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FAMILIES OF EULERIAN FUNCTIONS INVOLVED IN
REGULARIZATION OF DIVERGENT POLYZETAS

by

V. C. Bui, V. Hoang Ngoc Minh, Q. H. Ngo and V. Nguyen Dinh

Abstract. — Extending the Eulerian functions, we study their relationship with zeta function of several
variables. In particular, starting with Weierstrass factorization theorem (and Newton-Girard identity)
for the complex Gamma function, we are interested in the ratios of ¢((2k)/7%* and their multiindexed
generalization, we obtain an analogue situation and draw some consequences about a structure of the
algebra of polyzetas values, by means of some combinatorics of words and noncommutative rational series.
The same frameworks also allow to study the independence of a family of eulerian functions.

Résumé. — (Familles de fonctions eulériennes impliquées dans la régularisation de polyzétas diver-
gents) En généralisant les fonctions euleriennes, nous étudions leurs relations avec la fonction zéta en
plusieurs variables. En particulier, & partir du théoréme de factorisation de Weierstrass (et l'identité de
Newton-Girard) pour la fonction Gamma complexe, nous nous intéressons aux rapports C(Qk)/ﬂ'Qk et
leurs généralisations. Nous obtenons une situation analogue et nous tirerons quelques conséquences sur
une structure de ’algebre des valeurs polyzétas, au moyen de la combinatoire des mots et des séries ration-
nelles en variables non commutatifs. Le méme cadre de travail permet également d’étudier I'indépendance
d’une famille de fonctions euleriennes.

1. Introduction

Eulerian functions are most significant for analytic number theory and they are widely applied
in Probability theory and in Physical sciences. They are tightly relating to Riemann zeta
functions, for instance as follows

1 oo sl o0
(1) C(s) = I‘(s)/o dtetj and T'(s) :/0 du u*~te™, for R(s) > 0.
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(8 Families of eulerian functions

The function I' is meromorphic, with no zeroes and —N* as set of simple poles. Hence I'™*
is entire and admits —N* as set of simple zeroes. Moreover, it satisfies! I'(2) = I'(z). From
Weierstrass factorization [5] and Newton—Girard identity [14], we have successively

(2) 126”’21_[(1—1—'2)6_5 :exp<’yz—ZC(k)(_z)k>.
I'(z+1) eSe] n e k
Using the following functional equation and Euler’s complement formula, i.e.
™
(142) =) and TET0-2)= .

and also introducing the partial beta function defined (for any a,b,z € C such that Ra > 0,
Rb >0, |z| < 1) by

(3) B(z;a,b) /dtt“l t)bt

and then, classically, B(a,b) := B(1;a,b) =I'(a)I'(b)/I'(a + b), one has (for any u,v € C such
that |u| < 1,|v] <1 and |u+ v| < 1) the following expression

(u+v”(u”+v”)> (1 —w)I(1-v)
4 exp| — n ,
(4) p( n§>j2<(> - T = u—0)

~ TP(u+wv)  sin((u+v)m)

(5) B F(u)F(v)Fsin(mr) sin(vm)
(6) = B(;T, ) (cot(um) + cot(vm)).
In particular, for v = —u (Ju| < 1), one gets
1 sin(u)
ex ¢( 2k: = .
p( ];1 ) 'l —w)I'(1+u) um

Hence, taking the logarithms and considering Taylor expansions, one obtains

(7) — S ¢kt log(l—l—Z Z:H )

k>1

) (_1)l—1
(8) = (uim)* Y > H
k>1 I>1 ! n >l =1 2”Z+2
ni+...+n= k

One can deduce then the following expression? for ¢ (2k):

k k+l 1 l 1

o ¥ gy 0

ni,...,n>1 =1
TL1+...+TLl=k‘

(9)

Y.e. its coefficients are real, we will see later the combinatorial content of them.
2Note that Euler gave another explicit formula using Bernoulli numbers.

Publications mathématiques de Besangon — 2023



V. C. Bui and V. Hoang Ngoc Minh and Q. H. Ngo and V. Nguyen Dinh 7

Example 1.1. —

(@ _, (D1
m 1 T(4) ¢
O [ Ve N Ve N
Tt 1 TI(6) 2 T(4)T(4) 90’
¢(6) _323:(_1)344 Z ! 1 1
6 ] — aAx’
s — l sl il I'(2n; +2) 945
ni+...+n;=3
I e S ) (L B
™ o ! nimy>1 =1 T(2n; +2) 9450’
ni+...+ny 4
10 -1 541 l 1 1
T ! Nt >1 =1 I'(2n; +2) 93555
ni+...4+n;=5
Now, more generally, for any r € N>; and (s1,...,s,) € C", let us consider the following
several variable zeta function
(10) C(s1y.vy8p) = Z nyt.oon
ni>...>nr>0
which converges for (sq,...,s,) in the open sub-domain of C",r > 1, [9, 18]

He:={(s1,...,8) €CT|VYm=1,....r, R(s1) + ...+ R(sm) > m}.

In the convergent cases, from a theorem by Abel, for n € N,z € C, |z| < 1, its values can be
obtained as the following limits

(11) C(Slv ce 787") = 21(1_{% Lis1,~~~,8r (Z) = ngr—lr—loo HSL...,ST (TL),
where the following polylogarithms are well defined
(12 D= Y
12 Li517.”78,r Z) = 51 s
ny>.>n,>0 Leenr

Lis; .50 (2)

(13) -

n
EH51,7 (n)z",

n>0
and so are the Taylor coefficients® here simply called harmonic sums
(14) Hs, .. s : N — Q(i.e. an arithmetic function),

(15) n+—— Hsly,,,7s,, (n) = Z n;sl e n;s’”.
n>ni>...>n,>0

3These quantities are generalizations of the harmonic numbers H, = 1+ 271... + n~! to which they boil
down for r = 1,81 = 1. They are also truncations of the zeta values ((s1,...,sr) at order n + 1.
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8 Families of eulerian functions

On H, NN, the polyzetas can be represented by the following integral representation? over
10,1 [10] (here, one set A\(2) := 2(1 — 2)"1,tp = 1 and u,41 = 1):

ogs1—1 tr—1 og® " H(t,_1/t,
o 50) = /<>(<>/> /0 ot e /)
=15
=1

s L
/0 oy U I | wo(uj)A ;) log®~H(—)
(16) = I I

uj

with wo(z) = dz/z and wy(z) = dz/(l - z).

