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FAMILIES OF EULERIAN FUNCTIONS INVOLVED IN
REGULARIZATION OF DIVERGENT POLYZETAS

by

V. C. Bui, V. Hoang Ngoc Minh, Q. H. Ngo and V. Nguyen Dinh

Abstract. — Extending the Eulerian functions, we study their relationship with zeta function of several
variables. In particular, starting with Weierstrass factorization theorem (and Newton–Girard identity)
for the complex Gamma function, we are interested in the ratios of ζ(2k)/π2k and their multiindexed
generalization, we obtain an analogue situation and draw some consequences about a structure of the
algebra of polyzetas values, by means of some combinatorics of words and noncommutative rational series.
The same frameworks also allow to study the independence of a family of eulerian functions.

Résumé. — (Familles de fonctions eulériennes impliquées dans la régularisation de polyzêtas diver-
gents) En généralisant les fonctions euleriennes, nous étudions leurs relations avec la fonction zêta en
plusieurs variables. En particulier, à partir du théorème de factorisation de Weierstrass (et l’identité de
Newton-Girard) pour la fonction Gamma complexe, nous nous intéressons aux rapports ζ(2k)/π2k et
leurs généralisations. Nous obtenons une situation analogue et nous tirerons quelques conséquences sur
une structure de l’algèbre des valeurs polyzêtas, au moyen de la combinatoire des mots et des séries ration-
nelles en variables non commutatifs. Le même cadre de travail permet également d’étudier l’indépendance
d’une famille de fonctions euleriennes.

1. Introduction

Eulerian functions are most significant for analytic number theory and they are widely applied
in Probability theory and in Physical sciences. They are tightly relating to Riemann zeta
functions, for instance as follows

(1) ζ(s) = 1
Γ(s)

∫ ∞

0
dt

ts−1

et − 1 and Γ(s) =
∫ ∞

0
du us−1e−u, for ℜ(s) > 0.
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6 Families of eulerian functions

The function Γ is meromorphic, with no zeroes and −N∗ as set of simple poles. Hence Γ−1

is entire and admits −N∗ as set of simple zeroes. Moreover, it satisfies1 Γ(z) = Γ(z). From
Weierstrass factorization [5] and Newton–Girard identity [14], we have successively

(2) 1
Γ(z + 1) = eγz

∏
n≥1

(
1 + z

n

)
e− z

n = exp
(

γz −
∑
k≥2

ζ(k)(−z)k

k

)
.

Using the following functional equation and Euler’s complement formula, i.e.

Γ(1 + z) = zΓ(z) and Γ(z)Γ(1 − z) = π

sin(zπ) ,

and also introducing the partial beta function defined (for any a, b, z ∈ C such that ℜa > 0,
ℜb > 0, |z| < 1) by

(3) B(z; a, b) :=
∫ z

0
dt ta−1(1 − t)b−1

and then, classically, B(a, b) := B(1; a, b) = Γ(a)Γ(b)/Γ(a + b), one has (for any u, v ∈ C such
that |u| < 1, |v| < 1 and |u + v| < 1) the following expression

exp
(

−
∑
n≥2

ζ(n)(u + v)n − (un + vn)
n

)
= Γ(1 − u)Γ(1 − v)

Γ(1 − u − v) ,(4)

= Γ(u + v)
Γ(u)Γ(v)π

sin((u + v)π)
sin(uπ) sin(vπ)(5)

= π

B(u, v)(cot(uπ) + cot(vπ)).(6)

In particular, for v = −u (|u| < 1), one gets

exp
(

−
∑
k≥1

ζ(2k)u2k

k

)
= 1

Γ(1 − u)Γ(1 + u) = sin(uπ)
uπ

.

Hence, taking the logarithms and considering Taylor expansions, one obtains

−
∑
k≥1

ζ(2k)u2k

k
= log

(
1 +

∑
n≥1

(uiπ)2n

Γ(2n + 2)

)
(7)

=
∑
k≥1

(uiπ)2k
∑
l≥1

(−1)l−1

l

∑
n1,...,nl≥1

n1+...+nl=k

l∏
i=1

1
Γ(2ni + 2) .(8)

One can deduce then the following expression2 for ζ(2k):

(9) ζ(2k)
π2k

= k
k∑

l=1

(−1)k+l−1

l

∑
n1,...,nl≥1

n1+...+nl=k

l∏
i=1

1
Γ(2ni + 2) ∈ Q.

1i.e. its coefficients are real, we will see later the combinatorial content of them.
2Note that Euler gave another explicit formula using Bernoulli numbers.
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Example 1.1. —

ζ(2)
π2 = 1.

(−1)1+1

1
1

Γ(4) = 1
6;

ζ(4)
π4 = 2

[
(−1)2+1

1
1

Γ(6) + (−1)2+2

2
1

Γ(4)Γ(4)

]
= 1

90;

ζ(6)
π6 = 3

3∑
l=1

(−1)3+l

l

∑
n1,...,nl≥1

n1+...+nl=3

l∏
i=1

1
Γ(2ni + 2) = 1

945;

ζ(8)
π8 = 4

4∑
l=1

(−1)4+l

l

∑
n1,...,nl≥1

n1+...+nl=4

l∏
i=1

1
Γ(2ni + 2) = 1

9450;

ζ(10)
π10 = 5

∑
_l = 15 (−1)5+l

l

∑
n1,...,nl≥1

n1+...+nl=5

l∏
i=1

1
Γ(2ni + 2) = 1

93555 .

Now, more generally, for any r ∈ N≥1 and (s1, . . . , sr) ∈ Cr, let us consider the following
several variable zeta function

(10) ζ(s1, . . . , sr) :=
∑

n1>...>nr>0
n−s1

1 . . . n−sr
r

which converges for (s1, . . . , sr) in the open sub-domain of Cr, r ≥ 1, [9, 18]

Hr :=
{
(s1, . . . , sr) ∈ Cr

∣∣ ∀ m = 1, . . . , r, ℜ(s1) + . . . + ℜ(sm) > m
}
.

In the convergent cases, from a theorem by Abel, for n ∈ N, z ∈ C, |z| < 1, its values can be
obtained as the following limits

(11) ζ(s1, . . . , sr) = lim
z→1

Lis1,...,sr (z) = lim
n→+∞

Hs1,...,sr (n),

where the following polylogarithms are well defined

Lis1,...,sr (z) :=
∑

n1>...>nr>0

zn1

ns1
1 . . . nsr

r
,(12)

Lis1,...,sr (z)
1 − z

=
∑
n≥0

Hs1,...,sr (n)zn,(13)

and so are the Taylor coefficients3 here simply called harmonic sums

Hs1,...,sr : N −→ Q(i.e. an arithmetic function),(14)

n 7−→ Hs1,...,sr (n) =
∑

n≥n1>...>nr>0
n−s1

1 . . . n−sr
r .(15)

3These quantities are generalizations of the harmonic numbers Hn = 1 + 2−1 . . . + n−1 to which they boil
down for r = 1, s1 = 1. They are also truncations of the zeta values ζ(s1, . . . , sr) at order n + 1.
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8 Families of eulerian functions

On Hr ∩ Nr, the polyzetas can be represented by the following integral representation4 over
]0, 1[ [10] (here, one set λ(z) := z(1 − z)−1, t0 = 1 and ur+1 = 1):

ζ(s1, . . . , sr) =
∫ 1

0
ω1(t1) logs1−1(t0/t1)

Γ(s1) . . .

