:

(i) The monoids OBkur
/O×kur

⊆ V are, as abstract monoids, isomorphic to N ⊆ Z+. Moreover,
the action of Gk on V determined by the action of Gk on k×ur is trivial.

(ii) For each positive integer n, the natural homomorphism
H2(Gk,µ(k)[n]

)
−→ Br(k)

determines an isomorphism
H2(Gk,µ(k)[n]

) ∼−→ Br(k)[n].

(iii) The natural homomorphism
H2(Gk/Ik, k×ur) −→ Br(k)

is an isomorphism.

(iv) The natural homomorphism
H2(Gk/Ik, k×ur) −→ H2(Gk/Ik, V )

is an isomorphism.

(v) The homomorphism
H1(Gk/Ik, V pf/V ) −→ H2(Gk/Ik, V )

determined by the exact sequence of Gk/Ik-modules
0 −→ V −→ V pf −→ V pf/V −→ 0

is an isomorphism.
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(vi) The homomorphism
H1(Gk/Ik, V pf/V ) −→ V pf/V

obtained by mapping
χ ∈ Hom(Gk/Ik, V pf/V ) = H1(Gk/Ik, V pf/V )

(cf. (i)) to
χ(Frobk) ∈ V pf/V

is an isomorphism.

(vii) The various isomorphisms of (iii), (iv), (v), (vi) determine an isomorphism

Br(k) ∼−→ V pf/V

(which thus determines an isomorphism

H2(Gk,Λ(k)) ∼−→ V ∧

— cf. (i), (ii)).

Proof. — Assertion (i) follows immediately from the (easily verified) fact that the natural in-
clusion k ↪→ kur determines isomorphisms OBk /O

×
k
∼→ OBkur

/O×kur
, k×/O×k

∼→ V . Assertion (ii)
follows immediately from “Hilbert Theorem 90” (cf. [9, Theorem 6.2.1]). Assertion (iii) follows
from [11, §1.1, Theorem 1]. Assertion (iv) follows from [11, §1.1, Theorem 2]. Assertion (v)
follows from the discussion following [11, §1.1, Theorem 2]. Assertion (vi) follows from the
discussion preceding [11, §1.1, Corollary]. Assertion (vii) follows from [11, §1.1, Corollary]. �

Next, let us recall local class field theory as follows.

Lemma 1.7. — There exists an injective homomorphism
reck : k× ↪→ Gab

k

which satisfies the following conditions:

(i) The homomorphism reck determines a commutative diagram
1 −−−−→ O×k −−−−→ k× −−−−→ k×/O×k −−−−→ 1

o
y o

y o
y

1 −−−−→ Im(Ik ↪→ Gk � Gab
k ) −−−−→ Gab

k ×Gk/Ik
FrobZ

k −−−−→ FrobZ
k −−−−→ 1∥∥∥ ∩

y ∩
y

1 −−−−→ Im(Ik ↪→ Gk � Gab
k ) −−−−→ Gab

k −−−−→ Gk/Ik −−−−→ 1
(cf. Lemma 1.5(i)) — where the horizontal sequences are exact, the upper vertical arrows
are isomorphisms, the lower vertical arrows are injective, and the right-hand upper vertical
arrow k×/O×k

∼→ FrobZ
k determines an isomorphism

OBk /O
×
k
∼−→ FrobN

k .

In particular, the homomorphism reck determines an isomorphism of topological modules
(k×)∧ ∼−→ Gab

k .
Publications mathématiques de Besançon – 2021



16 Introduction to Mono-anabelian Geometry

(ii) Let K ⊆ k be a finite extension of k. (So K is an MLF, and GK
def= Gal(k/K) ⊆ Gk

is an open subgroup of Gk.) Then the Norm map NmK/k : K× → k× and the natural
homomorphism Gab

K → Gab
k fit into the following commutative diagram:

K×
NmK/k−−−−→ k×

recK

y reck

y
Gab
K −−−−→ Gab

k .

(iii) Let K ⊆ k be a finite extension of k. (So K is an MLF, and GK
def= Gal(k/K) ⊆ Gk

is an open subgroup of Gk.) Then the natural inclusion k× ↪→ K× and the transfer map
TfGK⊆Gk

: Gab
k → Gab

K fit into the following commutative diagram:

k×
⊆−−−−→ K×

reck

y recK

y
Gab
k

TfGK⊆Gk−−−−−−→ Gab
K .

(iv) Let L be an MLF, L an algebraic closure of L, and ι : k ∼→ L an isomorphism of fields.
Then the diagram

k×
ι−−−−→ L×

reck

y recL

y
Gab
k −−−−→ Gal(L/L)ab

(where the lower horizontal arrow is the isomorphism induced by ι) commutes.

Proof. — This assertion follows immediately from the various assertions in [11, §2]. �

Finally, as an application of local class field theory, let us verify the slimness of the absolute
Galois group of an MLF.

Lemma 1.8. — The absolute Galois group Gk is slim, hence also center-free.

Proof. — LetK be a finite extension of k contained in k and γ ∈ Gk an element of the central-
izer of GK

def= Gal(k/K) in Gk. Let us observe that, to verify γ = 1, we may assume without
loss of generality, by replacing K by a suitable finite extension of K contained in k, that K is
Galois over k. Thus, it follows immediately from the injectivity of the homomorphism recK
of Lemma 1.7, together with Lemma 1.7(iv), that the action of Gk/GK = Gal(K/k) on Gab

K
by conjugation is faithful, which thus implies that γ ∈ GK . In particular, by allowing “K” to
vary, we conclude that γ = 1, as desired. This completes the proof of Lemma 1.8. �

2. Bi-anabelian Results for MLF’s

In the present section, let us recall some results in bi-anabelian geometry for MLF’s. In the
present section, for � ∈ {◦, •}, let k� be an MLF and k� an algebraic closure of k�; write
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G�
def= Gal(k�/k�). Thus, we have a natural map

φ = φk̄◦/k◦,k̄•/k• : Isom(k•, k◦) −→ Isom(G◦, G•)/ Inn(G•).

Typically, bi-anabelian geometry (i.e., the classical point of view of anabelian geometry) dis-
cusses some properties such as faithfulness/fullness of the (restriction, to a certain suitable
category of geometric objects, of the) functor of taking arithmetic fundamental groups. Put
another way, in a discussion of bi-anabelian geometry, one usually fixes two schemes/rings of
interest (e.g., the two fields k◦ and k• in our case) and discusses the relationship between a
certain set of morphisms (e.g., the set of isomorphisms) between the fixed two schemes/rings
and a certain set of homomorphisms (e.g., the set of isomorphisms) between the arithmetic
fundamental groups. In particular, roughly speaking, bi-anabelian geometry (i.e., for isomor-
phisms between MLF’s) may be summarized as the study of the above map φ.
The following proposition asserts the injectivity of the map φ.

Proposition 2.1. — The map φ is injective.

Proof. — Since (one verifies easily that) every automorphism of the field k� is an automor-
phism over Qpk�

(⊆ k�), this assertion follows immediately, by considering the difference of
two elements of Isom(k•, k◦) whose images via φ coincide, from Lemma 1.8. �

The following theorem is fundamental in bi-anabelian geometry for MLF’s.

Theorem 2.2. — The following hold:

(i) There exists a pair “(k◦/k◦, k•/k•)” which satisfies the following condition: The domain
of φk̄◦/k◦,k̄•/k• is empty, but the codomain of φk̄◦/k◦,k̄•/k• is nonempty.

(ii) There exists a pair “(k◦/k◦, k•/k•)” which satisfies the following condition: The do-
main of φk̄◦/k◦,k̄•/k• is nonempty (which thus implies that the codomain of φk̄◦/k◦,k̄•/k• is
nonempty), but the map φk̄◦/k◦,k̄•/k• is not surjective.

Proof. — Assertion (i) follows from the examples discussed in [13, §2]. Assertion (ii) follows
from the discussion given at the final portion of [9, Chapter VII, §5]. �

Remark 2.2.1. — In [3], a necessary and sufficient condition for the pair “(k◦/k◦, k•/k•)”
to satisfy that the codomain of φk̄◦/k◦,k̄•/k• is nonempty was discussed.

The map φ is always injective (cf. Proposition 2.1) but not surjective in general (cf. Theo-
rem 2.2). Thus, in the study of bi-anabelian geometry for MLF’s, one often discusses con-
ditions for an outer isomorphism G◦

∼→ G• (i.e., an element of the codomain of φ) to be
contained in the image of φ. The following theorem gives such conditions.

Theorem 2.3. — Let α : G◦
∼→ G• be an isomorphism of topological groups (which thus

implies that pk◦ = pk• — cf. Remark 2.3.1 below). Then the following five conditions are
equivalent:

(i) The outer isomorphism determined by α (i.e., the element of the codomain of φ deter-
mined by α) is contained in the image of φ.
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18 Introduction to Mono-anabelian Geometry

(ii) The isomorphism α is compatible with the respective ramification filtrations (cf. [11,
§4.1]) of G◦, G•.