As for the Riemann zeta function in (1), we observe that (16) involves again the factors
(and products) of eulerian Gamma function and also their quotients (hence, eulerian Beta
function). In the sequel, in continuation with [6, 8, 13], we propose to study the ratios
C(s1,...,8p)/mS1HF5r (and others), an analogue of (9), which will be achieved as consequence
of regularizations, via the values of entire functions, of divergent polyzetas and infinite sums
of polyzetas (see Theorem 2.22 and Corollaries 2.24, 2.27 in Section 2.4) for which a theorem
by Abel (see (11)) could not help any more. This achievement is justified thanks to the ex-
tensions of polylogarithms and harmonic sums (see Theorems 2.16 and 2.18 in Section 2.3)
and thanks to the study of the independence of a family of eulerian functions which can be
viewed as generating series of zeta values (for r > 2):

(—2")F
(17) T~ ) = e(= Yl )

k>0 k>1

k times

(see Propositions 2.7-2.11 and Theorem 2.13 in Section 2.2) via the combinatorial tools
introduced in Section 2.1 (see Lemmas 2.1, 2.2 in Section 2.1). Finally, identities among these
(convergent or divergent) generating series of zeta values are suitable to obtain relations, at
arbitrary weight, among polyzetas (see Examples 2.26 and 2.28 in Section 2.4).

2. Families of eulerian functions

In all the sequel, C[{ fi }icr] denotes the algebra generated by { f; }ier, C{{(gi)icr}} denotes the
differential C-algebra®, generated by the family (g;);cs of the C-commutative differential ring
(A, ) (1.4 is its neutral element) and Cy denotes a differential subring of A (9Cy C Cp) which
is an integral domain containing the field of constants. If the ring A is without zero divisors
then the fields of fractions Frac(Cp) and Frac(A) are naturally differential fields and can be
seen as the smallest ones containing Cy and A, respectively, satisfying Frac(Cy) C Frac(A).

2.1. Words and formal power series. — Let X" denote either the alphabets X := {zg,z1}
or Y := {yr}tr>1, equipped with a total ordering, and let A* denote the monoid freely
generated by X (its unit is denoted by 1x«). The set of noncommutative polynomials (resp.
series) over X’ with coefficients in a commutative ring A, containing Q, is denoted by A(X’)

10n H.,, log(a/b) is replaced by log(a) — log(b).
5i.e. the C-algebra generated by g; and their derivatives [16].
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(resp. A((X))) [1]. The algebraic closure ofS A.X by the rational operations’ {conc,+,*}
within A((X)) is denoted by A™((X)) [1]. We will also consider the following Hopf algebras
and, in the case of A = k being a field, their Sweedler’s dual® [7, 13]

(18) (A(X),conc, Ay, 1xy+,€) and (A(Y),conc, Ay, ly«,¢€),
(19) (krat<<X>>7 L, 1= ) Aconca 6) and (krat<<Y>>7 L, 1Y*7 Aconca 6)'

In particular, using the set of Lyndon words, denoted by LynX’, one constructs the basis
{Pi}iecyna, for Liea(X), generating the PBW-Lyndon basis { Py }wex+ for (A(X), conc, 1 x+)
and then the graded dual basis {S,, }wex+ containing the pure transcendence basis {5 };ecynx
for the shuffle algebra (A((X)), W, 1x+). Similarly, the basis {II; };czyny generating the PBW-
Lyndon basis {II,}yey+ for (A(Y),conc, ly~) and then the graded dual basis {3, }y,ey+
containing the pure transcendence basis {¥;}iczyny for the stuffle algebra (A((Y)), L, 1y~).

Lemma 2.1. —

1. The algebras (C[{z*}rex], W, 1x+) and (C(X), W, 1x+) are algebraically disjoint over C
and

(C[{m*}xeX]<X>7 LU, 1X*) = (C[{l’*}xeX] [[’ynX]? L, 1/\’*)
(C[{x*’ l}zeX,lEEynXL LU, 1X*)

which is generated by the transcendent basis {x*, 1} zcx jcynx over C.
2. Let K := C[{f(z*)}sex]and F := C[{f(I) hiecynx]-
Let f be the shuffle morphism (C[{z*}zex|(X), W, 1x+) = (A, x,14).

Then the following assertions are equivalent

12

(a) The morphism f is injective.
(b) The algebras K and F, satisfying K N F = C.14, are generated by the transcendent
bases { f(x*)}oex and {f(1) hicoynx, respectively, over C.

Hence, if (a), or (b), holds then F, K are algebraically disjoint over C and
CHf @) oex][{f (D hecynx] = CHUS (@), f(D)}aex tecyny]

which is generated by the transcendent basis { f(x*), f(1) }zex jccynx over C.

Proof. —

1. — Recall that the algebras (C[{z*}zex], W, 1x+) and (C(X), L, 1x+) are generated, re-
spectively, by the transcendent bases {x*},cx [7] and LynX [17]. Moreover, {z*},cx is also
algebraically independent over C(X') [7] and then C[{z*}zex] NC(X) = C.1x-. It follows the
then expected results.

In general, A.X is the module of homogeneous series S € A{(X)) of degree one.

"Here conc stand for the Cauchy product (concatenation) and Aconc is its co-product.

For any S € A({X)) such that (S|1x+) = 0, the Kleene star of S is defined by $* := (1-5)"' = 1+S+5%+....
8Here, LI (resp. L) stand for the shuffle (resp. stuffle) product and Ay, (resp. Aw) is its co-product (see [17]
or [6]).

The antipode of the first one is given by a(w) = (—1)!*!@w, the antipode of the second one exists because the
bialgebra is graded by weight, but is more complicated.
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10 Families of eulerian functions

2. — Straightforward. O

Now, for any r > 1, let us consider the following differential form
(20) wr(2) = uy, (2)dz  with u,, € Cy C A.
Let us also consider the following noncommutative differential equation (see [7])
(21) dS = MS; (S|1y+) =14, where M = > u,z € CoX,
reX

where d is the differential operator on A((X)) extending 0 as follows:
(22) VS = Z (Slwyw € A((X)), dS = Z (O(S|w))w.

weX* weX*

In order to prove Proposition 2.8, Theorems 2.13 and 2.16 below, we use the following lemma,
a particular case of a general localization result to be proved in a forthcoming paper [7].

Lemma 2.2. — Suppose that the C-commutative ring A is without zero divisors and equipped
with a differential operator 9 such that C = ker 0.
Let S € A((X)) be a group-like solution of (21), in the following form

N\
S=1ly+ Y (Swyw=1y-+ Y (S|Su)Pu= [ e®I7.
weX* X WEX*X leLynX

Then

1. If H € A{((X)) is another group-like solution of (21) then there exists C € Lies{{X))
such that S = He® (and conversely).