∫ tr−1

0
ω1(tr) logsr−1(tr−1/tr)

Γ(sr)

=
r∏

i=1

1
Γ(si)

∫
[0,1]r

r∏
j=1

ω0(uj)λ(u1 . . . uj) logsj−1( 1
uj

)

=
r∏

i=1

1
Γ(si)

∫
Rr

+

r∏
j=1

ω0(uj)usj

j λ(e−(u1...uj)),(16)

with ω0(z) = dz/z and ω1(z) = dz/(1 − z).
As for the Riemann zeta function in (1), we observe that (16) involves again the factors
(and products) of eulerian Gamma function and also their quotients (hence, eulerian Beta
function). In the sequel, in continuation with [6, 8, 13], we propose to study the ratios
ζ(s1, . . . , sr)/πs1+...+sr (and others), an analogue of (9), which will be achieved as consequence
of regularizations, via the values of entire functions, of divergent polyzetas and infinite sums
of polyzetas (see Theorem 2.22 and Corollaries 2.24, 2.27 in Section 2.4) for which a theorem
by Abel (see (11)) could not help any more. This achievement is justified thanks to the ex-
tensions of polylogarithms and harmonic sums (see Theorems 2.16 and 2.18 in Section 2.3)
and thanks to the study of the independence of a family of eulerian functions which can be
viewed as generating series of zeta values (for r ≥ 2):

(17) 1
Γyr (z + 1) =

∑
k≥0

ζ(r, . . . , r︸ ︷︷ ︸
k times

)zkr = exp
(
−
∑
k≥1

ζ(kr)(−zr)k

k

)
(see Propositions 2.7–2.11 and Theorem 2.13 in Section 2.2) via the combinatorial tools
introduced in Section 2.1 (see Lemmas 2.1, 2.2 in Section 2.1). Finally, identities among these
(convergent or divergent) generating series of zeta values are suitable to obtain relations, at
arbitrary weight, among polyzetas (see Examples 2.26 and 2.28 in Section 2.4).

2. Families of eulerian functions

In all the sequel, C[{fi}i∈I ] denotes the algebra generated by {fi}i∈I , C{{(gi)i∈I}} denotes the
differential C-algebra5, generated by the family (gi)i∈I of the C-commutative differential ring
(A, ∂) (1A is its neutral element) and C0 denotes a differential subring of A (∂C0 ⊂ C0) which
is an integral domain containing the field of constants. If the ring A is without zero divisors
then the fields of fractions Frac(C0) and Frac(A) are naturally differential fields and can be
seen as the smallest ones containing C0 and A, respectively, satisfying Frac(C0) ⊂ Frac(A).

2.1. Words and formal power series. — Let X denote either the alphabets X := {x0, x1}
or Y := {yk}k≥1, equipped with a total ordering, and let X ∗ denote the monoid freely
generated by X (its unit is denoted by 1X ∗). The set of noncommutative polynomials (resp.
series) over X with coefficients in a commutative ring A, containing Q, is denoted by A⟨X ⟩

4On Hr, log(a/b) is replaced by log(a) − log(b).
5i.e. the C-algebra generated by gi and their derivatives [16].
Publications mathématiques de Besançon – 2023
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(resp. A⟨⟨X ⟩⟩) [1]. The algebraic closure of6 Â.X by the rational operations7 {conc, +, ∗}
within A⟨⟨X ⟩⟩ is denoted by Arat⟨⟨X ⟩⟩ [1]. We will also consider the following Hopf algebras
and, in the case of A = k being a field, their Sweedler’s dual8 [7, 13]

(A⟨X ⟩, conc, ∆�, 1X ∗ , ϵ) and (A⟨Y ⟩, conc, ∆�, 1Y ∗ , ϵ),(18)
(krat⟨⟨X ⟩⟩,�, 1X ∗ , ∆conc, ϵ) and (krat⟨⟨Y ⟩⟩,�, 1Y ∗ , ∆conc, ϵ).(19)

In particular, using the set of Lyndon words, denoted by LynX , one constructs the basis
{Pl}l∈LynX , for LieA⟨X ⟩, generating the PBW-Lyndon basis {Pw}w∈X ∗ for (A⟨X ⟩, conc, 1X ∗)
and then the graded dual basis {Sw}w∈X ∗ containing the pure transcendence basis {Sl}l∈LynX
for the shuffle algebra (A⟨⟨X ⟩⟩,�, 1X ∗). Similarly, the basis {Πl}l∈LynY generating the PBW-
Lyndon basis {Πw}w∈Y ∗ for (A⟨Y ⟩, conc, 1Y ∗) and then the graded dual basis {Σw}w∈Y ∗

containing the pure transcendence basis {Σl}l∈LynY for the stuffle algebra (A⟨⟨Y ⟩⟩,�, 1Y ∗).

Lemma 2.1. —

1. The algebras (C[{x∗}x∈X ],�, 1X ∗) and (C⟨X ⟩,�, 1X ∗) are algebraically disjoint over C
and

(C[{x∗}x∈X ]⟨X ⟩,�, 1X ∗) ∼= (C[{x∗}x∈X ][LynX ],�, 1X ∗)
∼= (C[{x∗, l}x∈X ,l∈LynX ],�, 1X ∗)

which is generated by the transcendent basis {x∗, l}x∈X ,l∈LynX over C.

2. Let K := C[{f(x∗)}x∈X ]and F := C[{f(l)}l∈LynX ].
Let f be the shuffle morphism (C[{x∗}x∈X ]⟨X ⟩,�, 1X ∗) → (A, ×, 1A).
Then the following assertions are equivalent
(a) The morphism f is injective.
(b) The algebras K and F , satisfying K ∩ F = C.1A, are generated by the transcendent

bases {f(x∗)}x∈X and {f(l)}l∈LynX , respectively, over C.
Hence, if (a), or (b), holds then F, K are algebraically disjoint over C and

C[{f(x∗)}x∈X ][{f(l)}l∈LynX ] ∼= C[{f(x∗), f(l)}x∈X ,l∈LynX ]
which is generated by the transcendent basis {f(x∗), f(l)}x∈X ,l∈LynX over C.

Proof. —

1. — Recall that the algebras (C[{x∗}x∈X ],�, 1X ∗) and (C⟨X ⟩,�, 1X ∗) are generated, re-
spectively, by the transcendent bases {x∗}x∈X [7] and LynX [17]. Moreover, {x∗}x∈X is also
algebraically independent over C⟨X ⟩ [7] and then C[{x∗}x∈X ] ∩C⟨X ⟩ = C.1X ∗ . It follows the
then expected results.
6In general, Â.X is the module of homogeneous series S ∈ A⟨⟨X ⟩⟩ of degree one.
7Here conc stand for the Cauchy product (concatenation) and ∆conc is its co-product.
For any S ∈ A⟨⟨X ⟩⟩ such that ⟨S|1X ∗ ⟩ = 0, the Kleene star of S is defined by S∗ := (1−S)−1 = 1+S+S2 +. . ..
8Here, � (resp. �) stand for the shuffle (resp. stuffle) product and ∆� (resp. ∆�) is its co-product (see [17]
or [6]).
The antipode of the first one is given by a(w) = (−1)|w|w̃, the antipode of the second one exists because the
bialgebra is graded by weight, but is more complicated.

Publications mathématiques de Besançon – 2023



10 Families of eulerian functions

2. — Straightforward. □

Now, for any r ≥ 1, let us consider the following differential form
(20) ωr(z) = uyr (z)dz with uyr ∈ C0 ⊂ A.

Let us also consider the following noncommutative differential equation (see [7])

(21) dS = MS; ⟨S|1X ∗⟩ = 1A, where M =
∑
x∈X

uxx ∈ Ĉ0X ,

where d is the differential operator on A⟨⟨X ⟩⟩ extending ∂ as follows:

(22) ∀ S =
∑

w∈X ∗
⟨S|w⟩w ∈ A⟨⟨X ⟩⟩, dS =

∑
w∈X ∗

(∂⟨S|w⟩)w.

In order to prove Proposition 2.8, Theorems 2.13 and 2.16 below, we use the following lemma,
a particular case of a general localization result to be proved in a forthcoming paper [7].

Lemma 2.2. — Suppose that the C-commutative ring A is without zero divisors and equipped
with a differential operator ∂ such that C = ker ∂.
Let S ∈ A⟨⟨X ⟩⟩ be a group-like solution of (21), in the following form

S = 1X ∗ +
∑

w∈X ∗X
⟨S|w⟩w = 1X ∗ +

∑
w∈X ∗X

⟨S|Sw⟩Pw =
↘∏

l∈LynX
e⟨S|Sl⟩Pl .

Then

1. If H ∈ A⟨⟨X ⟩⟩ is another group-like solution of (21) then there exists C ∈ LieA⟨⟨X ⟩⟩
such that S = HeC (and conversely).

2. The following assertions are equivalent
(a) {⟨S|w⟩}w∈X ∗ is C0-linearly independent,
(b) {⟨S|l⟩}l∈LynX is C0-algebraically independent,
(c) {⟨S|x⟩}x∈X is C0-algebraically independent,
(d) {⟨S|x⟩}x∈X ∪{1X ∗ } is C0-linearly independent,
(e) The family {ux}x∈X is such that, for f ∈ Frac(C0) and (cx)x∈X ∈ C(X ),∑

x∈X
cxux = ∂f −→ (∀ x ∈ X )(cx = 0).

