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SOME TOPICS IN THE THEORY OF TANNAKIAN CATEGORIES
AND APPLICATIONS TO MOTIVES AND MOTIVIC GALOIS

GROUPS

by

Florian Ivorra

Abstract. — These notes are taken from a series of lectures given at the conference “Fundamental Groups
in Arithmetic Geometry 2016” in Paris. They cover the basics of the theory of Tannakian categories and
provide an introduction to more recent developments and their applications to motivic Galois groups.

Résumé. — (Quelques aspects autour de la théorie des catégories tannakiennes et applications aux motifs
et groupes de Galois motiviques) Ces notes sont tirées d’une série de cours donnés à la conférence « Fun-
damental Groups in Arithmetic Geometry » à Paris en 2016. Elles couvrent les bases de la théorie des
catégories tannakiennes et fournissent une introduction aux développements récents et leurs applications
aux groupes de Galois motiviques.

These notes are a revision of a series of three lectures on Tannakian categories I gave at the
conference “Fundamental Groups in Arithmetic Geometry 2016” in Paris.
Together with a course on Galois categories and fundamental groups, they were designed
(especially with younger participants in mind) to set the scene for the main body of the
conference the week after. The purpose of these lectures was two-fold: I was asked to provide
an introduction to the classical Tannaka duality and then to give an idea of some of the more
recent developments obtained independently by Nori and Ayoub which have led to important
results in motivic Galois theory.
In preparing these notes, I kept the overall structure of the oral exposition but added some
details, I would have liked to give, but could not fit in the lectures for lack of time.
The result is neither an historical survey nor a comprehensive survey. Lots of choices had
to be made. I also did not seek the greatest generality or exhibited the weakest hypothesis.
For example, I considered only the theory in the neutral case and in the applications of
Tannaka theory to motives, I chose to restrict to fields of characteristic zero and to rational
coefficients. In using category theory, I also chose, as in the oral lectures, to simply forget
about set theoretic problems and avoid the (necessary) use of 2-categories in the formulation
of universal properties.

2020 Mathematics Subject Classification. — 16T05, 16T15, 18D10, 18E10, 16G20, 14L15, 20G05.
Key words and phrases. — Tannaka duality, coalgebras, quiver representations, affine group schemes,
motives.



46 Tannakian categories and motives

Finally, I would like to express my heartfelt thanks to the organizers, Anna Cadoret, Philippe
Lebacque, Emmanuel Lepage, Baptiste Morin, Jérôme Poineau and Olivier Wittenberg, for
putting together a very useful and interesting conference.

1. Introduction

Let Λ be a field.
Tannaka duality is a duality between affine group schemes over Λ and their categories of
representations. It was developed by Grothendieck and his student Saavedra Rivano [48]
(see [18, 23, 25, 50] for expositions and further developments of the theory). The so-called
Tannakian categories were named in [48] after an earlier work by Tannaka [52]. The contri-
bution of Tannaka was not isolated at the time but was part of a rich current of researches in
which groups (abstract, topological or Lie) were put in duality with other algebraic structures
related to representations of the group. Let us mention, for example, the block algebras ap-
pearing in Krĕın’s work [42], or the algebras of (continous) representative functions (see [41,
§1] for an exposition of the Tannaka–Krĕın duality). A precursor of Tannaka duality was Pon-
tryagin’s duality for Abelian locally compact topological groups. Those works led utimately
to the problem of reconstructing a group from its category of representations.
One of the main contributions of Grothendieck was the understanding that the process could
be reverted (see for example [19] for a historical survey). Not only could representations be
used to reconstruct a group but many categories could also be used to produce groups, a
process by which many properties of the given category could be translated into group the-
oretic statements. This idea was the cornerstone of Grothendieck’s approach to fundamental
groups developed in [47]. There, he introduced the notion of Galois categories, showed that
a fiber functor on a given Galois category defines a profinite group and established a duality
between profinite groups and (pointed) Galois categories. These foundations, via the category
of finite étale covers, led to the construction by Grothendieck of the étale fundamental group
of a scheme, the analogue in algebraic geometry of the fundamental group introduced by
Poincaré in topology.
Tannakian categories were meant by Grothendieck, with applications to motives and periods
in mind, as an additive variant of the Galois categories he had earlier introduced. The theory
developed in [48] answers the following questions:

Problem 1.1 (The group reconstruction problem). — Can an affine group scheme
G over Λ be reconstructed from its category rep(G) of representations in finite dimensional
Λ-vector spaces?

Problem 1.2 (The categorical recognition problem). — Which categories A are equiv-
alent to the category rep(G) of representations in finite dimensional Λ-vector spaces of an
affine group scheme G over Λ.

The main objects of the theory are the so-called Tannakian categories:

Definition 1.3. — A neutral Tannakian category is a Λ-linear Abelian rigid symmetric
monoidal category A such that there exists a Λ-linear faithful exact symmetric monoidal
functor

ω : A → vec(Λ).
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F. Ivorra 47

Such a functor is called a fiber functor. The pair (A, ω) is called a neutralized Tannakian
category.

The basic example of a neutralized Tannakian category is the category rep(G) of repre-
sentations on finite dimensional Λ-vector spaces of an affine group scheme G over Λ. The
functor

rep(G)→ vec(Λ)
that forgets the action of the group G provides a canonical fiber functor. The cornerstone
of the theory, proved by Saavedra in [48], is that every neutralized Tannakian category is
canonically of this form:

Theorem 1.4. — Let (A, ω) be a neutralized Tannakian category. Let AlgΛ be the category
of commutative (unitary) Λ-algebras and Grp the category of groups. Let Aut⊗(ω) be the
functor

Aut⊗(ω) : AlgΛ → Grp
R 7→ Aut⊗(ωR)

which associates with R the group of tensor automorphisms of the functor

ωR : A ω−→ vec(Λ) −⊗ΛR−−−−→Mod(R).

The functor Aut⊗(ω) is representable by an affine group scheme G(ω) over Λ and the fiber
functor ω enriches into an equivalence of tensor categories between A and the category of
finite dimensional representations of G(ω).

This theorem establishes a duality between affine group schemes over Λ and neutralized
Tannakian categories: the so-called “Tannaka duality”. One of the main interest of this duality
lies in reversing the process.
Starting with a given Tannakian category, it produces, from a fiber functor, an affine algebraic
group that encapsulates the properties of the initial categories and translates them into group
theory.
In the form of Theorem 1.4, the theory comes with some limitations such as the fact that it
requires an Abelian category to start with. This has proven to be a challenging difficulty in the
application of Tannaka duality to the theory of motives and periods, one of Grothendieck’s
main motivations for developing the theory (see Section 4.1).
To bypass these problems, Nori and Ayoub have broaden independently the scope of the
classical Tannaka duality. By doing so they were able to obtain a construction of motivic
Galois groups and applications to the theory of periods (see [11, 12, 26] or [3, 13, 33] for
surveys).
To describe these more recent developements, it is useful to keep in mind that if G is an
affine group scheme over Λ, then its Λ-algebra of global functions O(G) is a Hopf algebra
and that the category rep(G) of finite dimensional representations of G is equivalent to the
category comod(O(G)) counitary right O(G)-comodules of finite dimension. In particular, a
neutralized Tannakian category is canonically equivalent to the category of finite dimensional
counitary right comodules over the Hopf algebra

C(ω) := O(G(ω)).
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48 Tannakian categories and motives

The approach of Nori, which appears in his unpublished work [26], relies on quiver representa-
tions. To construct a coalgebra, which in favorable cases turns out to be a biunitary bialgebra
or even a Hopf algebra, Nori does not even need to start with a category, less a neutralized
Tannakian category: he only needs a quiver Q and a representation T : Q → vec(Λ). This
approach fits nicely with the classical Tannaka duality which may be recovered from it, but it
also produces coalgebras from very general quiver representations. Using this extended scope
of application, Nori has been able to get at the same time a motivic Galois group and a
construction of an Abelian category of mixed motives over subfields of the field of complex
numbers.
More precisely, with a quiver representation T : Q → vec(Λ), Nori associates a Λ-coalgebra
H(T ) (see Section 5.1 for its construction) and proves that it enjoys the following properties:

Theorem 1.5. —

1. The quiver representation T : Q → vec(Λ) admits a factorization

Q T //

T ++

comod(H(T ))

forgetful
��

vec(Λ)

moreover this factorization is universal among all factorizations

Q R //

T ))

A

F

��
vec(Λ)

where A is a Λ-linear Abelian category, R is a representation and F a Λ-linear faithful
exact functor.

2. Let A be a Λ-linear Abelian category and ω : A → vec(Λ) be a Λ-linear exact faithful
functor. Then, the representation

ω : A → comod(H(ω))
is a Λ-linear functor and an equivalence of categories.

Recall that a quiver is simply an oriented graph or informally a category without composition.
The category of counitary comodules over H(ω) of finite dimension can be seen as an Abelian
category generated from the quiver Q and the representation T . Vertices in Q define objects
and edges define morphisms between the corresponding objects. Nori’s Abelian category of
mixed motives is obtained by considering a quiver whose definition is geometric and closely
related to the ring of abstract periods of Kontsevich–Zagier (see e.g. [13, 33] and Section 5.4).
The weak Tannakian formalism introduced by Ayoub in [11, 12] is designed to be able to deal
with “fiber functor” such as the Betti realization

Bti∗ : DAét(k,Q)→ D(Q)
on the category of étale motives DAét(k,Q) (see [8]). This category being triangulated and
not Abelian, the weak Tannakian formalism has to be flexible enough to bypass, for example,
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F. Ivorra 49

the classical restrictions of Tannaka duality (and above all the assumption that the source of
the fiber functor has to be an Abelian category). Contrary to Nori’s approach or the classical
Tannaka duality, its application to the Betti realization does not yield immediately a Hopf
algebra in the classical sense. What it produces is a derived Hopf algebra. To actually get a
classical Hopf algebra from it requires some further computations.
The requirements of this formalism are very weak compared to those of the classical Tannaka
duality (hence the name) and it can be formulated in the general context of symmetric
monoidal categories (see e.g. [6, Definition 2.1.85]):

Theorem 1.6. — Let (M,⊗,1) and (E ,⊗,1) be symmetric monoidal categories. Let f :
M→ E be a symmetric monoidal functor. If the following assumptions are satisfied:

1. the functor f admits a right adjoint g;

2. there exists a monoidal functor e : E → M and an isomorphism of monoidal functors
fe ' IdE ;

3. the morphism of coprojection

cd : g(A)⊗ e(B)→ g(A⊗ fe(B))

is an isomorphism for every objects A,B ∈ E;

then, the object H = fg(1) in E has a canonical structure of commutative biunitary bialgebra
and the functor f :M→ E has a canonical factorization

M
f //

f ..

coMod(H)

forgetful
��
E

where coMod(H) is the category of unitary left comodules over H. Moreover for every com-
mutative biunitary bialgebra K and every factorization

M //

f ..

coMod(K)

forgetful
��
E

there exists a unique morphism of commutative biunitary bialgebras H → K such that for
every M ∈ M the coaction of K on f(M) is obtained by corestriction of the coaction of H
on f(M).

Under the very general hypothesis of Theorem 1.6 is not reasonable to expect duality. Nev-
ertheless, as in the first part of Theorem 1.5, Ayoub’s result still produces a biunitary bial-
gebra whose category of counitary left comodules best approximates the original symmetric
monoidal categoryM. Under additional assumptions, the bialgebra H = fg(1) turns out to
be a Hopf algebra in the symmetric monoidal category E .

Publications mathématiques de Besançon – 2021



50 Tannakian categories and motives

2. Brief reminder on coalgebras and comodules

The weak Tannakian formalism introduced by Ayoub in [11, 12] works under very mild
assumption for monoidal functors between symmetric monoidal categories. The notions of
coalgebra, bialgebra, Hopf algebra or comodules over them make sense in this very general
context. In this section, we review the basic definitions. The reader may skip this section if
he so desires and only refers to it when needed.

2.1. Symmetric monoidal categories and monoidal functors. — Let us start by
briefly recalling the definition of a symmetric monoidal category and that of a symmetric
(pseudo)-monoidal functor.

Definition 2.1. — A monoidal category is a category C equipped with a functor ⊗ : C×C →
C called the tensor product, an object 1 ∈ C called the unit object, a natural isomorphism
(called the associator)

(A⊗B)⊗ C → A⊗ (B ⊗ C)

natural in A,B,C ∈ C and two isomorphisms (called the left unitor and the right unitor)

1⊗A→ A A⊗ 1→ A

natural in A ∈ C which make the following two diagrams commute.

– (Pentagonal identity)

(A⊗B)⊗ (C ⊗D)

**
((A⊗B)⊗ C)⊗D

44

%%

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D // A⊗ ((B ⊗ C)⊗D).

99

– (Triangle identity)

(A⊗ 1)⊗B //

''

A⊗ (1⊗B)

ww
A⊗B.

Note that the role of the pentagonal identity and the triangle identity is to ensure the co-
herence of the data and as a consequence the peace of mind of the user. Indeed, as shown
in [43, VII, §2], they ensure that every diagram built out of the structural morphisms is com-
mutative: any two ways of going from an iterated tensor product of objects of C to another
iterated tensor product are the same (see loc. cit. for a precise statement).
A symmetric monoidal category is a monoidal category equipped with an isomorphism

τ : A⊗B → B ⊗A
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natural in A,B ∈ C such that τ2 = Id and the following diagram

(A⊗B)⊗ C //

��

A⊗ (B ⊗ C) // (B ⊗ C)⊗A

��
(B ⊗A)⊗ C // B ⊗ (A⊗ C) // B ⊗ (C ⊗A)

commute.

Remark 2.2. — Note that this implies the commutativity of the triangle

1⊗A

##

τ // A⊗ 1

{{
A.

Definition 2.3. — Let (C,⊗,1) and (D,⊗,1) be monoidal categories. A pseudo-monoidal
functor is a functor f : C → D equipped with a morphism
(1) f(A)⊗ f(B)→ f(A⊗B)
natural in A,B ∈ C and a morphism 1→ f(1) such that

(f(A)⊗ f(B))⊗ f(C) //

��

f(A⊗B)⊗ f(C) // f((A⊗B)⊗ C)

��
f(A)⊗ (f(B)⊗ f(C)) // f(A)⊗ f(B ⊗ C) // f(A⊗ (B ⊗ C))

1⊗ f(A) //

��

f(1)⊗ f(A)

��
f(A) f(1⊗A)oo

f(A)⊗ 1 //

��

f(A)⊗ f(1)

��
f(A) f(A⊗ 1)oo

are commutative.