2. The following assertions are equivalent

(a) {(S|w)}wea~ is Co-linearly independent,
) {(S1D) hiecynx is Co-algebraically independent,
) {(S|z)}zex is Co-algebraically independent,
) 1{S]7) oexuqiy.) 18 Co-linearly independent,
)

Z cptiy =0f — (V€ X)(cy, =0).

reX
(f) The family (ug)zex is free over C and O Frac(Cp) N spanc{uy tzexr = {0}.

Sketch of the proof. — The first item has been treated in [11]. The second is a group-like
version of the abstract form of Theorem 1 of [4]. It goes as follows

— due to the fact that A is without zero divisors, we have the following embeddings Cy C
Frac(Cp) C Frac(A), Frac(A) is a differential field, and its derivation can still be denoted
by 0 as it induces the previous one on A,

— the same holds for A((X)) C Frac(A)((X)) and d

— therefore, equation (21) can be transported in Frac(A)((X)) and M satisfies the same
condition as previously.
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— Equivalence between (a)—(d) comes from the fact that Cy is without zero divisors and
then, by denominator chasing, linear independances w.r.t. Cy and Frac(Cy) are equivalent.
In particular, supposing condition (d), the family {(S]x)},cxuqi,.} (basic triangle) is
Frac(Cp)-linearly independent which imply, by the Theorem 1 of [4], condition (e),

— still by Theorem 1 of [4], (e) is equivalent to (f), implying that {(S|w) }wex~ is Frac(Cop)-
linearly independent which induces Cy-linear independence (i.e. (a)). O

Now, let A = H(2), the ring of holomorphic functions on a simply connected domain 2 C C
(13(q) is its neutral element). With the notations in (20) and for any path zp ~~ z in €, let
oZ,  (C™ (X)), 1, 1x+) = (H(), X, 14) be the morphism defined, for any z;, ...x;,) € X*,
by [7]

z Zk—1
(23) i (T ... x,) :/ wi, (21) .. / wi(zx) and  af (1x+) = Iyq),

20 20
satisfying o (uwv) = o (u)aZ, (v), for u,v € X*. By a Ree’s theorem [17], the Chen series
of {wr},>1 and along the path zg ~» z in Q is group-like:

N\
(24) Copz = Y. a(ww= [[ e en@)a)).

weEX* leLynX
Since O (w4, . .. 74),) = wiy (2)aZ (@i, - .. x;,) then Cy ... is a solution of (21).

Remark 2.3. — For any w € XX, the value of o (w) depends on {w;};>1, or equivalently
on {ug}zex and if fi(2) = o (v) then, for any n > 0, one has [10]

o (") = o (2" /n!) = f(z)n! and then F,(z):=af (z%) = ef+(2),

With data in (20) and shuffle morphism in (23), we will illustrate a bijection, between (C({X’) L
Cl{z*}zex], W, 1x+), the subalgebra of noncommutative rational series and a subalgebra of
H(2) containing the eulerian functions bellow.

2.2. Families of eulerian functions. —

Definition 2.4. — For any z € C such that |z| < 1, we put

)k
l(z) = ’yz—ZC(k‘)( k) and for 7> 2,4,(2) ::—ZC(k‘r)

(=)

E>2 i>1 k
(s Iy, (a)Ty, (b)
Forany k> 1,let I'y, (1 +z2) :=e (2) gand By, (a,b) := %.

Remark 2.5. —
1. (£,)>1 is triangular®. So is (efr — % (0)),5,.

9(g:)i>1 is said to be triangular if the valuation of g;, w(g;), equals i > 1. It is easy to check that such a family
is C-linearly free and that is also the case of families such that (g; — g(0));>1 is triangular.
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12 Families of eulerian functions

2. For any 2 € Q =C,|z] < 1 and k > 1, using Remark 2.3, one has

L uy a5 (Yk) | a5 (yr) |
Ly z e?
(1—-2)7"1 —log(1 — 2) (1—2)71
R oty | et = Fy_kl(l +2) e

3. The function ¢; is already considered by Legendre for studying the eulerian Beta and
Gamma functions [15], denoted here, repectively, by By, and I'y,.

4. For any r > 1, one has 9/, = e ‘rde’r.

5. For any n > 0, one puts classically ¥,, := 9" logT".

6. Some of these functions cease (unlike I') to be hypertranscendental. For example!'? y(z) =
F;;(l + ) is a solution of (1 — 7222)y? + 2xyy + 2%9° = 1.

Now, for any r > 1, let G, (resp. G,) denote the set (resp. group) of solutions, {&,...,& -1},
of the equation 2" = (—1)""! (resp. 2" = 1). For r,q > 1, we will need also a system X of
representatives of Gy, /Gr, ie. X C Ggr such that

gqr = L"j Tgr-
TeX
It can also be assumed that 1 € X as with X = {eQik”/qr}ogkgq_l.
Remark 2.6. — If r is odd then 2" = (—1)"~! = 1 and G, = G, as being a group otherwise

G, = &G, as being an orbit, where ¢ satisfies {" = —1 (this is equivalent to & € Gy, and
£¢Gr)

Proposition 2.7. —

1. Forr > 1,x € G, and z € C,|z| < 1, the functions ¢, and el" have the symmetry,
0.(2) = £,(x2) and er?) = rX2) | In particular, for r even, as —1 € G,, these functions
are even.

2. For |z| < 1, we have
l(z) = — Z log(D(1 4 xz)) and €)= H eI H (1 + K)e*X‘Z/".
XEGy XEG, n>1 n
3. For any odd r > 2,
F;}(l +2)=e"@ =171 4 2) H 12,
x€G-\{1}

4. In general, for any odd or even r > 2,

0z aixe) _ 2

e H e H (1 + nr)'

xX€Gr n>1

“Indeed, we use the fact that I',,} (1 + x) = sin(irz)/irz (see Example 2.26 bellow).
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Proof. — The results are known for r = 1 (i.e. for I™1). For r > 2, we get

1. — By Definition 2.4, with x € gr, we get

Zk
ZCkr = > ((kr) k) =0,(2),

k>1 k>1

thanks to the fact that, for any x € G,, one has x" = 1. In particular, if r is even then
l(2) = by (—2), i.e. £, is even.