(f) The family (ux)x∈X is free over C and ∂ Frac(C0) ∩ spanC{ux}x∈X = {0}.

Sketch of the proof. — The first item has been treated in [11]. The second is a group-like
version of the abstract form of Theorem 1 of [4]. It goes as follows

– due to the fact that A is without zero divisors, we have the following embeddings C0 ⊂
Frac(C0) ⊂ Frac(A), Frac(A) is a differential field, and its derivation can still be denoted
by ∂ as it induces the previous one on A,

– the same holds for A⟨⟨X ⟩⟩ ⊂ Frac(A)⟨⟨X ⟩⟩ and d

– therefore, equation (21) can be transported in Frac(A)⟨⟨X ⟩⟩ and M satisfies the same
condition as previously.

Publications mathématiques de Besançon – 2023
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– Equivalence between (a)–(d) comes from the fact that C0 is without zero divisors and
then, by denominator chasing, linear independances w.r.t. C0 and Frac(C0) are equivalent.
In particular, supposing condition (d), the family {⟨S|x⟩}x∈X ∪{1X ∗ } (basic triangle) is
Frac(C0)-linearly independent which imply, by the Theorem 1 of [4], condition (e),

– still by Theorem 1 of [4], (e) is equivalent to (f), implying that {⟨S|w⟩}w∈X ∗ is Frac(C0)-
linearly independent which induces C0-linear independence (i.e. (a)). □

Now, let A = H(Ω), the ring of holomorphic functions on a simply connected domain Ω ⊂ C
(1H(Ω) is its neutral element). With the notations in (20) and for any path z0 ⇝ z in Ω, let
αz

z0 : (Crat⟨⟨X ⟩⟩,�, 1X ∗) → (H(Ω), ×, 1A) be the morphism defined, for any xi1 . . . xik
) ∈ X ∗,

by [7]

(23) αz
z0(xi1 . . . xik

) =
∫ z

z0
ωi1(z1) . . .

∫ zk−1

z0
ωik

(zk) and αz
z0(1X ∗) = 1H(Ω),

satisfying αz
z0(u� v) = αz

z0(u)αz
z0(v), for u, v ∈ X ∗. By a Ree’s theorem [17], the Chen series

of {ωr}r≥1 and along the path z0 ⇝ z in Ω is group-like:

(24) Cz0⇝z =
∑

w∈X ∗
αz

z0(w)w =
↘∏

l∈LynX
eαz

z0 (Sl)Pl ∈ H(Ω)⟨⟨X ⟩⟩.

Since ∂αz
z0(xi1 . . . xik

) = ui1(z)αz
z0(xi2 . . . xik

) then Cz0⇝z is a solution of (21).

Remark 2.3. — For any w ∈ X X ∗, the value of αz
z0(w) depends on {ωi}i≥1, or equivalently

on {ux}x∈X and if fx(z) = αz
z0(x) then, for any n ≥ 0, one has [10]

αz
z0(xn) = αz

z0(x�n/n!) = fn
x (z)n! and then Fx(z) := αz

z0(x∗) = efx(z).

With data in (20) and shuffle morphism in (23), we will illustrate a bijection, between (C⟨X ⟩�
C[{x∗}x∈X ],�, 1X ∗), the subalgebra of noncommutative rational series and a subalgebra of
H(Ω) containing the eulerian functions bellow.

2.2. Families of eulerian functions. —

Definition 2.4. — For any z ∈ C such that |z| < 1, we put

ℓ1(z) := γz −
∑
k≥2

ζ(k)(−z)k

k
and for r ≥ 2, ℓr(z) := −

∑
k≥1

ζ(kr)(−zr)k

k
.

For any k ≥ 1, let Γyk
(1 + z) := e−ℓk(z) and Byk

(a, b) := Γyk
(a)Γyk

(b)
Γyk

(a + b) .

Remark 2.5. —

1. (ℓr)r≥1 is triangular9. So is (eℓr − eℓr(0))r≥1.

9(gi)i≥1 is said to be triangular if the valuation of gi, ϖ(gi), equals i ≥ 1. It is easy to check that such a family
is C-linearly free and that is also the case of families such that (gi − g(0))i≥1 is triangular.

Publications mathématiques de Besançon – 2023



12 Families of eulerian functions

2. For any z ∈ Ω = C, |z| < 1 and k ≥ 1, using Remark 2.3, one has
uyk

αz
0(yk) αz

0(y∗
k)

1H(Ω) z ez

(1 − z)−1 − log(1 − z) (1 − z)−1

∂ℓk ℓk(z) eℓk(z) = Γ−1
yk

(1 + z)
eℓk∂ℓk eℓk(z) = Γ−1

yk
(1 + z) eeℓk(z)

3. The function ℓ1 is already considered by Legendre for studying the eulerian Beta and
Gamma functions [15], denoted here, repectively, by By1 and Γy1 .

4. For any r ≥ 1, one has ∂ℓr = e−ℓr ∂eℓr .

5. For any n ≥ 0, one puts classically Ψn := ∂n log Γ.

6. Some of these functions cease (unlike Γ) to be hypertranscendental. For example10 y(x) =
Γ−1

y2 (1 + x) is a solution of (1 − π2x2)y2 + 2xyẏ + x2ẏ2 = 1.

Now, for any r ≥ 1, let Gr (resp. Gr) denote the set (resp. group) of solutions, {ξ0, . . . , ξr−1},
of the equation zr = (−1)r−1 (resp. zr = 1). For r, q ≥ 1, we will need also a system X of
representatives of Gqr/Gr, i.e. X ⊂ Gqr such that

Gqr =
⊎

τ∈X
τGr.

It can also be assumed that 1 ∈ X as with X = {e2ikπ/qr}0≤k≤q−1.

Remark 2.6. — If r is odd then zr = (−1)r−1 = 1 and Gr = Gr as being a group otherwise
Gr = ξGr as being an orbit, where ξ satisfies ξr = −1 (this is equivalent to ξ ∈ G2r and
ξ /∈ Gr).

Proposition 2.7. —

1. For r ≥ 1, χ ∈ Gr and z ∈ C, |z| < 1, the functions ℓr and eℓr have the symmetry,
ℓr(z) = ℓr(χz) and eℓr(z) = eℓr(χz). In particular, for r even, as −1 ∈ Gr, these functions
are even.

2. For |z| < 1, we have

ℓr(z) = −
∑

χ∈Gr

log(Γ(1 + χz)) and eℓr(z) =
∏

χ∈Gr

eγχz
∏
n≥1

(
1 + χz

n

)
e−χz/n.

3. For any odd r ≥ 2,
Γ−1

yr
(1 + z) = eℓr(z) = Γ−1(1 + z)

∏
χ∈Gr\{1}

eℓ1(χz).

4. In general, for any odd or even r ≥ 2,

eℓr(z) =
∏

χ∈Gr

eℓ1(χz) =
∏
n≥1

(
1 + zr

nr

)
.

10Indeed, we use the fact that Γ−1
y2 (1 + x) = sin(iπx)/iπx (see Example 2.26 bellow).
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Proof. — The results are known for r = 1 (i.e. for Γ−1). For r ≥ 2, we get

1. — By Definition 2.4, with χ ∈ Gr, we get

ℓr(χz) = −
∑
k≥1

ζ(kr)(−χrzr)k

k
= −

∑
k≥1

ζ(kr)(−zr)k

k
= ℓr(z),

thanks to the fact that, for any χ ∈ Gr, one has χr = 1. In particular, if r is even then
ℓr(z) = ℓr(−z), i.e. ℓr is even.

2. — If r is odd, as Gr = Gr and, applying the symmetrization principle11, we get

−
∑

χ∈Gr

ℓ1(χz) = −
∑

χ∈Gr

ℓ1(χz)

= r
∑
k≥1

ζ(kr)(−z)kr

kr
=
∑
k≥1

ζ(kr)(−zr)k

k
.

The last term being due to, precisely, r is odd. If r is even, we have the orbit Gr = ξGr (still
with ξr = −1) and then, by the same principle,

−
∑

χ∈Gr

ℓ1(χξz) = r
∑
k≥1

ζ(kr)(−ξz)kr

kr

=
∑
k≥1

ζ(kr)
(
(−ξz)r

)k
k

=
∑
k≥1

ζ(kr)
(
−zr

)k
k

.

