
Publications mathématiques de Besançon
A l g è b r e  e t  t h é o r i e  d e s  n o m b r e s

Renaud Coulangeon
On slopes of isodual lattices
2023, p. 29-48.
https://doi.org/10.5802/pmb.48

© Les auteurs, 2023.

Cet article est mis à disposition selon les termes de la licence
Creative Commons Attribution 4.0 International.
https://creativecommons.org/licenses/by/4.0/deed.fr

Publication éditée par le laboratoire de mathématiques
de Besançon, UMR 6623 CNRS/UFC

C EN T R E
MER S ENN E

Les Publications mathématiques de Besançon sont membres du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2592-6616

https://doi.org/10.5802/pmb.48
https://creativecommons.org/licenses/by/4.0/deed.fr
http://www.centre-mersenne.org/


Publications mathématiques de Besançon – 2023, 29-48

ON SLOPES OF ISODUAL LATTICES

by

Renaud Coulangeon

Abstract. — The slope filtration of Euclidean lattices was introduced in works by Stuhler in the late
1970s, extended by Grayson a few years later, as a new tool for reduction theory and its applications
to the study of arithmetic groups. Lattices with trivial filtration are called semistable, in keeping with
a classical terminology. In 1997, Bost conjectured that the tensor product of semistable lattices should
be semistable itself. Our aim in this work is to study these questions for the restricted class of isodual
lattices. Such lattices appear in a wide range of contexts, and it is rather natural to study their slope
filtration. We exhibit specific properties in this case, which allow, in turn, to prove some new particular
cases of Bost’s conjecture.

Résumé. — (À propos des pentes des réseaux isoduaux) La filtration par les pentes a été introduite par
Stuhler dans ses travaux à la fin des années 1970, puis étendue par Grayson quelques années plus tard,
comme nouvel outil pour étudier la théorie de la réduction et ses applications à l’étude des groupes arith-
métiques. Les réseaux munis d’une filtration triviale sont appelés semi-stables, suivant une terminologie
classique. En 1997, Bost a conjecturé que le produit tensoriel de réseaux semi-stables devrait être semi-
stable. Notre but dans ce travail est d’étudier ces questions pour les réseaux isoduaux. De tels réseaux
apparaissent dans un grand nombre de situations et il est naturel d’étudier leur filtration par les pentes.
Nous exhibons des propriétés particulières de ces réseaux qui nous permettent de démontrer de nouveaux
cas de la conjecture de Bost.

1. Introduction

The notions of stability and slope appear in a wide range of mathematical contexts, often by
analogy with the original geometric setting in which they were developed, namely the study
of moduli spaces of vector bundles over curves (see e.g. [15, 16]). In these various theories,
one can define a canonical filtration of an object by semistable ones, a property brought to
light by Harder and Narasinham in the case of vector bundles on curves [14]. A canonical
polygon is associated with this filtration, together with the sequence of slopes of its boundary.
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30 On slopes of isodual lattices

This formalism applies in particular to Euclidean lattices, as observed by Stuhler [19, 20].
The relevant notions are the height and reduced height, which in the case of an ordinary
Euclidean lattice L are defined as

H(L) = covol(L) = vol(RL/L) and Hr(L) = H(L)1/dim L.

Alternatively, in keeping with the classical terminology for vector bundles over curves, one
can define the degree and slope of L as

deg L = − log(H(L))

and
µ(L) = − log(Hr(L)) = deg L

rank L
.

These quantities are also defined for sublattices and quotients. The slopes (resp. reduced
heights) of the successive quotients in the canonical filtration make up a strictly decreasing
(resp. increasing) sequence of real numbers. The first term of this sequence is thus called the
maximal slope µmax (resp. the minimal reduced height Hmin) of L.
Grayson [12, 13] studied this formalism in the more general context of OK-lattices, OK

being the ring of integers of a number field K. An Arakelov version of these questions was
introduced by Bost in the 1990s, in terms of Hermitian vector bundles over Spec OK . More
recently, Gaudron and Rémond developed a more arithmetic approach in [11], valid over any
algebraic extension of Q, in terms of rigid adelic spaces and heights thereof. The three points
of view – OK-lattices, Hermitian vector bundles, rigid adelic spaces – are equivalent when K
is a number field, and the above definition of (reduced) height carry over in a natural way,
see Section 2. The recent text [9], from which we borrow the approach and terminology, gives
a very comprehensive account of this theory.
The slope filtration exhibits remarkable properties with respect to most of the usual algebraic
operations: sum, quotient, duality. The case of tensor product is much more elusive. Formal
properties of the height function, and strong analogies with similar notions in various contexts
(see [1, 2, 5]) suggested to Bost the following conjecture:

Conjecture 1.1 (Bost [4]). — The minimal height of the tensor product of two rigid adelic
spaces E and F over a number field K is equal to the product of their respective minimal
heights:

Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Such a property is known to hold in several contexts where a similar slope filtration is available
(see e.g. [1], where the term “tensor multiplicativity” is introduced). The proofs are most
often difficult, and no really unified approach has emerged. In the case of Hermitian vector
bundles, the conjecture has been proved for small ranks by Bost and Chen [5]. Particular
cases, independent of the dimension, have also been established. For instance, the conjecture
is obviously true for unimodular Euclidean lattices. Recall that a Euclidean lattice L is
unimodular if it coincides with its dual L⋆ := {y ∈ RL, ∀ x ∈ L, y · x ∈ Z}, where “ · ” stands
for the Euclidean inner product on RL. In particular, the reduced height of a unimodular
lattice is 1, less than or equal to that of any of its sublattices. The same property holds
obviously for the tensor product of two unimodular lattices, since it is also unimodular. We
will see in Section 4 another interpretation of this property, which is the key of the main
results in this paper.
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In the light of this simple example, it seems natural to expect a special behaviour of the
GS-filtration of so-called isodual lattices, introduced by Conway and Sloane in [7] and studied
by different authors from a variety of perspectives (in particular, symplectic isodual lattices
play a significant role in the study of abelian varieties, see [6]).
After reviewing the essential facts about heights and slope filtration in Section 2, we introduce
in Section 3 a general notion of isoduality. We observe in particular (Theorem 3.10) that to
prove Conjecture 1.1, one can restrict to semistable autodual rigid adelic spaces. We then
investigate in Section 4 the properties of the slope filtration of isodual rigid adelic spaces.
The main observation, from which we derive several results, is that the destabilizing subspace
of an isodual rigid adelic space is totally isotropic with respect to a naturally defined bilinear
form. Finally, as a continuation of the recent works [8] and [18], we examine in Section 5 the
influence of the automorphism group, and the associated representation, on the slope filtration
of an isodual rigid adelic space. This leads us to formulate a Conjecture 5.6 (a special case
of Conjecture 1.1) which seems to be the correct “isodual” analogue of the result proved by
Rémond for multiplicity free action of groups on rigid adelic spaces [18, Théorème 1.1].