If f ,g are two pseudo-monoidal functors, a natural transformation θ : f → g is said to be
pseudo-monoidal if the diagrams

f(A)⊗ f(B) θA⊗θB//

��

g(A)⊗ g(B)

��
f(A⊗B)

θA⊗B // g(A⊗B)

1 //

  

f(1)

θ1
��

g(1)

commute for every objects A,B ∈ C.
If (C,⊗,1) and (D,⊗,1) are symmetric monoidal categories, then a pseudo-monoidal functor
is said to be symmetric if the square

f(A)⊗ f(B) //

��

f(A⊗B)

��
f(B)⊗ f(A) // f(B ⊗A)
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52 Tannakian categories and motives

is commutative for every A,B ∈ C.
A pseudo-monoidal functor is said to be monoidal if the morphism (1) and the morphism
1→ f(1) are isomorphisms in D.
A variant is useful. A pseudo-comonoidal functor is a functor f : C → D equipped with a
morphism

f(A⊗B)→ f(A)⊗ f(B)
and a morphism f(1)→ 1 which are compatible with the associator, the left unitor and the
right unitor. Again if (C,⊗,1) and (D,⊗,1) are symmetric monoidal categories, the notion
of symmetric pseudo-comonoidal functor makes sense similarly.
This variant is useful via the following simple observation.

Lemma 2.4. — Let (C,⊗,1) and (D,⊗,1) be (symmetric) monoidal categories and f : C →
D be a (symmetric) pseudo-comonoidal functor. If f admits a right adjoint g then the functor
g : D → C is a (symmetric) pseudo-monoidal functor, the morphism g(A)⊗g(B)→ g(A⊗B)
being given by

g(A)⊗ g(B) η−→ gf(g(A)⊗ g(B)) −→ g(fg(A)⊗ fg(B)) δ⊗δ−−→ g(A⊗B).

and the pseudo-unit morphism 1→ g(1) by the composition 1
η−→ gf(1)→ g(1).

In particular the right adjoint of a (symmetric) monoidal functor is a (symmetric) pseudo-
monoidal functor.

2.2. Algebras, coalgebras, bialgebras and Hopf algebras. — Fix a symmetric
monoidal category (C,⊗,1). We refer to [11] and to [50] for the classical case (that is the case
where the symmetric monoidal category C is the category of modules over a commutative
ring with unit).

Definition 2.5. — An algebra in C is a pair (A,m) where A is an object in C and m :
A⊗A→ A is a morphism such that the diagram

A⊗A⊗A m⊗Id //

Id⊗m
��

A⊗A
m

��
A⊗A m // A

commutes. The algebra is said to be unitary if there exists a morphism u : 1→ A such that

(2) 1⊗A u⊗Id //

'

A⊗A
m

��

A⊗ 1

'

Id⊗uoo

A

commutes.

Remark 2.6. — Note that if there exists a morphism u : 1 → A such that (2) is commu-
tative, then it is unique. Indeed, if v : 1→ A is also such a morphism, it easy to see that the
composition

1
'−→ 1⊗ 1 Id⊗v−−−→ 1⊗A u⊗Id−−−→ A⊗A m−→ A

is equal to both u and v.
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Dually we have the notions of coalgebra and counitary coalgebra.

Definition 2.7. — A coalgebra in C is a pair (C, cm) where C is an object in C and
cm : C → C ⊗ C is a morphism such that the diagram

C
cm //

cm

��

C ⊗ C
cm⊗Id
��

C ⊗ C Id⊗cm// C ⊗ C ⊗ C

commutes. The coalgebra is said to be counitary if there exists a morphism cu : C → 1 such
that

(3) 1⊗ C

'

C ⊗ Ccu⊗Idoo Id⊗cu // C ⊗ 1

'

C

cm

OO

commutes.

As in the case of an algebra, the counit, if it exists, is uniquely determined.

Lemma 2.8. —

1. Let f : (C,⊗,1)→ (D,⊗,1) be a pseudo-monoidal functor. If (A,m) is an algebra in C,
then f(A) is an algebra for the multiplication

f(A)⊗ f(A)→ f(A⊗A) f(m)−−−→ f(A).

If A is unitary, so is f(A) and its unit is given by the composition

1→ f(1) f(u)−−→ f(A).

2. Let f : (C,⊗,1)→ (D,⊗,1) be a pseudo-comonoidal functor. If (C, cm) is a coalgebra in
C, then f(C) is a coalgebra for the comultiplication

f(C)→ f(C ⊗ C)→ f(C)⊗ f(C).

If C is counitary, so is f(C) and its counit is given by the composition

f(C) f(cu)−−−→ f(1)→ 1.

Definition 2.9. — A bialgebra in C is a triple (H,m, cm) such that (H,m) is an algebra
(H, cm) is a coalgebra and the diagram

H ⊗H m //

cm⊗cm
��

H
cm // H ⊗H

(H ⊗H)⊗ (H ⊗H) Id⊗τ⊗Id // (H ⊗H)⊗ (H ⊗H)

m⊗m

OO
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54 Tannakian categories and motives

is commutative. It is said to be biunitary if (H,m) is unitary, (H, cm) is counitary and the
diagrams

1
' //

u

��

1⊗ 1
u⊗u
��

H
cm // H ⊗H

H ⊗H m //

cu⊗cu
��

H

cu

��
1⊗ 1 ' // 1

1
u // H

cu

��
1

are commutative.

Definition 2.10. — Let H be a biunitary algebra in C. A morphism ι : H → H, such that
the diagrams

H ⊗H ι⊗Id // H ⊗H
m

��
H

cu //

cm

OO

1
u // H

H ⊗H Id⊗ι // H ⊗H
m

��
H

cu //

cm

OO

1
u // H

are commutative, is a called an antipode. A Hopf algebra is a biunitary bialgebra in C that
admits an antipode.

Remark 2.11. — Let (A,m) be a unitary algebra in C. Since C is symmetric monoidal,
the pair (Aop,mop) where Aop = A and mop = m ◦ τ is a unitary algebra in C. The algebra
(Aop,mop) is called the opposite of (A,m).
Similarly if (C, cm) is a counitary coalgebra in C, then (Cop, cmop) where Cop = C and
cmop = τ ◦ cm is a counitary coalgebra in C. The coalgebra (Cop, cmop) is likewise called the
opposite of (C, cm).
An algebra (resp. coalgebra) equal to its opposite is said to be commutative (resp. cocom-
mutative).

If a biunitary bialgebra is a Hopf algebra, then the antipode is unique. This fact is best
understood via the following proposition.

Proposition 2.12. — Let A be a unitary algebra in C.

1. Let C be a counitary coalgebra in C. The set HomC(C,A) is a monoid for the operation

HomC(C,A)×HomC(C,A)→ HomC(C,A)

that maps a pair (a, b) to the composition

C
cm−−→ C ⊗ C a⊗b−−→ A⊗A m−→ A.

The unit of this monoid is the morphism C
cu−→ 1

u−→ A.

2. Let H be a Hopf algebra in C. Let ι be an antipode of H. Every morphism a : H → A of
unitary algebras is invertible in the monoid HomC(H,A) and its inverse is given by a ◦ ι.

Remark 2.13. — If H is a biunitary bialgebra and A is a commutative unitary algebra
in C, then the subset HomAlg(H,A) of morphisms of unitary algebras is a submonoid of
HomC(H,A). By 2., if H is a commutative Hopf algebra in C, then HomAlg(H,A) is a group.
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Corollary 2.14. —

1. Let H be a biunitary algebra. Then there exists at most one antipode in H i.e. an Hopf
algebra in C has a unique antipode.

2. Let h : H → H ′ be a morphism of biunitary algebras. If H and H ′ are Hopf algebras with
respective antipodes ι and ι′ then h ◦ ι = ι′ ◦ h.

Proof. — 1. — By Proposition 2.12, the antipode ι if it exists must be the inverse of the
identity Id : H → H in the monoid HomC(H,H). Therefore, the unicity of the antipode
follows from the unicity of an inverse in a monoid.

2. — Let h : H → H ′ a morphism of biunitary bialgebras. Then, h is invertible in the
monoid HomC(H,H ′) with inverse h ◦ ι. On the other hand h is also invertible in the monoid
HomCop(H ′, H) with inverse given this time by ι′ ◦ h. Since the two monoids HomC(H,H ′)
and HomCop(H ′, H) are the same, we must have h ◦ ι = ι′ ◦ h. �

Note that Proposition 2.12 has also the following consequence.

Proposition 2.15. — Let H be a Hopf algebra in C. Then its antipode ι : H → Hop is a
morphism of Hopf algebras.

As a consequence, we get the following property of the antipode.

Corollary 2.16. — Let H be a Hopf algebra in C and ι be its antipode. If H is commutative
(resp. cocommutative) then ι2 = Id.

Proof. — Let us assume that H is commutative (the proof is dual if H is cocommutative).
Then, the antipode ι : H → H is a morphism of unitary algebras. It is therefore invertible in
the monoid HomC(H,H) with inverse ι2 = ι ◦ ι. On the other hand, we have seen that ι as
the identity for inverse. This implies that ι2 must be the identity. �

2.3. Comodules over a coalgebra. —Again we assume that (C,⊗,1) is a symmetric
monoidal category.

Definition 2.17. — Let (C, cm) be a coalgebra in C. A right comodule over C is pair (X, ca)
where X is an object in C and ca : X → X ⊗C is a morphism, called the coaction, such that
the diagram

X
ca //

ca

��

X ⊗ C
Id⊗cm
��

X ⊗ C ca⊗Id // X ⊗ C ⊗ C
is commutative. If (C, cm) is counitary, then a comodule (X, ca) is said to be counitary if
moreover the diagram

X
ca // X ⊗ C

Id⊗cuyy
X ⊗ 1

'

OO

is commutative.
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One defines similarly the notions of left comodules and counitary left comodules.

Lemma 2.18. — Let C1 and C2 be two coalgebras in C. If X1 is a right C1-comodule and
X2 is a right C2-comodule, then X1 ⊗X2 is a right C1 ⊗C2-comodule with coaction given by
the morphism

X1 ⊗X2
ca⊗ca // C1 ⊗X1 ⊗ C2 ⊗X2

Id⊗τ⊗Id// (C1 ⊗ C2)⊗ (X1 ⊗X2)

If X1 and X2 are counitary, so is X1 ⊗X2.

In the above lemma, C1⊗C2 is a coalgebra for the comultiplication given by the composition

C1 ⊗ C2
cm⊗cm−−−−−→ C1 ⊗ C1 ⊗ C2 ⊗ C2

Id⊗τ⊗Id−−−−−→ C1 ⊗ C2 ⊗ C1 ⊗ C2.

If both C1 and C2 are counitary, then so is C1 ⊗ C2 with counit given by

C1 ⊗ C2
cu⊗cu−−−−→ 1.

Assume now that (H,m, cm) is a biunitary bialgebra. Then, the multiplication m : H⊗H →
H is a morphism of counitary coalgebras. In particular, if X and Y are counitary right H-
comodules, the counitary right H ⊗H-comodule X ⊗Y , obtained in Lemma 2.18, defines by
corestriction along m a counitary right H-comodule.

Proposition 2.19. — Let H be a biunitary bialgebra. Let X,Y be two counitary right H-
comodules. Then X⊗Y is a counitary right H-comodule with coaction given by the morphism

X ⊗ Y ca⊗ca−−−−→ X ⊗H ⊗ Y ⊗H Id⊗τ⊗Id−−−−−→ X ⊗ Y ⊗H ⊗H Id⊗Id⊗m−−−−−−→ X ⊗ Y ⊗H.

If H is commutative, then the isomorphism τ : X ⊗ Y
'−→ Y ⊗ X is an isomorphism of

counitary right H-comodules.

In particular, if H is a biunitary bialgebra, the category coMod(H) is a monoidal category
and the forgetful functor

coMod(H)→ C
is a monoidal functor. If H is moreover commutative, then coMod(H) is a symmetric
monoidal category and the forgetful functor is symmetric monoidal.
Let H be a Hopf algebra in C and ι be the antipode of H. We can turn counitary left H-
comodules into counitary right H-comodules and vice-versa. Indeed, if (X, ca) is a (counitary)
left H-comodule, then the morphism

car : X ca−→ H ⊗X τ−→ X ⊗H Id⊗ι−−−→ X ⊗H

defines a structure of (counitary) right H-comodule on X. Similarly, if (X, ca) is a (counitary)
right H-comodule, then the morphism

ca` : X ca−→ X ⊗H τ−→ H ⊗X ι⊗Id−−−→ H ⊗X

is a (counitary) left coaction ofH onX. The comodule obtained by going back and forth, is the
corestriction of the initial comodule along the morphism of counitary coalgebras ι2 : H → H.
In particular, if H is commutative or cocommutative, by Corollary 2.16, the categories of
(counitary) left and right comodules are equivalent.
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Let (C,⊗,1) be a monoidal category. Recall that an object X ∈ C has a right dual if there
exist an object X∨ in C and morphisms

(4) 1
coev−−−→ X∨ ⊗X X ⊗X∨ ev−→ 1

such that the morphisms

X
Id⊗coev−−−−−→ X ⊗X∨ ⊗X ev⊗ Id−−−−→ X, X∨

coev⊗ Id−−−−−→ X∨ ⊗X ⊗X∨ Id⊗ev−−−−→ X∨

are equal to the identity maps. Similarly X is said to admit a left dual if there exist an object
∨X in C and morphisms

(5) 1
coev′−−−→ X ⊗ ∨X ∨X ⊗X ev′−−→ 1

such that the morphisms

X
coev′⊗ Id−−−−−−→ X ⊗ ∨X ⊗X Id⊗ev′−−−−→ X, ∨X

Id⊗coev′−−−−−→ ∨X ⊗X ⊗ ∨X ev′⊗ Id−−−−→ ∨X

are equal to the identity maps.
Note that the triples (X∨, coev, ev) and (∨X, coev′, ev′) are unique up to a unique isomor-
phism.
If (C,⊗,1) is symmetric, then a right dual is also a left (and vice-versa) with coev′ = τ ◦ coev
and ev′ = ev ◦τ . In that case we simply say that X admits a dual or that X is dualizable.

Definition 2.20. — A symmetric monoidal category (C,⊗,1) is said to be rigid if and only
if every object in C admits a dual.

Assume that C is rigid and H is a coalgebra in C. Then, one has a canonical isomorphism

(6) HomC(X,X ⊗H) ' HomC(X∨, H ⊗X∨)

Explicitely, a morphism γ : X → X ⊗H in C is mapped to the morphism

X∨
Id⊗coev′−−−−−→ X∨ ⊗X ⊗X∨ Id⊗γ⊗Id−−−−−→ X∨ ⊗X ⊗H ⊗X∨ ev′⊗ Id−−−−→ H ⊗X∨

and conversely a morphism δ : X∨ → H ⊗X∨ in C is mapped to the morphism

X
coev′⊗ Id−−−−−−→ X ⊗X∨ ⊗X Id⊗δ⊗Id−−−−−→ X ⊗H ⊗X∨ ⊗X Id⊗ev′−−−−→ X ⊗H.

Under (6), a right coaction is mapped to a left coaction and vice versa. In particular, if
(X, ca) is a right comodule, then X∨ is canonically a left comodule. Assume that H is a
commutative Hopf algebra in C. Then, as explained above, the left comodule structure on
X∨ can be turned into a right comodule structure. In this way, the duality functor (−)∨
becomes a contravariant endofunctor of the category of counitary right H-comodules in such
a way that the evaluation and coevaluation morphisms (4) and (5) become morphisms of
counitary right H-comodules.
This shows that the symmetric monoidal category of counitary right H-comodules is also
rigid.