2. — If ris odd, as G, = G, and, applying the symmetrization principle'!, we get

—Zflxz Zflxz

X€Gr XEGr
kr _m\k
—TZCk:T ) :Z((kr)( Z) .
k>1 k>1

The last term being due to, precisely, r is odd. If 7 is even, we have the orbit G, = £G, (still
with " = —1) and then, by the same pr1n01ple

=D hlxgz) =) C(kr 5z)

XEGr k>1
)k
=> kr => kr
k>1 k>1

3. — Straightforward.
4. — Due to the fact that the external product is finite, we get

=1 =1
Lr(2) _ YXZ XZ\ —xz/n = - Xz
e (He )H(1+n) <He )H(l—i—n)
X€EGr n>1 n>1 n>1
XE€Gr XEGr XEGr
Using the elementary symmetric functions of G, we get the expected result. O

Proposition 2.8. — Let L := spanc{{,},>1 and E := spanc{e’ },>1. Let C[L] and C[L]
be their respective algebra. One has

L. The family (£;)r>1 is C-linearly free and free from 1yyq).
2. The family (0,)r>1 and (e')y>1 is C-linearly free and free from Ly (q)-

3. The families (¢y)r>1 and (ee’“)rzl are C-algebraically independent.

~

For any r > 1, one has
(a) The functions £, and €' are C-algebraically independent.

(b) The function €, is holomorphic on the open unit disc, D1,

""Within the same disk of convergence as f, one has, f(z) =Y. _, anz" and erg flxz) =74, arpz""
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14 Families of eulerian functions

(c) The function e (resp. e~ ) is entire (resp. meromorphic), and admits a count-
able set of isolated zeroes (resp. poles) on the complex plane which is expressed as

LﬂxGG’T XZS—I-
5. One has ENL = {0} and, more generally, C[E] N C[L] = C.1yq)-
Proof. —

1. — Suppose that there is (a,),>1 € C®™ guch that

S ate(z) = arrz — 3 and(h) - Yt S g,

r>1 k>2 r>2k>1

in which, since v # 0 then a; = 0. It follows that

k
> ancthn) S =

r>2k>1

in which (LS|22) = a2((2)/2. Since ((2) # 9 then ay = 0. It also follows that

Z Z a,C( kr ) =0.

r>3 k>1

In similar way, one proves that a, = 0, for r € N*. Hence, (¢,),>1 is C-free.
2. — Suppose that there is (b;);>1 € C™) such that

Z aie&' = Oand then Z aiéi =0

i>1 i>1

(taking the logarithmic derivative). By integration, one deduces then (¢,),>1 is C-linearly
dependent contradicting with the item 1. It remains that (e/');c; is C-free.

3. — Using Chen series of {wr},>1 defined, as in Remark 2.5, by ug, = elrol, (resp.
Uy, = Of,), via items a or b of Lemma 2.2, {e"},>1 (resp. {£,},>1) is the C-algebraically
independent.

4o —

(a) Since £,(0) = 0,0e’r = 794, then £, and e are C-algebraically independent.

(b) One has e/1(*) = T~1(1 4 2) which proves the claim for » = 1. For » > 2, note that
1 < ¢(r) < ¢(2) which implies that the radius of convergence of the exponent is 1 and
means that ¢, is holomorphic on the open unit disc. This proves the claim.

(c) efr(®) = L, M1+ 2) (resp. e~z = T, (1 + 2)) is entire (resp. meromorphic) as finite
product of entire (resp. meromorphic) functions and, by Proposition 2.7, Weierstrass
factorization yields zeroes (resp. poles).

Publications mathématiques de Besangon — 2023



V. C. Bui and V. Hoang Ngoc Minh and Q. H. Ngo and V. Nguyen Dinh 15

5. — Let f € EN L and then there is {c,},ey and {d,},ey € C) such that

= cplr=> dye"

r>1 r>1
If f # 0 then £,,, ‘0 could be linearly dependent, for some g > 1, contradicting with item 1.
Hence, EN L = {0}.
C[E] (resp. C[F)]) is generated freely by (e’"),>1 (resp. (¢.),>1) which are entire (resp. holo-

morphic on D.1) functions. Moreover, any C[E] > f # clg (¢ € C) is entire and then
f ¢ C[L] (and conversely). It follows the expected result. O

By Lemma 2.1, Proposition 2.8 and Remark (2.5), one deduces then

Corollary 2.9. — The map of : (C(Y), W, 1y+) — (spanc{ag(w) fwey+, X, lyyq)) is injec-
tive, for the inputs {00, },>1 or {700, },>1, and then {af(w)}wey= (resp. {a§()}iecyny s
linearly (resp. algebraically) independent over C.

From now on the countable set of isolated zeros (resp. poles) of the entire (resp. meromorphic)
function e’ (resp. e~) is denoted by O(e’r). We have

(25) O(e") = [ xZ<-1.
X€Gr

Example 2.10. — One has

O(e") = Z< 4,

O(e"?) = —iZc_1 Wile 1 = iZoy,

O(") =Ze 1 Wijle 1 Wy,

Oel) = (1+1)/V2Zr0 & (1 — i) /V2Zs0.

Proposition 2.11. — Let X denote any system of representatives of Gy /Gy

1. For anyr > 1 and odd q > 1, one has, for |z| <1,

el @) = T[ 709, or equivalently, Ty, (1+z)= [] T, (1 + x2).
xeX Xex

2. el divides e'e if and only if q is odd.
3. The full symmetry group of e for the representation s * f[z] = f(sz) is G,.

Proof. —

1. — Let & be any root of 2" = (—1)"~!, one remarks that, in all cases (r be odd or even),
we have
G, = ggthr = qur,gqr = L‘ﬂ Xgr-

x€X
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16 Families of eulerian functions

Then, by Proposition 2.7, we have

l(2) = Y Gx2)

Xequ
= Y hlépz)= > l(épaxz)
p1€Gqr X€X, p2€G,
= > hpxz) = b(x2)
X€X, p2€Gr xeX
z) + Z 0 (xz).
xeX\{1}
Last equality assumes that 1 € X. Taking exponentials, we get
(26) elar(z) — H elr(x2) — obr(2) H elr(xz)
xeX xeX\{1}

Again, first equality is general and the last assumes that 1 € X.

2. — The fact that e’ divides e‘e" if ¢ is odd comes from the factorization (26). Now, when
q even, it suffices to remark, from (25), that the opposite of any solution of z" = —1 is a zero
of'? ¢fr and O(eler)NTU = —Gyr. But when g is even one has —G, N =G, = ). Hence, in this
case, e'r cannot divide efer

3. — Let G denote the symmetry group of e and remark that the distance of O(ef") to
zero is 1. Hence, as O(e'"(s.2)) = s7'O(e’), we must have G C U. Then, by Remark 2.6,
as O(e") NU = G,, we must have G C G,, the reverse inclusion is exactly the first point of
Proposition 2.7. U

Example 2.12. —

1. For r = 1,q = 2,X = {1, —1}, one has the Euler’s complement like formula, i.e.
iz) =Ty, (1 4+ 2)I'y, (1 — 2) = zm/sin(zm). Changing z — —iz, one also has FyQ(
Ly, (1 +1i2)y, (1 —i2).