2. Review of Hermitian bundles and semistability

Let K be a number field, VK = VK,f ∪ VK,∞ its set of places - finite and infinite - and OK

its ring of integers. Each place v is associated with a normalized absolute value | · |v, which
is the standard modulus at an Archimedean place, and is defined, at an ultrametric place v
associated to a prime ideal p, by |x|v = Np− ordp(x), where Np = |OK/p| is the norm of the
prime ideal p ; the completion of K with respect to this absolute value is denoted Kv.
If E is a finite dimensional K-vector space, its completion E⊗K Kv at a place v is denoted Ev.
A Hermitian vector bundle over Spec(OK) ([3]), or equivalently an OK-lattice ([12, 13]),
is the data (L, (hv)v∈VK,∞) of a finitely generated projective OK-module L together with a
collection of positive definite symmetric (resp. Hermitian) forms hv on the completions Ev of
the K-vector space E = L ⊗OK

K at real (resp. complex) Archimedean places, assumed to
be invariant under complex conjugation (see remark below). Hereafter, all Hermitian forms
over a complex vector space U are, by convention, antilinear in the first variable, and linear
in the second

∀ (λ, µ) ∈ C2, ∀ (x, y) ∈ U2, h(λx, µy) = λh(x, y)µ.

Remark 2.1. — A complex Archimedean place v corresponds to a pair {γ, γ} of embeddings
K ↪→ C, conjugated to each other. Each of them allows to identify Kv with C, giving rise
to two distinct realizations of Ev, denoted Eγ := E ⊗γ C and E

γ
:= E ⊗

γ
C, depending on

which embedding K ↪→ C is chosen. The “complex conjugation” is the canonical C-antilinear
isomorphism from Eγ onto E

γ
defined by

(1) ∀ x ∈ E, ∀ λ ∈ C, x ⊗γ λ := x ⊗
γ

λ.

The Hermitian form hv thus consists in the data of two Hermitian forms hγ and hγ , respec-
tively on Eγ and E

γ
, satisfying the following invariance under complex conjugation:

∀ (x, y) ∈ Eγ × Eγ , hγ(x, y) = hγ(x, y).
Publications mathématiques de Besançon – 2023



32 On slopes of isodual lattices

Equivalently, these data define a rigid adelic space
(
E, (∥ · ∥v)v∈VK

)
, using the terminology

of [11], with local norms on each completion Ev := E ⊗ Kv defined by

(2) ∀ x ∈ Ev , ∥x∥v =
{√

hv(x, x) if v ∈ VK,∞

inf {|α|v , α ∈ Kv , x ∈ αL} if v ∈ VK,f .

It follows from the well-known classification of modules over Dedekind rings (see e.g. [17,
Theorem 81:3]) that the OK-module L admits a pseudo-basis (ai, bi)1≤i≤ℓ, where a1, . . . aℓ are
fractional ideals, and {b1, . . . , bℓ} is a K-basis of E such that

(3) L =
ℓ⊕

i=1
aibi.

By abuse of notation, we use the same letter E to denote a Hermitian vector bundle (resp. a
rigid adelic space) and its underlying K-vector space. If E ̸= {0}, one defines its (normalized)
height as

(4) H(E) =

N
(

ℓ∏
i=1

ai

) ∏
v∈VK,∞

det(hv(bi, bj))ev/2

1/[K:Q]

where ev = 1 or 2 according to whether v is real or complex, and we set H({0}) = 1.
This corresponds, in the terminology of [12], to the (normalized) volume of the OK-lattice L
defining the finite part of the rigid adelic structure, with respect with the Hermitian metrics
at infinite places (it does of course not depend on the choice of a pseudo-basis for L, see [17,
81:8]). One can check that this definition is equivalent to that of [11].
If E ̸= {0}, one also define its reduced height as

Hr(E) = H(E)1/dim E .

If t is a positive real number, we obtain a new rigid adelic space E[t] by multiplying each of
the Archimedean local norms at infinite places by t. In what follows, this operation will be
referred to as scaling (by t).
In view of (4), the effect of scaling on the reduced height is given by the relation

(5) Hr(E[t]) = tHr(E).

Any subspace F of a rigid adelic space E inherits the structure of a rigid adelic space, by
restricting the local norms at all places. In the language of Hermitian bundles, it amounts to
replace the OK-lattice L with L ∩ F , and restrict to F the Hermitian forms at infinite places.
Consequently, one defines, for all positive integer k,

(6) H(k)(E) = min
0̸=F ⊂E
dim F =k

Hr(F )

and

(7) Hmin(E) = min
0 ̸=F ⊂E

Hr(F ).

Remark 2.2. — Because of (5), one has

(8) ∀ t > 0, Hmin(E[t]) = tHmin(E).
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To any K-linear map σ : E → F between rigid adelic spaces one can associate a family of
localised maps σv : E ⊗ Kv → F ⊗ Kv defined as usual by
(9) ∀ x ∈ E, ∀ λ ∈ Kv, σv(x ⊗ λ) = σ(x) ⊗ λ

and extended by bilinearity.

Remark 2.3. — At a complex place v, associated to a pair {γ, γ} of complex embeddings,
there are two realizations σγ and σγ of σv, depending on the choice of the embedding of K
in C (Remark 2.1).

Definition 2.4. — An isometry between two rigid adelic spaces E and F over K is a K-
linear map σ : E → F such that the localised maps σv : E ⊗ Kv → F ⊗ Kv preserve the local
norms for all v ∈ VK .