3. — Straightforward.

4. — Due to the fact that the external product is finite, we get

eℓr(z) =

=1︷ ︸︸ ︷( ∏
χ∈Gr

eγχz

) ∏
n≥1
χ∈Gr

(
1 + χz

n

)
e−χz/n =

=1︷ ︸︸ ︷( ∏
n≥1
χ∈Gr

e− χz
n

) ∏
n≥1
χ∈Gr

(
1 + χz

n

)
.

Using the elementary symmetric functions of Gr, we get the expected result. □

Proposition 2.8. — Let L := spanC{ℓr}r≥1 and E := spanC{eℓr }r≥1. Let C[L] and C[L]
be their respective algebra. One has

1. The family (ℓr)r≥1 is C-linearly free and free from 1H(Ω).

2. The family (ℓr)r≥1 and (eℓr )r≥1 is C-linearly free and free from 1H(Ω).

3. The families (ℓr)r≥1 and (eℓr )r≥1 are C-algebraically independent.

4. For any r ≥ 1, one has
(a) The functions ℓr and eℓr are C-algebraically independent.
(b) The function ℓr is holomorphic on the open unit disc, D<1,

11Within the same disk of convergence as f , one has, f(z) =
∑

n≥1 anzn and
∑

χ∈Gr
f(χz) = r

∑
k≥1 arkzrk.
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14 Families of eulerian functions

(c) The function eℓr (resp. e−ℓr ) is entire (resp. meromorphic), and admits a count-
able set of isolated zeroes (resp. poles) on the complex plane which is expressed as⊎

χ∈Gr
χZ≤−1.

5. One has E ∩ L = {0} and, more generally, C[E] ∩ C[L] = C.1H(Ω).

Proof. —

1. — Suppose that there is (ar)r≥1 ∈ C(N) such that

∑
r≥1

arℓr(z) = a1γz −
∑
k≥2

a1ζ(k)(−1)k

k
zk −

∑
r≥2

∑
k≥1

arζ(kr)(−1)k

k
zrk = 0,

in which, since γ ̸= 0 then a1 = 0. It follows that∑
r≥2

∑
k≥1

arζ(kr)(−1)k

k
zrk = 0

in which ⟨LS|z2⟩ = a2ζ(2)/2. Since ζ(2) ̸= 9 then a2 = 0. It also follows that

∑
r≥3

∑
k≥1

arζ(kr)(−1)k

k
zrk = 0.

In similar way, one proves that ar = 0, for r ∈ N+. Hence, (ℓr)r≥1 is C-free.

2. — Suppose that there is (bi)i≥1 ∈ C(N) such that∑
i≥1

aie
ℓi = 0and then

∑
i≥1

aiℓ̇i = 0

(taking the logarithmic derivative). By integration, one deduces then (ℓr)r≥1 is C-linearly
dependent contradicting with the item 1. It remains that (efi)i∈I is C-free.

3. — Using Chen series of {ωr}r≥1 defined, as in Remark 2.5, by uxr = eℓr ∂ℓr (resp.
uxr = ∂ℓr), via items a or b of Lemma 2.2, {eℓr }r≥1 (resp. {ℓr}r≥1) is the C-algebraically
independent.

4. —

(a) Since ℓr(0) = 0, ∂eℓr = eℓr ∂ℓr then ℓr and eℓr are C-algebraically independent.

(b) One has eℓ1(z) = Γ−1(1 + z) which proves the claim for r = 1. For r ≥ 2, note that
1 ≤ ζ(r) ≤ ζ(2) which implies that the radius of convergence of the exponent is 1 and
means that ℓr is holomorphic on the open unit disc. This proves the claim.

(c) eℓr(z) = Γ−1
yr

(1 + z) (resp. e−ℓr(z) = Γyr (1 + z)) is entire (resp. meromorphic) as finite
product of entire (resp. meromorphic) functions and, by Proposition 2.7, Weierstrass
factorization yields zeroes (resp. poles).
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5. — Let f ∈ E ∩ L and then there is {cy}y∈Y and {dy}y∈Y ∈ C(Y ) such that

f =
∑
r≥1

cyr ℓr =
∑
r≥1

dyr eℓr

If f ̸= 0 then ℓr0 , eℓr0 could be linearly dependent, for some r0 ≥ 1, contradicting with item 1.
Hence, E ∩ L = {0}.
C[E] (resp. C[F ]) is generated freely by (eℓr )r≥1 (resp. (ℓr)r≥1) which are entire (resp. holo-
morphic on D<1) functions. Moreover, any C[E] ∋ f ̸= c1Ω (c ∈ C) is entire and then
f /∈ C[L] (and conversely). It follows the expected result. □

By Lemma 2.1, Proposition 2.8 and Remark (2.5), one deduces then

Corollary 2.9. — The map αz
0 : (C⟨Y ⟩,�, 1Y ∗) → (spanC{αz

0(w)}w∈Y ∗ , ×, 1H(Ω)) is injec-
tive, for the inputs {∂ℓr}r≥1 or {eℓr ∂ℓr}r≥1, and then {αz

0(w)}w∈Y ∗ (resp. {αz
0(l)}l∈LynY is

linearly (resp. algebraically) independent over C.

From now on the countable set of isolated zeros (resp. poles) of the entire (resp. meromorphic)
function eℓr (resp. e−ℓr ) is denoted by O(eℓr ). We have

(25) O(eℓr ) =
⊎

χ∈Gr

χZ≤−1.

Example 2.10. — One has

O(eℓ1) = Z≤−1,

O(eℓ2) = −iZ≤−1 ⊎ iZ≤−1 = iZ̸=0,

O(eℓ3) = Z≤−1 ⊎ jZ≤−1 ⊎ j2Z≤−1,

O(eℓ4) = (1 + i)/
√

2Z̸=0 ⊎ (1 − i)/
√

2Z̸=0.

Proposition 2.11. — Let X denote any system of representatives of Gqr/Gr.

1. For any r ≥ 1 and odd q ≥ 1, one has, for |z| < 1,

eℓqr(z) =
∏
χ∈X

eℓr(χz), or equivalently, Γ−1
yqr

(1 + z) =
∏
χ∈X

Γ−1
yr

(1 + χz).

2. eℓr divides eℓqr if and only if q is odd.

3. The full symmetry group of eℓr for the representation s ∗ f [z] = f(sz) is Gr.

Proof. —

1. — Let ξ be any root of zr = (−1)r−1, one remarks that, in all cases (r be odd or even),
we have

Gr = ξGr, Gqr = ξGqr, Gqr =
⊎

χ∈X
χGr.
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16 Families of eulerian functions

Then, by Proposition 2.7, we have

ℓqr(z) =
∑

χ∈Gqr

ℓ1(χz)

=
∑

ρ1∈Gqr

ℓ1(ξρ1z) =
∑

χ∈X, ρ2∈Gr

ℓ1(ξρ2χz)

=
∑

χ∈X, ρ2∈Gr

ℓ1(ξρ2(χz)) =
∑
χ∈X

ℓr(χz)

= ℓr(z) +
∑

χ∈X\{1}
ℓr(χz).

Last equality assumes that 1 ∈ X. Taking exponentials, we get

(26) eℓqr(z) =
∏
χ∈X

eℓr(χz) = eℓr(z) ∏
χ∈X\{1}

eℓr(χz).

Again, first equality is general and the last assumes that 1 ∈ X.

2. — The fact that eℓr divides eℓqr if q is odd comes from the factorization (26). Now, when
q even, it suffices to remark, from (25), that the opposite of any solution of zr = −1 is a zero
of12 eℓr and O(eℓqr ) ∩U = −Gqr. But when q is even one has −Gr ∩ −Gqr = ∅. Hence, in this
case, eℓr cannot divide eℓqr .

3. — Let G denote the symmetry group of eℓr and remark that the distance of O(eℓr ) to
zero is 1. Hence, as O(eℓr (s.z)) = s−1O(eℓr ), we must have G ⊂ U. Then, by Remark 2.6,
as O(eℓr ) ∩ U = Gr, we must have G ⊂ Gr, the reverse inclusion is exactly the first point of
Proposition 2.7. □

Example 2.12. —

1. For r = 1, q = 2,X = {1, −1}, one has the Euler’s complement like formula, i.e. Γy2(1 +
iz) = Γy1(1 + z)Γy1(1 − z) = zπ/sin(zπ). Changing z 7→ −iz, one also has Γy2(1 + z) =
Γy1(1 + iz)Γy1(1 − iz).