Publications mathématiques de Besançon – 2021



58 Tannakian categories and motives

2.4. Representations and comodules. —Recall that an affine Λ-monoid scheme is a
pair (G,m) where G is an affine Λ-scheme and m : G×Λ G→ G is a morphism of Λ-schemes
satisfying the following conditions:

1. the square

G×Λ G×Λ G
m×Id //

Id×m
��

G×Λ G

m

��
G×Λ G

m // G

is commutative;

2. there exists a morphism 1G : Spec(Λ)→ G which makes the diagram

Spec(Λ)×Λ G

'

1G×Id// G×Λ G

m

��

G×Λ Spec(Λ)Id×1Goo

'
G

commute.

Note that if a morphism as the one in 2. exists then it is unique.
Let AlgΛ be the category of commutative unitary Λ-algebras. If G is an affine Λ-monoid
scheme, then, for every R in AlgΛ,

G(R) := HomΛ(Spec(R), G)

is a monoid. The product of two elements g, h ∈ G(R) is given by g · h = m ◦ (g, h) and the
neutral element 1G(R) of G(R) given by the composition Spec(R)→ Spec(Λ) 1G−−→ G
Let Mon be the category of monoids. Let V be a Λ-vector space and consider the functor

End(V ) : AlgΛ →Mon
R 7→ EndR(V ⊗Λ R).

Definition 2.21. — Let G be an affine Λ-monoid scheme. Let V be a Λ-vector space. A
left G-module structure on V is a morphism of functors on AlgΛ with values in Mon

ρ : G→ End(V )

In other words a left G-module structure on V is the data for every R in AlgΛ of a morphism
of monoids

ρR : G(R)→ EndR(V ⊗Λ R)
such that the squares

G(R) //

��

EndR(V ⊗Λ R)

��
G(S) // EndS(V ⊗Λ S)

are commutative for every morphism of commutative (unitary) Λ-algebras R→ S.
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Remark 2.22. — One can similarly define a right G-module structure on a Λ-vector space
V . Let G◦(R) = G(R)◦ where G(R)◦ is the set G(R) with the opposite monoid structure. A
right G-module structure on V is simply a morphism of functors

ρ : G◦ → End(V )

on AlgΛ with values in Mon.

A left (resp. right) representation of G is a pair (V, ρ) where V is a Λ-vector space and ρ
is a left (resp. right) G-module structure on V . Morphisms of representations are defined as
morphisms of Λ-vector spaces that commute with the action of G. A representation is said
to be finite dimensional if the underlying vector space is finite dimensional over Λ.
We denote by Rep(G,Λ) the Abelian category of representations of G and by rep(G,Λ) the
full Abelian subcategory whose objects are the finite dimensional representations.
Let G be an affine Λ-monoid scheme. Let H := O(G) be the affine ring of G. This is a
commutative unitary Λ-algebra. Via the classical equivalence of categories

commutative
unitary Λ-algebras ←→ affine Λ-schemes

A 7→ Spec(A)
O(X) ← [ X

affine Λ-monoid schemes correspond to commutative biunitary Λ-bialgebras (see Defini-
tion 2.9). Moreover an affine Λ-monoid scheme G is a Λ-group scheme if and only if O(G) is
a Λ-Hopf algebra (see Definition 2.10).
We can reformulate the definition of (left) representations of an affine Λ-group scheme G in
terms of right comodules over the associated Λ-Hopf algebra H := O(G) (see e.g. [50, §3.2]).
Let V be a Λ-vector space. Let us first remark that there is a canonical bijection

(7) Hom(G, End(V )) ∼−→ HomΛ(V, V ⊗Λ H)

where on the left hand-side we consider morphisms of functors on AlgΛ with values in Sets
and on the right hand-side morphisms of Λ-vector spaces. The morphism (7) is defined as
follows. With a morphism ρ : G→ End(V ), it associates the morphism

ca : V Id⊗u−−−→ V ⊗Λ H
ρH(Id)−−−−→ V ⊗Λ H

where Id denotes the element of G(H) = HomAlgΛ(H,H) given by the identity of H.
To see that (7) is indeed a bijection, it is enough to see that, given a morphism of Λ-vector
spaces ca : V → V ⊗Λ H, we can reconstruct ρ as follows. If R is a commutative unitary
Λ-algebra and g ∈ G(R), then ρR(g) is the R-linear extension of the morphism

V
ca−→ V ⊗Λ H

Id⊗g−−−→ V ⊗Λ R.

Lemma 2.23. — Let G be an affine Λ-group scheme and H := O(G) its associated Λ-Hopf
algebra.

1. Let ρ : G→ End(V ) be a morphism of functors from on AlgΛ with values in Sets. Then,
the morphism ca : V → V ⊗Λ H obtained via (7) defines a counitary right comodule
structure on V if and only if ρ is left G-module structure on V .
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2. The functor

Rep(G,Λ)→ coMod(H)(8)
(V, ρ) 7→ (V, ca)

is an equivalence of categories and induces an equivalence of categories between rep(G,Λ)
and comod(H).

Note that the equivalence (8) commutes with the forgetful functors to the category Vec(Λ).

Proof. — The morphism ρR(gh) is obtained from the morphism ca : V → V ⊗Λ H as the
R-linear extension of the composition

(9) V
ca // V ⊗Λ H

Id⊗gh //

Id⊗cm
��

V ⊗Λ R

V ⊗Λ H ⊗Λ H
Id⊗g⊗h // V ⊗Λ R⊗Λ R.

Id⊗m

OO

On the other hand, the composition ρR(g)ρR(h) is the R-linear extension of the morphism
given by the commutative diagram

(10) V
ca // V ⊗Λ H

Id⊗h //

ca⊗Id
��

V ⊗Λ R

ca⊗Id
��

V ⊗Λ H ⊗Λ H
Id⊗Id⊗h //

Id⊗g⊗h //

V ⊗Λ H ⊗Λ R

Id⊗g⊗Id
��

V ⊗Λ R⊗Λ R

Id⊗m
��

V ⊗Λ R.

From this, it is clear that if ca : V → V ⊗Λ H is a right comodule structure on V , then
ρR(gh) = ρR(g)ρR(h).
Conversely, assume that ρR(gh) = ρR(g)ρR(h), for every R ∈ AlgΛ and every g, h ∈ G(R).
Then, the morphisms (9) and (10) are the same. By taking R = H ⊗Λ H and g = Id ⊗ u,
h = u⊗ Id, we have then

m ◦ (g ⊗ h) = Id
and we see that the equality of (9) and (10) amounts in that case to saying that ca is a right
comodule structure on V .
It remains to prove that (Id⊗ cu) ◦ ca = Id if and only if ρR(1) = Id, for every commutative
unitary Λ-algebra R. But this follows easily from the fact that the neutral element in G(R)
being given by the composition

H
cu−→ Λ u−→ R,

the endomorphism ρR(1) is the R-linear extension of the composition

V
ca−→ V ⊗Λ H

Id⊗cu−−−−→ V ⊗Λ Λ V⊗u−−−→ V ⊗Λ R. �
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Remark 2.24. — Similarly counitary left O(G)-comodules correspond to right representa-
tions of G.

Remark 2.25. — IfH is a Hopf Λ-algebra, then the category of counitary right C-comodules
is an Abelian category. This remains true if for every counitary coalgebra C over the field
Λ. Moreover every counitary right comodule of C is the union of its finite dimensional sub-
comodules. In categorical terms, the category of all counitary right comodules coMod(C) is
equivalent to the category of Ind-objects of comod(C).

3. Classical Tannaka duality

Let A be a Λ-linear Abelian category. If X is an object of A, we denote by 〈X〉 the strictly full
Abelian subcategory of A generated by X. The objects in 〈X〉 are the subquotients of finite
direct sums of copies of X. Note that the category 〈X〉 depends only on the isomorphism
class of X. Therefore, we can consider ob(A) as a poset for the relation X 6 Y if and only
if 〈X〉 ⊆ 〈Y 〉. This poset is directed since, for every object X,Y in A, the category 〈X ⊕ Y 〉
contains both 〈X〉 and 〈Y 〉.

3.1. The group reconstruction problem. —We first consider the problem of recon-
structing an affine group scheme from its category of finite dimensional representations (see
Problem 1.1 in the introduction). The fundamental question here is the following: how can
an affine Λ-group scheme be reconstructed from its category of finite dimensional represen-
tations?
As we shall see, there are different ways of answering this question. These different approaches
or formulations are obviously closely related but have nonetheless different flavors. Before go-
ing into details, let us state a reconstruction process based on the description of the functor of
points of an affine groupe scheme in terms of its category of finite dimensional representations
(Theorem 3.1).
Let G an affine group scheme over Λ. The category rep(G) of finite dimensional represen-
tations is a Λ-linear Abelian category, even a rigid symmetric monoidal category, endowed
with a forgetful functor

ω : rep(G,Λ)→ vec(Λ)
which is Λ-linear faithful exact and also symmetric monoidal. Let R be a commutative unitary
Λ-algebra. Consider the group

Aut⊗(ω)(R) := Aut⊗(ωR)
where ωR is the composition of the functor ω : rep(G,Λ) → vec(Λ) and the base change
functor

vec(Λ)→mod(R)
V 7→ V ⊗Λ R

and Aut⊗(ωR) is the group of invertible monoidal natural transformations of ωR. We may
then consider the morphism of groups

G(R)→ Aut⊗(ωR)
which associates with a fixed element g ∈ G(R) and with varying objects (V, ρ) of rep(G,Λ)
the family of linear maps ρ(g) : V ⊗Λ R→ V ⊗Λ R.
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Theorem 3.1. — Let G be an affine group scheme over Λ and R be a commutative unitary
Λ-algebra. Then, the canonical morphism

G(R)→ Aut⊗(ωR)

is an isomorphism of groups.

The proof of Theorem 3.1 will be given at the end of the subsection. It answers completely
the reconstruction problem: the affine group scheme G represents the functor

Aut⊗(ω) : AlgΛ → Grp
R 7→ Aut⊗(ωR)

whose definition only involves the forgetful functor on the category rep(G,Λ) of finite dimen-
sional representations of G. Theorem 3.1 highlights a general phenomenon: the reconstruction
process involves the forgetful functor more than the category itself.
Using the duality between affine group schemes and Hopf algebras, the problem can be
equivalently reformulated in terms of Hopf algebras and comodules: how can a commutative
Λ-Hopf algebra be reconstructed from its category of counitary right comodules of finite
dimension?
The reconstruction theorem in terms of Hopf algebras is a finer version of a more general
statement which only involves coalgebras (see Theorem 3.7).
We start by giving a canonical description of a counitary Λ-coalgebra as a union (colimit) of
finite dimensional counitary subcoalgebras associated with finite dimensional counitary right
C-comodules (see Lemma 3.3).
Let V be a finite dimensional Λ-vector space and ca : V → V ⊗Λ C be a Λ-linear morphism.
Let B = (e1, . . . , en) be a basis of V and let cij , for i, j ∈ J1, nK, be the elements of C defined
by the equality

ca(ej) =
n∑
i=1

ei ⊗ cij .

Then, (V, ca) is a counitary right comodule if and only if the elements cij satisfy the following
relations for every i, j ∈ J1, nK {

cm(cij) =
∑n
k=1 cik ⊗ ckj

cu(cij) = δij

where δij is the Kronecker symbol. In particular, if (V, ca) is a counitary right C-comodule,
then the Λ-linear subspace CV of C spanned by elements cij for i, j ∈ J1, nK is counitary
subcoalgebra of C which is finite dimensional over Λ. By construction V is not only a C-
comodule but a CV -comodule. Note that the definition of CV does not depend upon the choice
of a basis of V since it can also be described as the image of the morphism V ⊗ V ∨ → C
associated with the coaction. Moreover it is easy to see that if V and W are isomorphic
counitary right C-comodules then the two counitary subcoalgebras CV and CW are the same.

Remark 3.2. — Note that if W is in 〈V 〉, then W is a subquotient of a finite direct sum of
copies of V , and CW is contained in CV (hence CV is the union of all the CW for W in 〈V 〉).
In particular, if 〈W 〉 ⊆ 〈V 〉, then CW is contained in CV . The coalgebras CV form a directed
system indexed by the directed poset of isomorphism classes of counitary right C-comodules.
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Lemma 3.3. — Let (C, cm) be a counitary coalgebra. Then, C is the union of its (finite
dimensional) subcoalgebras CV as V runs among the finite dimensional counitary right co-
modules:

(11) C = colimV ∈ob(comod(C))CV .

Proof. — As C is the union of its finite dimensional counitary subcomodules (see Rem-
ark 2.25), it is enough to show that for such a subcomodule V , one has V ⊆ CV . The counit
cu : C → Λ by restriction to V defines an element in V ∨. Let B = (e1, . . . , en) be a basis of
V . Then, for every j ∈ J1, nK, the image of ej ⊗ cu by the morphism V ⊗ V ∨ → C associated
with cm is given by

n∑
i=1

cu(ei)cij = (cu⊗ Id)
(∑
i=1

ei ⊗ cij

)
= (cu⊗ Id)(cm(ej))

= (Id⊗ cu)(cm(ej)) = (Id⊗ cu)
(∑
i=1

ei ⊗ cij

)

=
n∑
i=1

cu(cij)ei =
n∑
i=1

δijei = ej .

This shows that ej belongs to CV for every j ∈ J1, nK and therefore that V is contained in
CV . �

Though the next lemma is not needed to obtain the main theorems, it clarifies the strategy
of the proof of the recognition theorem (see Theorem 3.9).

Lemma 3.4. — Let C be a counitary coalgebra and V a counitary right comodule. The
corestriction functor

comod(CV )→ comod(C)
is fully faithful and its essential image is the strictly full Abelian subcategory 〈V 〉 generated
by V .

Proof. — The fully faithfulness of the functor follows immediately from the fact that CV is
a subcoalgebra of C. Let W be a comodule which belongs to 〈V 〉. One has then the inclusion
CW ⊆ CV which implies that W is also a CV -comodule. Hence W belongs to the essential
image which therefore contains all of 〈V 〉.
Conversely, let W be a CV -comodule. Let A = C∨V be the corresponding finite Λ-algebra and
M = V ∨ and N = W∨ be the corresponding right A-modules. To see that W is in 〈V 〉, it
suffices to show that N is a subquotient of a direct sum of copies of M .
Observe thatM is a faithful right A-module. Indeed, let B = (e1, . . . , en) be a basis of V over
Λ and (e∨1 , . . . , e∨n) the corresponding basis of M . Let a ∈ A be an element such that ma = 0
for all m ∈M . Then, for every j ∈ J1, nK

0 = ma(ej) = (m⊗ a)(ca(ej)) = (m⊗ a)
(

n∑
k=1

ek ⊗ ckj

)

=
n∑
k=1

m(ek)a(ckj).