The quotient E/F of a rigid adelic space by a subspace also inherits a canonical structure of
rigid adelic space, using quotient norms (see [11, Section 2]). To express it in terms of Hermit-
ian bundles, one has to consider the quotient OK-lattice L/L ∩ F , and use the identification
E/F ⊗ Kv ≃ F

⊥hv
v (orthogonal complement with respect to hv) at infinite places to define

Hermitian structures, see [12].
Similarly, the operator norms induce on the dual space E∨ = HomK(E, K) an adelic structure
which can also be viewed as the structure induced by the OK-lattice L∨ = HomOK

(L, OK)
equipped with the Hermitian forms

h∨
v (y∨, y∨) = sup

0̸=x∈E

|y∨(x)|2v
hv(x, x)

at infinite places. Note in particular that
(10) Hr(E∨) = Hr(E)−1

and
(11) E[t]∨ = E∨[t−1] for all t > 0.

As usual, the orthogonal in E∨ of a subspace F of E is defined as

(12) F ⊥ :=
{
φ ∈ E∨ | φ(F ) = 0

}
.

As one might expects, the previous notions are related through the following property:

Proposition 2.5 ([11, Proposition 3.6]). — For any subspace F of a rigid adelic space E,
one has E∨/F ⊥ ≃ F ∨.

The direct product E × F of two adelic rigid spaces is equipped with the local norms

∥(x, y)∥v =
{(

∥x∥2
v + ∥y∥2

v

)1/2 at infinite places,
max {∥x∥v, ∥y∥v} at finite places.

In terms of Hermitian bundles, it corresponds to the usual direct sum of OK-modules, en-
dowed, at each infinite place, with the orthogonal direct sum of the corresponding Hermitian
forms.
Finally, the tensor product of adelic spaces/Hermitian bundles is defined naturally with either
point of view, see loc. cit.
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Remark 2.6. — In the references [5] and [9] on which we rely, the authors call Hermitian
direct sum E ⊕ F of rigid adelic spaces what we just defined as their direct product E × F .
The reason why we chose to avoid the direct sum notation/terminology is that we think
it can occasionally be misleading: for instance, if F and F ′ are subspaces of a given rigid
adelic space E intersecting trivially, the structure of adelic rigid spaces induced by E on the
subspace F ⊕ F ′ is not their Hermitian direct sum in general.

From now on, everything will be formulated in terms of rigid adelic spaces as this point of
view encompasses that of Hermitian bundles or OK-lattices, to which it is equivalent over a
number field (rigid adelic spaces are defined more generally over any algebraic extension of
Q, finite or not, see [9]). We will nevertheless, in places, give the interpretation in terms of
OK-lattices of the various notions introduced.
A key property of reduced height is that the set of subspaces of a given rigid adelic space E
with minimal reduced height has a well-defined maximum E1 with respect to inclusion, called
the destabilizing subspace of E (see e.g. [19, Satz 1] for a proof in the case of lattices and [9]
for the general case). In other words, any rigid adelic space E contains a unique subspace E1
characterized by the following two properties:

1. Hr(E1) = Hmin(E) = min0̸=F ⊂E Hr(F ).

2. Any subspace F of E such that Hr(F ) = Hmin(E) is contained in E1.

A rigid adelic space E is stable if Hr(F ) > Hr(E) for all proper subspace {0} ⊊ F ⊊ E,
semistable if Hr(F ) ≥ Hr(E) for all subspace F , and unstable if it is not semistable. In
particular, E is semistable if and only if it coincides with its destabilizing subspace E1.
We denote by

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Eℓ−1 ⊂ Eℓ = E

the Grayson–Stuhler filtration of E (“GS-filtration of E” for short), defined recursively as
follows:

1. E1 is the destabilizing subspace of E.

2. For i ≥ 2, Ei/Ei−1 is the destabilizing subspace of E/Ei−1.

An alternative characterization of this filtration is given by the following proposition:

Proposition 2.7 ([12, Corollary 1.30]). — The GS-filtration of E is the unique flag
(Ei)0≤i≤ℓ such that

1. Ei/Ei−1 is semistable for all 1 ≤ i ≤ ℓ,

2. If ℓ > 1 then Hr (Ei/Ei−1) < Hr (Ei+1/Ei) for all 1 ≤ i ≤ ℓ − 1.

Definition 2.8. — The integer ℓ is called the length of the GS-filtration of E. In particular,
E is semistable if and only if the length of its GS-filtration is equal to 1.

The uniqueness property entails two remarkable properties of the GS-filtration: it is invariant
under automorphisms (see Section 5), and scalar extension (see e.g. [9, Proposition 19]).
We end this section with a useful lemma, well-known to the experts, about the behaviour of
Hmin with respect to quotients and products.
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Lemma 2.9. —

1. For any two rigid adelic spaces {0} ≠ F ⊂ E, one has
min(Hmin(F ), Hmin(E/F )) ≤ Hmin(E) ≤ Hmin(F ).

In particular, Hmin(E) = Hmin(F ) if Hmin(F ) ≤ Hmin(E/F )).

2. The minimal reduced height of the direct product of two rigid adelic spaces is given by
Hmin(E × F ) = min(Hmin(E), Hmin(F )).

Proof. — A proof of the first assertion can be found in [8, Lemma 1.9]. The second assertion
is a direct consequence of the first one, using the exact sequences

0 → E → E × F → F → 0 and 0 → F → E × F → E → 0.

□

Regarding Conjecture 1.1, the first assertion of the previous lemma has the following conse-
quence:

Corollary 2.10. — Let E and F be rigid adelic spaces. Suppose that F admits a filtration
{0} = F0 ⊂ F1 ⊂ · · · ⊂ Ft−1 ⊂ Ft = F

such that

i. Hmin(E ⊗ Fi/Fi−1) = Hmin(E)Hmin(Fi/Fi−1) for all 1 ≤ i ≤ t,

ii. Hmin(Fi/Fi−1) ≤ Hmin(Fi+1/Fi) for all 1 ≤ i ≤ t − 1.

Then
Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Proof. — Recursion on t, using the first assertion of Lemma 2.9. □

Remark 2.11. — One noticeable consequence of the above Corollary is that Bost’s Con-
jecture 1.1 is equivalent to the – apparently weaker – statement that the tensor product of
semistable rigid adelic spaces is itself semistable (see [5, p. 440], and [8] for a discussion of
this point).

Another easy consequence of Lemma 2.9 and its corollary is the following:

Corollary 2.12. — Let F be a rigid adelic space of rank 2 over a number field K, which is not
stable. Then for any rigid adelic space E over K, one has Hmin(E ⊗ F )=Hmin(E)Hmin(F ).