2. For r = 2, q = 3,X = {1, j, j2}, one has Γy6(1 + z) = Γy2(1 + z)Γy2(1 + jz)Γy2(1 + j2z).

With the notations of Proposition 2.8, the algebra C[L] (resp. C[E]) is generated freely by
(ℓr)r≥1 (resp. (eℓr )r≥1) which are holomorphic on D<1 (resp. entire) functions. Moreover,

(27) E ∩ L = {0}, and more generally, C[E] ∩ C[L] = C.1H(Ω).

We are in a position to consider the following differential subalgebras of (H(Ω), ∂):

(28) L := C{{(ℓ±1
r )r≥1}} and E := C{{(e±ℓr )r≥1}}.

Since ∂ℓ−1
r = −ℓ−2

r ∂ℓr then L = C[{ℓ±1
r , ∂iℓr}r,i≥1]. Let

(29) L+ := C[{∂iℓr}r,i≥1].

12More precisely, denoting U the unit circle, one has O(eℓr ) ∩ U = −Gr ̸= ∅.
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This C-differential subalgebra L+ is an integral domain generated by holomorphic functions
and Frac(L+) is generated by meromorphic functions. Since there is 0 ̸= qi,l,k ∈ L+ such that
(∂ie±ℓk)l = qi,l,ke±lℓk (i, l, k ≥ 1) then let

E+ := spanC{(∂i1e±ℓr1 )l1 . . . (∂ike±ℓrk )lk}(i1,l1,r1),...,(ik,lk,rk)∈(N∗)3,k≥1(30)
= spanC{qi1,l1,r1 . . . qik,lk,rk

el1ℓr1 +...+lkℓrk }(i1,l1,r1),...,(ik,lk,rk)∈N∗×Z∗×N∗,k≥1(31)
⊂ spanL+{el1ℓr1 +...+lkℓrk }(l1,r1),...,(lk,rk)∈Z∗×N∗,k≥1(32)
=: C.(33)

Note that in (33), C is a differential subring of A = H(Ω) (hence, Frac(C) is a differential
subfield of Frac(A)) and
(34) E+ ∩ E = {0}.

Theorem 2.13. —

1. The family (eℓr )r≥1 (resp. (ℓr)r≥1) is algebraically free over E+ (resp. L+).

2. C[E] and C[L] are algebraically disjoint, within A.

Proof. —

1. — Considering the Chen series of the differential forms {ωr}r≥1 defined, for any r ≥ 1, by
uyr = eℓr ∂ℓr. Let Q ∈ Frac(L) ∩ E (resp. Frac(C) ∩ E):

i. since Q ∈ E then there is {cy}y∈Y ∈ C(Y ) such that

(35) Q =
∑
r≥1

cyr eℓr and then ∂Q =
∑
r≥1

cyr eℓr ∂ℓr,

ii. since Q ∈ Frac(L) ⊃ L ⊃ C[L] (resp. Frac(C) ⊃ C ⊃ E+) then, by (27) (resp. (34)) it
remains that Q = 0.

Hence, by Proposition 2.8, since {eℓk}k≥1 is C-free and Q = 0 then

i. on the one hand, for any r ≥ 1, one has cyr = 0,

ii. on the other hand, {αz
0(Sl)}l∈LynY (including {αz

0(Sy)}y∈Y ) is algebraically free over L
(resp. C).

It follows that {eℓr }r≥1 is algebraically free over C[L] (resp. E+).
Now, suppose there is an algebraic relation among (ℓk)k≥1 over L+ in which, by differen-
tiating and substituting ∂ℓk by e−ℓk∂eℓk , we get an algebraic relation among {eℓr }r≥1 over
C[L] and E+ contradicting with previous results. It follows then (ℓk)k≥1 is L+-algebraically
independent.

2. — {eℓk}k≥1 (resp. {ℓk}k≥1) is algebraically independent over C[L] (resp. C[E]). Hence,
{eℓk , ℓk}k≥1 generates freely C[E + L] and C[E] ∩ C[L] = C.1H(Ω).
It follows that C[E] and C[L] are algebraically disjoint, within A. □

Publications mathématiques de Besançon – 2023



18 Families of eulerian functions

Corollary 2.14. —

1. Using the inputs {∂ℓr}r≥1 (resp. {eℓr ∂ℓr}r≥1), the following morphism is injective (see
also Remark (2.5))

αz
0 : (L+⟨Y ⟩,�, 1Y ∗) −→ (spanL+{αz

0(w)}w∈Y ∗ , ×, 1H(Ω)),
(resp. αz

0 : (E+⟨Y ⟩,�, 1Y ∗) −→ (spanE+{αz
0(w)}w∈Y ∗ , ×, 1H(Ω))).

Hence, {αz
0(w)}w∈Y ∗ (resp. {αz

0(l)}l∈LynY ) is linearly (resp. algebraically) independent
over L+ (resp. E+).

2. Using the inputs {∂ℓr}r≥1 and denoting the set of exchangeable polynomials (over Y and
with coefficients in C) by Cexc⟨Y ⟩ (see [7] for example), the family {αz

0(λ)}λ∈LynY ∪{y∗
r }r≥1

is C-algebraically independent and the restricted morphism αz
0 :

(Cexc⟨Y ⟩� C[{y∗
r}r≥1],�, 1Y ∗) → C[L + E] is bijective.

Hence, {(eℓr )r≥1, (ℓr)r≥1} is C-algebraically independent.

3. Let Ck := spanL+{el1ℓr1 +...+lkℓrk }(l1,r1),...,(lk,rk)∈Z∗×N∗. Then

C =
⊕
k≥1

Ck

Proof. —

1. — It is a consequence of Theorem 2.13.

2. — The free algebras (Cexc⟨Y ⟩,�, 1Y ∗) and (C[{yr}r≥1],�, 1Y ∗) are algebraically disjoint
and their images by αz

0, by Proposition 2.8, are, respectively, the free algebras C[L] and C[E]
which are, by Theorem 2.13, algebraically disjoint. Moreover, since Cexc⟨Y ⟩ = C[{y}y∈Y ] and
Y ⊂ LynY then we deduce the respected results.

3. — For any k ≥ 1, let Φk := spanC{el1ℓr1 +...+lkℓrk }distinct r1,...,rk∈N∗,l1,...,lk∈Z∗ . Let C[Φ] be
the algebra of Φ := spanC{e±ℓr }r≥1. Since (ℓr)r≥1 is C-free then Φ1 ⊊ Φ2 ⊊ . . . and then
C[Φ] =

⊕
k≥1 Φk. Moreover, the disjunction of C[E] and C[L] leads to Ck

∼= L+ ⊗C Φk and
then yields the expected result. □

Remark 2.15. — Let us back the second point of Proposition 2.11 and then the for-
mula (26), for any q ∈ N≥1 such that q ≡ 1 (mod 2),

eℓqr(z) = eℓr(z) ∏
χ∈X\{1}

eℓr(χz).

Since (eℓr )r≥1 is algebraically free over E+ then∏
χ∈X\{1}

eℓr(χz) /∈ E+[(eℓk)k≥1].
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2.3. Polylogarithms and harmonic sums indexed by rational series. — Using the
projector πX : (C⟨Y ⟩, · , 1Y ∗) → (C⟨X⟩, · , 1X∗) defined as the concatenation morphism, map-
ping ys to xs−1

0 x1 and admitting πY as adjoint, one has the following one-to-one correspon-
dences

(s1, . . . , sr) ∈ (N∗)r ↔ ys1 . . . ysr ∈ Y ∗ πX
⇌
πY

xs1−1
0 x1 . . . xsr−1

0 x1 ∈ X∗x1.

In all the sequel, Ω := ˜C \ {0, 1} and

(36) ω0(z) := z−1dz and ω1(z) := (1 − z)−1dz.