Publications mathématiques de Besançon – 2021



64 Tannakian categories and motives

In particular, by taking m = e∨i , we get that a(cij) = 0 for every i, j ∈ J1, nK. Since the cij ’s
span CV , we must have a = 0.
As a right A-module N is a quotient of a free module Am for some integer m > 1, hence it
is enough to show that A is a right A-submodule of a direct sum of copies of M . Since M is
a faithful right A-module, the morphism of right A-modules

A→Mn

a 7→ (e∨1 a, . . . , e∨na)

is injective. This concludes the proof. �

Let us get back to the reconstruction problem (see [50, §3.4]). Let C be a counitary Λ-
coalgebra. Let R be a commutative unitary Λ-algebra. Let φ ∈ HomΛ(C,R). If (V, ca) is a
right C-comodule, then we can define a R-linear endomorphism θφ(V, ca) of V ⊗Λ R has the
scalar extension of the Λ-linear morphism

(12) V
ca−→ V ⊗Λ C

Id⊗φ−−−→ V ⊗Λ R.

It is easy to see that the collection of the θφ(V, ca)’s for all comodules (V, ca) define an
endomorphism θφ of the functor

(13) ωR : coMod(C) ω−→ Vec(Λ) −⊗ΛR−−−−→Mod(R).

In this way, we obtain a Λ-linear morphism

HomΛ(C,R)→ End(ωR)(14)
φ 7→ θφ.

Since every counitary right C-comodule is a directed colimit of a system of counitary right C-
comodules of finite dimension over Λ (see Remark 2.25), the functor (13) and its restriction to
finite dimensional counitary right C-comodules have the same Λ-algebras of endomorphisms.
In the proof of Proposition 3.5, it is useful to be able to consider infinite dimensional counitary
right C-comodules.

Proposition 3.5. — Let C be a Λ-coalgebra and R be a unitary commutative Λ-algebra.
Then, the morphism (14) is an isomorphism of Λ-algebras.

Remark 3.6. — Let (V, ca) be a counitary right C-comodule. Note that V ⊗Λ C is a
counitary right C-comodule with

V ⊗Λ C
Id⊗cm−−−−→ V ⊗Λ C ⊗Λ C

as coaction. The definition of a comodule implies that the coaction ca : V → V ⊗Λ C is a
morphism of counitary right C-comodules. Moreover for a counitary comodule the coaction
ca : V → V ⊗ΛC is an injective morphism. In particular, every comodule (V, ca) in comod(C)
is a subobject of a finite direct sum of copies of the comodule (C, cm).

Proof. — Let θ be an endomorphism of the functor ωR. Since (C, cm) is right comodule over
C, we may consider the Λ-linear morphism φ(θ), obtained as the composition

φ(θ) : C Id⊗u−−−→ C ⊗Λ R
θ(C,cm)−−−−−→ C ⊗Λ R

cu⊗Id−−−−→ R.
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In this way, one defines a Λ-linear morphism

End(ωR)→ HomΛ(C,R)
θ 7→ φ(θ).

Let us show that (14) and this morphism are inverse one to the other. Let φ ∈ HomΛ(C,R).
Then, the diagram

C

Id

φ(θφ)

))
Id⊗u

//

cm
11

C ⊗Λ R
θφ // C ⊗Λ R

cu⊗Id
// R

C ⊗Λ C

Id⊗φ

OO

cu⊗Id
��

cu⊗φ

88

C

φ

MM

being commutative, we have φ(θφ) = φ.
Conversely, let θ be an element in End(ωR). Since θ is an endomorphism of functors, by
Remark 3.6, the square

V ⊗Λ R
θ(V,ca) //

ca⊗Id��

V ⊗Λ R

ca⊗Id��
V ⊗Λ C ⊗Λ R

θ(V⊗ΛC,Id⊗cm) // V ⊗Λ C ⊗Λ R

is commutative. Let d be the dimension of V over Λ. The right C-comodule (V ⊗ΛC, Id⊗cm)
being isomorphic to d copies of (C, cm), one sees that θ(V ⊗ C, Id ⊗ cm) = Id ⊗ θ(C, cm).
This implies that the diagram

V
Id⊗u //

ca
��

V ⊗Λ R
θ(V,ca) //

ca⊗Id
��

V ⊗Λ R

ca⊗Id
��

V ⊗Λ C
Id⊗Id⊗u //

Id⊗φ(θ)

33V ⊗Λ C ⊗Λ R
Id⊗θ(C,cm)// V ⊗Λ C ⊗Λ R

Id⊗cu⊗Id // V ⊗Λ R

is commutative and shows that the endomorphisms of functors θ and θφ(θ) coincide.
It remains to show that the Λ-linear morphism (14) is a morphism of Λ-algebras. Recall
that the unit of the algebra HomΛ(C,R) is the morphism C

cu−→ Λ u−→ R, so, using that
all our comodules are counitary, it is easy to see that it maps under (14) to the idendity
endomorphism of ωR.
Let φ, ψ be elements in HomΛ(C,R). Their product φ • ψ in HomΛ(C,R) is the morphism

C
cm−−→ C ⊗Λ C

φ⊗ψ−−−→ R⊗Λ R
m−→ R.
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Let (V, ca) be a counitary right C-comodule. The commutativity of the diagram

V ⊗Λ R

θψ(V,ca)
33

θφ•ψ(V,ca)
// V ⊗Λ R

V
Id⊗u
OO

ca //

ca **

V ⊗Λ C
Id⊗cm // V ⊗Λ C ⊗Λ C

Id⊗φ⊗ψ//

Id⊗Id⊗ψ

��

V ⊗Λ R⊗Λ R
Id⊗m

OO

V ⊗Λ C
ca⊗Id

33

Id⊗ψ ��
V ⊗Λ R

ca⊗Id //

θφ(V,ca)

oo

V ⊗Λ C ⊗Λ R

Id⊗φ⊗Id

77

shows that θφ•ψ = θφ ◦ θψ as desired. �

Theorem 3.7. — Let C be a counitary Λ-coalgebra. Then C is canonically isomorphic as a
counitary coalgebra to the colimit (taken over the poset of isomorphism classes of counitary
right C-comodules of finite dimension V ) of the coalgebras

End(ω|〈V 〉)∨.

Proof. — Assume that C is a counitary Λ-coalgebra. Proposition 3.5 provides a canonical
isomorphism of unitary Λ-algebras

C∨ := HomΛ(C,Λ) ∼−→ End(ω).

If C has finite dimension over Λ, then the above isomorphism can be dualized to give an
isomorphism of counitary Λ-coalgebras

C
∼−→ End(ω)∨.

If C is not finite dimensional over Λ, then, using (11), we obtain a canonical isomorphism of
counitary Λ-coalgebras

C = colimV ∈ob(comod(C))CV
∼−→ colimV ∈ob(comod(C)) End(ω|〈V 〉)∨. �

Note that Theorem 3.7 holds true whether C underlies a biunitary bialgebra structure or not.
If C is a (commutative) biunitary bialgebra, then the category comod(C) is a (symmetric)
monoidal category (see Proposition 2.19) and its tensor product induces a biunitary bialgebra
structure on

colimV ∈ob(comod(C)) End(ω|〈V 〉)∨.
for which the isomorphism in Theorem 3.7 becomes an isomorphism of biunitary bialgebras.
In particular, Theorem 3.7 provides an answer to the reconstruction problem which turns out
to be essential also in the understanding of the recognition problem.
Let us get back to the proof of Theorem 3.1 by refining Proposition 3.5 in the case where the
coalgebra underlies a biunitary bialgebra structure.

Proposition 3.8. — Let H be a biunitary bialgebra and R be a unitary algebra. Then the
isomorphism (14) induces a bijection

HomAlgΛ(H,R) ∼−→ End⊗(ωR).
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Proof. — Let θ be an endomorphism of the functor ωR and φ be the corresponding Λ-linear
morphism φ : H → R. Recall that φ is given by the composition

φ : H Id⊗u−−−→ H ⊗Λ R
θ(H,cm)−−−−−→ H ⊗Λ R

cu⊗Id−−−−→ R.

Let 1 be the trivial comodule, that is 1 : Λ Id⊗u−−−→ Λ ⊗Λ H. Note that θ(1) is equal to the
R-linear extension of

Λ Id⊗u−−−→ Λ⊗Λ H
Id⊗φ−−−→ Λ⊗Λ R = R

hence, θ(1) is the identity if and only if φ is unitary. Assume that θ is a tensor endomorphism
and consider the diagram

H ⊗Λ H

Id⊗u⊗Id⊗u
��

φ⊗φ

&&

H ⊗Λ H
m //

Id⊗Id⊗u⊗u
��

H

Id⊗u
��

φ

yy

H ⊗Λ R⊗Λ H ⊗Λ R
Id⊗τ⊗Id//

θ(H,cm)⊗θ(H,cm)
��

H ⊗Λ H ⊗Λ R⊗Λ R
m⊗m // H ⊗Λ R

θ(H,cm)
��

H ⊗Λ R⊗Λ H ⊗Λ R

cu⊗Id⊗cu⊗Id
��

Id⊗τ⊗Id// H ⊗Λ H ⊗Λ R⊗Λ R
m⊗m //

cu⊗cu⊗Id⊗Id
��

H ⊗Λ R

cu⊗Id
��

R⊗Λ R
Id // R⊗Λ R

m // R.

To see that φ is a morphism of unitary algebras, we have to check that the above diagram
is commutative. This amounts to showing that the central subdiagram is commutative (all
other subdiagrams are commutative). Since θ is a tensor endomorphism, the diagram

(15) H ⊗ΛR⊗ΛH ⊗ΛR

θ(H,cm)⊗θ(H,cm)
��

Id⊗τ⊗Id// H ⊗ΛH ⊗ΛR⊗ΛR
Id⊗Id⊗m// H ⊗ΛH ⊗ΛR

θ((H,cm)⊗(H,cm))
��

H ⊗ΛR⊗ΛH ⊗ΛR
Id⊗τ⊗Id// H ⊗ΛH ⊗ΛR⊗ΛR

Id⊗Id⊗m// H ⊗ΛH ⊗ΛR

is commutative. On the other hand, the multiplication m : H ⊗ H → H is a morphism of
comodules when H⊗H is endowed with the coaction of the tensor product (H, cm)⊗(H, cm)
and H with the comultiplication cm. Hence, the square

H ⊗Λ H ⊗Λ R

θ((H,cm)⊗(H,cm))
��

m⊗Id // H ⊗Λ R

θ(H,cm)
��

H ⊗Λ H ⊗Λ R
m⊗Id // H ⊗Λ R

is commutative too. This shows that φ is a morphism of algebras as soon as θ is a tensor
endomorphism.
Conversely assume that φ is a morphism of unitary algebras. By Remark 3.6, we know that
every comodule in comod(H) is a subcomodule of a finite direct sum of copies of (H, cm).
Hence to show that θ is a tensor endomorphism, it is enough to show that the diagram (15) is
commutative. Using the description of the endomorphism θ(V, ca) as the R-linear extension
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of the morphism (12), this amounts to showing that the diagram

H ⊗Λ H

cm⊗cm
��

coaction of (H, cm)⊗ (H, cm)

��
H ⊗Λ H ⊗Λ H ⊗Λ H

Id⊗φ⊗Id⊗φ
��

Id⊗τ⊗Id // H ⊗Λ H ⊗Λ H ⊗Λ H
Id⊗Id⊗m//

Id⊗Id⊗φ⊗φ
��

H ⊗Λ H ⊗Λ H

Id⊗Id⊗φ
��

H ⊗Λ R⊗Λ H ⊗Λ R
Id⊗τ⊗Id // H ⊗Λ H ⊗Λ R⊗Λ R

Id⊗Id⊗m // H ⊗Λ H ⊗Λ R

is commutative. That readily follows from the fact that φ is a morphism of algebras. �

Proof of Theorem 3.1. — LetH = O(G) be the commutative Λ-Hopf algebra associated with
G. Then, for every commutative unitary Λ-algebra R, the group of R-points of G is given by

G(R) = HomAlgΛ(H,R).
Now HomAlgΛ(H,R) is a submonoid of HomΛ(H,R) (see Remark 2.13) whose image by the
isomorphism of monoids (14) coincides with the submonoid End⊗(ωR) of End(ωR) formed by
the tensor endomorphisms of the functor ωR. Hence, (14) induces an isomorphism of monoids

G(R) = HomAlgΛ(H,R) ∼−→ End⊗(ωR).

Since G(R) is a group, so is End⊗(ωR) and therefore we have the equality End⊗(ωR) =
Aut⊗(ωR). This concludes the proof. �

3.2. The categorical recognition problem. —The problem now is to be able to deter-
mine when a given Abelian category is the category of finite dimensional representations of an
affine group scheme. We first answer the weaker problem of recognizing among Abelian cate-
gories those that are equivalent to a category of finite dimensional counitary right comodules
over some counitary coalgebra.
The main theorem of this section is the following.

Theorem 3.9. — Let A be a Λ-linear Abelian category. The following conditions are equiv-
alent:

1. the category A is Noetherian and Artinian and for every objects A,B in A the Λ-vector
space A(A,B) is finite dimensional;

2. there exist a Λ-coalgebra C and a Λ-linear exact equivalence of categories between A and
the category comod(C);

3. there exists a Λ-linear exact and faithful functor ω : A → vec(Λ).

The equivalence of 1. and 2. is a finite dimensional variant of a result of Takeuchi (see [51])
that we will not develop here. Instead, we will focus on the equivalence between 3. and 2. If
A is equivalent to comod(C) for some coalgebra, then the composition of the equivalence
with the forgetful functor defines a Λ-linear exact faithful functor ω : A → vec(Λ). Hence 3.
is a necessary condition for 2. Therefore, the main problem is to see, how a Λ-linear faithful
exact functor ω : A → vec(Λ) defines a counitary coalgebra C(ω) and enriches into an
equivalence of categories between A and the category of counitary right C(ω)-comodule of
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finite dimension. Theorem 3.13 is the central result for which our main reference is [50, §2.5]
(see also [23, 44])
Let A be a Λ-linear Abelian category and ω : A → vec(Λ) be a Λ-linear faithful exact functor.
Recall that we denote by 〈X〉 the Abelian subcategory generated by X in A. It is the strictly
full subcategory of A whose objects are the subquotients of finite direct sums of copies of X.
Let X be an object in A, and let S be a subset of ω(X). The intersection of the subobjects Y
of X such that S ⊆ ω(Y ) is the smallest subobject with this property, we call it the subobject
of X generated by S. An object will be said to be monogenic if it can be generated by one
element. Let X be an object of A. An element p ∈ ω(X) will be said to be contained in a
subobjet Y of X if ω(Y ) contains p.

Lemma 3.10. — Let A be a Λ-linear Abelian category such that A = 〈X〉 for some object
X in A. Let Y be a monogenic object in A. Then,

dimΛ ω(Y ) 6 (dimΛ ω(X))2.

Proof. — Let y ∈ ω(Y ) be a generator of Y . Since A = 〈X〉, the object Y is a quotient
Y ′/Y ′′ where Y ′ is isomorphic to a subobject of Xn for some integer n > 1.
Since ω is exact, the map ω(Y ′) → ω(Y ) is surjective and we may lift y to an element y′ in
ω(Y ′). Let Z be the subobject of Y ′ generated by y′. Then, its image in Y still contains y so
it is equal to Y . Hence, we get an epimorphism Z � Y where Z is a monogenic subobject of
some Xn. This implies dimΛ ω(Y ) 6 dimΛ ω(Z) and we may assume that Y = Z.
The exactness of ω implies that

dimΛ ω(Y ) 6 dimΛ ω(Xn) = n dimΛ ω(X).