N/—\
~— =

I+

2. For r =2,q = 3,X = {1,],j%}, one has T'y (1 + 2) = Ty, (1 + )Ty, (1 +j2z)Ty, (1 + j%2).

With the notations of Proposition 2.8, the algebra C[L] (resp. C[E]) is generated freely by
(4;)r>1 (resp. (e*r),>1) which are holomorphic on D (resp. entire) functions. Moreover,

(27) ENL = {0}, and more generally, C[E]NC[L] = C.1yq)-

We are in a position to consider the following differential subalgebras of (H(f2),d):
(28) L= CHE) 21l and € = CH(E), 21}

Since 94, 1 = —¢;20¢, then £ = C[{¢:F!, 00, },i>1]. Let

(29) LT :=C[{0"l}riz1]-

12More precisely, denoting U the unit circle, one has O(e*")NU = -G, # 0.
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This C-differential subalgebra £ is an integral domain generated by holomorphic functions
and Frac(L™) is generated by meromorphic functions. Since there is 0 # ¢;; , € £ such that

(Dlett)l = qi,hkeiwk (i,1,k > 1) then let
(30) €+ = SpanC{(aileigrl )ll s (aikei&lk)lk}(’il,ll7T1)7-..,(ik»lkﬂ‘k)e(N*)sykZI
11y 4.+l
(31) = Spanc{qi, i ry - - - Qigdri € tra ity }(il,l1,T1),--.,(ik,lk,rk)€N*XZ*XN*,kzl
(32) C spang {el Tl y g o ez N k1
(33) =:C.

Note that in (33), C is a differential subring of A = H(2) (hence, Frac(C) is a differential
subfield of Frac(A)) and

(34) ETNE=/{0}.

Theorem 2.13. —

1. The family (e )r>1 (resp. (£r)y>1) is algebraically free over ¥ (resp. LY).
2. C[E] and C[L] are algebraically disjoint, within A.

Proof. —
1. — Considering the Chen series of the differential forms {w, },>1 defined, for any r > 1, by
u,, = e 0l,. Let Q € Frac(L) N E (resp. Frac(C) N E):

i. since Q € F then there is {c,},ey € CY) such that
(35) Q= Z ¢y and then 9Q = Z cyTeZ*BET,

r>1 r>1

ii. since @ € Frac(L) D £ D C[L] (resp. Frac(C) D C D £€T) then, by (27) (resp. (34)) it
remains that Q) = 0.

Hence, by Proposition 2.8, since {e® };>1 is C-free and Q = 0 then
i. on the one hand, for any r > 1, one has ¢, =0,

ii. on the other hand, {a§(S))}iecyny (including {a§(Sy)}yey) is algebraically free over £
(resp. C).

It follows that {e’"},>1 is algebraically free over C[L] (resp. £).

Now, suppose there is an algebraic relation among ({;)r>1 over £ in which, by differen-
tiating and substituting 0y by e **de’*, we get an algebraic relation among {e’"},>1 over
C[L] and £T contradicting with previous results. It follows then (¢x)r>1 is £LT-algebraically
independent.

2. — {e"}>1 (vesp. {{1}x>1) is algebraically independent over C[L] (resp. C[E]). Hence,
{e'* x}k>1 generates frecly C[E + L] and C[E] N C[L] = C.13q).
It follows that C[E] and C[L] are algebraically disjoint, within A. O
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18 Families of eulerian functions

Corollary 2.14. —

1. Using the inputs {0, },>1 (resp. {€04.},>1), the following morphism is injective (see
also Remark (2.5))

z

ag (L), w, 1y+) — (spang+{aj(w) twey=, X, L)),

(resp. of  (E7(Y), W, 1y+) — (spang+{ag(w) buev+, X, 1yq)))-

Hence, {af(w)}wey+ (resp. {a§(1) hiccyny ) is linearly (resp. algebraically) independent
over LT (resp. ET).

2. Using the inputs {00, },>1 and denoting the set of exchangeable polynomials (over'Y and
with coefficients in C) by Cexe(Y') (see [7] for example), the family {a§(N) Frecyny Uy oo
is  C-algebraically  independent and  the  restricted  morphism  of
(Cexc(Y) W CH{y }r>1], W, 1y=) — C[L + E] is bijective.

Hence, {(e"")>1, (£;)r>1} is C-algebraically independent.

— l1ry +.. A+l lr
3. Let Cy = span£+{e 1 et k}(ll,Tl)r--»(lkﬂ"k)EZ*XN*‘ Then

c=Pc

E>1
Proof. —
1. — It is a consequence of Theorem 2.13.

2. — The free algebras (Cexc(Y), W, 1y+) and (C[{y, },r>1], 1, 1y+) are algebraically disjoint
and their images by af, by Proposition 2.8, are, respectively, the free algebras C[L] and C[E]
which are, by Theorem 2.13, algebraically disjoint. Moreover, since Cexc(Y) = C[{y},ecy] and
Y C LynY then we deduce the respected results.

8. — For any k > 1, let ® := spang{eltfritFby it ens iy, ez Let C[®] be
the algebra of ® := spang{e*’'},>;. Since (£,);>1 is C-free then ®; C &5 C ... and then
C[®] = D> Pr. Moreover, the disjunction of C[E] and C[L] leads to Cx = LT ®¢ @ and
then yields the expected result. (|

Remark 2.15. — Let us back the second point of Proposition 2.11 and then the for-
mula (26), for any ¢ € N>1 such that ¢ =1 (mod 2),

elar(2) — otr(2) I1 elr(x2)
X€X\{1}
Since (e),>1 is algebraically free over £ then
[I 09 ¢ £ l(e™)en].

xeX\{1}
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2.3. Polylogarithms and harmonic sums indexed by rational series. — Using the
projector mx : (C(Y),-,1y+) = (C(X), -, 1x+) defined as the concatenation morphism, map-
ping ys to :zf)*l:cl and admitting 7y as adjoint, one has the following one-to-one correspon-
dences

($1,..-58) € (N >y, .. ys, €Y ::Xxglflml ) ..:E(S{_lxl € X*z;.
Y
In all the sequel, Q := C\ {0,1} and
(36) wo(2) := z71dz and wi(2):= (1 —2)"'dz.