By (23), Lis1,...,sr (z) = αz
0(xs1−1

0 x1 . . . xsk−1
0 x1), for s1, . . . , sr ∈ N∗. Thus, putting Lix0(z) :=

log(z), the following morphisms are injective

Li• : (Q⟨X⟩,�, 1X∗) −→ (Q{Liw}w∈X∗ , · , 1) ,(37)
xs1−1

0 x1 . . . xsr−1
0 x1 7−→ Li

x
s1−1
0 x1...xsr−1

0 x1
= Lis1,...,sr ,(38)

H• : (Q⟨Y ⟩,�, 1Y ∗) −→ (Q{Hw}w∈Y ∗ , · , 1) ,(39)
ys1 . . . ysr 7−→ Hys1 ...ysr

= Hs1,...,sr .(40)

In order to extend Li•, H• (in (38), (40)) over some subdomain of Crat⟨⟨X⟩⟩ (resp. Crat⟨⟨Y ⟩⟩),
let us call DomR(Li•) the set of series

(41) S =
∑
n≥0

Sn with Sn :=
∑

|w|=n

⟨S|w⟩w

such that
∑

n≥0 LiSn converge uniformly in any compact of Ω.
For any 0 < R ≤ 1, such that

∑
n≥0 LiSn converge uniformly in the open disc D|z|<R, one

has (1 − z)−1LiS =
∑

N≥0 aN zN converge in the same disc and then HπY (Sn)(N) = aN , for
N ≥ 0. Hence, let us define

DomR(Li•) :=
{
S ∈ C1X∗ ⊕ C⟨⟨X⟩⟩x1

∣∣∑
n≥1 LiSn converge in D|z|<R

}
,

Dom(H•) := πY Domloc(Li•), where Domloc(Li•) :=
⋃

0<R≤1 DomR(Li•).

Under suitable convergence condition this extension can be realized and [2, 6, 13]

1. Dom(Li•) (resp. Dom(H•)) is closed by shuffle (resp. quasi-shuffle) products.

2. LiS�T = LiSLiT and HS�T = HSHT , for S, T ∈ Dom(Li•) (resp. Dom(H•)).

Any series S ∈ C⟨⟨X ⟩⟩ is syntactically exchangeable iff it is of the form

(42) S =
∑

α∈N(X ),supp(α)={x1,...,xk}

sαx
α(x1)
1 � . . .� x

α(xk)
k .

The set of these series, a �-subalgebra of A⟨⟨X ⟩⟩, will be denoted by Csynt
exc ⟨⟨X ⟩⟩.

Theorem 2.16 (extension of Li•). — Let CC := C[{za, (1 − z)b}a,b∈C]. Then

1. The algebra CC{Liw}w∈X∗ is closed under the differential operators θ0 := z∂z and θ1 :=
(1 − z)∂z and under their sections ι0, ι1 (θ0ι0 = θ1ι1 = Id).
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2. The bi-integro differential algebra (CC{Liw}w∈X∗ , θ0, θ1, ι0, ι1) is closed under the action of
the group of transformations, G, generated by {z 7→ 1−z, z 7→ 1/z}, permuting {0, 1, +∞}:

∀ h ∈ CC{Liw}w∈X∗ , ∀ g ∈ G, h(g) ∈ CC{Liw}w∈X∗ .

3. If R ∈ Crat
exc⟨⟨X⟩⟩ � C⟨X⟩ (resp. Crat

exc⟨⟨X⟩⟩) then LiR ∈ CC{Liw}w∈X∗ (resp.
CC[log(z), log(1 − z)]).

4. The family {Liw}w∈X∗ (resp. {Lil}l∈LynX) is linearly (resp. algebraically) independent
over CC.

Proof. — The three first items are immediate. Only the last one needs a proof:
Let then B = C \ {0, 1}, Ω = C \ (] − ∞, 0] ∪ [1, +∞[) and choose a basepoint b ∈ Ω, one has
the following diagram

(B̃, b̃)

(Ω, b) (B, b)

p

j

s

Any holomorphic function f ∈ H(Ω) such that f ′ = df/dz admits an analytic continuation
to B can be lifted to B̃ by f̃(z) := f(b) +

∫ z
b f ′(s)ds.

Let L be the noncommutative series of the polylogarithms {Liw}w∈X∗ , which is group-like,
and Cz0⇝z be the Chen series, of {ω0, ω1} along z0 ⇝ z ∈ B̃, Cz0⇝z = L(z)L−1(z0) (see [13]).
Now, in view of Lemma 2.2, as the algebra C is without zero divisors and contains the field
of constants C, it suffices to prove that Lix0 , Lix1 and 1Ω are C-linearly independent. It is
an easy exercise to check that s∗(f̃) := f̃ ◦ s coincides with the given f . This is the case, in
particular of the functions log(z) and log((1 − z)−1) whose liftings will be denoted log0 and
log1, respectively. So, we lift the functions za and (1 − z)b as, respectively,
(43) ea

0(z̃) := ea log0(z̃) and eb
1 := eb log1(z̃)

and, of course, by construction,
(44) ea

0 ◦ s = (z 7→ za) and eb
1 ◦ s = (z 7→ (1 − z)b)

We suppose a dependence relation, in H(Ω)
(45) P0(za, (1 − z)b)Lix0 + P1(za, (1 − z)b)Lix1 + P2(za, (1 − z)b).1Ω = 0
where Pi ∈ C[X, Y ] are two-variable polynomials. From (44) and the fact that Ω ̸= ∅, we get
(46) P0(ea

0, eb
1) log0 +P1(ea

0, eb
1) log1 +P2(ea

0, eb
1).1B̃ = 0.

Now, we consider D0 (resp. D1), the deck transformation corresponding to the path σ0(t) =
e2iπt/2 (resp. σ1(t) = (1 − e−2iπt)/2, one gets
(47) log0 ◦(Dr

0)(z̃) = log0(z̃) + 2irπ and log1 ◦(Ds
1)(z̃) = log1(z̃) + 2isπ

Now we remark that
(48) e

[a]
0 ◦ D0(z̃) = e

[a]
0 (z̃)e2aiπ and e

[b]
1 ◦ D0 = e

[b]
1

and, similarly

(49) e
[b]
1 ◦ D1(z̃) = e

[b]
1 (z̃)e2biπ and e

[a]
0 ◦ D1 = e

[a]
0
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so that Pi(ea
0, eb

1) remain bounded through the actions of Dr
0 and Ds

1, from (47), we get that
Pi = 0, i = 0..2 which proves the claim. □

Example 2.17 ([6]). — Let us use the noncommutative multivariate exponential transforms
i.e., for any syntactically exchangeable series, we get∑

i0,i1≥0
si0,i1xi0

0 � xi1
1 7−→

∑
i0,i1≥0

si0,i1

i0!i1!Lii0
x0Lii1

x1 .

Hence, xn
0 7−→ Linx0/n! and xn

1 7−→ Linx1/n!, for n ∈ N, yielding some polylogarithms indexed
by series,

Lix∗
0
(z) = z, Lix∗

1
(z) = (1 − z)−1, Li(ax0+bx1)∗(z) = za(1 − z)−b.

Moreover, for any (s1, . . . , sr) ∈ Nr
+, there exists an unique series Rys1 ...ysr

belonging to
(Z[x∗

1],�, 1X∗) such that Li−s1,...,−sr = LiRys1 ...ysr
. More precisely (by convention ρ0 = x∗

1 −
1X∗),

Rys1 ...ysr
=

s1∑
k1=0

. . .

(s1+...+sr)−(k1+...+kr−1)∑
kr=0

(
s1
k1

)
. . .

(∑r
i=1 si −

∑r−1
i=1 ki

kr

)
ρk1 � . . .� ρkr ,

and using the Stirling numbers of second kind, S2(ki, j), one has

ρki
= x∗

1 �
ki∑

j=1
S2(ki, j)j!(x∗

1 − 1X∗)�j , (ki ̸= 0).

Theorem 2.18 (extension of H•). — For any r ≥ 1, one has, for any t ∈ C, |t| < 1,

H(tryr)∗ =
∑
k≥0

Hyk
r
tkr = exp

(∑
k≥1

Hykr

(−tr)k−1

k

)
.

Moreover, for |as| < 1, |bs| < 1 and |as + bs| < 1,

H(
∑

s≥1(as+bs)ys+
∑

r,s≥1 asbrys+r)∗ = H(
∑

s≥1 asys)∗H(
∑

s≥1 bsys)∗ .

Hence,

H(asys+aryr+asarys+r)∗ = H(asys)∗H(aryr)∗ , H(−a2
sy2s)∗ = H(asys)∗H(−asys)∗ .

Proof. — For t ∈ C, |t| < 1, since Li(tx1)∗ is well defined then so is the arithmetic function,
expressed via Newton–Girard formula (see [3]), for n ≥ 0, by

H(ty1)∗(n) =
∑
k≥0

Hyk
1
(n)tk = exp

(
−
∑
k≥1

Hyk
(n)(−t)k

k

)
=

n∏
l=1

(
1 + t

l

)
.