Therefore, it is enough to show that one may choose the integer n so that n 6 dimΛ ω(X).
Note that ω(Y ) is a linear subspace of ω(X)n and the generator y of Y can be written
y = (y1, . . . , yn) with y1, . . . , yn in ω(X).
If n > dimΛ ω(X), then y1, . . . , yn are not linear independant, and there exists (λ1, . . . , λn) ∈
Λn \ {0} such that

∑n
i=1 λiyi = 0. Let A ∈ Mn−1,n(Λ) be a matrix such that the square

matrix 
λ1 · · · λn

A


is invertible.
Consider the morphism Xn → X defined by the matrix (λ1, . . . , λn) and let K be its kernel.
By assumption K contains y, and since Y is generated by y, it must be contained in K. The
composition

K → Xn A−→ Xn−1

is an isomorphism in A since it is after applying the faithful functor ω. Therefore K is
isomorphic to Xn−1 and by induction we may assume that n 6 dimΛ ω(X). This concludes
the proof. �

Lemma 3.11. — Let A be a Λ-linear Abelian category and ω : A → vec(Λ) be a Λ-linear
faithful exact functor. If there exists an object X ∈ A such that A = 〈X〉, then the functor
ω : A → vec(Λ) is representable.
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Proof. — By Lemma 3.10, the dimension of ω(Y ) can take only finitely many values when Y
is monogenic. Hence, among all monogenic object in A we may choose one whose image by
ω has the greatest dimension possible. Let P be such an object and p ∈ ω(P ) be a generator
of P .
Let us show that the pair (P, p) represents the functor ω. Let A an object in A and a ∈ ω(A).
We have to show that there exists one and only one morphism f : P → A in A such that ω(f)
maps p to a. The uniqueness follows immediately from the fact that p generates P . Indeed,
let f, g be two such morphisms. Then Ker(f − g) is a subobject of P that contains p. Since
P is generated by p, we must have Ker(f − g) = P that is f = g.
Let us show the existence. Let B be the subobject of P⊕A generated by (p, a) and π1 : B → P ,
π2 : B → A be the two projections. Since P is generated by P , the projection π1 : B → P is
an epimorphism in A. In particular, we have

dimΛ ω(B) > dimΛ ω(P ).

Since B is monogenic and the dimension of the image of P by ω has maximal dimension
among all monogenic objects, we must have dimΛ ω(B) = dimΛ ω(P ). Hence the projection
map π1 : B → P is an isomorphism after applying ω and therefore is an isomorphism. The
composition of the

P
π−1

1−−→ B
π2−→ A

is a morphism in A whose image by ω maps p to a. �

Proposition 3.12. — Let A be a Λ-linear Abelian category and ω : A → vec(Λ) be a Λ-
linear faithful exact functor. If there exists an object X ∈ A such that A = 〈X〉, then the
functor ω induces an equivalence

A ω−→mod(End(ω)) −→ comod(End(ω)∨).

Proof. — By Lemma 3.11, the functor ω is representable by a pair (P, p) where P is in A
and p ∈ ω(P ). In other words, for every object A in A, ω(A) is canonically isomorphic to
HomA(P,A) and End(ω) to EndA(P ). Let mod(EndA(P )) be the category of left EndA(P )-
modules that are finite dimensional over Λ.
We have to prove that the Λ-linear faithful exact functor

h : A →mod(EndA(P ))(16)
A 7→ HomA(P,A)

is an equivalence of categories (which means that we have to show that it is full and essentially
surjective). Let R = EndA(P ). Every object in mod(R) is of finite presentation over R, thus
one can find an exact sequence

Rm
φ−→ Rn →M → 0.

The matrix of φ in the canonical basis is an element in Mn,m(R) that defines an element φP
in HomA(Pm, Pn) whose image by HomA(P,−) coincides with φ. The image under (16) of
the cokernel of φP is therefore isomorphic to M . This shows that (16) is essentially surjective
and that moreover every object in A fits into an exact sequence

(17) Pm → Pn → Y → 0.
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Let Z be another object in A. The short exact sequence (17) induces a commutative diagram

0 // HomA(Y, Z) //

��

HomA(Pn, Z) //

��

HomA(Pm, Z)

��
0 // HomR(h(Y ), h(Z)) // HomR(Rn, h(Z)) // HomR(Rm, h(Z))

in which all rows are exact sequences. To conclude the proof, it is enough to remark that, for
every integer n > 1, the map induced by (16)

HomA(Pn, Z)→ HomR(Rn, h(Z))

is an isomorphism. �

Let C(ω) be the counitary Λ-coalgebra defined by

C(ω) = colimX∈ob(A) End(ω|〈X〉)∨

where the colimit is taken over the directed poset of isomorphism classes of objects in A (see
Theorem 3.7). For such an isomorphism class, we set

CX(ω) = End(ω|〈X〉)∨

(see Lemma 3.4).

Theorem 3.13. — Let A be a Λ-linear Abelian category and ω : A → vec(Λ) be a Λ-linear
faithful exact functor. Then, the functor ω induces an equivalence

(18) A ω−→ comod(C(ω)).

Proof. — Let X,Y be objects in A such that X ∈ 〈Y 〉. Then, one has a canonical morphism

(19) End(ω|〈Y 〉)→ End(ω|〈X〉).

By Lemma 3.11, the functor ω|〈X〉 is representable by a pair (P, p) where P ∈ 〈X〉 is mono-
genic and p ∈ ω(P ) generates P . Similarly the functor ω|〈Y 〉 is representable by a pair (Q, q)
where Q ∈ 〈Y 〉 is monogenic and q ∈ ω(Q) generates Q.
In particular, there exists one and only morphism π : Q → P in A whose image by ω maps
q to p. The induced morphism

ω(π) : ω(Q)→ ω(P )
coincides with (19). Moreover the image of π is a subobject of P that contains p and therefore
is equal to P . This means that π is an epimorphism and implies that (19) is surjective. Hence,
the canonical morphism

CX(ω) = End(ω|〈X〉)∨ → CY (ω) = End(ω|〈Y 〉)∨

is injective. This implies that the morphism CX(ω)→ C(ω) is injective also.
If X is an object in A, then the functor ω induces a commutative square

〈X〉 //

ω|〈X〉
��

A
ω

��
comod(CX(ω)) // comod(C(ω))
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and we know by Proposition 3.12 that ω|〈X〉 is an equivalence. Note that the inclusion of 〈X〉
in A is obviously fully faithful and that the functor

comod(CX(ω))→ comod(C(ω))

is also fully faithful since the canonical morphism of coalgebra CX(ω) → C(ω) is injective.
From this, it follows that (18) is fully faithful. It remains to show that it is essentially
surjective. Let V be a right C(ω)-comodule such that V is finite dimensional over Λ. The
coaction is a morphism of Λ-vector spaces

ca : V → V ⊗Λ C(ω) = colimX∈ob(A) V ⊗Λ CX(ω).

Since V has finite dimension over Λ, there exists an object X in A such that the coaction
factorizes in a morphism

ca : V → V ⊗Λ CX(ω).

It is easy to see, using the injectivity of CX(ω)→ C(ω), that this morphism defines a structure
of right CX(ω)-comodule over V . Now we can apply Proposition 3.12 to conclude that (V, ca)
is in the essential image of the functor (18). �

It is possible to deduce Theorem 1.4 from Theorem 3.13. Let us briefly sketch the idea. Let
(A, ω) be a neutralized Tannakian category. By Theorem 3.13, the functor ω induces an
equivalence

(20) A ω−→ comod(C(ω))

where C(ω) be the Λ-coalgebra defined by

C(ω) = colimX∈ob(A) End(ω|〈X〉)∨.

The symmetric monoidal structure on A induces a commutative biunitary bialgebra stucture
on C(ω) for which (20) becomes symmetric monoidal when comod(C(ω)) is endowed with
the symmetric monoidal structure defined by the bialgebra structure (see [25, II, Proposi-
tion 2.16]). The rigidity of A implies finally that C(ω) is a Hopf algebra.
The core result behind Theorem 1.4 is thus Theorem 3.13. The refinement that Theorem 1.4
represents lies in the possibility to translate the additional requirements on A and ω into
properties of the coalgebra C(ω).

4. Motives

For our discussion, it will be enough to assume that k is field of characteristic zero with a
fixed embedding σ : k ↪→ C. This assumption simplifies the exposition while still retaining
the main problems.
For example, under this condition, Betti cohomology provides a Weil cohomology with ratio-
nal coefficients. As explained by Serre (see [28, §1.7]), such a Weil cohomology cannot exist
over the finite field Fp2 .
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4.1. The problem of its application to (pure) motives. —Grothendieck introduced
the notion of pure motive (see [22, p. 173]) as a way to encapsulate in one object the common
properties of the various cohomology theories that he and his school had defined for smooth
projective varieties (the so called classical Weil cohomology among which `-adic cohomology,
algebraic de Rham cohomology and Betti cohomology).
From the geometric point of view, the category of Chow motives introduced by Grothendieck
is very natural (see Section 4.1 for its construction). Its morphisms are given by the Chow
groups of algebraic cycles modulo rational equivalence and therefore the category retains all
the information contained in the Chow groups.
As part of Grothendieck’s vision, categories of (pure or mixed) motives were meant to provide
a motivic Galois theory via the Tannakian formalism developed in the thesis of Saavedra under
his direction [48] (see [23, 25] also).
However, as we shall see in this section, the natural strategy, based on using Betti cohomology,
to build a Tannakian category from the category of Chow motives leads to two standard
conjectures: (a) the algebraicity of Künneth projectors (b) the coincidence of homological
equivalence with numerical equivalence (with rational coefficients).
In the next sections, we will explain how two different extensions of the classical Tannaka
duality, either the weak Tannakian formalism of Ayoub [11, 12] or the approach of Nori using
quiver representations [26], allow to construct unconditionally motivic Galois groups that
encompass pure motives as well as mixed motives.
Note that, to avoid having to rely on conjectures, other approaches have been developed
long before. The first approach, initiated by Deligne (see [25]), consists roughly in adding to
algebraic cycles enough of the cohomology classes expected to be algebraic to avoid assuming
the conjectures. It has been refined by André with his unconditional theory of motives [1].
André and Kahn have developed a different strategy in [4, 5] to circumvent the standard
conjecture on numerical and homological equivalences (modulo rational coefficients).
Let us recall briefly the construction of the category of (rational) Chow motives. For a more
detailed account of the definition and properties of pure motives we refer to [2, 39] or to
Scholl’s survey article [49].
Let X and Y be smooth projective k-varieties. If X is connected of dimension d, an algebraic
correspondence of degree r (with rational coefficients) from X to Y is an element of the
Q-vector space

CHr+d(X ×k Y,Q).

When X is no longer connected, one sets

Corrr(X,Y ) =
n⊕
i=1

CHr+di(Xi ×k Y,Q)

where X1, . . . , Xn are the connected components of X and d1, . . . , dn their dimensions. Alge-
braic correspondences can be composed using intersection theory via the formula

Corrr(Y,Z)⊗Q Corrs(X,Y )→ Corrr+s(X,Z)(21)
(β, α) 7→ β ◦ α = p13∗(p∗23β a p

∗
12α)

Objects in the category Mrat(k,Q) are triples (X, p, a) where X is a smooth projective k-
variety, p ∈ Corr0(X,X) is an idempotent correspondence and a ∈ Z is an integer. Morphisms
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are given by
HomMrat(k,Q)((X, p, a), (Y, q, b)) = qCorrb−a(X,Y )p,

the composition being induced by (21). The category Mrat(k,Q) is a Q-linear pseudo-abelian
category (i.e. projectors split) such that End(1) = Q and we have a functor

h : SmProp
k →Mrat(k,Q)

sending a variety X to (X, IdX , 0) and a morphism f to the correspondence t[Γf ] where Γf
denotes the graph (recall that if α is an algebraic cycle on a product X ×k Y , then tα is
the algebraic cycle on Y ×k X obtained by permutation of the factors). The n-th Tate twist
M(n) of a motive M = (X, p, a) is defined to be the motive M(n) = (X, p, a+ n). With this
in mind, it is very convenient to denote the motive defined by a triple (X, p, a) by ph(X)(a).
It is the direct summand of the motive h(X)(a) cut-out by p.
The unit motive is 1 = (Spec(k), Id, 0) and it is easy to see that there is a canonical decom-
position of the motive of P1

k given by h(P1
k) = 1⊕ 1(−1).

The category Mrat(k,Q) is a rigid symmetric monoidal category (see [2, §4.1.4]). If X is a
smooth projective k-variety of pure dimension d, p is an idempotent algebraic correspondence
and a is an integer, the dual of the motive ph(X)(a) is given by

ph(X)(a)∨ = tph(X)(d− a)

(the duality is given by the transposition on morphisms).
Betti cohomology of smooth projective k-varieties (defined using the embedding σ : k ↪→ C)
provides a Weil cohomology theory with rational coefficients (see [2, 3.3.1.1 Definition] for
the definition) and therefore a Q-linear symmetric monoidal functor

(22) H∗ : Mrat(k,Q)→ vec(Q)Z

where vec(Q)Z denotes the category of finite dimensional Z-graded Q-vector spaces (see [2,
Proposition 4.2.5.1]). The cycle class map in Betti cohomology is simply the map induced by
the realization functor

HomMrat(k,Q)(1, h(X)(n)) H∗ // Homvec(Q)Z(Q, H∗(X)(n))

CHn(X) cl // H2n(X)(n).

Let X be a smooth projective k-variety of pure dimension d. Recall that a cycle α ∈
CHn(X,Q) is said to be numerically equivalent to zero if for every cycle β ∈ CHd−n(X,Q)
the degree of the zero cycle α a β obtained by intersecting α and β is equal to zero. Since

deg(α a β) = Tr(cl(α) ` cl(β))

that is the degree of the intersection of the cycles α and β is equal to the image by the trace
map Tr : H2d(X)(d) → Q of the cup product of their cohomology classes, a cycle which is
homologically trivial is also numerically trivial. This defines the following quotients of the
Chow group

(23) CHn(X,Q)� Anhom(X,Q)� Annum(X,Q)
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We can mimic the construction of the category of Chow motives by replacing, in the definition
of algebraic correspondences, the Chow groups by the quotients in (23) to obtain the cat-
egory Mhom(k,Q) of homological motives (aka. Grothendieck’s motives) and the category
Mnum(k,Q) of numerical motives. The hierarchy between the three equivalence relations
implies that there are canonical Q-linear functors

Mrat(k,Q)→Mhom(k,Q)→Mnum(k,Q).
which are symmetric monoidal. Note that the category Mrat(k,Q) is not Abelian (see [49,
Corollary 3.5]) and that Mnum(k,Q) on the contrary is Abelian semi-simple by Jannsen’s
theorem [37].
The functor (22) is not faithful since Chow groups may be infinite dimensional while on the
contrary Betti cohomology groups are finite dimensional. To obtain a faithful Q-linear functor
from (22), it is necessary (and sufficient) to kill all the cycles α that are homogically trivial.
In other words, (22) induces a faithful symmetric monoidal Q-linear functor

(24) Mhom(k,Q)→ vec(Q)Z.
Now we would like to have a fiber functor that takes its values in the category of finite
dimensional vector spaces and not in the category of finite dimensional graded vector spaces.
To do so, we would like to simply consider the functor

Mhom(k,Q)→ vec(Q)(25)

M 7→
⊕
i∈Z

H i(M)

that is the composition of (24) and the Q-linear functor

vec(Q)Z → vec(Q)(26)

V ∗ 7→
⊕
i∈Z

V i.