Proof. — If F is unstable, its destabilizing subspace F1 is one-dimensional, as well as F/F1.
Consequently,

Hmin(E ⊗ F1) = Hmin(E)Hmin(F1) and Hmin(E ⊗ F/F1) = Hmin(E)Hmin(F/F1),
and one can apply Corollary 2.10 to conclude that Hmin(E ⊗ F ) = Hmin(E)Hmin(F ). If F
is unstable but semistable, one can “destabilize” it by an arbitrary small perturbation of the
infinite components of the metric, in which case the previous argument applies, whence the
conclusion since the equality Hmin(E ⊗ F ) = Hmin(E)Hmin(F ) is preserved under taking
limits. □
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3. Isodual rigid adelic spaces

Recall that we have defined an isometry between two rigid adelic spaces E and F over K as
a K-linear map σ : E → F such that the localised maps σv : E ⊗ Kv → F ⊗ Kv preserve the
local norms for all v ∈ VK .
If L and M are the OK-lattices underpinning E and F , it is easy to see, due to the description
of the local norms at finite places, that an isometry σ is simply a K-linear isomorphism
mapping L onto M and inducing Hermitian isometries at all infinite places.
More generally, one can define the notion of similarity as follows:

Definition 3.1. — A similarity between two rigid adelic spaces E and F over K is a K-
linear map σ : E → F such that the maps σv (v ∈ VK) are similarities with respect to the
local norms, and the similarity ratio is 1 at all but finitely many places.

Again, if L and M are the OK-lattices underpinning E and F , one easily checks that a K-
linear map σ : E → F is a similarity if σv is a Hermitian similarity for every Archimedean
place v, and if there exists a fractional ideal a such that σ(L) = aM .
This notion of similarity is relevant to our purpose, since it preserves the Grayson–Stuhler
filtration of a rigid adelic space, as shows the following lemma:

Lemma 3.2. — Let E be a rigid adelic space, with GS-filtration

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Eℓ−1 ⊂ Eℓ = E.

and σ a similarity. Then the GS-filtration of σE is

{0} = σE0 ⊂ σE1 ⊂ · · · ⊂ σEℓ−1 ⊂ σEℓ = σE.

Proof. — Let λ = (λv)v∈VK
where λv is the similarity ratio of σv i.e. ∥σv(x)∥v = λv∥x∥v for

all x ∈ Ev = E ⊗K Kv, and set N(λ) =
∏

v∈VK
λv. Then

Hr(σ(F )) = N(λ)1/[K:Q]Hr(F )

for every subspace F of E. The conclusion follows, as the scaling factor)N(λ)1/[K:Q] is inde-
pendent of F and its dimension. □

Definition 3.3. — A rigid adelic space E is σ-isodual, or simply isodual, if there exists a
similarity σ : E → E∨. To such a similarity, one associates a K-bilinear form bσ : E ×E → K
defined by

(13) ∀ (x, y) ∈ E × E , bσ(x, y) = σ(x)(y).

If the similarity σ is an isometry, i.e. E is not only similar but isometric to its dual E∨, we
say that E is autodual.

If K is a CM -field, with complex conjugation ¯, it can be more natural to consider instead
the conjugate dual space E∨, which is the ordinary dual E∨ (set of K-linear forms) equipped
with the twisted external law

α ⋆ φ := αφ,
(
α ∈ K, φ ∈ E∨) .

It is consistent in this case to consider spaces admitting a similarity onto their conjugate dual
instead. This leads to the following extension of Definition 3.3:
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Definition 3.4. — A rigid adelic space E over a CM -field K is anti-isodual, if there exists
a similarity σ : E → E∨.

Note that in this situation, equation (13) defines a sesquilinear form bσ on E.

Definition 3.5. — Let (E, σ) be an isodual rigid adelic space over a number field K, or an
anti isodual space over a CM -field K. We say that E is

1. orthogonal if the bilinear form bσ is symmetric,

2. symplectic if bσ is alternate.

3. unitary if K is a CM-field, E is anti isodual and bσ is Hermitian.

Note that in all three cases, bσ is necessarily non-degenerate.

Remark 3.6. — The previous definitions extend naturally the notion of isodual lattice men-
tioned in the introduction, which we now recall in a slightly greater generality: suppose that
K is either a totally real or a CM-field, and E a K-vector space endowed with a totally posi-
tive definite quadratic (resp. Hermitian) form h, i.e. h is a K-valued quadratic or Hermitian
form on E such that the extensions hv of h to all completions Ev at infinite places are positive
definite. With ¯ denoting either the complex conjugation if K is a CM -field, or the identity
if K is totally real, we get an isomorphism H between E and E∨ (= E∨ when K is totally
real) given by

H : E −→ E∨

x 7−→ h(x, · )
Any lattice L in E (=full-rank finitely generated projective OK-submodule of E) induces a
structure of rigid adelic space on E, the infinite part consisting of the extensions hv of h to
the completions Ev, for v ∈ VK,∞. The preimage of L∨ = Hom(L, OK) by H is
(14) L∗ := {y ∈ E | h (L, y) ⊂ OK} .

We say that the lattice L is isodual if there exists a similarity τ of the Hermitian space (E, h)
mapping L onto L∗, which means that there exists α ∈ K such that

∀ (x, y) ∈ E × E, h(τ(x), τ(y)) = αh(x, y).
If so, the map σ = H ◦ τ is a similarity of rigid adelic space between E and E∨ and the form
bσ of (13) is given by

bσ(x, y) = h(τ(x), y).
The ratio α of τ is a totally positive element in K+, the maximal totally real subfield of K.
It is then easily checked that, as a H ◦ τ -isodual (resp. anti isodual) rigid adelic space, E is
orthogonal (resp. unitary) if and only if τ2 = α Id and symplectic if and only if τ2 = −α Id.

The last remark highlights an important class of rigid adelic spaces, stemming from lattices in
quadratic (resp. Hermitian) spaces over a totally real (resp. CM) number field. This motivates
the following definition.

Definition 3.7. — A rigid adelic space E over a number field K is K-rational if K is
either a totally real or a CM extension of Q, and the symmetric (resp. Hermitian) forms hv

at Archimedean places come from a K-valued symmetric (resp. Hermitian) form h on E by
localization.
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38 On slopes of isodual lattices

Remark 3.8. — Every K-rational rigid adelic space E of dimension 2 over a totally real
or a CM extension of Q is isodual (resp anti-isodual). Indeed, if E is endowed with a totally
positive definite quadratic (resp. Hermitian) form h over K which defines the local metrics at
Archimedean places by localization, while the metrics at finite places are determined by the
data of an OK-lattice L = ae1 ⊕ OKe2 in E, then the Gram matrix of h in the basis (e1, e2)
has the following shape: (

a c
c b

)
resp.