(iii) For � ∈ {◦, •}, write (k̂�)+ for the topological G�-module obtained by forming the un-
derlying additive module of the pk�-adic completion k̂� of k�. Write, moreover, α∗(k̂•)+

for the topological G◦-module obtained by considering the action of G◦ on (k̂•)+ via α.
Then there exists a G◦-equivariant topological isomorphism (k̂◦)+

∼→ α∗(k̂•)+.

(iv) Write α∗(Ok̄•)+ for the G◦-module obtained by considering the action of G◦ on (Ok̄•)+
via α. Then there exists a G◦-equivariant isomorphism (Ok̄◦)+

∼→ α∗(Ok̄•)+.

(v) For every finite-dimensional Hodge–Tate representation ρ• of G• over Qpk◦ = Qpk• ,
the finite-dimensional representation of G◦ over Qpk◦ = Qpk• obtained by forming the
composite ρ• ◦ α is Hodge–Tate.

Proof. — The equivalence (i) ⇔ (ii) follows from [4, Theorem]. The equivalence (i) ⇔ (iii)
follows from [5, Theorem 3.5(ii)]. The implications (i) ⇒ (iv) ⇒ (iii) are immediate; thus,
by the equivalence (i) ⇔ (iii) already discussed, we obtain the equivalence (i) ⇔ (iv). The
equivalence (i)⇔ (v) follows from [1, Theorem]. �

Remark 2.3.1. — Suppose that the codomain of φ is nonempty, i.e., that there exists an
isomorphism α : G◦

∼→ G• of topological groups. Then it is well-known that it holds that
pk◦ = pk• . This fact also follows from Proposition 3.6 of the present article.

Remark 2.3.2. —

(i) One may find other conditions for “α” as in Theorem 2.3 equivalent to condition (i) of
Theorem 2.3 in, for instance, [5, §3], [1, §3].

(ii) We have considered, in Theorem 2.3, some conditions for an outer isomorphism between
the absolute Galois groups of MLF’s to arise from an isomorphism between the original
MLF’s. On the other hand, one may consider a condition for an outer open homomorphism
between the absolute Galois groups of MLF’s to arise from an homomorphism between
the original MLF’s. One may also find such conditions in, for instance, [5, §3], [1, §3].
For instance, a similar equivalence to the equivalence (i)⇔ (v) of Theorem 2.3 still holds
even if one considers an open homomorphism (i.e., as opposed to an isomorphism) from
G◦ to G• (cf. [1, Theorem]).

3. Mono-anabelian Reconstruction for MLF’s: I

Let us recall that, as discussed at the beginning of Section 2, bi-anabelian geometry cen-
ters around a comparison between two fixed schemes/rings of interest via the arithmetic
fundamental groups. By contrast, mono-anabelian geometry centers around the task of es-
tablishing a “group-theoretic software” (i.e., “group-theoretic algorithm”) whose input data
consists of a single abstract (topological) group isomorphic to the arithmetic fundamental
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group of a scheme/ring of interest (cf., e.g., [6, Introduction, Remark 1.9.8, and Remarks
following Corollary 3.7] for more details concerning bi-anabelian/mono-anabelian geometry).

bi-anabelian geometry
πét

1 (X◦)
∼−→ πét

1 (X•)
?=⇒ (objects related to) X◦

∼−→ (objects related to) X•
mono-anabelian geometry
an isomorph of πét

1 (X) ?=⇒ isomorph(s) of (objects related to) X

In the present section, let us establish some mono-anabelian reconstruction algorithms for
MLF’s. In particular, we discuss some “group-theoretic algorithms” (cf. Remark 3.15.1 below)
whose input data consist of an abstract group isomorphic to the absolute Galois group of an
MLF.

Definition 3.1. — We shall refer to an isomorph, as a group, of the absolute Galois group
of an MLF as a group of MLF-type.

In the remainder of the present section, let G be a group of MLF-type, k an MLF, and k
an algebraic closure of k. We shall also apply the notational conventions related to k and k
introduced in Section 1.

Definition 3.2. — We shall say that a subgroup of G is open if the subgroup is of finite
index in G.

Proposition 3.3. — The following hold:

(i) The open subgroups of G (i.e., in the sense of Definition 3.2) determine a structure of
profinite group of G.

(ii) Every isomorphism G
∼→ Gk of groups is an isomorphism of topological groups with

respect to the structure of profinite group of G of (i).

Proof. — Assertion (i) follows from Lemma 1.4(ii). Assertion (ii) follows from (i). �

In the remainder of the present article, we always regard a group of MLF-type as a profinite,
hence also topological, group by Proposition 3.3(i). Note that it follows from the various
definitions involved that every open subgroup of a group of MLF-type is of MLF-type.

Lemma 3.4. — The following hold:

(i) There exists a uniquely determined prime number l such that

logl
(
](Gab/tor/l ·Gab/tor)

)
≥ 2.

(ii) The subquotient Gab-tor of G is finite.

Proof. — Let us observe that it follows from Lemma 1.7(i), together with Lemma 1.2(i),
that the topological module Gab

k is isomorphic to the topological module(
Z+/(pfk

k − 1)Z+
)
⊕ (Z+/p

a
kZ+)⊕ (Zpk

)⊕dk
+ ⊕ Ẑ+
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20 Introduction to Mono-anabelian Geometry

for some nonnegative integer a. In particular, the topological module Gab/tor
k (respectively,

Gab-tor
k ) is isomorphic to the topological module

(Zpk
)⊕dk
+ ⊕ Ẑ+ (respectively,

(
Z+/(pfk

k − 1)Z+
)
⊕ (Z+/p

a
kZ+)).

Thus, assertion (i) (respectively, (ii)) holds. �

Definition 3.5. —

(i) We shall write
p(G)

for the uniquely determined (cf. Lemma 3.4(i)) prime number such that

logp(G)

(
]
(
Gab/tor/p(G) ·Gab/tor)) ≥ 2.

(ii) We shall write

d(G) def= logp(G)

(
]
(
Gab/tor/p(G) ·Gab/tor))− 1,

f(G) def= logp(G)

(
1 + ]

(
(Gab-tor)(p(G)′))) ( 6= 0),

where we write (Gab-tor)(p(G)′) for the quotient of Gab-tor by the p(G)-Sylow subgroup of
(the finite — cf. Lemma 3.4(ii) — abelian group) Gab-tor, and

e(G) def= d(G)/f(G).

(iii) We shall write
I(G) def=

⋂
N⊆G

N,

where N ranges over the normal open subgroups of G (so N is of MLF-type — cf. the
discussion following Proposition 3.3) such that e(N) = e(G);

P (G) def=
⋂
N⊆G

N,

where N ranges over the normal open subgroups of G (so N is of MLF-type — cf. the
discussion following Proposition 3.3) such that e(N)/e(G) is a positive integer prime
to p(G).

Proposition 3.6. — It holds that
pk = p(Gk), dk = d(Gk), fk = f(Gk), ek = e(Gk),

Ik = I(Gk), Pk = P (Gk).

Proof. — The assertions for pk, dk, and fk follow from Lemma 1.7(i), together with Lem-
ma 1.2(i) (cf. also the explicit descriptions of Gab/tor

k and Gab-tor
k given in the proof of

Lemma 3.4). The assertion for ek follows — in light of the assertions for dk and fk — from
Lemma 1.2(iii). The assertions for Ik and Pk follow — in light of the assertions for pk and ek
— from the definitions of Ik and Pk. �
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Lemma 3.7. — The following hold:

(i) The quotients G/I(G) and I(G)/P (G) are abelian.

(ii) There exists a uniquely determined element γ ∈ G/I(G) of G/I(G) such that the action of
γ on (the abelian — cf. (i) — group) I(G)/P (G) by conjugation is given by multiplication
by p(G)f(G).

Proof. — Assertion (i) follows — in light of Proposition 3.6 — from Lemma 1.5(i), (ii).
Assertion (ii) follows — in light of Proposition 3.6 — from Lemma 1.5(iii). �

Definition 3.8. — We shall write
Frob(G) ∈ G/I(G)

for the uniquely determined (cf. Lemma 3.7(ii)) element of G/I(G) such that the action
of Frob(G) on I(G)/P (G) by conjugation is given by multiplication by p(G)f(G) (cf. Lem-
ma 3.7(i)).

Proposition 3.9. — It holds that
Frobk = Frob(Gk)

in Gk/Ik = Gk/I(Gk) (cf. Proposition 3.6).

Proof. — This assertion follows — in light of Proposition 3.6 — from Lemma 1.5(iii). �

Definition 3.10. —

(i) We shall write
O×(G) def= Im

(
I(G) ↪→ G� Gab) ⊆ Gab.

By considering the topology induced by the topology of I(G), we regard O×(G) as a
profinite, hence also topological, module.

(ii) We shall write
O≺(G) ⊆ O×(G)

for the maximal pro-p(G) submodule of the profinite module O×(G).

(iii) We shall write
k×(G) def= O×(G)/O≺(G).