The problem is that (26) is a monoidal functor but is not a symmetric monoidal functor. The
symmetry isomorphism V ∗ ⊗W ∗ ∼−→ W ∗ ⊗ V ∗ in vec(Q)Z is given by v ⊗ w 7→ (−1)pqw ⊗ v
for v of degree p and w of degree q, whereas in vec(Q) the symmetry isomorphism is simply
given by v ⊗ w 7→ w ⊗ v.
As a consequence the functor (25) is not a symmetric monoidal functor. A way to remedy this
problem is to redefine the commutativity constraint in Mhom(k,Q) so that (25) becomes a
symmetric monoidal functor. This is where we enter the realm of conjectures: to do so we
have to know that the grading on H∗(M) comes from a grading on the homological motive
M . It is sufficient to know it for homological motives of the form M = h(X) where X is a
smooth projective k-variety which is precisely the content of the standard conjecture on the
algebraicity of the Künneth projectors.

Conjecture 4.1 (standard conjecture C(X)). — Let X be a smooth projective variety
of dimension d over k. The Künneth projectors

πi ∈ End(H∗) : H∗(X)� H i(X) ↪→ H∗(X)
are algebraic i.e. belong to

Mhom(k;Q)(h(X), h(X)) ↪→ End(H∗(X)).
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In particular C(X) provides a canonical weight decomposition of the homological motive of
X

h(X) = h0(X)⊕ h1(X)⊕ · · · ⊕ h2d−1(X)⊕ h2d(X)
where hi is the direct summand of the homological motive of X cut-off by the Künneth pro-
jector πi. Assuming standard conjecture C, we can redefine the commutativity constraint in
Mhom(k,Q) using the Koszul rule of signs so that (25) becomes a Q-linear faithful symmet-
ric monoidal functor. As customary, we denote by ˙Mhom(k,Q) the category of homological
motives with the new commutativity constraint.
To be able to see the tensor functor

˙Mhom(k,Q)→ vec(Q)

M 7→
⊕
i∈Z

H i(M)

has a fiber functor of a (neutral) Tannakian category, it remains to know that the category
Mhom(k,Q) is Abelian. As shown by André in [1, Appendice], the category of Grothendieck’s
motives (aka. homological motives) is Abelian if and only if: (a) homogical equivalence co-
incides with numerical equivalence (standard conjecture D) ; (b) the Künneth projectors are
algebraic (standard conjecture C) . This result is a refinement of Jannsen’s theorem [37]
which shows that the category of pure motives for a given adequate equivalence relation is a
semi-simple Abelian category if and only of the equivalence relation is numerical equivalence.

4.2. Mixed motives. —As we have seen in the previous section, pure motives are limited
to the description of the cohomology of smooth projective (or proper) varieties. As soon as a
variety is not proper, its cohomology is usually not pure anymore but can still be described
in terms of pure pieces using resolution of singularities and a smooth proper compactification
with a strict normal crossing divisor as boundary. The idea of mixed motives and the related
notion of weights were introduced by Grothendieck to understand precisely this phenomenon
and explain how the cohomology of (smooth non proper) varieties could be described in terms
of pure motives (with applications towards the Weil conjectures in mind).
In [27, p. 193, p. 237], Grothendieck considers the formalism of the six operations and the be-
haviour of weights under these operations as intimately related to its theory of motives which
he sees as the ultimate goal of his cohomological program started with `-adic cohomology.
In [29], he envisions the existence, for every separated k-scheme of finite type X, of a Q-linear
Abelian category MM(X) of mixed motives (a.k.a. mixed motivic sheaves) that realizes
to constructible `-adic sheaves (the realization functor being exact, faithful and symmetric
monoidal) and such that their derived category are endowed with a formalism of the six
operations compatible with the one developed by him and his school in `-adic cohomology.
This vision has been developed and made more clear by Bĕılinson in [16, 5.10]. Note that in
loc. cit., the idea of a perverse variant of the constructible mixed motivic sheaves is added
to the picture. Categories of perverse sheaves have better (algebraic) properties than the
categories of constructibles sheaves. They are Noetherian and Artinian (hence every object
has finite length), which make them more natural from the viewpoint of weight filtrations
(see [17, Théorème 5.3.5] and the observation of Deligne in [24, 2.1]).
We refer to [38, Conjecture 4.8] for a detailed exposition of the properties that the conjectural
category of mixed motives (denoted by DM (X) in [38]) is expected to have. Briefly, one hopes
for:
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1. a formalism of the six operations and a theory of nearby cycles;

2. realization functors such as Betti realization, Hodge realization, `-adic realization and
so on;

3. a close relation to Chow groups that should appear as Hom groups in the triangulated
category;

4. the existence of a motivic t-structure (actually one hopes for two t-structures: the con-
structible one and its perverse variant).

After pioneering works by Levine, Hanamura and other mathematicians, motivic stable ho-
motopy theory developed by Morel and Voevodsky (see [40, 45, 53]) has led to the best
known candidate for the triangulated categories of mixed motives. These are the categories
of étale motives with rational coefficients further studied by Ayoub in [6, 7, 10] (see [9] for
an overview).
Let X be a quasi-projective k-scheme. The triangulated category of étale motives with ra-
tional coefficients DAét(X,Q) has been introduced in [6, 7], where it is a particular case
of the category SHM(X) obtained by choosing the topology to be the étale topology and
the model category M of coefficients to be the model category Ch(Q) of chain complexes
of Q-vector spaces (with the projective model structure). It is part of a stable homotopic
2-functor DAét(−,Q) on the category of quasi-projective k-schemes as defined in [7, Défi-
nition 2.4.13]. As shown by Ayoub in [6, 7], the categories DAét(X,Q) are endowed with a
formalism of the six operations as envisioned by Grothendieck. More precisely, each of these
categories is equipped with a tensor product ⊗ and an internal Hom and every morphism of
quasi-projective k-schemes f : X → Y induces four triangulated functors

DAét(X,Q)
f∗
// DAét(Y,Q)

f∗oo f! // DAét(X,Q).
f !
oo

These six functors satisfy the usual compatibilities and adjunctions. The theory developed
in [6] provides also nearby cycles functors.
The category of constructible motives DAét

ct(X,Q) is defined as the smallest strictly full
triangulated subcategory of DAét(X,Q) stable by direct factors, Tate twists, and containing
the homological motives of smooth quasi-projectiveX-schemes. As shown in [7, Scholie 2.2.34]
these categories of constructible motives are stable under the six operations (and the nearby
cycles functors).
With a scheme Y ∈ Sm /X is associated a homological motive MX(Y ) given by the TX -
spectrum Sus0

TX
(X ⊗Q). In terms of the six operations, it is given by

MX(Y ) = a!a
!1X

where a : Y → X is the structural morphism. Its dual, given by
M∨X(Y ) = a∗a

∗1X ,

is called the cohomological motive of Y .
The category DAét

ct(k,Q) is equivalent to the triangulated category of geometric motives
DMgm(k,Q) considered by Voevodsky in [54] and built out of finite correspondences. This
result is a particular case of [21, Corollary 16.2.22] (see also [10, Théorème B.1]). As a
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consequence, the work of Voevodsky, Friedlander and Suslin (see [55]), provides a canonical
isomorphism

CHi(X,Q) ' HomDAét(k,Q)(1k,M
∨
k (X)(i)[2i])

for every smooth quasi-projective k-scheme and every integer i ∈ Z. These isomorphisms
induce a Q-linear fully faithful symmetric monoidal functor

Mrat(k,Q)→ DAét
ct(k,Q)

h(X) 7→ M∨k (X).

Various realization functors have been constructed [8, 10, 32, 34, 35]. The Betti realization
has been constructed in [8]. It takes the form of an adjunction

Bti∗X : DAét(X,Q)� D(Xan,Q) : BtiX∗
the right hand side being the unbounded derived category of the Abelian category of sheaves
of Q-vector spaces over the analytic space Xan.
Moreover the functor Bti∗X is a symmetric monoidal functor and induces a functor

Bti∗X : DAét
ct(X,Q)→ Db

c (Xan,Q)

which is compatible with the six operations. Here, the right-hand side Db
c (Xan,Q) denotes

the triangulated subcategory of D(Xan,Q) formed by the bounded complexes of sheaves with
algebraically constructible cohomology sheaves.

Remark 4.2. — Note that to get a Betti realization in the form of an adjunction, it is
necessary to use the big categories of motives and not only the smaller category of con-
structible motives (geometric motives). This point turns out to be very important in the
weak Tannakian formalism developed by Ayoub.

For X = Spec(k), the Betti realization provides an adjunction

Bti∗ : DAét(k,Q)� D(Q) : Bti∗
where the right handside is the derived category of Q-vector spaces and induces a symmetric
monoidal functor

(27) Bti∗ : DAét
ct(k,Q)→ Dbvec(Q)

Remark 4.3. — Note that the derived category Dbvec(Q) is canonically equivalent to
vec(Q)Z and that Bti∗ is an extension of the Betti realization for Chow motives (22).

Hence, the categories of étale motives with rational coefficients satisfy the expected properties
except for the existence of a motivic t-structure which remains one of the main conjectures
of the theory:

Conjecture 4.4. — There exists on the triangulated category DAét
ct(k,Q) a non-degenerate

t-structure such that the tensor product and the realization functor

Bti∗ : DAét
ct(k,Q)→ Dbvec(Q)

are t-exact.
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As shown by Bĕılinson in [15], the previous conjecture implies the standard conjectures. Let
MM(k) be the heart of such a t-structure. The conjecture also implies that MM(k) is a
neutral Tannakian category with the induced functor

Bti∗ :MM(k)→ vec(Q)
as fiber functor (in particular it is faithful). In particular, one could then apply the classical
Tannakian duality in the form described above to this functor and develop a motivic Galois
theory for smooth k-varieties.
The conjecture also implies the so-called conservativity conjecture:

Conjecture 4.5. — The realization functor
Bti∗ : DAét

ct(k,Q)→ Dbvec(Q)
is conservative, that is reflects isomorphisms.

The conservativity of the Betti realization is among the deepest conjectures in the theory of
motives and implies many results in particular some deep existence statement in the theory
of algebraic cycles.
The expected relation between the motivic t-structure of Conjecture 4.4 and the category of
Grothendieck’s motives (aka. homological motives) can be mode more clear as follows. Here
we assume standard conjectures C and D to be true. One expects the existence of a Q-linear
fully faithful symmetric monoidal functor
(28) ˙Mhom(k,Q)→MM(k)
such that the squares are commutative (up to isomorphisms of functors)

Mrat(k,Q) //

��

DAét
ct(k,Q)

⊕i∈ZHi

��
˙Mhom(k,Q) //MM(k)

Mrat(k,Q) //

hi

��

DAét
ct(k,Q)

Hi

��
˙Mhom(k,Q) //MM(k).

Note that, in the square on the left, both vertical functors are monoidal but not symmetric
monoidal. Moreover, the essential image of (28) should be the strictly full subcategory of
MM(k) formed by the pure (semi-simple) motives.

4.3. Étale motives: sketch of the construction. —We end this section, by sketching
the construction of the category of étale motives over a quasi-projective k-scheme X. For
model categories introduced by Quillen in [46] we refer e.g. to [30, 31].
Let X be a quasi-projective k-scheme. Let Sm /X be the category of smooth quasi-projective
X-schemes. The starting point of the construction is the category of presheaves of Q-vector
spaces PSh(Sm /X,Ch(Q)) endowed with its projective model structure: the fibrations (resp.
equivalences) are the maps of presheaves of complexes X → Y such that X (Y )→ Y (Y ) is
a epimorphism (resp. a quasi-isomorphism) in Ch(Q) for every Y ∈ Sm /X.
By left Bousfield localization one obtains the ét-local model structure. For the ét-local struc-
ture, the weak equivalences are the morphisms of complexes of presheaves that induce iso-
morphisms on the étale sheafification of the homology presheaves.
The ét-local model structure is then further localized with respect to the class of maps

A1
Y ⊗Q→ Y ⊗Q
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where Y ∈ Sm /X. The left Bousfield localization of the ét-local model structure with re-
spect to the above maps is called the (A1, ét)-local projective model structure. Its homotopy
category

DAeff,ét(X,Q) := HoA1,ét(PSh(Sm /X,Ch(Q)))
is called the category of effective étale motives (with rational coefficients).
The last step of the construction is the stabilization. Let TX be the presheaf

TX := Gm,X ⊗Q
1X ⊗Q

.

Consider the category SptTX (PSh(Sm /X,Ch(Q))) of TX -spectra of presheaves of complexes
of Q-vector spaces (see [6, Définition 4.3.6]). The (A1, ét)-local projective model structure
induces on it a model structure (see [6, Définition 4.3.29]): the so-called (A1, ét)-local stable
projective model structure. Its homotopy category

DAét(X,Q) := Ho(A1,ét)−st(SptTX (PSh(Sm /X,Ch(Q))))

is the triangulated category of étale motives with rational coefficients.

5. Quiver representations and Tannaka duality

5.1. Coalgebra associated with a quiver representation. — Let Λ be a field. The
theory extends with very little changes to Dedekind rings. Note that over more general
Noetherian rings, a part of it still holds but one looses the relation with coalgebras (see [33]).
Let Q be a quiver and

T : Q → vec(Λ)
be a representation of Q. Recall that a quiver is simply a directed graph or equivalently a
collection of vertices and for every vertices p, q ∈ Q a collection Q(p, q) of edges (Nori uses the
terminology diagram). With such a representation, Nori associates a counitary Λ-coalgebra
H(T ).
Let us explain its construction. It is done in two steps: one first look at the case where
the quiver Q has only finitely many objects and then look at the general case by a colimit
argument. The starting point is the ring of endomorphisms of the representation.

Definition 5.1. — The ring EndΛ(T ) of endomorphisms of T is the subring of

(29)
∏
q∈Q

EndΛ(T (q))

formed by the elements e = (eq)q∈Q such that for every objects p, q ∈ Q and every morphism
m ∈ Q(p, q) the square

T (p)
T (m) //

ep

��

T (q)
eq

��
T (p)

T (m) // T (q)
is commutative.
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Assume that Q has finitely many objects. By assumption, the product in (29) is finite and
thus EndΛ(T ) is a finite Λ-algebra. Its Λ-linear dual

H(T ) := EndΛ(T )∨

is therefore a counitary Λ-coalgebra. For every object q ∈ Q, the finite dimensional Λ-vector
space T (q) has a natural structure of left EndΛ(T )-module via the projection

EndΛ(T )→ EndΛ(T (q))

and thus a structure of counitary right H(T )-comodule. This shows that the representation
T may be lifted to a representation

T : Q → comod(H(T ))

by simply viewing T (q) as a counitary right H(T )-comodule.
Let now Q be a quiver which may have infinitely many objects. Consider for every finite full
sub-quiver Q′ ⊆ Q, the induced representation

T |Q′ : Q′ → vec(Λ)

and the associated coalgebra H(T |Q′). If Q′′ is a finite full subquiver of Q that contains Q′,
the inclusion Q′ ⊆ Q′′ induces by projection a morphism of Λ-algebras∏

q∈Q′′
EndΛ(T (q))→

∏
q∈Q′

EndΛ(T (q))

which induces a morphism of unitary Λ-algebras EndΛ(T |Q′′)→ EndΛ(TQ′). This provides a
morphism of counitary Λ-coalgebras H(T |Q′) → H(T |Q′′). The counitary Λ-coalgebra asso-
ciated by Nori with the representation T : Q → mod(Λ) is obtained by taking the colimit
over all finite full sub-quivers of Q:

H(T ) := colimQ′⊆QH(T |Q′).