(
a c
c b

)
.

The Gram matrix of h in the dual basis (e∗
1, e∗

2), defined by the condition that h(e∗
i , ej) = δi,j ,

is thus given by
1

ab − c2

(
b −c

−c a

)
resp. 1

ab − |c|2
(

b −c
−c a

)
,

and the map x1e1 +x2e2 7→ x1e∗
2 −x2e∗

1 defines a K-linear similarity τ of the Hermitian space
(F, h), which maps L onto aL∗. Thus, (L, h) is (anti-)isodual as a rigid adelic space.

In connection with Conjecture 1.1, it must be noted that the tensor product of two isodual
rigid adelic spaces (E, σ) and (F, τ) is itself isodual, the tensor product σ ⊗ τ providing a
similarity from E ⊗ F onto its dual (the same observation holds for anti-isodual spaces).
Moreover, the bilinear (or sesquilinear) form (13) satisfies the relation
(15) bσ⊗τ = bσ ⊗ bτ .

If E is any rigid adelic space, the direct product E ×E∨ is both an orthogonal and symplectic
isodual rigid adelic space. Indeed, the maps

σ : E × E∨ −→ E∨ × E

(x, x∨) 7−→ (x∨, x).
and

σ′ : E × E∨ −→ E∨ × E

(x, x∨) 7−→ (−x∨, x).
are both isometries from E × E∨ onto its dual, the former being orthogonal, and the latter
symplectic.
Similarly, if E a rigid adelic space over a CM field, the map

σ′′ : E × E∨ −→ E∨ × E

(x, x∨) 7−→ (x∨, x).

yields an isometry of E × E∨ onto its conjugate dual E∨ × E.
These observations leads to the following proposition:

Proposition 3.9. — Let F be a rigid adelic space ever a number field K. The following are
equivalent:

1. For all rigid adelic space E, one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

2. For all isodual rigid adelic space E, one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

3. For all orthogonal rigid adelic space E, one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).
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4. For all symplectic rigid adelic space E, one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

If K is a CM -field, this is also equivalent to:

5. For all unitary rigid adelic space E, one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Proof. — We only have to prove that 3 ⇒ 1 and 4 ⇒ 1 as well as 5 ⇒ 1, when K is
a CM field. Let us check the first implication (the other ones are similar): assume that
Hmin(E′ ⊗ F ) = Hmin(E′)Hmin(F ) holds for all orthogonal rigid adelic space E′, and let E
be an arbitrary rigid adelic space. We choose t > 0 such that Hmin(E[t]) = Hmin(E[t]∨), that
is, thanks to (8),

t =
(

Hmin(E∨)
Hmin(E)

)1/2
.

Since E[t] × E[t]∨ is orthogonal we have

(16)

Hmin
(
(E[t] × E[t]∨) ⊗ F

)
= Hmin(E[t] × E[t]∨)Hmin(F )
= Hmin(E[t])Hmin(F )

from Lemma 2.9, since Hmin(E[t]) = Hmin(E[t]∨)
= tHmin(E)Hmin(F ).

On the other hand

(17)
Hmin

(
(E[t] × E[t]∨) ⊗ F

)
= Hmin(E[t] ⊗ F × E[t]∨ ⊗ F )
= min

(
Hmin(E[t]⊗F ), Hmin(E[t]∨⊗F )

)
from Lemma 2.9

≤ Hmin(E[t] ⊗ F ) = tHmin(E ⊗ F ).

Comparing (16) and (17) yields Hmin(E)Hmin(F ) ≤ Hmin(E ⊗ F ), whence equality, since
the reverse inequality is always satisfied. □

In fact, one can go one step further than Proposition 3.9, and show that the investigation
of Conjecture 1.1 can be reduced to the case of semistable isodual (or even autodual) rigid
adelic space.

Theorem 3.10. — The following assertions are equivalent:

1. Conjecture 1.1 is true.

2. Hmin(E⊗F ) = Hmin(E)Hmin(F ) whenever E and F are semistable autodual rigid adelic
spaces.

Proof. — Assume that Hmin(E ⊗ F ) = Hmin(E)Hmin(F ) whenever E and F are semistable
and autodual, and let us prove that Conjecture 1.1 is true. From Remark 2.11, it amounts to
show that the tensor product E ⊗ F of two semistable rigid adelic spaces E and F is itself
semistable. So let E and F be semistable adelic spaces. As E[t] ⊗ F [s] = (E ⊗ F )[ts] and
semistability is preserved by scaling, we can assume, using a suitable scaling, that Hr(E) =
Hr(F ) = 1. If so, we infer that

Hmin(E × E∨) = Hmin(E) = 1 and Hmin(F × F ∨) = Hmin(F ) = 1,
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so that E × E∨ and F × F ∨ are semistable and autodual. From our assumption, this implies
that

Hmin((E × E∨) ⊗ (F × F ∨)) = Hmin(E × E∨)Hmin(F × F ∨) = 1.

Since E ⊗ F embeds isometrically into (E × E∨) ⊗ (F × F ∨), we can conclude that
Hmin(E ⊗ F ) ≥ 1 = Hmin(E)Hmin(F ), from which we deduce that Hmin(E ⊗ F ) =
Hmin(E)Hmin(F ) since the reverse inequality is always true. □

Remark 3.11. — The theorem and its proof remain true with autodual replaced by autodual
and orthogonal (resp. symplectic, resp. unitary if K is a CM-field).

In the next sections, we investigate some peculiarities of isodual rigid adelic spaces regarding
stability and tensor multiplicativity.

4. The Grayson–Stuhler filtration of isodual rigid adelic spaces

The GS-filtration of an isodual adelic space has remarkable symmetry properties which rely
on the following lemma:

Lemma 4.1. — Let E an rigid adelic space with GS-filtration

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Eℓ−1 ⊂ Eℓ = E.

Then the GS-filtration of E∨ is:

{0} = (Eℓ)⊥ ⊂ (Eℓ−1)⊥ ⊂ · · · ⊂ (E1)⊥ ⊂ (E0)⊥ = E∨.