(iv) We shall write
k×(G) def= Gab ×G/I(G) Frob(G)Z ⊆ Gab

(cf. Lemma 3.7(i)),
rec(G) : k×(G) ↪→ Gab

for the natural inclusion, and

OB(G) def= Gab ×G/I(G) Frob(G)N ⊆ k×(G)
(cf. Lemma 3.7(i)). By considering the topologies induced by the topology of O×(G)
(cf (i)), we regard OB(G), k×(G) as a topological monoid, topological module, respec-
tively.
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(v) We shall write
k×(G) def= k×(G)~

and
k×(G) def= k×(G)~.

(vi) We shall write
k+(G) def= O×(G)pf

and
I(G) def=

(
2 · p(G)

)−1 · Im
(
O×(G)→ k+(G)

)
⊆ k+(G).

By considering the topologies induced by the topology of O×(G) (cf. (i)), we regard
k+(G), I(G) as topological modules, respectively.

Proposition 3.11. — The following hold:

(i) The injective homomorphism reck : k× ↪→ Gab
k of Lemma 1.7 determines a commutative

diagram of topological monoids

O≺k
⊆−−−−→ O×k

⊆−−−−→ OBk
⊆−−−−→ k×

reck−−−−→ Gab
k

o
y o

y o
y o

y ∥∥∥
O≺(Gk)

⊆−−−−→ O×(Gk)
⊆−−−−→ OB(Gk)

⊆−−−−→ k×(Gk)
rec(Gk)−−−−−→ Gab

k ,

where the horizontal arrows are injective, and the vertical arrows are isomorphisms.

(ii) The isomorphism k×
∼→ k×(Gk) in the diagram of (i) determines an isomorphism of

monoids
k×

∼−→ k×(Gk).

(iii) The left-hand square of the diagram of (i) determines isomorphisms of monoids
k×

∼−→ k×(Gk), k×
∼−→ k×(Gk).

(iv) The isomorphism O×k
∼→ O×(Gk) in the diagram of (i) and the natural homomorphisms

O×(Gk)→ I(Gk) ↪→ k+(Gk) fit into a commutative diagram of topological modules

O×k
logk−−−−→ Ik

⊆−−−−→ k+

o
y o

y o
y

O×(Gk) −−−−→ I(Gk)
⊆−−−−→ k+(Gk),

where the vertical arrows are isomorphisms.

Proof. — Assertion (i) follows immediately — in light of Proposition 3.6 and Proposition 3.9
— from Lemma 1.7(i), together with Lemma 1.2(ii). Assertions (ii), (iii) are immediate.
Assertion (iv) follows — in light of Proposition 3.6 — from Lemma 1.2(iv). �

Lemma 3.12. — The following hold:

(i) The topological module k+(G) is locally compact.
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(ii) The topological submodule I(G) ⊆ k+(G) of k+(G) is compact and open.

(iii) For each positive real number a, there exists a uniquely determined Haar measure on
k+(G) (cf. (i)) that assigns the compact open (cf. (ii)) subset I(G) ⊆ k+(G) to a.

Proof. — Assertions (i), (ii) follow from Proposition 3.11(iv). Assertion (iii) follows from
assertions (i), (ii). �

Definition 3.13. — We shall write
µ(G)

for the uniquely determined (cf. Lemma 3.12(iii)) Haar measure on k+(G) such that

µ(G)
(
I(G)

)
= p(G)ε(G)·d(G)−f(G)/](k×(G)tor)(p(G)),

where we write

ε(G) def=
{

1 if p(G) 6= 2
2 if p(G) = 2

and (k×(G)tor)(p(G)) for the p(G)-Sylow subgroup of (the finite — cf. Lemma 1.2(i), Propo-
sition 3.11(i) — abelian group) k×(G)tor.

Proposition 3.14. — It holds that
µk = µ(Gk)

relative to the right-hand vertical arrow k+
∼→ k+(Gk) of the diagram of Proposition 3.11(iv).

Proof. — This assertion follows — in light of Proposition 3.6 and Proposition 3.11(i), (iv)
— from Lemma 1.3(iii). �

The various assertions discussed in the present section may be summarized as follows.

Summary 3.15. — There exist functorial group-theoretic algorithms (cf. Remark 3.15.1
below) for constructing, from a group G of MLF-type,

• a topology on G,

• a prime number p(G),

• positive integers d(G), f(G), and e(G),

• subgroups P (G) ⊆ I(G) ⊆ G of G,

• an element Frob(G) ∈ G/I(G) of G/I(G),

• topological monoids O≺(G) ⊆ O×(G) ⊆ OB(G) ⊆ k×(G)
rec(G)
↪→ Gab,

• monoids k×(G) ⊆ k×(G) and k×(G),

• topological modules I(G) ⊆ k+(G), and

• a measure µ(G) on k+(G)

which “correspond” to
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• the profinite topology on Gk,

• the prime number pk,

• the positive integers dk, fk, and ek,

• the subgroups Pk ⊆ Ik ⊆ Gk of Gk,

• the element Frobk ∈ Gk/Ik of Gk/Ik,

• the topological monoids O≺k ⊆ O
×
k ⊆ OBk ⊆ k×

reck
↪→ Gab

k ,

• the monoids k× ⊆ k× and k×,

• the topological modules Ik ⊆ k+, and

• the measure µk on k+,

respectively.

Remark 3.15.1. — As discussed in [6, Remark 1.9.8], in bi-anabelian geometry, the term
“group-theoretic” is usually used simply to mean “preserved by an arbitrary isomorphism
between the arithmetic fundamental groups under consideration”; on the other hand, in mono-
anabelian geometry, the term “group-theoretic algorithm” is used to mean that “the algorithm
in a discussion is phrased in language that only depends on the topological group structure of
the arithmetic fundamental group under consideration”.

Remark 3.15.2. —

(i) It follows from Theorem 2.2(ii) and the equivalence (i)⇔ (ii) of Theorem 2.3 that there
exist an MLF L, an algebraic closure L of L, and an automorphism α of GL

def= Gal(L/L)
not compatible with the ramification filtration of GL. By this fact, one may conclude that

the ramification filtration of the absolute Galois group of an MLF should be
considered to be “not group-theoretic”.

(ii) It follows from Theorem 2.2(ii) and the equivalence (i)⇔ (v) of Theorem 2.3 that there
exist an MLF L, an algebraic closure L of L, an automorphism α of GL

def= Gal(L/L), and
a finite-dimensional Hodge–Tate representation ρ of GL over QpL such that the composite
ρ ◦ α is not Hodge–Tate (cf. also [1, Remark 3.3.1]). By this fact, one may conclude that

Hodge–Tate-ness of the p-adic representations of the absolute Galois group of
an MLF should be considered to be “not group-theoretic”.

4. Mono-anabelian Reconstruction for MLF’s: II

In the present section, we continue to establish mono-anabelian reconstruction algorithms for
MLF’s. Let G be a group of MLF-type, k an MLF, and k an algebraic closure of k. We shall
also apply the notational conventions related to k and k introduced in Section 1.
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Definition 4.1. —

(i) We shall write

O×(G) def= lim−→
H⊆G

O×(H), k×(G) def= lim−→
H⊆G

k×(H), k×(G) def= lim−→
H⊆G

k×(H),

OB(G) def= lim−→
H⊆G

OB(H), k×(G) def= lim−→
H⊆G

k×(H), k×(G) def= lim−→
H⊆G

k×(H),

k+(G) def= lim−→
H⊆G

k+(H),

where the injective limits are taken over the open subgroups H ⊆ G of G (so H is of
MLF-type — cf. the discussion following Proposition 3.3), and the transition morphisms
in the limits are given by the homomorphisms determined by the transfer maps. We
regard these seven monoids as G-monoids by the actions of G obtained by conjugation.

(ii) We shall write
µ(G) def= k×(G)tor.

We regard µ(G) as a G-module by the action of G induced by the action of G on k×(G)
(cf. (i)).

(iii) We shall write
Λ(G) def= lim←−

n

µ(G)[n]

— where the projective limit is taken over the positive integers n — and refer to Λ(G) as
the cyclotome associated to G. We regard the cyclotome Λ(G) as a profinite, hence also
topological, module (by the easily verified finiteness of µ(G)[n] for each n). Moreover, we
also regard the cyclotome Λ(G) as a (topological) G-module by the action of G induced
by the action of G on µ(G) (cf. (ii)).

Proposition 4.2. — The following hold:

(i) The various injective homomorphisms recK : K× ↪→ Gab
K — where K ranges over the

finite extensions of k contained in k — of Lemma 1.7 determine a commutative diagram
of Gk-monoids

O×
k̄

⊆−−−−→ OB
k̄

⊆−−−−→ k×
⊆−−−−→ k×

o
y o

y o
y o

y
O×(Gk)

⊆−−−−→ OB(Gk)
⊆−−−−→ k×(Gk)

⊆−−−−→ k×(Gk)
— where the horizontal arrows are injective, and the vertical arrows are isomorphisms.