By (23), Lig, . s (2) = af(zd ay ... xg’“_lxl), for s1,...,s, € N*. Thus, putting Liz,(2) :=
log(z), the following morphisms are injective

(37) Li, : (Q(X),w,1x+) — (Q{Liw}wex=,-,1),
(38) .1781_1331 Ce. ;E(S)Tflx]_ — Li&?él_lwl...m877111 = Lisl,-~~73r’
(39) H, : (Q<Y>? L, 1Y*) — (Q{HW}wEY*v ) 1) 3
(40) Ysy « - Ysp V2 Hysl...ysr = Hsl,...,sr'

In order to extend Li,, He (in (38), (40)) over some subdomain of C***({X)) (resp. C((Y'))),
let us call Domp(Lis) the set of series

(41) S=> 5, with S,:= > (Slw)w

such that 3~ - Lig, converge uniformly in any compact of ().
For any 0 < R < 1, such that },-,Lig, converge uniformly in the open disc D), g, one

has (1 — z)"'Lis = >y anz converge in the same disc and then Hyy (s, (N) = ap, for
N > 0. Hence, let us define

Dompg(Lie) := {S € Clx, & C((X))x1| >, Lig, converge in Dy, <},
Dom(H,) := 7y Dom'°¢(Li,), where Dom!¢(Li,) := Uo<r<1 Dompg(Lis).

Under suitable convergence condition this extension can be realized and [2, 6, 13]
1. Dom(Lis) (resp. Dom(H,)) is closed by shuffle (resp. quasi-shuffle) products.
2. Ligur = LigLiz and Hgyup = HgHyp, for S,T € Dom(Li,) (resp. Dom(H,)).

Any series S € C((X)) is syntactically exchangeable iff it is of the form
(42) S = 3 AR ATTINTIE e
aeNW@) supp(a)={x1,...,z% }

The set of these series, a LU-subalgebra of A{(X)), will be denoted by C1t((X)).

exc

Theorem 2.16 (extension of Li,). — Let Cc := C[{2%, (1 — 2)*}apec]. Then

1. The algebra Cc{Liy fwex+ is closed under the differential operators 0y := 20, and 0y :=
(1 —2)0. and under their sections to,t1 (Boto = 0101 =1d).
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2. The bi-integro differential algebra (Cc{Liy twex~, 00,01, to, t1) is closed under the action of
the group of transformations, G, generated by {z — 1—z,z +— 1/z}, permuting {0, 1, +00}:

V h € Cc{liv}wex+, Vg€ G, h(g) € Co{livtwex+-

3. If R € CEu((X)) w CX) (resp. CEi((X))) then Lig € Co{Liw}wex+ (resp.
Ccllog(z),log(1 — 2)]).

4. The family {Liy}wex+ (resp. {Lii}iecynx) is linearly (resp. algebraically) independent
over Cc.

Proof. — The three first items are immediate. Only the last one needs a proof:
Let then B =C\ {0,1}, Q@ =C\ (] — 00,0] U[1, +0o0]) and choose a basepoint b € 2, one has
the following diagram

/ l

(©2,0) —— (B,b)

Any holomorphic function f € H(Q) such that f' = df /dz admits an analytic continuation
to B can be lifted to B by f(z) := f(b) + [ f'(s)ds

Let L be the noncommutative series of the polylogarithms {Liy }wex+, which is group-like,
and C,,... be the Chen series, of {wp,w;} along zg ~ z € B, Cyyo.. = L(2)L 7 (20) (see [13]).
Now, in view of Lemma 2.2, as the algebra C is without zero divisors and contains the field
of constants C, it suffices to prove that Liyg, Lig, and 1o are C-linearly independent. It is
an easy exercise to check that s.(f ) = f o s coincides with the given f. This is the case, in
particular of the functions log(z) and log((1 — 2z)~!) whose liftings will be denoted log, and
log;, respectively. So, we lift the functions 2z and (1 — 2)? as, respectively,

(43) eg(z) == ea1080(2)  and el{ = eblogi (%)

and, of course, by construction,

(44) elos=(z+2%) and e os=(z (1—2)"

We suppose a dependence relation, in H(f2)

(45) Py(2%, (1 — 2)")Lig, + P1(2% (1 — 2)")Liy, 4+ P2(2%, (1 —2)%).1a =0

where P; € C[X,Y] are two-variable polynomials. From (44) and the fact that Q # (), we get
(46) Py(eg, eh) logy +Py (e, eb) log, +Po(el, el{).lg =0.

Now, we consider Dy (resp. D1), the deck transformation corresponding to the path oo(t) =
e /2 (resp. o1(t) = (1 — e~ 247) /2, one gets

(47) log, o(Dg)(2) = logy(2) + 2irm and log; o(D7)(2) = log;(2) + 2is7
Now we remark that

(48) e[[)a] o Dy(z) = egl](g)ehi” and e[lb] oDy = e[lb]

and, similarly

(49) e[lb] oDi(2) = e[lb}(Z)ezbi7T and egl] oD; = e%a]
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so that Pj(ed, €%) remain bounded through the actions of Djj and D3, from (47), we get that
P; =0, ¢ =0..2 which proves the claim. O

Exzample 2.17 ([6]). — Let us use the noncommutative multivariate exponential transforms
i.e., for any syntactically exchangeable series, we get

Z Sio, 11330 L xlll ? Z Zl?zﬂl Li ZO Llll
10,11 >0 10,41 >0 0-1

Hence, zf — Liy /n! and 7 +—— Li} /n!, for n € N, yielding some polylogarithms indexed
by series,

Lixé (Z) =2 le}‘ (2) = (1 - Z)_1> Li(awg+bx1)*(z) = Za(l - Z)_b'

Moreover, for any (si,...,s,) € N, there exists an unique series Ry, ..y, belonging to
(Z[z7],w, 1x+) such that Li_,, 5 = Lig,, .. - More precisely (by convention py = x} —

1X*)7
51 (s14-tsr)—(k14...tkr—1) r r—1
B S1 Zizl Si — Zi:l ki
Ry = > - ) <k1> ( .

k1=0 kr=0
Pk, W ... W pg,

and using the Stirling numbers of second kind, Sy(k;, j), one has
k;
pr, = T3 WY So(ki, §)j! (2} — Lx)™, (ki # 0).
j=1
Theorem 2.18 (extension of H,). — For any r > 1, one has, for any t € C,[t| <1,
k: (_tr)lc—l
Hipryye = > Hpt" = exp (Z Hy —— >
k>0 k>1
Moreover, for |as| < 1,|bs| <1 and |as + bs| < 1,
H(Zszl(as+bs)ys+2m21 asbrys+7‘)* - H(Zs21 asys)*H(Zszl bsys),k :
Hence,
Hasystaryrtasaryr)® = Hiasyo) Hiary) s Hi—azyen) = sy Hi—asy)-

Proof. — For t € C, [t| < 1, since Lig,, ) is well defined then so is the arithmetic function,
expressed via Newton—Girard formula (see [3]), for n > 0, by

Hy,) ZHyl —exp(—ZHyk(n)(_l:)k> :ﬁ<1+§>.