Proof. — This relies on equation (10), the isometry between E⊥
i−1/E⊥

i and (Ei/Ei−1)∨ and
the observation that E is semistable if and only if E∨ is. Together with Proposition 2.7, this
gives the conclusion. □

This lemma has the following consequence for isodual spaces:

Proposition 4.2. — Let (E, σ) be an (anti-)isodual rigid adelic space over a number field
K, either of orthogonal, unitary or symplectic type, and let

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Eℓ−1 ⊂ Eℓ = E.

be its GS-filtration. Then:

1. for every 0 ≤ i ≤ ℓ, one has σEi = E⊥
ℓ−i,

2. the subpace Ei is totally isotropic with respect to bσ if i ≤ ℓ

2 , and co-isotropic if i ≥ ℓ

2 ,

3. if i ≤ ℓ

2 , the quotient Eℓ−i/Ei is (anti-)isodual,

4. if 0 ≤ i ≤ j ≤ ℓ

2 , then Ej/Ei × Eℓ−i/Eℓ−j is (anti-)isodual.
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E0 = {0}

E1

E2
E3 Eℓℓℓ−3

Eℓℓℓ−2

Eℓℓℓ−1

Eℓℓℓ = E

Proof. —

1. — From Lemma 3.2, the GS-filtration of σE is

{0} = σE0 ⊂ σE1 ⊂ · · · ⊂ σEℓ−1 ⊂ σEℓ = σE.

The conclusion follows from Lemma 4.1.

2. — One has σEi ⊂ E⊥
i whenever 2i ≤ ℓ and σEi ⊃ E⊥

i otherwise, whence the assertion.

3. — For every 0 ≤ i ≤ ⌊ ℓ
2⌋, the subspace Eℓ−i is co-isotropic with respect to bσ from the

previous assertion. Hence bσ induces a non degenerate bilinear (resp. sesquilinear) form on
the quotient Eℓ−i/Ei, and consequently σ achieves an isometric isomorphism from Eℓ−i/Ei

onto its (anti-)dual.

4. — Likewise, in the orthogonal and symplectic case, σ induces an isometry from Ej/Ei onto
E⊥

ℓ−j/E⊥
ℓ−i ≃ (Eℓ−i/Eℓ−j)∨ and from Eℓ−i/Eℓ−j onto E⊥

i /E⊥
j ≃ (Ej/Ei)∨, and similarly with

duals replaced by conjugate duals in the unitary case. The conclusion follows. □

The next corollary is an obvious consequence of the second point of the previous proposition,
which we state separately because of its importance:

Corollary 4.3. — If (E, σ) is an (anti-)isodual rigid adelic space, either of orthogonal,
unitary or symplectic type, which is unstable, then its destabilizing subspace E1 is totally
isotropic with respect to bσ. In particular, dim E1 ≤ 1

2 dim E.

In view of (15), we thus see a connection between Conjecture 1.1 and the description of
totally isotropic spaces of a tensor product of quadratic, resp. symplectic spaces.
Besides bσ, we may also consider a collection of local bilinear (resp. sesquilinear) forms bσv

on Ev, defined as follows:

– If v is finite or real, we simply set bσv (x, y) = σv(x)(y), where σv : Ev → E∨
v is the map

defined by (9).
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– If v is a complex place associated to a pair {γ, γ} of complex embeddings, we make use
of the two corresponding realizations σγ and σγ of σv, as follows: the map

Eγ × Eγ −→ C
(x ⊗γ λ, y ⊗γ µ) 7−→ γ(σ(x)(y))λµ

is left C-antilinear and right C-linear. Choosing a K-basis of E, we may identify the
complex vector spaces Eγ = E ⊗γ C and E

γ
= E ⊗

γ
C with Cd, where d = dim E,

and the above formula induces a sesquilinear map bσv on Cd (changing the K-basis of E
yields an equivalent sesquilinear form on Cd).

– If K is a CM field and E is anti-isodual via a similarity σ : E → E∨, one obtains C-
sesquilinear forms bσv at infinite places, directly by localizing the K-sesquilinear form bσ,
as was done above at real places.

Note in particular that if (E, σ) is an isodual rigid adelic space of orthogonal type, then bσv is
symmetric if v is either finite or real, and Hermitian if v is complex. Clearly, the destabilizing
subspace of an unstable space E is also totally isotropic with respect to bσv for all v ∈ VK .
The above Corollary 4.3 and its local counterparts thus induce strict restrictions on the
GS-filtration of isodual rigid adelic spaces.
Recall that the signature s(h) (resp. s(b)) of a non degenerate hermitian or quadratic form
h (resp. of its polar form b) over an ordered field is the difference s+(h) − s−(h) between the
number of positive and negative values taken by h on any orthogonal basis. It is related to
the Witt index i(h) (common dimension of the maximal totally isotropic subspaces) by the
formula

(18) i(h) = rk(h) − |s(h)|
2 .

Note also the tensor multiplicativity
s(h ⊗ h′) = s(h)s(h′).

In the sequel, we will say that a non degenerate real quadratic form (resp. complex hermitian
form) h of rank n is definite if |s(h)| = n, and Lorentzian if |s(h)| = n − 2.

Theorem 4.4. — Let (E, σ) be either an isodual rigid adelic space of orthogonal type over
a number field, or an anti-isodual rigid adelic space of unitary type over a CM field. If (E, σ)
is unstable, then the dimension of its destabilizing subspace is at most

1
2

(
dim E − max

v∈VK,∞
|s(bσv )|

)
.

In particular, f there exists v ∈ VK,∞ such that bσv is definite, then E is semistable.

Proof. — This is an immediate consequence of (18) and Corollary 4.3. □

Remark 4.5. — Over Q, the rigid adelic spaces satisfying the condition of the above corol-
lary correspond to unimodular Euclidean lattices over Z, for which semistability is obvious
(see e.g. [2]). Indeed, from Remark 3.6, if L is a Euclidean lattice, with scalar product denoted
x ·y, and τ is an isometry from L to L⋆ = {y ∈ RL, ∀ x ∈ L, y · x ∈ Z}, then L is orthogonal
if and only if τ2 = 1. Then it is easily seen that the bilinear form (x, y) 7→ τ(x) · y on the
space E = RL cannot be positive definite unless τ is the identity map.
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In view of Conjecture 1.1, the previous observations lead to the following result

Theorem 4.6. — Let (E, σ) and (F, τ) be either isodual of orthogonal type over a number
field, or anti-isodual of unitary type over a CM field. Suppose there exists an Archimedean
place v such that

|s(bσv )s(bτv )| ≥ rank E rank F − 8.