(ii) The isomorphism O×
k̄

∼→ O×(Gk) in the diagram of (i) determines isomorphisms of Gk-
monoids

k×
∼−→ k×(Gk), k×

∼−→ k×(Gk).
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(iii) The isomorphism O×
k̄

∼→ O×(Gk) in the diagram of (i) and the natural homomorphism
O×(Gk)→ k+(Gk) fit into a commutative diagram of Gk-modules

O×
k̄

logk̄−−−−→ k+

o
y o

y
O×(Gk) −−−−→ k+(Gk)

— where the vertical arrows are isomorphisms.

(iv) The isomorphism k×
∼→ k×(Gk) in the diagram of (i) determines an isomorphism of

Gk-modules
µ(k) ∼−→ µ(Gk),

hence also an isomorphism of topological Gk-modules

Λ(k) ∼−→ Λ(Gk).

Proof. — These assertions follow — in light of Proposition 3.11(i), (ii), (iii), (iv) — from
Lemma 1.7(iii), (iv). �

The various assertions discussed in the present section may be summarized as follows.

Summary 4.3. — There exist functorial group-theoretic algorithms (cf. Remark 3.15.1)
for constructing, from a group G of MLF-type,

• G-monoids O×(G) ⊆ OB(G) ⊆ k×(G) ⊆ k×(G),

• G-monoids k×(G) ⊆ k×(G),

• a G-module k+(G),

• a G-module µ(G), and

• a topological G-module Λ(G)

which “correspond” to

• the Gk-monoids O×
k̄
⊆ OB

k̄
⊆ k× ⊆ k×,

• the Gk-monoids k× ⊆ k×,

• the Gk-module k+,

• the Gk-module µ(k), and

• the topological Gk-module Λ(k),

respectively.
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Remark 4.3.1. —

(i) It follows from Theorem 2.2(ii) and the equivalence (i)⇔ (iii) of Theorem 2.3 that there
exist an MLF L, an algebraic closure L of L, and an automorphism α of Gal(L/L) such
that the automorphism of L+ induced by α (cf. Proposition 4.2(iii)) is not compatible
with the pL-adic topology of L+. By this fact, one may conclude that

the p-adic topology on the underlying additive module of an algebraic closure
of an MLF should be considered to be “not group-theoretic”

(cf. also Remark 4.3.2(ii) below).

(ii) It follows from Theorem 2.2(ii) and the equivalence (i)⇔ (iv) of Theorem 2.3 that there
exist an MLF L, an algebraic closure L of L, and an automorphism α of Gal(L/L) such
that the automorphism of L+ induced by α (cf. Proposition 4.2(iii)) does not restrict to
an automorphism of the submodule (OL̄)+ ⊆ L+ of L+. By this fact, one may conclude
that

the underlying additive module of the ring of integers of an algebraic closure of
an MLF should be considered to be “not group-theoretic”.

(iii) Assume that there exists a functorial group-theoretic algorithm for constructing, from a
group G of MLF-type, the submodule of k+(G) which “corresponds” to the submodule
(Ok)+ ⊆ k+ of k+. Then, by applying a similar construction to the constructions of Defi-
nition 4.1(i), one may obtain a functorial group-theoretic algorithm for constructing, from
a group G of MLF-type, the submodule of k+(G) which “corresponds” to the submodule
(Ok̄)+ ⊆ k+ of k+ — in contradiction to the discussion of (ii). By this fact, one may
conclude that

the underlying additive module of the ring of integers of an MLF should be
considered to be “not group-theoretic”.

(Note that if one works with a special case, then a functorial group-theoretic algorithm for
constructing the submodule of k+(G) which “corresponds” to the submodule (Ok)+ ⊆ k+
of k+ may be established. For instance, if p(G) 6= 2, and e(G) = 1, then it follows
immediately from Lemma 1.2(vi) and Lemma 1.3(iii) that the submodule I(G) ⊆ k+(G)
of k+(G) in fact “corresponds” to the submodule (Ok)+ ⊆ k+ of k+.)

Remark 4.3.2. —

(i) Let us observe that the field k, as well as the underlying additive module k+ of k, admits
the following two natural topologies:
(a) the pk-adic topology
(b) the final topology, i.e., the topology determined by the pk-adic topologies of the

various subfields of k finite over k
Let us also observe that these two topologies do not coincide. One verification of this fact
is given as follows: Let us consider the map

Tr: k+ −→ k+
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defined by mapping a ∈ k+ to d−1
K · TrK/k(a) ∈ k+ if a ∈ K+ for a finite extension K

of k contained in k — where we write TrK/k for the trace map with respect to the finite
extension K/k. Then one verifies immediately that this map Tr is (well-defined and) a
k-linear homomorphism. Moreover, since (one verifies easily that) the restriction of the
map Tr to each finite extension of k contained in k is continuous with respect to the
respective pk-adic topologies on the finite extension and on k+, the map Tr is continuous
with respect to the topology (b) on k+ and the pk-adic topology on k+.

Next, let us observe that it follows immediately from the well-known surjectivity of the
trace map with respect to a finite extension of finite fields that,

for each positive integer n, there exists an element an ∈ (OKn)+ of (OKn)+
(where we write Kn ⊆ k for the (uniquely determined) unramified finite exten-
sion of k such that dKn = pn · dk) such that TrKn/k(an) ∈ O×k (⊆ (Ok)+).

Then it is immediate that the sequence (pn · an)n≥1 converges to 0 ∈ k+ with respect to
the topology (a) on k+. On the other hand, since Tr(pn ·an)=p−n · d−1

k ·TrKn/k(pn · an)=
d−1
k · TrKn/k(an) ∈ d−1

k Ȯk
×
, the sequence (Tr(pn · an))n≥1 does not converge to Tr(0) =

0 ∈ k+ with respect to the pk-adic topology on k+. In particular, the map Tr is not
continuous with respect to the topology (a) on k+ and the pk-adic topology on k+. Thus,
we conclude that the topology (a) on k+ does not coincide with the topology (b) on k+.

(ii) It follows from Summary 3.15 that one has a functorial group-theoretic algorithm for
constructing, from a group G of MLF-type, the topological module k+(G), i.e., the module
k+(G) equipped with the “p(G)-adic topology”. Thus, it follows from the construction of
k+(G) that one has a functorial group-theoretic algorithm for constructing, from a group
G of MLF-type, the module k+(G) equipped with the final topology determined by the
“p(G)-adic topologies” of the various submodules k+(H) = k+(G)H of k+(G) — where
H ranges over the open subgroups H ⊆ G of G. On the other hand, as already discussed
in (i), the pk-adic topology on k+ does not coincide with the final topology determined by
the pk-adic topologies of the various submodules K+ = (k+)GK of k+ — where K ranges
over the finite extensions of k contained in k.
G 6⇒ the topology on k+(G) which “corresponds” to the topology (a) of (i)

— cf. Remark 4.3.1(i)

G ⇒ the topology on k+(G) which “corresponds” to the topology (b) of (i)
— cf. Summary 3.15, Definition 4.1(i)

(iii) The consideration of the continuity of the map Tr of (i) is in fact important in the
study of p-adic Hodge theory. The discussion of (i) asserts that the restriction of the
map Tr to the (uniquely determined) unramified Zpk

-extension of k is not continuous
with respect to the respective pk-adic topologies. On the other hand, in [12], it was
proved that the restriction of the map Tr to an arbitrary totally ramified Zpk

-extension
of k is continuous with respect to the respective pk-adic topologies (cf. the discussion
preceding [12, Proposition 7]). Moreover, this continuity is one of the crucial ingredients
of the computation of an important continuous group cohomology “H i(Gk, k̂+(j))” in the
p-adic Hodge theory established in [12].
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Remark 4.3.3. — By Theorem 2.2, Summary 3.15, and Summary 4.3, one may conclude
that a group of MLF-type may not be directly related to a sort of ring structure but may
be related to one of the underlying additive and underlying multiplicative structures of a ring
structure. Put another way, from the point of view of the terminology of [7], a group of MLF-
type may/should be regarded as a mono-analytic object (cf. [7, §2.7, (vii)]) (i.e., as opposed
to an arithmetic holomorphic object — cf. [7, §2.7, (vii)]). Moreover, the passage

• from the Galois group Gk ⊆ Aut(k) which is, by definition, related to the ring structure
of the field k

• to an abstract group isomorphic to Gk (i.e., as opposed to a situation in which one regards
the group as a group related to the ring structure under consideration as in the case of
Gk)

may be regarded as an analogue of the passage

• from the field k equipped with the natural action of Gk

• to an abstract monoid isomorphic to either the underlying additive module k+ or the
underlying multiplicative monoid k× (i.e., as opposed to a situation in which one regards
the monoid as a monoid arising from the field k) equipped with an action of the abstract
group isomorphic to Gk.

5. MLF-pairs

One important aspect of mono-anabelian geometry is the technique of mono-anabelian trans-
port (cf. [7, §2]). In order to explain mono-anabelian transport, in the present section, we
introduce the notion of an MLF-pair (cf. Definition 5.3 below).

Definition 5.1. —

(i) We shall refer to a collection of data
GyM

consisting of a monoid M , a group G, and an action of G on M as a group-monoid-pair.