Similarly, for any r ≥ 2, the transcendent function H(tryr)∗ can be expressed via Newton–
Girard formula (see [3]) once again and via Adam’s transform, by

H(tryr)∗(n) =
∑
k≥0

Hyk
r
(n)tkr = exp

(
−
∑
k≥1

Hykr
(n)(−tr)k

k

)
=

N∏
l=1

(
1 − (−tr)

lr

)
.
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Since ∥Hyr ∥∞ ≤ ζ(r) then −
∑

k≥1 Hkr(−tr)k/k is termwise dominated by ∥ℓr∥∞ and then
H(tryr)∗ by eℓr (see also Theorem 2.22 bellow). It follows then the last results by using the
following identity [7](∑

s≥1
asys

)∗

�

(∑
s≥1

bsys

)∗

=
(∑

s≥1
(as + bs)ys +

∑
r,s≥1

asbrys+r

)∗

. □

From the estimations from above of the previous proof, it follows then

Corollary 2.19. — For any r ≥ 2, one has

1
Γyr (1 + t) =

∑
k≥0

ζ(r, . . . , r︸ ︷︷ ︸
k times

)tkr = exp
(

−
∑
k≥1

ζ(kr)(−tr)k

k

)
=
∏
n≥1

(
1 − (−tr)

nr

)
.

Corollary 2.20. — For any r ≥ 1

y∗
r = exp

�

(∑
k≥1

ykr
(−1)k−1

k

)
.

Hence, for any k ≥ 0, one has

yn
r = (−1)n

n!
∑

s1,...,sn>0
s1+...+nsn=n

(−yr)�s1

1s1
� . . .�

(−ynr)�sn

nsn

and, for any r, s ≥ 1, one also has

y∗
r � y∗

r =
r∑

k=0

(
r + s − k

s

)(
s

k

)
yr+s−k.

2.4. Extended double regularization by Newton–Girard formula. — By (38)–(40),
the following polymorphism is, by definition, surjective (see [13])

(50) ζ : (Q1X∗ ⊕ x0Q⟨X⟩x1,�, 1X∗)
(Q1Y ∗ ⊕ (Y − {y1})Q⟨Y ⟩,�, 1Y ∗)−↠ (Z, · , 1),

mapping both xs1−1
0 x1 . . . xsr−1

0 x1 and ys1 . . . ysr to ζ(s1, . . . , sr), where Z denotes the Q-
algebra (algebraically) generated by {ζ(l)}l∈LynX−X , or equivalently, {ζ(l)}l∈LynY −{y1}. It
can be extended as characters

ζ� : (R⟨X⟩,�, 1X∗) −→ (R, · , 1),(51)
ζ�, γ• : (R⟨Y ⟩,�, 1Y ∗) −→ (R, · , 1)(52)

such that, for any l ∈ LynX, one has (see [13])

ζ�(l) = f.p.z→1Lil(z), {(1 − z)a logb(1 − z)}a∈Z,b∈N,(53)
ζ�(πY l) = f.p.n→+∞HπY l(n), {naHb

1(n)}a∈Z,b∈N,(54)
γπY l = f.p.n→+∞HπY l(n), {na logb(n)}a∈Z,b∈N.(55)
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It follows that, for any l ∈ LynX − X, ζ�(l) = ζ�(πY l) = γπY l = ζ(l), and, for the algebraic
generator x0, ζ�(x0) = 0 = log(1) and, for the algebraic generators x1 and y1 (divergent
cases),

ζ�(x1) = 0 = f.p.z→1 log(1 − z),{(1 − z)a logb(1 − z)}a∈Z,b∈N,(56)
ζ�(y1) = 0 = f.p.n→+∞H1(n),{naHb

1(n)}a∈Z,b∈N,(57)
γy1 = γ = f.p.n→+∞H1(n),{na logb(n)}a∈Z,b∈N.(58)

As in [6, 13], considering a character χ• on (C⟨X⟩,�, 1X∗) and considering Dom(χ•) ⊂
C⟨⟨X⟩⟩ as in (41), we can also check easily that [2]:

– C⟨X⟩� Crat⟨⟨X⟩⟩ ⊂ Dom(χ•) which is closed by shuffle product,

– for any S, T ∈ Dom(χ•), one has χS�T = χSχT ,

– if S ∈ Dom(χ•) then exp
�

(S) ∈ Dom(χ•) and χexp
�

(S) = eχS .

Similarly, considering a character χ• on (C⟨Y ⟩,�, 1Y ∗) and considering Dom(χ•) ⊂ C⟨⟨Y ⟩⟩
as in (41), we can also check easily that [2]:

– C⟨Y ⟩� Crat⟨⟨Y ⟩⟩ ⊂ Dom(χ•) which is closed by quasi-shuffle product,

– for any S, T ∈ Dom(χ•), one has χS�T = χSχT ,

– if S ∈ Dom(χ•) then exp
�

(S) ∈ Dom(χ•) and χexp
�

(S) = eχS .

Example 2.21. — For any z ∈ C, |z| < 1, x ∈ X = {x0, x1}, yr ∈ Y = {yk}k≥1, since

(zx)∗ = exp
�

(z) and (zyr)∗ = exp
�

(∑
k≥1

ykr
(−z)k−1

k

)
then

ζ�((zx)∗) = ezζ�(x) and γ(zyr)∗ = exp
(∑

k≥1
ζ�(ykr)(−z)k−1

k

)
.

We now in situation to state that

Theorem 2.22 (Regularization by Newton–Girard formula). — The characters ζ�
and γ• are extended algebraically as follows:

ζ� : (C⟨X⟩� Crat
exc⟨⟨X⟩⟩,�, 1X∗) −→ (C, · , 1),

∀ t ∈ C, |t| < 1, (tx0)∗, (tx1)∗ 7−→ 1C.

and
γ• : (C⟨Y ⟩� Crat

exc⟨⟨Y ⟩⟩,�, 1Y ∗) −→ (C, · , 1),
∀ t ∈ C, |t| < 1, ∀ r ≥ 1, (tryr)∗ 7−→ Γ−1

yr
(1 + t).

Moreover, the morphism (C[{y∗
r}r≥1],�, 1Y ∗) → C[E] mapping y∗

r to Γ−1
yr

, is injective and
Γy2r (1 + 2r

√
−1t) = Γyr (1 + t)Γyr (1 + r

√
−1t), for r ≥ 1.

Proof. — By Definition 2.4, Propositions 2.8, 2.11 and Theorems 2.16, 2.18, we get the
expected results (see also Proposition 2.7). □
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Example 2.23 ([6]). —
Li−1,−1 = Li−x∗

1+5(2x1)∗−7(3x1)∗+3(4x1)∗ ,

Li−2,−1 = Lix∗
1−11(2x1)∗+31(3x1)∗−33(4x1)∗+12(5x1)∗ ,

Li−1,−2 = Lix∗
1−9(2x1)∗+23(3x1)∗−23(4x1)∗+8(5x1)∗ ,

H−1,−1 = H−y∗
1+5(2y1)∗−7(3y1)∗+3(4y1)∗ ,

H−2,−1 = Hy∗
1−11(2y1)∗+31(3y1)∗−33(4y1)∗+12(5y1)∗ ,

H−1,−2 = Hy∗
1−9(2y1)∗+23(3y1)∗−23(4y1)∗+8(5y1)∗ .

Hence, ζ�(−1, −1) = 0, ζ�(−2, −1) = −1, ζ�(−1, −2) = 0, and
γ−1,−1 = −Γ−1(2) + 5Γ−1(3) − 7Γ−1(4) + 3Γ−1(5) = 11/24,

γ−2,−1 = Γ−1(2) − 11Γ−1(3) + 31Γ−1(4) − 33Γ−1(5) + 12Γ−1(6) = −73/120,

γ−1,−2 = Γ−1(2) − 9Γ−1(3) + 23Γ−1(4) − 23Γ−1(5) + 8Γ−1(6) = −67/120.

From Theorems 2.18 and 2.22, one deduces

Corollary 2.24. —

1. With the notations of (23), Definition 2.4 and with the differential forms {(∂ℓr)dz}r≥1,
for any z ∈ C, |z| < 1, one has

γ
�r≥1(zryr)∗ =

∏
r≥1

γ(zryr)∗ =
∏
r≥1

eℓr(z) =
∏
r≥1

1
Γyr (1 + z) = αz

0(�r≥1y∗
r ).