Then Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Proof. — If E ⊗ F is semistable, the result is clear. If it is not, then, from Theorem 4.4, the
rank of its destabilizing subspace (E ⊗ F )1 is at most 4. Then Theorem B in [5] implies that
Hr((E ⊗ F )1) ≥ Hmin(E)Hmin(F ), whence the result. □

Examples 4.7. — Let (E, σ) and (F, τ) be as in the previous theorem:

1. If there exists an Archimedean place v such that bσv and bτv are definite, then, E, F and
E⊗F are semistable. This extends the result on unimodular Euclidean lattices mentioned
in the introduction.

2. Assume that rank E ≤ 4 and that there exists a an Archimedean place v such that bσv is
definite and bτv is Lorentzian. Then Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

In the same vein as the previous examples, we get the following:

Theorem 4.8. — Let (E, σ) and (F, τ) be either isodual of orthogonal type, or anti-isodual
of unitary type over a CM field. Suppose that there exists an Archimedean place v such that
one of the following set of conditions is fulfilled:

1. The forms bσv and bτv are definite.

2. The form bσv is definite, the form bτv is Lorentzian, and F is not stable.

3. The forms bσv and bτv are Lorentzian, and neither E nor F is stable.

Then Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Proof. — The first case is Example 4.7-1 above. As for the second case, we let v be an
Archimedean place at which bσv is definite and bτv is Lorentzian. If F is unstable, this implies
that its destabilizing subspace F1 is one-dimensional, since it is totally isotropic at v. De-
noting by ℓ the length of the GS-filtration of F , we infer hat F/Fℓ−1 is also totally isotropic
at v, whereas the form induced by bτv on Fℓ−1/F1 is definite. Clearly, Hmin(E ⊗ F1) =
Hmin(E)Hmin(F1) and Hmin(E ⊗ F/Fℓ−1) = Hmin(E)Hmin(F/Fℓ−1), since F1 and F/Fℓ−1
are one-dimensional. Additionally Hmin(E ⊗ Fℓ−1/F1) = Hmin(E)Hmin(Fℓ−1/F1), thanks to
Theorem 4.6. Consequently, one can apply Corollary 2.10 and conclude that Hmin(E ⊗ F ) =
Hmin(E)Hmin(F ). If F is not stable but semistable, then the same density argument as in the
proof of Corollary 2.12 applies. Finally, the third case is an easy combination of the second
one with Corollary 2.10. □

Publications mathématiques de Besançon – 2023



44 On slopes of isodual lattices

5. Isoduality and automorphisms

The role of automorphisms with respect to the GS-filtration and Conjecture 1.1 has been
stressed on by several authors ([3, 8, 10, 18]). We wish to study more specifically in this
section its interplay with isoduality.
An automorphism of a rigid adelic space E is an isometry from E to itself, that is, an element
of GL(E) which preserves all local norms ∥·∥v, v ∈ VK . If L is the underlying OK-lattice of the
corresponding Hermitian bundle, an automorphism is thus an element of the (discrete) group
GL(L) which simultaneously belongs to the unitary group of every Archimedean completion.
With this description, the set Aut E of such automorphisms is easily seen to be a finite group.
It also acts on the dual E∨ by transposition

g∨(φ) := φ ◦ g, g ∈ Aut E, φ ∈ E∨,

and one can identify Aut E∨ with the set {g∨, g ∈ Aut E}.
Remarkably, the automorphism group Aut E stabilizes the Grayson–Stuhler-filtration

Proposition 5.1 ([3]). — Let {0} = E0 ⊂ E1 ⊂ · · · ⊂ Eℓ−1 ⊂ Eℓ = E the GS-filtration of
a rigid adelic space E. Then, g(Ei) = Ei for all g ∈ G and all 0 ≤ 1 ≤ i ≤ r.

The natural actions of G = Aut E on E and E∨ described above correspond to faithful
representations ρ : G → GLK(E) and ρ∨ : G → GLK(E∨):

ρ(g) = g g ∈ G(19)
ρ∨(g) = (g−1)∨(φ) g ∈ G.(20)

If (E, σ) is an isodual rigid adelic space, there is an additional representation to consider,
stemming out from the action of σ: for every g ∈ Aut E, the product g∨σ is an isometry from
E to E∨, so that σ−1g∨σ is an isometry from E to itself. It follows that the map
(21) g → gσ := σ−1(g−1)∨σ

is an automorphism of G = Aut E, which gives rise to the “twisted” representation
(22) ρσ(g) := ρ(gσ), g ∈ G.

Bringing together (20), (21) and (22), we infer that ρσ and ρ∨ are equivalent as representations
of G over K. Namely, σ induces a K[G]-isomorphism from (E, ρσ) onto (E∨, ρ∨), which maps
the G-invariant subspaces of E onto those of E∨ bijectively:

(23)
E E∨

E E∨

σ

ρσ(g) ρ∨(g)

σ

The properties of these two representations allow to derive more consequences on the GS-
filtration. Suppose that the K[G]-module E splits as

E =
⊕

i

V ai
i

where the Vis’ are irreducible pairwise non-isomorphic K[G]-modules. If all irreducible com-
ponents are self-dual, i.e. Vi ∼K[G] V ∨

i for all i, then clearly, (E, ρ) and (E∨, ρ∨) are also
equivalent over K.
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The following lemma shows that the above self-duality condition is always satisfied when K
is either a totally real or a CM extension of Q.

Lemma 5.2. — Let (E, σ) be a rigid adelic space over a number field K, G = Aut E its
automorphism group. If K is a totally real or CM -field, then E and E∨ are isomorphic as
K[G]-modules, i.e. the representations ρ and ρ∨ are equivalent.