(ii) Let G◦ y M◦, G• y M• be group-monoid-pairs. Then we shall refer to a pair α =
(αG, αM ) consisting of isomorphisms αG : G◦

∼→ G•, αM : M◦
∼→M• compatible with the

respective actions of G◦, G• on M◦, M• as an isomorphism from G◦ yM◦ to G• yM•.

Definition 5.2. — Let k be an MLF and k an algebraic closure of k. Then we shall refer
to the group-monoid-pair

Gk y k× (respectively, Gk y OBk̄ ; Gk y O×k̄ )

consisting of the monoid k× (respectively, OB
k̄
; O×

k̄
), the group Gk

def= Gal(k/k), and the
natural action of Gk on k× (respectively, OB

k̄
; O×

k̄
) as the model MLF ♦ -pair (respectively,

model MLFB-pair ; model MLF×-pair) (associated to k/k).
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Definition 5.3. — We shall refer to an isomorph, as a group-monoid-pair (i.e., in the
sense of Definition 5.1(ii)), of a model MLF ♦ -pair (respectively, model MLFB-pair; model
MLF×-pair) as an MLF ♦ -pair (respectively, MLFB-pair ; MLF×-pair).

Remark 5.3.1. — The notion of an MLF ♦ -pair (respectively, MLFB-pair; MLF×-pair) in
the sense of Definition 5.3 is the same as the notion of an MLF-Galois TLG-pair of mono-
analytic type (respectively, MLF-Galois TM-pair of mono-analytic type; MLF-Galois TCG-
pair of mono-analytic type) in the sense of [6, Definition 3.1(ii)] (cf. also Remark 5.7.2 below).

In the remainder of the present section, let � ∈ { ♦ ,B,×} and GyM an MLF�-pair.

Definition 5.4. — We shall refer to the group G (respectively, monoid M) as the étale-
like portion (cf. [7, §2.7(iii)]) (respectively, Frobenius-like portion (cf. [7, §2.7(ii))]) of the
MLF�-pair GyM .

Remark 5.4.1. — It follows from the various definitions involved that the étale-like portion
of an MLF�-pair is a group of MLF-type.

Definition 5.5. — We shall write

Ind� def=


{±1} if � = ♦
{1} if � = B
Ẑ× if � = ×.

Let us regard Ind� as a subgroup of Ẑ× (in an evident way).

Remark 5.5.1. — Let us observe that, for each element of Ind�, the identity automorphism
of G and the automorphism of M given by multiplication by the element of Ind� (i.e., the
automorphism given by “x 7→ xλ” for the fixed “λ” ∈ Ind� ⊆ Ẑ×) form an automorphism of
the MLF�-pair GyM . In particular, we have an injective homomorphism

Ind� ↪→ AutG(M)
(
⊆ Aut(GyM)

)
.

Lemma 5.6. — Suppose that � = ♦ . Then the following hold:

(i) Let H ⊆ G be an open subgroup of G. Then there exist infinitely many prime numbers l
such that the pro-l completion of the submodule MH ⊆ M of H-invariants of M is, as
an abstract pro-l group, isomorphic to (Zl)+. Moreover, for such an l, the submodule

J(H) ⊆MH

of MH obtained by forming the kernel of the natural homomorphism from MH to the
pro-l completion of MH does not depend on the choice of l.

(ii) Write
M(×) def= lim−→

H⊆G
J(H) ⊆M

(cf. (i)) — where the injective limit is taken over the open subgroups H ⊆ G of G. Then
the submodule M(×) ⊆M of M is G-stable.

Publications mathématiques de Besançon – 2021



Y. Hoshi 31

Proof. — Let us observe that it follows from the various definitions involved that, for each
open subgroup H ⊆ G of G, the module MH is, as an abstract module, isomorphic to “k×”
for some MLF. Thus, these assertions follow immediately from Lemma 1.2(i). �

Proposition 5.7. — The following hold:

(i) Suppose that � = B. Then the group-monoid-pair GyMgp obtained by replacing M in
GyM by Mgp is an MLF ♦ -pair.

(ii) Suppose that � = ♦ . Then the group-monoid-pair G y M(×) obtained by replacing M
in GyM by M(×) of Lemma 5.6(ii) is an MLF×-pair.

Proof. — Assertion (i) follows from the (easily verified) fact that the natural inclusion OB
k̄
↪→

k× determines an isomorphism (OB
k̄

)gp ∼→ k×. Assertion (ii) follows immediately — in light
of Lemma 1.2(i) — from the definition of M(×). �

Remark 5.7.1. — The content of Proposition 5.7 may be summarized as follows:
an MLFB-pair =⇒ an MLF ♦ -pair =⇒ an MLF×-pair

GyM  GyMgp

GyM  GyM(×).

Remark 5.7.2. —

(i) Suppose that � = ×. Then it follows from the various definitions involved that, for each
open subgroup H ⊆ G of G, the module MH “corresponds” to the module “O×” for
some MLF. Thus, by considering the submodules of MH of finite index, one obtains a
topology on MH which “corresponds” to the p-adic topology on “O×”. In particular, one
may regard M as an object of the category “TCG” of [6, Definition 3.1(i)].

(ii) Suppose that � = ♦ (respectively, � = B). Then it follows from the various defini-
tions involved that, for each open subgroup H ⊆ G of G, the submonoid MH ⊆ M
of H-invariants of M contains the submodule Mgp(×)H of H-invariants of Mgp(×) (cf.
Proposition 5.7(i), (ii)); moreover, the pair of monoids Mgp(×)H ⊆ MH “corresponds”
to the pair of monoids “O× ⊆ k×” (respectively, “O× ⊆ OB”) for some MLF. Thus, by
considering the topology on MH induced by the topology of Mgp(×)H discussed in (i)
(cf. Proposition 5.7(i), (ii)), one obtains a topology on MH which “corresponds” to the
p-adic topology on “k×” (respectively, “OB”). In particular, one may regard M as an
object of the category “TLG” (respectively, “TM”) of [6, Definition 3.1(i)].

Definition 5.8. — We shall write

M�(G) def=


k×(G) if � = ♦

OB(G) if � = B
O×(G) if � = ×

(cf. Definition 4.1(i), Remark 5.4.1). Thus, it follows from Proposition 4.2(i) that the group-
monoid-pair

GyM�(G)
is an MLF�-pair.
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Definition 5.9. —

(i) We shall refer to the group-monoid-pair

Gy Λ(G)

(cf. Definition 4.1(iii), Remark 5.4.1), i.e., obtained by considering the cyclotome associ-
ated to G, as the étale-like cyclotome associated to GyM .

(ii) We shall write

Λ(M) def= lim←−
n

M×[n] = lim←−
n

Mgp[n]

— where the projective limits are taken over the positive integers n — and refer to the
group-monoid-pair

Gy Λ(M)
obtained by considering the action of G on Λ(M) induced by the action of G on M as
the Frobenius-like cyclotome associated to GyM . We regard the cyclotome Λ(M) as a
profinite, hence also topological, G-module (by the easily verified finiteness of M×[n] for
each n).

Remark 5.9.1. — One verifies easily from the various definitions involved that we have
a natural identification of the étale-like cyclotome G y Λ(G) with the Frobenius-like cy-
clotome G y Λ(M�(G)) associated to the MLF�-pair G y M�(G) constructed from G in
Definition 5.8.

Proposition 5.10. — Let k be an MLF and k an algebraic closure of k. Suppose that the
MLF�-pair G y M is the model MLF�-pair associated to k/k (which thus implies that
G = Gk

def= Gal(k/k) and M ⊆ k×). Then the following hold:

(i) The isomorphism Λ(k) ∼→ Λ(G) of topological G-modules of Proposition 4.2(iv) induces
an isomorphism of the étale-like cyclotome

G = Gk y Λ(G)

with the group-monoid-pair
Gk y Λ(k)

obtained by considering the cyclotome associated to k.

(ii) The natural inclusion µ(k) ↪→M induces an isomorphism of the Frobenius-like cyclotome

G = Gk y Λ(M)

with the group-monoid-pair
Gk y Λ(k)

obtained by considering the cyclotome associated to k.