£>0 k>1 =1

Similarly, for any r > 2, the transcendent function Hr,, )« can be expressed via Newton-
Girard formula (see [3]) once again and via Adam’s transform, by

ko )"\ _ 4 (=t")

Hgry, ) Z Hyx n)t"" =exp | — Z Hy,, (n) ? = H 1-— )
k>0 k>1 =1
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Since ||Hy, [|oo < ¢(r) then — 37, Hy,(—t")*/k is termwise dominated by ||¢,||co and then
Hgry, ) by e’ (see also Theorem 2.22 bellow). It follows then the last results by using the
following identity [7]

<Z asl/s) LU (Z bsys> = <Z(as + bs)ys + Z asbrys—l—r) . O

s>1 s>1 s>1 r,s>1

From the estimations from above of the previous proof, it follows then

Corollary 2.19. — For any r > 2, one has

k g7
FyT(l—i-t Z(H’_/tkrexp< Z(kr )>—H<1—(t)>.

k>0

k times

Corollary 2.20. — For anyr > 1

and, for any r,s > 1, one also has

. . " (r+s—k\ (s
y'ru—lyr = Z( s ><k>yr+s—k'

k=0

2.4. Extended double regularization by Newton—Girard formula. — By (38)—(40),
the following polymorphism is, by definition, surjective (see [13])

o (Qlx+ @ zoQ(X)x1, W, 1x+)
(50) < (Qly- g{a (Y - {yl})@1<Y>, Lu)fly*)

mapping both '~ Lo, Ty Y21 and y,, ...ys, to C(s1,...,s,), where Z denotes the Q-

algebra (algebralcally) generated by {((I) }iecynx—x, or equivalently, {C(1)}icryny—{y:}- It
can be extended as characters

— (27'71)7

(51) Cu: (R(X), i, 1x+) — (R, -, 1),

(52) Cur Yo (RY), W, 1y+) — (R, -, 1)

such that, for any [ € LynX, one has (see [13])

(53) Cull) = £:p1 Lin(2), {(1 = 2)"1og" (1 = 2) Yoz pens
(54) Gy D) = £.ppy oo Hay 1 (), {n*Hi (n) }aez ben,

(55) Yyl = EDops ool ﬂyl(n)7 {n® 10g (n)}aEZ,bEN-
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It follows that, for any [ € LynX — X, (u(1) = Cu(nyl) = Yry1 = ¢(1), and, for the algebraic
generator xg, (u(xg) = 0 = log(1) and, for the algebraic generators z; and y; (divergent
cases),

(56) Cu(r1) =0 =f.p.. log(1 — 2),{(1 — 2)*log"(1 — 2) }aezpen,
(57) Cu(y1) =0 =f.p., 1 ooHi(n) {nHY (n) Yaez pen,
<58) Yy =7 = f'p'n—>+ooH1(n)7{na logb(n)}aez,beN

As in [6, 13|, considering a character yo on (C(X),w,1x~) and considering Dom(xe) C
C((X)) as in (41), we can also check easily that [2]:

— C(X) W C™*((X)) C Dom(xe) which is closed by shuffle product,
— for any S, T € Dom(xs), one has xsur = XsXT»
— if S € Dom(xe) then exp,,,(S) € Dom(xe) and Xexp (s) = €X5.

Similarly, considering a character xo on (C(Y'),L1, 1y+) and considering Dom(ys) C C{(Y))
as in (41), we can also check easily that [2]:

— C({Y) wuC™*((Y)) C Dom(xs) which is closed by quasi-shuffle product,
— for any S, T € Dom(x), one has xsur = XsXT»
— if S € Dom(xs) then exp,;,(S) € Dom(xe) and Xexp, (s) = €X5.

Example 2.21. — Forany z € C, |z| <1,z € X ={zo,21},yr €Y = {yx}r>1, since

(o)t
(zz)* =expy,(z) and (zy,)* =exp,, ( Z ykrk)

k>1
then

* 2Cw () (_Z)kil
Cu((z@)) = e and 7, =exp| Y Cwr)— .
k>1 k

We now in situation to state that

Theorem 2.22 (Regularization by Newton—Girard formula). — The characters
and e are extended algebraically as follows:

Cu: (CX) wCRE (X)), W, 1) — (C, -, 1),

exc
ViteC, |t <1,(txo)", (tx1)* — 1c.
and
Yot (C{Y) W Ce{(Y)), W, 1y+) — (C, -, 1),
VEteC, |t <LVr>1(ty) — T, (1+¢).
Moreover, the morphism (C[{y;}r>1], W, 1y=) — C[E] mapping y; to T}, is injective and
Ly, (14 X/=1t) =Ty, (1 + )Ty, (1 + /—1¢t), forr > 1.

Proof. — By Definition 2.4, Propositions 2.8, 2.11 and Theorems 2.16, 2.18, we get the
expected results (see also Proposition 2.7). O
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Example 2.23 ([6]). —
Li_y—1 = Li_gry5(000) —7(31)+3(4z1)*
Li_g—1 = Lizs11(221)*+31(321)* —33(4z1 ) *+12(521)*
Li_1,—2 = Lizs _9(22))*+23(321)* —23(421)*+8(521)*>
Hotor=H s 15029 7(31) +3(4y1)*
Hoo 1 =Hyr11(290)*+316y1)* —33(4y1)* +12(591)*
H_1,—2 = Hyr9(2y1)*+23(351)* —23(4y1)*+8(5p1)* -
Hence, (,(—1,-1) =0, (u(-2,-1) = -1, (u(-1,—2) =0, and
yo11 = —T742) +5071(3) — 7071 (4) 4+ 3071(5) = 11/24,
Yoo 1 =T712) = 11T71(3) + 3171 (4) — 330~ 1(5) + 12 (6) = —73/120,
Y19 =T752) =90 1(3) + 237 (4) — 230 1(5) + 8T 1(6) = —67/120.
From Theorems 2.18 and 2.22, one deduces
Corollary 2.24. —