For every object q ∈ Q, the Λ-vector space T (q) inherits a structure of counitary right H(T )-
comodule and the representation T factors as a representation

T : Q → comod(H(T ))

via the forgetful functor comod(H(T ))→ vec(Λ) which is Λ-linear exact and faithful.
Now let us consider the functoriality of this construction. Let T1 : Q1 → vec(Λ) and T2 :
Q2 → vec(Λ) be two representations of quivers. Let Q : Q1 → Q2 be a morphism of quivers,
and α : T2 ◦Q→ T1 be an invertible 2-morphism. Assume first that Q1 and Q2 have finitely
many objects. Consider the morphism of rings:

(30)
∏

q2∈Q2

EndΛ(T2(q2)) Πα−−→
∏

q1∈Q1

EndΛ(T1(q1))

where the map Πα is defined for every e = (eq2)q2∈Q2 by

Πα(e) = (α · eQ(q1) · α−1)q1∈Q1 .
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If for every objects p2, q2 ∈ Q2 and every morphism m2 ∈ Q2(p2, q2) the square

T2(p2)
T2(m2)//

ep2
��

T2(q2)
eq2
��

T2(p2)
T2(m2)// T2(q2)

is commutative, then in particular for every objects p1, q1 ∈ Q1 and every morphism m1 ∈
Q1(p1, q1) the square

T1(p1)
T1(m1)//

Πα(e)p1
��

T1(q1)

Πα(e)q1
��

T1(p1)
T1(m1)// T1(q1)

is commutative. This shows that the morphism of rings (30) induces a morphism of Λ-algebras
EndΛ(T2) → EndΛ(T1) and thus a morphism of counitary Λ-coalgebras H(T1) → H(T2). If
Q1 and Q2 do not have finitely many objects, then for any finite sub-quivers Q′1 ⊆ Q1 and
Q′2 ⊆ Q2 such that Q(Q′1) ⊆ Q′2 one has a morphism of counitary Λ-coalgebras

H(T1|Q′1)→ H(T2|Q′2).

By taking the colimit one obtains a morphism of counitary Λ-coalgebras H(T1) → H(T2).
This morphism induces by corestriction a Λ-linear exact functor
(31) comod(H(T1))→ comod(H(T2)).
The invertible 2-morphism α lifts and provides an invertible natural transformation α :
T 2 ◦Q⇒ (31) ◦ T 1. The diagram

Q1
Q //

T 1
��

Q2

T 2
��

comod(H(T1))
(31) // comod(H(T2))

is commutative up to the invertible natural transformation α.

5.2. Relation with classical Tannaka duality. — Let A be a Λ-linear Abelian category
and ω : A → vec(Λ) be a Λ-linear faithful exact functor. With ω we can associate two
different counitary Λ-algebras. The first one is obtained via the classical Tannaka duality
and is defined by

C(ω) = colimX∈ob(A) End(ω|〈X〉)∨

where the colimit is taken over the directed poset of isomorphism classes of objects in A. The
other one H(ω) is obtained via Nori’s construction by viewing A simply as a quiver (that is
we forget about the composition in A).
We now compare these two coalgebras (see Proposition 5.2). Pick a finite full subquiver Q
of A. Let X1, . . . , Xn be the vertices in Q. Let 〈X1, . . . , Xn〉 be the strictly full Abelian
subcategory of A generated by X1, . . . , Xn. One has the inclusions

Q ⊆ 〈X1, . . . , Xn〉 ⊆ 〈X1 ⊕ · · · ⊕Xn〉.
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They induce, by restriction, a morphism of finite Λ-algebras

(32) End(ω|〈X1⊕···⊕Xn〉)→ End(ω|Q)

and therefore a morphism of counitary Λ-coalgebras

End(ω|Q)∨ → End(ω|〈X1⊕···⊕Xn〉)
∨ → colimX∈ob(A) End(ω|〈X〉)∨ =: C(ω).

By enlarging the finite subquiver Q, one obtains eventually a canonical morphism of Λ-
coalgebras:

(33) H(ω) := colimQ⊆A End(ω|A)∨ → colimX∈ob(A) End(ω|〈X〉)∨ =: C(ω).

Proposition 5.2. — The canonical morphism (33) is an isomorphism of counitary Λ-
coalgebras.

Note that there is no reason for the morphism (32) to be already an isomorphism in general.
However, with the help of Lemma 3.11, the proposition is not difficult to obtain. Indeed,
given an object X in A, it ensures that the functor ω|〈X〉 is representable by a pair (P, p)
where P is an object in A and p is an element in the vector space ω(P ). Consequently, the
morphism

End(ω|〈X〉)→ End(ω|Q),

induced by the inclusion of the quiver Q = {P} in the category 〈X〉 generated by X, is an
isomorphism. This implies that (33) is an isomorphism.

5.3. Universal property. —The following theorem is the heart of Nori’s approach to
Tannaka duality (see [26, Proposition 1.10] and [33, Theorem 6.1.19]).

Theorem 5.3. — Let A be a Λ-linear Abelian category and ω : A → vec(Λ) be a Λ-linear
exact faithful functor. Then, the representation

ω : A → comod(H(ω))

is a Λ-linear functor and an equivalence of categories.

Proof. — Under our assumptions, Theorem 5.3 can be deduced from Theorem 3.13. Indeed
the corestriction functor associated with the morphism of counitary Λ-coalgebras (33) fits
into a commutative diagram

comod(H(ω))

��

A
ω

66

(18) ((
comod(C(ω)).

Therefore, it is enough to know that (18) is an equivalence (Theorem 3.13) and that the same
is true for the corestriction (Proposition 5.2). �
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Let us come back to the more general setting where Q is a quiver and T : Q → vec(Λ) is a
representation. As seen before, the representation T can be factorized

Q T //

T ++

comod(H(T ))

forgetful
��

vec(Λ).

Then, Theorem 5.3 implies that the category comod(H(T )) satisfies a universal property.
We refer to [36] for a precise formulation of this universal property (see also [26, Theorem 1.6]
and [33, Theorem 6.1.13]).

Theorem 5.4. — The factorization

Q T //

T ++

comod(H(T ))

forgetful
��

vec(Λ)

is universal among all factorizations

Q R //

T ))

A

F

��
vec(Λ)

where A is a Λ-linear Abelian category, R is a representation and F a Λ-linear faithful exact
functor.

Proof. — Instead of giving a detailed and complete proof of the theorem, we only sketch
the construction of a functor G : comod(H(T )) → A. Forget about the composition in the
category A, and consider it simply as a quiver. Using the functoriality of the construction,
we get a canonical morphism of counitary Λ-coalgebras

H(T )→ H(F ).

(With the notation used before, we set Q1 = Q, Q2 = A, Q = R, T1 = T and T2 = F ). By
corestriction, we get a functor

comod(H(T ))→ comod(H(F ))

but the canonical functor
A → comod(H(F ))

is an equivalence by Theorem 5.3. The choice of a quasi-inverse defines G. �

Note that the Abelian category comod(H(T )) is determined up to an equivalence (unique
up to a unique isomorphism of functors) by the universal property stated in Theorem 5.4.
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5.4. Application to the theory of motives. —The starting point of the construction of
the Abelian category of Nori’s mixed motives is the quiver D defined as follows. A vertex in
D is a triple (Y,Z, i) where Y is a quasi-projective k-scheme, Z is a closed subsecheme of X
and i ∈ Z is an integer. Vertices are linked by two types of edges: edges of functoriality type
and edges of boundary type.

– If (Y1, Z1, i) and (Y2, Z2, i) are vertices, then every morphism of k-schemes f : Y2 → Y1
such thatf(Z2) ⊆ Z1 defines an edge

(34) (Y2, Z2, i)→ (Y1, Z1, i).

– If (Y,Z, i) is a vertex, then every closed subscheme W ⊆ Z defines an edge
(35) (Y, Z, i)→ (Z,W, i− 1).

With a vertex (Y, Z, i), we can associate the relative Betti homology group Hi(Y,Z,Q) which
is a finite dimensional Q-vector space. We may send the edge (34) to the functoriality mor-
phism
(36) Hi(Y2, Z2,Q)→ Hi(Y1, Z1,Q)
and the edge (35) to the boundary morphism
(37) Hi(Y, Z,Q)→ Hi−1(Z,W,Q).
This provides a representation

T : D → vec(Q)
of the quiver D and Nori’s Abelian category of effective homological motives EHM(k,Q) is
the category of finite dimensional counitary right H(T )-comodules. By construction every
vertex (Y,Z, i) defines a motive H i(Y, Z) in EHM(k,Q). Its underlying Q-vector space is
Hi(Y,Z,Q) and the morphisms (36), (37) come from morphisms in EHM(k,Q).
The existence of a symmetric monoidal structure (essentially obtained from the Künneth
formula) on the category of effective Nori mixed motives implies the following proposition
(see [33, Theorem 9.1.5] or [20, p. 478]).

Proposition 5.5. — The coalgebra Heff
Nori(k, σ,Q) := H(T ) is a commutative biunitary bial-

gebra.

By inverting the Tate twist, one get the Abelian category of mixed motives NMM(k,Q). One
can show that this is the category of finite dimensional counitary comodules over a Hopf
algebra HNori(k, σ,Q). It defines an affine group scheme over Q

GNori(k, σ,Q)
which is the motivic Galois group of Nori. Mixed Hodge theory ensures that the representation
T has a factorization via the category MHSpQ of polarizable mixed Hodge structure. The
universal property of Theorem 1.5 show that there exists a canonical Q-linear exact faithful
functor

EHM(k,Q)→ MHSpQ.
This functor extends to a Q-linear exact faithful functor

NMM(k,Q)→ MHSpQ.
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Remark 5.6. — Let S be a quasi-projective k-scheme. As shown in [36], using a finite
dimensional variant of a result of Takeuchi (see [51]), it is possible to develop a relative
version over S of Nori’s category of mixed motives modeled after perverse sheaves.

6. The weak Tannakian formalism

We give the main results of the weak Tannakian formalism introduced by Ayoub in [11] which
plays a central role in Ayoub’s definition of the motivic Galois group and in his work [12, 14].
For the construction of étale motives (see [6, 10] or the brief recollection in Section 4.2). The
Betti realization has been constructed in [8].

6.1. Bialgebra associated with a monoidal adjunction with section. — Let us first
make clear the assumptions needed to develop the weak Tannakian formalism of [11]. The
starting points are the data of two symmetric monoidal categories (M,⊗,1), (E ,⊗,1) and a
symmetric monoidal functor

f :M→ E
that admits a right adjoint g : E → M. Let η and δ be respectively the unit and the counit
of the adjunction.
Given A ∈ E and M ∈M, we may consider the morphism of coprojection

cd : g(A)⊗M → g(A⊗ f(M))
given by the composition

cd : g(A)⊗M Id⊗η−−−→ g(A)⊗ gf(M)→ g(A⊗ f(M))
where the second morphism is the one in Lemma 2.4.

Assumption 6.1. —

1. There exists a monoidal functor e : E → M and an isomorphism of monoidal functors
fe ' IdE .

2. The morphism of coprojection
cd : g(A)⊗ e(B)→ g(A⊗ fe(B))

is an isomorphism for every objects A,B ∈ E.

Note that the unit object 1 of E is a commutative unitary algebra, applying Lemma 2.8 to the
pseudo-monoidal functor g provides g(1) with a structure of commutative unitary algebra in
M. The multiplication is the morphism

g(1)⊗ g(1)→ g(1⊗ 1) g(m)−−−→ g(1)
and the unit is the morphism 1 → g(1). Again by Lemma 2.8, the object H := fg(1) in
E has a natural structure of commutative unitary algebra with multiplication given by the
morphism

H⊗H = fg(1)⊗ fg(1)→ f(g(1)⊗ g(1))→ fg(1⊗ 1)→ fg(1) = H
and unit given by the morphism 1→ f(1)→ fg(1) = H.
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The main point is to use Assumption 6.1 to define a comultiplication on H compatible with
the previous algebra structure.
Let A,B ∈ E . Under the assumption, we can define an isomorphism inM

θA,B : g(A⊗B)→ g(A)⊗ e(B)

by identifying B with fe(B) and taking the inverse of the coprojection morphism.
Let us now precise part of the statement of Theorem 1.6. Remark that e being a section of the
monoidal functor f , we have, for every objects M ∈M and A ∈ E , a canonical isomorphism

ϑM,A : f(M ⊗ e(A))→ f(M)⊗ fe(A) ' f(M)⊗A.

Theorem 6.2. — Assume that Assumption 6.1 is satisfied. Then, the morphism

cm : H η−→ fg(H)
θ1,H−−→ f(g(1)⊗ e(H))

ϑg(1),H−−−−→ H⊗H

defines a structure of commutative biunitary bialgebra over the unitary algebra H = fg(1) in
E. The counit of this coalgebra is the counit of the adjunction δ : H := fg(1)→ 1.

The proof of Theorem 6.2 relies on Proposition 6.3. To state this proposition, let us first
remark that, given an object A in E , there is an isomorphim in E

fg(A) '−→ H⊗A

obtained via the isomorphisms

H⊗A
ϑg(1),A←−−−− f(g(1)⊗ e(A)) cd−→ fg(1⊗ fe(A)) ' fg(1⊗A) ' fg(A).

If B is an object in E , the adjunction isomorphism

HomM(g(A), g(B)) '−→ HomE(fg(A), B)

yields therefore an isomorphism

(38) HomM(g(A), g(B)) ' HomE(H⊗A,B).

Proposition 6.3. — Assume that Assumption 6.1 is satisfied.

1. Let A,B,C be objects in E, and a ∈ HomM(g(A), g(B)) and b ∈ HomM(g(B), g(C)) be
morphisms. The composition b◦a corresponds via the isomorphism (38) to the composition

H⊗A cm⊗Id// (H⊗H)⊗A Id⊗a // H⊗B b // C

where a and b are the morphisms corresponding to a and b via (38).