Proof. — These assertions are immediate. �
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6. Cyclotomic Synchronization for MLF-pairs

Let us recall that a cyclotome refers to an “isomorph of the object Ẑ(1)”. Various (a priori
independent) cyclotomes often appear in studies of arithmetic geometry. For instance, if Ω is
an algebraically closed field of characteristic zero, then each of

• the cyclotome Λ(Ω) associated to Ω,

• the étale fundamental group

πét
1

(
Spec

(
Ω((t))

))
of the spectrum of the field Ω((t)) of fractions of the ring of formal power series with
coefficients in Ω, and

• the dual
Λ(C) def= HomẐ

(
H2

ét(C, Ẑ), Ẑ
)

over Ẑ of the second étale cohomology H2
ét(C, Ẑ) of a projective smooth curve C over Ω

gives an example of a cyclotome. In our case, we constructed, from a single MLF�-pair
GyM (where � ∈ { ♦ ,B,×}), (a priori independent) two cyclotomes, i.e.,

• the étale-like cyclotome Λ(G) and

• the Frobenius-like cyclotome Λ(M)

(cf. Definition 5.9, Proposition 5.10).
If one works with certain arithmetic holomorphic structures (cf. [7, §2.7, (vii)]) related to
cyclotomes under consideration, then one may obtain a phenomenon of cyclotomic synchro-
nization, i.e., synchronization of cyclotomes. For instance, in the case of the above examples
Λ(Ω) and Λ(C), the homomorphism Pic(C)→ H2(C,Λ(Ω)) obtained by considering the first
Chern classes yields an isomorphism(

Pic(C)/Pic0(C)
)
⊗Z Ẑ ∼−→ HomẐ

(
Λ(C),Λ(Ω)

)
;

thus, an invertible sheaf on C of degree one determines a cyclotomic synchronization (i.e.,
an isomorphism between cyclotomes) Λ(C) ∼→ Λ(Ω) by means of which one usually (i.e., in
the usual point of view of arithmetic geometry) identifies Λ(C) with Λ(Ω). In our case, if
our MLF�-pair G y M is a model MLF�-pair (i.e., an MLF�-pair directly related to the
ring structure of an MLF), then, by means of the arithmetic holomorphic structures related
to the objects involved (more concretely, essentially, by means of local class field theory), one
may construct a natural isomorphism between the Frobenius-like cyclotome Λ(M) and the
étale-like cyclotome Λ(G) (cf. Definition 6.2 below).
On the other hand, observe that such a phenomenon of cyclotomic synchronization usually
depends, at least in an a priori sense, on a certain arithmetic holomorphic structure related to
cyclotomes under consideration. Thus, if one works with only mono-analytic structures (cf. [7,
§2.7, (vii)]), then one cannot apply the “arithmetic holomorphic” construction of the cyclo-
tomic synchronization. In the present section, we establish a cyclotomic synchronization that
one may apply to an arbitrary (i.e., a not necessarily model) MLF�-pair (cf. Definition 6.6,
Proposition 6.7 below).
In the present section, let � ∈ { ♦ ,B,×} and GyM an MLF�-pair.
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Proposition 6.1. — The set
IsomG

(
Λ(M),Λ(G)

)
of G-equivariant isomorphisms Λ(M) ∼→ Λ(G) (is nonempty and) forms a Ẑ×-torsor, i.e.,
relative to the natural action of Ẑ× = Aut(Λ(G)) on Λ(G).

Proof. — This assertion follows immediately from Proposition 5.10(i), (ii). �

Definition 6.2. — Suppose that the MLF�-pair GyM is a model MLF�-pair. Then, by
considering the composite of the isomorphisms of Proposition 5.10(i), (ii) (i.e, the isomor-
phisms “Λ(G) ∼→ Λ(k)”, “Λ(M) ∼→ Λ(k)”), we obtain a G-equivariant isomorphism

Λ(M) ∼−→ Λ(G).

We shall refer to this composite Λ(M) ∼→ Λ(G) (that is an element of the Ẑ×-torsor discussed
in Proposition 6.1) as the holomorphic cyclotomic synchronization isomorphism associated
to the model MLF�-pair GyM .

Remark 6.2.1. — One verifies easily that the construction of the holomorphic cyclotomic
synchronization isomorphism of Definition 6.2 depends, in an essential way, on the ring struc-
ture (i.e., the arithmetic holomorphic structure — cf. [7, §2.7, (vii)]) of a given model MLF�-
pair. In particular, one cannot apply this construction of the holomorphic cyclotomic syn-
chronization isomorphism of Definition 6.2 to an abstract (i.e., a not necessarily model)
MLF�-pair.

Lemma 6.3. — Suppose that � ∈ { ♦ ,B}. Write M(×) def= Mgp(×) (cf. Proposition 5.7(i),
(ii)). (Thus, one verifies easily that M(×) ⊆ M ⊆ Mgp.) Write, moreover, V (G y M) def=
M I(G)/M(×)I(G) (cf. Definition 3.5(iii), Remark 5.4.1). (Thus, one also verifies easily that
there exists a natural identification V (G y M)gp = (Mgp)I(G)/M(×)I(G).) Then the follow-
ing hold:

(i) The monoid V (GyM) is, as an abstract monoid, isomorphic to{
Z+ if � = ♦

N if � = B.

Moreover, the action of G on V (GyM) induced by the action of G on M is trivial.

(ii) For each positive integer n, the natural homomorphism

H2(G,M×[n]) −→ H2(G,Mgp)

determines an isomorphism

H2(G,M×[n]) ∼−→ H2(G,Mgp)[n].

(iii) The natural homomorphism

H2(G/I(G), (Mgp)I(G)) −→ H2(G,Mgp)

is an isomorphism.
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(iv) The natural homomorphism

H2(G/I(G), (Mgp)I(G)) −→ H2(G/I(G), V (GyM)gp)
is an isomorphism.

(v) The homomorphism

H1
(
G/I(G),

(
V (GyM)gp)pf

/V (GyM)gp
)
−→ H2(G/I(G), V (GyM)gp)

determined by the exact sequence of G/I(G)-modules

0 −→ V (GyM)gp −→
(
V (GyM)gp)pf −→

(
V (GyM)gp)pf

/V (GyM)gp −→ 0

is an isomorphism.

(vi) The homomorphism

H1
(
G/I(G),

(
V (GyM)gp)pf

/V (GyM)gp
)
−→

(
V (GyM)gp)pf

/V (GyM)gp

obtained by mapping

χ ∈ Hom
(
G/I(G),

(
V (GyM)gp)pf

/V (GyM)gp
)

= H1
(
G/I(G),

(
V (GyM)gp)pf

/V (GyM)gp
)

(cf. (i)) to
χ
(
Frob(G)

)
∈
(
V (GyM)gp)pf

/V (GyM)gp

(cf. Definition 3.8, Remark 5.4.1) is an isomorphism.

(vii) The various isomorphisms of (iii), (iv), (v), (vi) determine an isomorphism

H2(G,Mgp) ∼−→
(
V (GyM)gp)pf

/V (GyM)gp

which thus determines an isomorphism

H2(G,Λ(M)
) ∼−→

(
V (GyM)gp)∧

(cf. (i), (ii)).

Proof. — These assertions follow — in light of Proposition 3.6 and Proposition 3.9 — from
Lemma 1.6(i), (ii), (iii), (iv), (v), (vi), (vii). �

Definition 6.4. — Suppose that � ∈ { ♦ ,B}. Then we shall write

inv∧(GyM) : H2(G,Λ(M)
) ∼−→

(
V (GyM)gp)∧

for the second displayed isomorphism of Lemma 6.3(vii).

Lemma 6.5. — Suppose that � ∈ { ♦ ,B}. Recall the Ẑ×-torsor

IsomG

(
Λ(M),Λ(G)

)
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discussed in Proposition 6.1. Then the subset of IsomG(Λ(M),Λ(G)) consisting of isomor-
phisms α ∈ IsomG(Λ(M),Λ(G)) which satisfy the following condition (is nonempty and)
forms an Ind�-torsor: The composite

(
V (GyM)gp)∧ inv∧(GyM)

∼←− H2(G,Λ(M)
)

H2(idG,α)
∼−→ H2(G,Λ(G)

) inv∧(GyM�(G))
∼−→

(
V
(
GyM�(G)

)gp)∧
(cf. Remark 5.9.1) — where we write H2(idG, α) for the isomorphism induced by α — maps
the submonoid

V (GyM) ⊆
(
V (GyM)gp)∧

(cf. Lemma 6.3(i)) to the submonoid

V
(
GyM�(G)

)
⊆
(
V
(
GyM�(G)

)gp)∧
.

Proof. — Let us first observe that one verifies immediately from Proposition 5.10(i), (ii) that
the subset discussed in Lemma 6.5 is nonempty. Next, let us observe that, by Lemma 6.3(i),
there exists a natural isomorphism of Aut(V (G y M)) with Ind�. Thus, it follows immedi-
ately from the definition of the displayed composite in the statement of Lemma 6.5 that the
subset discussed in Lemma 6.5 forms an Ind�-torsor, as desired. �

Definition 6.6. — If � = ×, then we shall write

synΛ(GyM) def= IsomG

(
Λ(M),Λ(G)

)
.

If � ∈ { ♦ ,B}, then we shall write
synΛ(GyM) ⊆ IsomG

(
Λ(M),Λ(G)

)
for the Ind�-torsor discussed in Lemma 6.5. (So, for each � ∈ { ♦ ,B,×}, the set synΛ(G y
M) forms an Ind�-torsor — cf. also Proposition 6.1). We shall refer to the Ind�-torsor
synΛ(GyM) as the cyclotomic synchronization poly-isomorphism associated to GyM .

Proposition 6.7. — Suppose that the MLF�-pair G y M is a model MLF�-pair. Then
the Ind�-torsor synΛ(G y M) coincides with the Ind�-orbit of the holomorphic cyclotomic
synchronization isomorphism associated to GyM .