1. With the notations of (23), Definition 2.4 and with the differential forms {(04y;)dz}r>1,
for any z € C,|z| < 1, one has

1

_ _ Lr(2) _ _z *

Yoy = L Ve = T €7 = 1] 5= = ab(Wi=1y).
>1 et P51 S Fyr(l—i—z) r

2. One has, for |as| < 1,|bs| <1 and |as+bs| <1,
7(2521(as+bs)y5+2r,321 asb7'ys+r)* = 7(2321 asys)*7(2521 bsys)*‘
HBTLCG, ’y(‘lsst"aryr‘f’asaTstrr)* = V(Gsys)*’y(aryr)*7’7(*032423)* = 7(asys)*’7(—asys)*'

Remark 2.25. — The restriction of : (C[{yr, y; }r>1], W, 1y=) = C[L + E] is injective (see
Corollary 2.14) while ker(ve) # {0}, over C(Y) i C22L ((Y)) [13].

exc
Ezxzample 2.26 ([11, 12]). — By Theorem 2.22,
"Y(—toQ)* - F;Ql(l + 1t)7 ")/(tyl)* = szll(l + t), 7(—ty1)* = F;ll(l + t)
Then, by Corollary 2.24, v(_s2y,)» = V(ty1)* V(—ty,)* Mmeaning that
U (1+it) =T, 1+ 6T, (1 —1).
Or equivalently,
( S con) - 3 o sin(tm) gy
exp| — <<2/<>>> =3 @ (ke = D s gy
> k s t =1 (2k + 1)!

Since y(_s2y,) = C((—t*zox1)*) then, identifying the coefficients of 2k we get

k times
¢2,...,2) 1 co
2k (2k +1)! '
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Similarly, by Theorem 2.22,
Vttya)- = Ly, g (14 V=1t), V(t2y2)* = F;;(l 1),V (—ttyn)r = Fy_zl(l +it).
Then, by Corollary 2.24, v(_s1y,)» = V(12ys)* V(—t2y)+ Meaning that

N1+ V=18 =T (1+ )0, (1 +it).
Or equivalently,
t4k (tﬂ_>4k
exp( — Y ¢(4k) ) > ¢ B LS i/
< k>1 k>2 k times (4k + 2)'

_ sin(itm) sin(tm)

it7r tm
_ Z —4tm) 4k
k>1 4k + 2

Since V(—tdys)* = C((_t4y4)*)7 V(—t2y0)* = C((_tzyQ)*)7 V(t2yr)* = C((t2y2)*) then, using
the poly-morphism ( and identities on rational series, we get

C((—t'ya)") = C((—t2)")C((FPy2)")
= (((=t?woz1)")¢((*2021)"))
= (((—4t*aga?)").

Thus, by identification the coefficients of t**, we obtain
k times k times
—— ——N—
¢4,...,40) <¢B,1,...,31) 2 co
4kptk ik - (4k +2)! '

Corollary 2.27 (comparison formula, [8, 13]). — For any z,a,b € C such that |z] < 1
and R(a) > 0,R(b) > 0, we have
B(z;a,b) = Liyg[(aze) (1 -b)z1)) (2) = Ly [((a—1)a0)*w(—bz1)*] (2)-
Hence, on the one hand
B(a,b) = (u(zo[(azo)™ W ((1 — b)z1 = Qu(z1[((a — 1)z0)™ W (=bz1)"])
and, on the other hand
B(a, b) = V((a+b—1)y1)* _ T((a+b—1)y1)* '
V((a=Dy)*w((b-—y1)*  V((a+b-2)y1+(a—1)(b—1)y2)*

Proof. — The results, of B(z;a,b), are the computations of iterated integrals associated to
different rational series, using the differential forms in (36). Those of B(a, b), are then imme-
diate consequences, by evaluating these iterated integrals at z = 1 and by using Definition 2.4
and Corollary 2.24. O

Exzample 2.28 ([11, 12]). — Let us counsider, for tg,t; € C, [to| < 1,]t1] < 1,
R = tol’o(toxo + totlxl)*(totll’l) = tgtlxo[(toxo)* L (totlxl)*]xl.
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26 Families of eulerian functions

Then, with the differential forms in (36), we get successively

ds foft gy
Li =t2t
in(z 0 1/ / < ) <1 — S) 1—r
=ity [ (=) Ttnstt [yt sy
0 0

By change of variable, r = st, we obtain then

z 1
Lin(2) = 2t / (1= s) -ttt / (1 — st)for =10 d¢ds.
0 0

It follows then
= totl/ / ~hoti(1 — st)toti—1g~todtds.

By change of variable, y = ﬁ we obtain also
-5

1 1
C(R) = t2t (1 — ty) "Lt~ toy~totidyde.
0 0 0

-1

By expending (1 — ty)~" and then integrating, we get on the one hand

CRy =30 M S ikt

a1 ton— tot1 k>1>0

On the other hand, using the expansion of R, we get also

=33 S sty stth.

k>01>0 s1+...+s;=k
81...,81>1,81>2

Finally, by identification the coefficients of (¢(R)[tkt!), we deduce the sum formula

(k) = Z C(s1y.-,81).
s1+...+5=k
31...,812175122

3. Conclusion

In this work, we illustrated a bijection, between a sub shuffle algebra of noncommuta-
tive rational series (recalled in 2.1) and a subalgebra of holomorphic functions, H(f2), on
a simply connected domain 2 C C containing the family of extended eulerian functions
{T,'(1+2)}yey and the family of their logarithms, {logT';*(1+ z)}yey (introduced in 2.2),
involved in summations of polylogarithms and harmonics sums (studied in 2.3) and in regu-
larizations of divergent polyzetas (achieved, for this stage, in 2.4).

These two families are algebraically independent over a differential subring of H(2) and gener-
ate freely two disjoint functional algebras. For any y. € Y, the special functions
I‘;(l + z) and log F;}(l + z) are entire and holomorphic on the unit open disc, respec-
tively. In particular, F;}(l + z) admits a countable set of isolated zeroes on the complex
plane, i.e. W, cq, XZ<-1, where G, is the set of solutions of the equation 2" = (1)1,
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These functions allow to obtain identities, at arbitrary weight, among polyzetas and an ana-
logue situation, as the ratios ¢(2k)/72*, drawing out consequences about a structure of polyze-
tas. This work will be completed, in the forth comming works, by a study a family of functions
obtained as image of rational series for which their linear representation (v, i, 7) are such that
the Lie algebra generated by the matrices {1(y)}yey is solvable.
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