2. Let A be an object in E. Then the identity of g(A) corresponds via the isomorphism (38)
to the composition

H⊗A δ⊗Id // 1⊗A ' // A

We refer to [11, Proposition 1.22] for the proof of the proposition.
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Sketch of proof of Theorem 6.2. — Let us briefly explain why the morphism cm given in
Theorem 6.2 defines on H a structure of counitary coalgebra. Let A,B,C,D be objects in E .
Let a : H⊗A→ B, b : H⊗B → C and c : H⊗C → D be morphisms in E . By Proposition 6.3,
the morphism

(39) H⊗A cm⊗Id // H⊗H⊗A Id⊗cm⊗Id// H⊗H⊗H⊗A
Id⊗Id⊗a
��

D H⊗ Ccoo H⊗H⊗BId⊗boo

corresponds via the isomorphism (38) to the composition c ◦ (b ◦ a) of the morphisms a, b, c
associated with a, b, c via (38).
Similary the morphism

(40) H⊗A cm⊗Id // H⊗H⊗A cm⊗Id⊗Id// H⊗H⊗H⊗A
Id⊗Id⊗a
��

D H⊗ Ccoo H⊗H⊗BId⊗boo

corresponds to the composition (c ◦ b) ◦ a. Therefore, the two morphisms (39) and (40) are
equal since the composition of morphisms is associative in E .
The coassociativity of the comultiplication cm follows from this observation by taking A = 1,
B = H⊗ 1 and C = H⊗H⊗ 1 and all the morphisms a, b and c to be the identities.
It remains to check that H is counitary. Let a : H⊗A→ B be a morphism. By Proposition 6.3,
the two morphisms

H⊗A cm⊗Id−−−−→ H⊗H⊗A Id⊗a−−−→ H⊗B δ⊗Id−−−→ B

and
H⊗A cm⊗Id−−−−→ H⊗H⊗A Id⊗δ⊗Id−−−−−→ H⊗A a−→ B

are equal to a. The result follows by taking A = 1, B = H⊗A and a the identity. �

Let H be a commutative biunitary bialgebra in (E ,⊗,1). Theorem 6.2 can be applied to
reconstruct H from the category coMod(H) of counitary left comodules. Indeed, coMod(H)
inherits a symmetric monoidal structure (see Section 2.3) and the forgetful functor

f : coMod(H)→ E
is a symmetric monoidal functor. The conditions of application of Ayoub’s construction are
met (see Assumption 6.1).
Let us describe the right adjoint g and the section e. For A ∈ E , g(A) is the object H ⊗ A
with the coaction

H ⊗A cm⊗Id−−−−→ H ⊗H ⊗A.
If (B, ca) is a counitary left H-comodule, the unit of the adjunction is given by the morphism
ca : B → H ⊗ B while, for an object A ∈ E , the counit is given by the morphism cu ⊗ Id :
H ⊗A→ A. Let A be an object in E . Then e(A) is the object A with its trivial H-comodule
structure (that is with the coaction u⊗ Id : A→ H ⊗A).
By applying the weak tannakian formalism to the forgetful functor, the biunitary bialgebra
obtained from Theorem 6.2 is canonically isomorphic to H:
Publications mathématiques de Besançon – 2021



F. Ivorra 89

Proposition 6.4. — Let H be a commutative biunitary bialgebra in C. Then canonical
isomorphism

H := fg(1) = H ⊗ 1→ H

is an isomorphism of biunitary bialgebras.

For a proof see [11, Lemme 1.54].

6.2. Universal factorization. —As shown by Ayoub (see [11, Proposition 1.28]), the func-
tor f :M→ E admits a canonical factorisation via the category of counitary left H-comodules

M
f //

f
%%

coMod(H)

forgetful
��
E .

More precisely, one has the following proposition (see [11, Proposition 1.28]).

Proposition 6.5. — Assume that Assumption 6.1 is satisfied.

1. Let M be an object ofM. Then, the morphism

ca : f(M) η−→ fgf(M)
θ1,f(M)−−−−→ f(g(1)⊗ ef(M))

ϑg(1),f(M)−−−−−−→ H⊗ f(M)

defines a structure of counitary left H-comodule over f(M). Moreover for every morphism
m : M → N inM, the morphism f(m) : f(M)→ f(N) in E is a morphism of counitary
left H-comodules.

2. Let M,N be objects in M. Then, the isomorphism f(M) ⊗ f(N) '−→ f(M ⊗ N) is an
isomorphism of counitary H-comodules.

3. Let A be an object in E. Then, the isomorphism fe(A) '−→ A is an isomorphism of
counitary H-comodules where A is seen as a trivial H-comodule.

In the canonical factorization, given an object M in M, f(M) is the object f(M) with the
structure of counitary left H-comodule given in Proposition 6.5. Note that the proposition
ensures also that f :M→ coMod(H) is a symmetric monoidal functor.
The proof of the universal property stated in Theorem 1.6 is very similar to the proof of
the universal propery of Nori’s construction (see Theorem 5.3). It relies on the study of the
functoriality of Ayoub’s contruction and Proposition 6.4 (see [11, Proposition 1.55]).

6.3. Hopf algebra structure. —Under more restrictive assumptions, it is possible to
show that the biunitary bialgebra H associated with the monoidal adjunction is in fact a
Hopf algebra. Since H is commutative, the antipode will be a morphism of unitary algebras
ι : H→ H. Let E be a unitary algebra in E . Let us first describe (still under Assumption 6.1)
the morphisms H → E in E and among them those that are morphisms of unitary algebras
in terms of the functor f .
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Definition 6.6. — Let E be an object in E . A natural transformation
t : f(−)→ E ⊗ f(−)

is called an operation if for every object M ∈M and every object A ∈ E the square

f(M ⊗ e(A))
tM⊗e(A)//

ϑM,A
��

E ⊗ f(M ⊗ e(A))

Id⊗ϑM,A
��

f(M)⊗A tM⊗Id // E ⊗ f(M)⊗A

is commutative.

We denote by OperE(f) the set of operations. Let us detail a consequence of the above
definition.

Lemma 6.7. — Let M is an object in M and t be an element in OperE(f). Then, the
square

(41) f(M) ca //

tM
��

H⊗ f(M)

tg(1)⊗Id
��

E ⊗ f(M) Id⊗ca // E ⊗H⊗ f(M)

is commutative.

Proof. — Recall that the coaction on f(M) is given by the composition of the image by f of
the morphism

M
η−→ gf(M)

θ1,f(M)−−−−→ g(1)⊗ ef(M)
and the morphism

ϑg(1),f(M) : f(g(1)⊗ ef(M))→ H⊗ f(M)
(see Proposition 6.3). Hence the square (41) can be decomposed in two squares

f(M)

ca

++

tM
��

// f(g(1)⊗ ef(M))
tg(1)⊗ef(M)
��

ϑg(1),f(M) // H⊗ f(M)

tg(1)⊗Id
��

E ⊗ f(M) //

Id⊗ca

33
E ⊗ f(g(1)⊗ ef(M))

ϑg(1),f(M)// E ⊗H⊗ f(M).

The first square is commutative since t is natural transformation and the second one is
commutative by definition of an operation. �

Remark 6.8. — Assume that E is a unitary algebra in E . Then OperE(f) has a natural
structure of monoid. Let t, t′ be two operations. Then their product t′ • t is the natural
transformation

f(−) t−→ E ⊗ f(−) Id⊗t′−−−→ E ⊗ E ⊗ f(−) m⊗Id−−−→ E ⊗ f(−).
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The unit of this monoid is the operation

f(−) u⊗Id−−−→ E ⊗ f(−).

For every M ∈ M, the object f(M) of E has a canonical structure of counitary left H-
comodule (see Proposition 6.5). This coaction define a natural transformation

f(−) ca−→ H⊗ f(−).
Therefore, every morphism a : H→ E in E defines a natural transformation

ta : f(−) ca−→ H⊗ f(−) a⊗Id−−−→ E ⊗ f(−)
and it is easy to see that it is an operation in the sense of Definition 6.6.

Proposition 6.9. — Let E be an object in E. The mapping
HomE(H, E)→ OperE(f)(42)

a 7→ ta

is a bijection. If E is a unitary algebra in E, then it is an isomorphism of monoids.

Proof. — Let us denote by α the map in (42). By construction H = fg(1). Hence if t be an
operation, it is possible to define a morphism β(t) as the composition

H
tg(1)−−−→ E ⊗H Id⊗cu−−−−→ E.

This defines a morphism β : OperE(f)→ HomE(H, E). Let us show that α and β are inverse
to each other. If a : H→ E is a morphism in E , then β ◦ α(a) is the composition

H cm−−→ H⊗H a⊗Id−−−→ E ⊗H Id⊗cu−−−−→ E

which is equal to a since H is counitary and cu is its counit.
Conversely, let t be an operation. By definition α ◦ β(t) is the operation given, for every
M ∈M, by the composition

f(M) ca−→ H⊗ f(M)
tg(1)⊗Id
−−−−−→ E ⊗H⊗ f(M) Id⊗cu⊗Id−−−−−−→ E ⊗ f(M).

By Lemma 6.7 and the fact that f(M) is a counitary left H-comodule, the diagram

f(M) ca //

tM
��

H⊗ f(M)

tg(1)⊗Id
��

E ⊗ f(M) Id⊗ca // E ⊗H⊗ f(M) Id⊗cu⊗Id // E ⊗ f(M)

is commutative. This shows that α ◦ β(t) = t.
Assume that E is a unitary algebra in the category E . We have to show that α(a • b) =
α(a) • α(b) for every morphism a : H → E and b : H → E in E . More precisely, we have to
show that the operation ta•b associated with the morphism

a • b : H cm−−→ H⊗H a⊗b−−→ E ⊗ E m−→ E

is equal to the operation ta • tb given by

ta • tb : f(−) ta−→ E ⊗ f(−) Id⊗tb−−−→ E ⊗ E ⊗ f(−) m⊗Id−−−→ E ⊗ f(−).
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Using the definition of ta and tb, we see that this operation is given by the commutative
diagram

f(−)

ca %%

ta //

ta•tb

''
E ⊗ f(−) Id⊗tb // E ⊗ E ⊗ f(−) m⊗Id // E ⊗ f(−)

H⊗ f(−)
Id⊗ca

// H⊗H⊗ f(−).

a⊗b⊗Id

OO

Hence, it is equal to ta•b since f(M) is a comodule over H. �

Remark 6.10. — It follows from the proof of Proposition 6.9 that the morphism H → E
associated with the operation t ∈ OperE(f) is the composition

H
tg(1)−−−→ E ⊗H Id⊗cu−−−−→ E.

Definition 6.11. — Let E be a unitary algebra in E . A natural transformation f → E⊗ f
is said to be multiplicative if the diagram

f(M)⊗ f(N)

��

tM⊗tN // (E ⊗ f(M))⊗ (E ⊗ f(N))Id⊗τ⊗Id// E ⊗ E ⊗ f(M)⊗ f(N)

m⊗Id⊗Id
��

f(M ⊗N)
tM⊗N // E ⊗ f(M ⊗N) E ⊗ f(M)⊗ f(N)oo

is commutative for every objects M,N ∈M. If moreover

1

u 11

// f(1) t1 // E ⊗ f(1)

��
E E ⊗ 1oo

is commutative, then it is said to be unitary.

Proposition 6.12. — Let E be a unitary algebra in E. Then, the bijection of Proposition 6.9
induces a bijection between the subset of HomE(H, E) formed by the morphisms of unitary
algebras and the subset of OperE(f) formed by the multiplicative and unitary operations.

Proof. — If t is a multiplicative and unitary operation, then

H
tg(1)−−−→ E ⊗H Id⊗cu−−−−→ E

is a morphism of unitary algebras. Conversely, if a : H→ E is a morphism of unitary algebras,
then ta is a multiplicative and unitary operation since the coaction

ca : f(−)→ H⊗ f(−)
is a natural transformation which is multiplicative and unitary. �

Let us come back to the issue of the antipode. Consider the following strengthening of As-
sumption 6.1.
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Assumption 6.13. —

1. There exists a monoidal functor e : E → M and an isomorphism of monoidal functors
fe

∼−→ IdE . Moreover the functor e admits a right adjoint u :M→ E.

2. The morphism of coprojection
cd : g(A)⊗M → g(A⊗ f(M))

is an isomorphism for every A ∈ E and M ∈M.

These new assumptions are clearly stronger than Assumption 6.1: the coprojection is now
assumed to be an isomorphism for every objectM ∈M while previously it was only assumed
to be the case for objects in the essential image of e. In particular, if A is an object in E and
M inM, then the inverse of the coprojection defines a morphism

pd : g(A⊗ f(M))→ g(A)⊗M.

Moreover the fact that e is a section of f forces g to be a section of u and since u is right
adjoint to e, for every M inM we have a canonical morphism eu(M)→M .
Let M ∈M and consider the morphism cdM defined as the composition

cdM : f(M)→ fgf(M) pd−→ f(g(1)⊗M)→ H⊗ f(M)
where the first morphism is obtained by identifying f(M) with feugf(M) and composing
with the counit of the adjunction between u and e.

Proposition 6.14. — The natural transformation
cd : f(−)→ H⊗ f(−)

is a multiplicative and unitary operation in the sense of Definition 6.6.

For a proof, see [11, Proposition 1.42]. In particular, by Proposition 6.12, the operation
cd : f(−) → H ⊗ f(−) defines a morphism of unitary algebras ι : H → H defined by the
composition

(43) H
cdg(1)−−−→ H⊗H Id⊗cu−−−−→ H

(see Remark 6.10). Finally, one has the following theorem (for a proof see [11, Théorème 1.45]).

Theorem 6.15. — Under Assumption 6.13, the commutative biunitary bialgebra H is a
Hopf algebra with antipode the map ι : H→ H constructed in (43).

6.4. Application to motivic Galois theory. —Recall that we have an adjunction
Bti∗ : DAét(k,Q)� D(Q) : Bti∗

where the right handside is the derived category of Q-vector spaces.
As shown by Ayoub (see [11, Proposition 2.7]), the weak Tannakian formalism can be applied
to the above adjunction. In that case, the functor (−)cst which maps a Q-vector space V to
the constant presheaf with values V prodives a section of Bti∗.
In particular, the object of D(Q).

Hmot(k, σ,Q) := Bti∗Bti∗Q
has a canonical structure of commutative Hopf algebra.
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Note that Hmot(k, σ,Q) is a Hopf algebra in the derived category D(Q). In particular, it
does not yield immediately a Q-Hopf algebra and therefore an affine group scheme over Q.
However, in [11, Corollaire 2.105], Ayoub proves the following theorem.

Theorem 6.16. — Hmot(k, σ,Q) has no homology in negative degree that is
Hn(Hmot(k, σ,Q)) = 0

for every integer n < 0.

This theorem ensures that Hmot(k, σ,Q) := H0(Hmot(k, σ,Q)) inherits a structure of Q-Hopf
algebra. The associated affine group scheme over Spec(Q)

Gmot(k, σ,Q)
is called the motivic Galois group of k.
The two approaches, that of Nori and that of Ayoub, though very different yield the same
motivic Galois group. A comparison theorem has been proven by Gallauer Alves de Souza
and Choudhury [20]:

Theorem 6.17. — The Hopf algebra Hmot(k, σ,Q) and HNori(k, σ,Q) are isomorphic. In
particular, the motivic Galois groups Gmot(k, σ,Q) and GNori(k, σ,Q) are isomorphic.

The weak Tannakian formalism can be applying in other contexts. For example, Ayoub uses
it in [12] to define a motivic avatar of the fundamental group.
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