Proof. — This assertion follows immediately from the definition of synΛ(GyM). �

Remark 6.7.1. —

(i) Let us observe that one verifies easily from the definition of the injective homomorphism
of Remark 5.5.1 that the composite

Ind� ↪→ Aut(GyM)→ Aut
(
Gy Λ(M)

)
→ Aut

(
Λ(M)

)
= Ẑ×

coincides with the natural inclusion Ind� ↪→ Ẑ×, but the image of the composite

Ind� ↪→ Aut(GyM)→ Aut(G)→ Aut
(
Λ(G)

)
= Ẑ×

consists of 1 ∈ Ẑ×.
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(ii) Let
s� : G† yM †  s�(G† yM †) ⊆ IsomG†

(
Λ(M †),Λ(G†)

)
be a functorial assignment which assigns each MLF�-pair G† y M † (for a fixed � ∈
{ ♦ ,B,×}) to a subset of the Ẑ×-torsor IsomG†(Λ(M †),Λ(G†)). Then, by the observation
of (i), one may verify easily that

the subset s�(G† y M †) ⊆ IsomG†(Λ(M †),Λ(G†)) is stable by the action of
Ind� ⊆ Ẑ×.

(iii) Let us recall that the cyclotomic synchronization poly-isomorphism “synΛ(G y M)”
(which forms — by allowing “G y M” to vary — a functorial assignment as discussed
in (ii))
(∗) contains the holomorphic cyclotomic synchronization isomorphism (i.e., if one con-

siders the cyclotomic synchronization poly-isomorphism of a model MLF�-pair) (cf.
Proposition 6.7).

By the observation of (ii), together with Proposition 6.7, one may conclude that the cy-
clotomic synchronization poly-isomorphism “synΛ(GyM)” (which forms — by allowing
“G y M” to vary — a functorial assignment as discussed in (ii)) is “minimal” among
functorial assignments as discussed in (ii) which satisfy the condition (∗).
Put another way, roughly speaking, the cyclotomic synchronization poly-isomorphism of
Definition 6.6 may be considered to be “best” among functorial assignments as discussed
in (ii).

7. Mono-anabelian Transport for MLF-pairs

One important aspect of the technique ofmono-anabelian transport is the notion of a Kummer
poly-isomorphism, which relates (monoids constructed, via some functorial algorithms, from)
Frobenius-like portions to mono-anabelian étale-like monoids (i.e., monoids constructed, via
some mono-anabelian reconstruction algorithms, from étale-like portions). In the present
section, we establish Kummer poly-isomorphisms (cf. Definition 7.4 below) and discuss mono-
anabelian transport for MLF-pairs (cf. Remark 7.6.1 below).
In the present section, let � ∈ { ♦ ,B,×} and GyM an MLF�-pair.

Lemma 7.1. — The following hold:

(i) For each open subgroup H ⊆ G of G, the homomorphism
(MH ⊆) (Mgp)H −→ H1(H,Λ(M)

)
determined by the exact sequences of H-modules

1 −→Mgp[n] −→Mgp n−→Mgp −→ 1
— where n ranges over the positive integers — is injective.

(ii) The homomorphism
(M ⊆) Mgp −→ ∞H

1(G,Λ(M)
)

obtained by forming the injective limit of the homomorphisms of (i) for the open subgroups
H ⊆ G of G is injective.
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Proof. — First, we verify assertion (i). Let us first observe that, by definition, the kernel
of the homomorphism discussed in assertion (i) coincides with the submodule of (Mgp)H
consisting of divisible elements of (Mgp)H . Next, let us observe that the module (Mgp)H
is, as an abstract module, isomorphic to “k×” (respectively, “k×”; “O×”) for some MLF if
� = ♦ (respectively, � = B; � = ×). Thus, assertion (i) follows from Lemma 1.2(i). This
completes the proof of assertion (i). Assertion (ii) follows from assertion (i). �

Definition 7.2. — We shall write

∞Kmm(GyM) : M ↪→ ∞H
1(G,Λ(M)

)
for the injection (obtained by the injection) discussed in Lemma 7.1(ii).

Lemma 7.3. — The Ind�-orbit of G-equivariant isomorphisms

∞H
1(G,Λ(M)

) ∼−→ ∞H
1(G,Λ(G)

)
induced by the Ind�-orbit of G-equivariant isomorphisms

synΛ(GyM) : Λ(M) ∼−→ Λ(G)

restricts — relative to the injections ∞Kmm(G y M), ∞Kmm(G y M�(G)) of Defini-
tion 7.2 (cf. also Remark 5.9.1) — to an Ind�-orbit of G-equivariant isomorphisms

M
∼−→M�(G).

Proof. — This assertion follows immediately from Proposition 6.7. �

Definition 7.4. — We shall write

κ(GyM) : (GyM) ∼−→
(
GyM�(G)

)
for the Ind�-orbit of G-equivariant isomorphisms discussed in Lemma 7.3 and refer to κ(Gy
M) as the Kummer poly-isomorphism associated to GyM .

Some of the various assertions discussed in Sections 5, 6, and 7 may be summarized as follows.

Summary 7.5. — One may construct, from an MLF�-pair GyM ,

• the “étale-like” MLF�-pair GyM�(G),

• the étale-like cyclotome Gy Λ(G),

• the Frobenius-like cyclotome Gy Λ(M),

• the cyclotomic synchronization poly-isomorphism synΛ(G y M) : Λ(M) ∼→ Λ(G) (i.e.,
a certain poly-isomorphism which forms an Ind�-orbit of G-equivariant isomorphisms
Λ(M) ∼→ Λ(G)), and

• the Kummer poly-isomorphism κ(GyM) : M ∼→M�(G) (i.e., a certain poly-isomorphism
which forms an Ind�-orbit of G-equivariant isomorphisms M ∼→M�(G)).
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Theorem 7.6. — Let � ∈ { ♦ ,B,×}; G◦ y M◦, G• y M• MLF�-pairs. Thus, we have a
natural map

F : Isom(G◦ yM◦, G• yM•) −→ Isom(G◦, G•).
Moreover, by considering the action of Ind� on M• (cf. Remark 5.5.1), we have a natural
action of Ind� on the set Isom(G◦ y M◦, G• y M•) over Isom(G◦, G•) relative to the map
F . Then the following hold:

(i) The map F is surjective.

(ii) Every fiber of the map F forms an Ind�-torsor.

(iii) If � = ♦ , then every fiber of the map F is of cardinality two.

(iv) If � = B, then the map F is bijective.

Proof. — First, we verify assertion (i). Let α : G◦
∼→ G• be an isomorphism (i.e., an element

of the codomain of F ). Then one verifies easily from the functoriality of the mono-anabelian
reconstruction algorithm of Definition 4.1(i) that α induces an isomorphism between the
“étale-like” MLF�-pairs

(
G◦ yM�(G◦)

) (α,M�(α)
)

∼−→
(
G• yM�(G•)

)
.

Thus, by considering respective elements ι◦, ι• of the Kummer poly-isomorphisms κ(G◦ y
M◦), κ(G• yM•), we obtain isomorphisms

(G◦ yM◦)
ι◦∼−→
(
G◦ yM�(G◦)

) (α,M�(α)
)

∼−→
(
G• yM�(G•)

) ι•∼←− (G• yM•)

such that the image of the composite (G◦ y M◦)
∼→ (G• y M•) of these isomorphisms via

F coincides with the original isomorphism α. This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us first observe that, to verify assertion (ii), by considering
the difference of two elements of the domain of F whose images via F coincide, it suffices to
verify the following assertion:

Let (αG, αM ) be an automorphism of the MLF�-pair G y M . Suppose that αG =
idG. Then it holds that αM ∈ Ind� (⊆ AutG(M)).

To this end, let us observe that one verifies easily from the functoriality of the Kummer poly-
isomorphism of Definition 7.4 that the Kummer poly-isomorphism associated to GyM

κ(GyM) : (GyM) ∼−→
(
GyM�(G)

)
is compatible with the automorphism (αG, αM ), i.e., the diagram of poly-isomorphisms

(GyM) κ(GyM)−−−−−−→
(
GyM�(G)

)
(αG,αM )

y (
αG,M

�(αG)
)y

(GyM) κ(GyM)−−−−−−→
(
GyM�(G)

)
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commutes. Next, let us observe that since (we have assumed that) αG = idG, the right-hand
vertical arrow of this diagram is the (poly-isomorphism consisting of the) identity automor-
phism. Thus, it holds that (αG, αM ) ∈ κ(G y M)−1 ◦ κ(G y M), which thus implies that
αM ∈ Ind� (⊆ AutG(M)), as desired. This completes the proof of assertion (ii).
Assertions (iii), (iv) follow from assertions (i), (ii), together with the (easily verified) fact
that ]Ind ♦ = 2 and ]IndB = 1. �

Remark 7.6.1. — The content of Theorem 7.6, as well as the proof of Theorem 7.6, gives
some examples of the technique of mono-anabelian transport.