2. One has, for |as| < 1, |bs| < 1 and |as + bs| < 1,
γ(
∑

s≥1(as+bs)ys+
∑

r,s≥1 asbrys+r)∗ = γ(
∑

s≥1 asys)∗γ(
∑

s≥1 bsys)∗ .

Hence, γ(asys+aryr+asarys+r)∗ = γ(asys)∗γ(aryr)∗ , γ(−a2
sy2s)∗ = γ(asys)∗γ(−asys)∗.

Remark 2.25. — The restriction αz
0 : (C[{yr, y∗

r}r≥1],�, 1Y ∗) → C[L + E] is injective (see
Corollary 2.14) while ker(γ•) ̸= {0}, over C⟨Y ⟩� Crat

exc⟨⟨Y ⟩⟩ [13].

Example 2.26 ([11, 12]). — By Theorem 2.22,
γ(−t2y2)∗ = Γ−1

y2 (1 + it), γ(ty1)∗ = Γ−1
y1 (1 + t), γ(−ty1)∗ = Γ−1

y1 (1 + t).
Then, by Corollary 2.24, γ(−t2y2)∗ = γ(ty1)∗γ(−ty1)∗ meaning that

Γ−1
y2 (1 + it) = Γ−1

y1 (1 + t)Γ−1
y1 (1 − t).

Or equivalently,

exp
(

−
∑
k≥2

ζ(2k) t2k

k

)
=
∑
k≥2

ζ(
k times︷ ︸︸ ︷

2, . . . , 2)(−1)kt2k = sin(tπ)
tπ

=
∑
k≥1

(−1)k (tπ)2k

(2k + 1)! .

Since γ(−t2y2)∗ = ζ((−t2x0x1)∗) then, identifying the coefficients of t2k, we get

ζ(
k times︷ ︸︸ ︷

2, . . . , 2)
π2k

= 1
(2k + 1)! ∈ Q.
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Similarly, by Theorem 2.22,

γ(−t4y4)∗ = Γ−1
y4 (1 + 4√−1t), γ(t2y2)∗ = Γ−1

y2 (1 + t), γ(−tty2)∗ = Γ−1
y2 (1 + it).

Then, by Corollary 2.24, γ(−t4y4)∗ = γ(t2y2)∗γ(−t2y2)∗ meaning that

Γ−1
y4 (1 + 4√−1t) = Γ−1

y2 (1 + t)Γ−1
y2 (1 + it).

Or equivalently,

exp
(

−
∑
k≥1

ζ(4k) t4k

k

)
=
∑
k≥2

ζ(4, . . . , 4︸ ︷︷ ︸
k times

)(−1)k (tπ)4k

(4k + 2)!

= sin(itπ)
itπ

sin(tπ)
tπ

=
∑
k≥1

2(−4tπ)4k

(4k + 2)! .

Since γ(−t4y4)∗ = ζ((−t4y4)∗), γ(−t2y2)∗ = ζ((−t2y2)∗), γ(t2y2)∗ = ζ((t2y2)∗) then, using
the poly-morphism ζ and identities on rational series, we get

ζ((−t4y4)∗) = ζ((−t2y2)∗)ζ((t2y2)∗)
= ζ((−t2x0x1)∗)ζ((t2x0x1)∗))
= ζ((−4t4x2

0x2
1)∗).

Thus, by identification the coefficients of t4k, we obtain

ζ(
k times︷ ︸︸ ︷

4, . . . , 4)
4kπ4k

= ζ(
k times︷ ︸︸ ︷

3, 1, . . . , 3, 1)
π4k

= 2
(4k + 2)! ∈ Q.

Corollary 2.27 (comparison formula, [8, 13]). — For any z, a, b ∈ C such that |z| < 1
and ℜ(a) > 0, ℜ(b) > 0, we have

B(z; a, b) = Lix0[(ax0)∗
�((1−b)x1)∗](z) = Lix1[((a−1)x0)∗

�(−bx1)∗](z).

Hence, on the one hand

B(a, b) = ζ�(x0[(ax0)∗
� ((1 − b)x1 = ζ�(x1[((a − 1)x0)∗

� (−bx1)∗])

and, on the other hand

B(a, b) =
γ((a+b−1)y1)∗

γ((a−1)y1)∗
�((b−1)y1)∗

=
γ((a+b−1)y1)∗

γ((a+b−2)y1+(a−1)(b−1)y2)∗
.

Proof. — The results, of B(z; a, b), are the computations of iterated integrals associated to
different rational series, using the differential forms in (36). Those of B(a, b), are then imme-
diate consequences, by evaluating these iterated integrals at z = 1 and by using Definition 2.4
and Corollary 2.24. □

Example 2.28 ([11, 12]). — Let us consider, for t0, t1 ∈ C, |t0| < 1, |t1| < 1,

R := t0x0(t0x0 + t0t1x1)∗(t0t1x1) = t2
0t1x0[(t0x0)∗

� (t0t1x1)∗]x1.
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Then, with the differential forms in (36), we get successively

LiR(z) = t2
0t1

∫ z

0

ds

s

∫ s

0

(
s

r

)t0(1 − r

1 − s

)t0t1 dr

1 − r

= t2
0t1

∫ z

0
(1 − s)−t0t1st0−1

∫ s

0
(1 − r)t0t1−1r−t0dsdr

By change of variable, r = st, we obtain then

LiR(z) = t2
0t1

∫ z

0
(1 − s)−t0t1

∫ 1

0
(1 − st)t0t1−1t−t0dtds.

It follows then

ζ(R) = t2
0t1

∫ 1

0

∫ 1

0
(1 − s)−t0t1(1 − st)t0t1−1t−t0dtds.

By change of variable, y = 1 − s

1 − st
, we obtain also

ζ(R) = t2
0t1

∫ 1

0

∫ 1

0
(1 − ty)−1t−t0y−t0t1dydt.

By expending (1 − ty)−1 and then integrating, we get on the one hand

ζ(R) =
∑
n≥1

t0
n − t0

t0t1
n − t0t1

=
∑

k>l>0
ζ(k)tk

0tl
1.

On the other hand, using the expansion of R, we get also

ζ(R) =
∑
k>0

∑
l>0

∑
s1+...+sl=k

s1...,sl≥1,s1≥2

ζ(s1, . . . , sl)tk
0tl

1.

Finally, by identification the coefficients of ⟨ζ(R)|tk
0tl

1⟩, we deduce the sum formula

ζ(k) =
∑

s1+...+sl=k
s1...,sl≥1,s1≥2

ζ(s1, . . . , sl).

3. Conclusion

In this work, we illustrated a bijection, between a sub shuffle algebra of noncommuta-
tive rational series (recalled in 2.1) and a subalgebra of holomorphic functions, H(Ω), on
a simply connected domain Ω ⊂ C containing the family of extended eulerian functions
{Γ−1

y (1 + z)}y∈Y and the family of their logarithms, {log Γ−1
y (1 + z)}y∈Y (introduced in 2.2),

involved in summations of polylogarithms and harmonics sums (studied in 2.3) and in regu-
larizations of divergent polyzetas (achieved, for this stage, in 2.4).
These two families are algebraically independent over a differential subring of H(Ω) and gener-
ate freely two disjoint functional algebras. For any yr ∈ Y , the special functions
Γ−1

yr
(1 + z) and log Γ−1

yr
(1 + z) are entire and holomorphic on the unit open disc, respec-

tively. In particular, Γ−1
yr

(1 + z) admits a countable set of isolated zeroes on the complex
plane, i.e.

⊎
χ∈Gr

χZ≤−1, where Gr is the set of solutions of the equation zr = (−1)r−1.
Publications mathématiques de Besançon – 2023



V. C. Bui and V. Hoang Ngoc Minh and Q. H. Ngo and V. Nguyen Dinh 27

These functions allow to obtain identities, at arbitrary weight, among polyzetas and an ana-
logue situation, as the ratios ζ(2k)/π2k, drawing out consequences about a structure of polyze-
tas. This work will be completed, in the forth comming works, by a study a family of functions
obtained as image of rational series for which their linear representation (ν, µ, η) are such that
the Lie algebra generated by the matrices {µ(y)}y∈Y is solvable.
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