(i) In order to explain the technique of mono-anabelian transport from the point of view of
Theorem 7.6(i), let us recall the proof of Theorem 7.6(i), i.e., the surjectivity of the map
F of Theorem 7.6 as follows:

Theorem 7.6(i) asserts that, roughly speaking, for two MLF�-pairs, an “étale-like link”
between the MLF�-pairs (i.e., an isomorphism between the étale-like portions of the
MLF�-pairs) induces a “Frobenius-like link” between the MLF�-pairs (i.e., an isomor-
phism between the Frobenius-like portions of the MLF�-pairs) compatible with the given
“étale-like link”.

étale-like portion ∼−→ étale-like portion
y ?

ww� y
Frobenius-like portion Frobenius-like portion

Suppose that we are in a situation described by the following diagram to recall the proof
of Theorem 7.6(i):

étale-like portion ∼−→ étale-like portion
y y

Frobenius-like portion Frobenius-like portion.

In order to obtain a “Frobenius-like link” from our “étale-like link”, let us first apply
the mono-anabelian reconstruction algorithm discussed in Summary 4.3 to each of the
étale-like portions to construct a mono-anabelian étale-like monoid (i.e., the “étale-like
copy M�(G)” — cf. Definition 5.8 — of the Frobenius-like portion “M”).

étale-like portion mono-anabelian
 

reconstruction algorithm
mono-anabelian étale-like monoid

Here, let us recall that we do not require the “étale-like link” to be compatible with any sort
of ring structures. On the other hand, observe that the mono-anabelian reconstruction
algorithms discussed in Sections 3 and 4 may be applied without existence of some “fixed
reference model” (as k◦/k◦ and k•/k• for G◦ = Gal(k◦/k◦) and G• = Gal(k•/k•) in
the case of bi-anabelian geometry discussed in Section 2). Put another way, the mono-
anabelian reconstruction algorithms discussed in Sections 3 and 4 have the virtue of
being free of any mention of some “fixed reference model” copy of ring-theoretic objects.
In particular, by the mono-anabelian property of our algorithm, we obtain, from the
given “étale-like link”, an isomorphism between the mono-anabelian étale-like monoids
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compatible with the given “étale-like link”.
étale-like portion ∼−→ étale-like portion

y mono-anab.
ww� property y

mono-anabelian étale-like monoid ∼−→ mono-anabelian étale-like monoid

Next, in order to relate the Frobenius-like portions to the mono-anabelian étale-like
monoids, let us discuss cyclotomic synchronization poly-isomorphisms, which induceKum-
mer poly-isomorphisms. Let us recall that, as in the discussion of Section 6, we can con-
struct a cyclotomic synchronization poly-isomorphism “synΛ” (cf. Definition 6.6) (i.e., a
poly-isomorphism between the Frobenius-like cyclotome and the étale-like cyclotome).

Frobenius-like cyclotome
cyclotomic
∼−→

synchronization
étale-like cyclotome

Thus, by applying a sort of theKummer theory (i.e., by considering the injection “∞Kmm”
— cf. Definition 7.2), we obtain a Kummer poly-isomorphism “κ” (cf. Definition 7.4) (i.e.,
a poly-isomorphism between the Frobenius-like portion and the mono-anabelian étale-like
monoid) from the above cyclotomic synchronization poly-isomorphism.

Frobenius-like cyclotome
cyclotomic
∼−→

synchronization
étale-like cyclotome

Kummer theory
 Frobenius-like portion

Kummer
∼−→

poly-isomorphism
mono-anabelian étale-like monoid

Thus, we are in a situation described by the following diagram:
étale-like portion ∼−→ étale-like portion

mono-anab.
ww� property

mono-anabelian étale-like monoid ∼−→ mono-anabelian étale-like monoid
Kummer poly-

x isomorphism Kummer poly-
x isomorphism

Frobenius-like portion Frobenius-like portion.
In particular, by considering the composite of the two lower vertical arrows and the middle
horizontal arrow of this diagram, we obtain a “Frobenius-like link” compatible with the
given “étale-like link”.
Thus, in summary, by means of
• Kummer-detachment (cf. [7, §2.7, (vi)]), i.e., the passage, via Kummer poly-isomor-
phisms, from Frobenius-like structures to corresponding étale-like structures, and
• étale-transport, i.e., the passage, via the mono-anabelian property of mono-anabelian
reconstruction algorithms, from the “left-hand side” to the “right-hand side”,

one may transport, via “étale-like links”, Frobenius-like portions from the “left-hand side”
to the “right-hand side”.

étale-like portion ∼−→ étale-like portion
y

ww� y
Frobenius-like portion ∼−→ Frobenius-like portion
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(ii) In order to explain the technique of mono-anabelian transport from the point of view of
Theorem 7.6(ii), let us recall the proof of Theorem 7.6(ii) as follows:

Theorem 7.6(ii) asserts that, roughly speaking, for an isomorphism between MLF�-pairs,
one may compute the effect on the Frobenius-like portions of the “Frobenius-like link”
(cf. (i)) from the point of view of the effect on the étale-like portions of the “étale-like
link” (cf. (i)). Suppose that we are in a situation described by the following diagram to
recall the proof of Theorem 7.6(ii):

étale-like portion ∼−→ étale-like portion
y y

Frobenius-like portion ∼−→ Frobenius-like portion.

In order to compute the effect of the “Frobenius-like link” from the point of view of
the effect of the “étale-like link”, let us first apply the mono-anabelian reconstruction
algorithm discussed in Summary 4.3 to each of the étale-like portions to construct a
mono-anabelian étale-like monoid (cf. (i)).

étale-like portion mono-anabelian
 

reconstruction algorithm
mono-anabelian étale-like monoid

Here, let us recall that we do not require the “links” to be compatible with any sort of ring
structures. On the other hand, observe that the mono-anabelian reconstruction algorithms
discussed in Sections 3 and 4 may be applied without existence of some “fixed reference
model” (as k◦/k◦ and k•/k• for G◦ = Gal(k◦/k◦) and G• = Gal(k•/k•) in the case
of bi-anabelian geometry discussed in Section 2). Put another way, the mono-anabelian
reconstruction algorithms discussed in Sections 3 and 4 have the virtue of being free of
any mention of some “fixed reference model” copy of ring-theoretic objects. In particular,
by the mono-anabelian property of our algorithm, we obtain, from the “étale-like link”, an
isomorphism between the mono-anabelian étale-like monoids compatible with the “étale-
like link”.

étale-like portion ∼−→ étale-like portion
y mono-anab.

ww� property y
mono-anabelian étale-like monoid ∼−→ mono-anabelian étale-like monoid

Next, in order to relate the Frobenius-like portions to the mono-anabelian étale-like
monoids, let us discuss cyclotomic synchronization poly-isomorphisms, which induceKum-
mer poly-isomorphisms. As in the discussion of (i), by applying a sort of the Kummer
theory, we obtain a Kummer poly-isomorphism “κ” from the cyclotomic synchronization
poly-isomorphism “synΛ”.

Frobenius-like cyclotome
cyclotomic
∼−→

synchronization
étale-like cyclotome

Kummer theory
 Frobenius-like portion

Kummer
∼−→

poly-isomorphism
mono-anabelian étale-like monoid
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Thus, we are in a situation described by the following diagram:
étale-like portion ∼−→ étale-like portion

mono-anab.
ww� property

mono-anabelian étale-like monoid ∼−→ mono-anabelian étale-like monoid
Kummer poly-

x isomorphism Kummer poly-
x isomorphism

Frobenius-like portion ∼−→ Frobenius-like portion.
Here, let us observe that, in our case, by the constructions of the various objects under
consideration, the lower square (of poly-isomorphisms) of this diagram commutes. In par-
ticular, by this commutativity, we can compute the effect on the Frobenius-like portions of
the “Frobenius-like link” by considering the composite of the Kummer poly-isomorphism,
a(n) (poly-)isomorphism that arises from the mono-anabelian property of the mono-
anabelian reconstruction algorithm, and the inverse of the Kummer poly-isomorphism.
Thus, in summary, by means of
• Kummer-detachment, i.e., the passage, via Kummer poly-isomorphisms, from
Frobenius-like structures to corresponding étale-like structures, and
• étale-transport, i.e., the passage, via the mono-anabelian property of mono-anabelian
reconstruction algorithms, from the “left-hand side” to the “right-hand side”,

one may compute the effect of the “Frobenius-like link” from the point of view of the
effect of the “étale-like link” by comparing the “Frobenius-like link” with the transport
as discussed in (i).

étale-like portion ∼−→ étale-like portion
y y

Frobenius-like portion ∼−→ Frobenius-like portion
 computation of the effect of the “Frobenius-like link”

Corollary 7.7. — Let � ∈ { ♦ ,B,×} and GyM an MLF�-pair. Then the natural homo-
morphism

Aut(GyM) −→ Aut(G)
fits into the following exact sequence:

1 −→ Ind� −→ Aut(GyM) −→ Aut(G) −→ 1.

Proof. — This assertion is the content of Theorem 7.6 in the case where (G◦ y M◦) =
(G• yM•). �
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