Proof. — If E =
⊕

i V ai
i is the splitting of E into irreducible components, it is enough to

show that each Vi carries a non-degenerate bilinear (resp. Hermitian) G-invariant form if K
is a totally real (resp. CM) number field.
Let stand for the complex conjugation if K is a CM -field, or the identity in the totally real
case. This extends uniquely to an involution on Kv for each infinite place v, which we denote
likewise.
Let d = dim E. If we fix a K-basis B of E, and identify the elements of G with their matrices
with respect to it, viewed as elements in Md(K) ↪→ Md(Kv), we can define

F(G) := {H ∈ Md(K) | H = H
tr and gHgtr = H for all g ∈ G}

and, for each v ∈ VK,∞,

Fv(G) := {H ∈ Md(Kv) | H = H
tr and γ(g)Hγ(g)tr = H for all g ∈ G},

where γ : K ↪→ Kv is an embedding associated to v. Clearly, F(G) is a finite dimensional
vector space over the fixed field K+ of the complex conjugation, and for all v ∈ VK,∞, one
has

dimR(Fv(G)) = dimK+(F(G)).
Identifying R ⊗Q K+ with

⊕
v∈VK,∞

R we hence get⊕
v∈VK,∞

Fv(G) ∼= R ⊗Q F(G),

so that F(G) ∼= Q ⊗Q F(G) is dense in
⊕

v∈VK,∞
Fv(G). The Gram matrix Hv of hv with

respect to B belongs to Fv(G) for all v ∈ VK,∞, since G ≤ Aut(L, hv). Consequently, in a small
enough neighborhood of (hv)v∈VK,∞

in
⊕

v∈VK,∞
Fv(G), one can find a totally positive definite

symmetric (resp. Hermitian) matrix H belonging to F(G). The corresponding quadratic (resp.
Hermitian) form, when restricted to Vi, is clearly G-invariant and non-degenerate. □

Proposition 5.3. — Let (E, σ) be an isodual rigid adelic space over K with GS-filtration

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Eℓ−1 ⊂ Eℓ = E,

and G = Aut E its automorphism group. We assume that the representation ρ and ρ∨ are
equivalent over K (this is the case if K is either totally real or CM). Let V a K[G]-submodule
of Ei/Ei−1. Then Eℓ−i+1/Eℓ−i contains a K[G]-submodule isomorphic to V ∨.

Proof. — The isometry (Ei/Ei−1)∨ ≃ E⊥
i−1/E⊥

i is an isomorphism of K[G]-modules. On the
other hand, the isometry σ maps bijectively Ei/Ei−1 onto σ(Ei)/σ(Ei−1) = E⊥

ℓ−i/E⊥
ℓ−i+1 and

the latter is K[G]-isomorphic to (Eℓ−i+1/Eℓ−i)∨. As the representations ρ, ρ∨ and ρσ are
equivalent, we can conclude that (Eℓ−i+1/Eℓ−i)∨ and Ei/Ei−1 are K[G]-isomorphic, whence
the conclusion. □
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Corollary 5.4. — Let (E, σ) be an isodual rigid adelic space with automorphism group G.
Assume that

1. E and E∨ are isomorphic as K[G]-modules.

2. The K[G]-module E splits as
⊕t

i=1 Vi, where the Vis are pairwise non isomorphic abso-
lutely irreducible K[G]-modules.

Then (E, σ) is semistable.

Proof. — The first hypothesis implies that the conditions of Proposition 5.3 are fulfilled.
Consequently, if the length ℓ of the filtration were 2 or more, then any irreducible component
V of the destabilizing subspace E1 should also appear as a component of E/Eℓ−1, and the
multiplicity of V in E would consequently be at least 2. □

Remark 5.5. — For isodual lattices, in the sense of Remark 3.6, the self-duality condition
for irreducible components is automatically satisfied, as the restriction of the bilinear (resp.
sesquilinear) form h to any irreducible component is a nonzero G-invariant bilinear form.

When E is multiplicity-free as a K[G]-module, like in the above Corollary, then the tensor
multiplicativity Hmin(E ⊗ F ) = Hmin(E)Hmin(F ) holds for any F , as was conjectured in [8]
and fully proven by Rémond [18, Théorème 1.1]. From Proposition 5.3 and its corollary, this
situation can hardly occur if E is isodual and unstable: if E is isodual, unstable, and its
irreducible components are K[G]-isomorphic to their duals, then at least one of those has
multiplicity 2 or more. Thus, a natural “isodual” counterpart of [18, Théorème 1.1] should be

Conjecture 5.6. — Let (E, σ) be an isodual rigid adelic space with automorphism group G.
Assume that

1. E and E∨ are isomorphic as K[G]-modules.

2. The K[G]-module E admits a decomposition E =
⊕t

i=1 V ai
i into absolutely irreducible

G-modules with multiplicities ai ≤ 2.

Then, for all rigid adelic space F , one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Whether this conjecture is significantly easier than the original Conjecture 1.1 is unclear.
Indeed, if true, this would in particular imply that, over a totally real or CM -field, Conjec-
ture 1.1 is true whenever E has dimension 2, with no condition on F . Notice that the proof
of [18, Théorème 1.1] relies heavily on the fact that, when E admits a multiplicity free decom-
position E =

⊕t
i=1 Vi, then, any G-invariant subspace of E ⊗ F splits as

⊕r
i=1 Vi ⊗ Fi, where

the Fis are subspaces of F (see [8, Proposition 2.1]). Such a description of the G-invariant
subspaces of E ⊗ F fails to hold as soon as multiplicities occur.
We conclude with a result in the direction of Conjecture 5.6, under additional restrictive
assumptions.

Proposition 5.7. — Let (E, σ) be an isodual rigid adelic space with automorphism group
G. Assume that

1. E and E∨ are isomorphic as K[G]-modules.
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2. The K[G]-module E admits a decomposition E =
⊕t

i=1 V ai
i into absolutely irreducible

G-modules with multiplicities ai ≤ 2, and ai = 2 for at most one i.

3. E is not stable.

Then, for all rigid adelic space F , one has Hmin(E ⊗ F ) = Hmin(E)Hmin(F ).

Proof. — The proof is quite similar to that of Corollary 2.12. We may assume that E is
unstable, since the result will continue to hold if E is semistable and not stable, by the same
continuity argument we used before. Under this assumption, at least one irreducible com-
ponent has multiplicity greater than 1, because of Corollary 5.4, which implies that exactly
one, say Vi0 , has multiplicity exactly 2, because of the second assumption of the proposition.
Each absolutely irreducible representation occurring in the decomposition of the destabi-
lizing subspace E1 of E must also occur in that of E/Eℓ−1, from which we can conclude
that E1 is absolutely irreducible and isomorphic to Vi0 , and E/Eℓ−1 as well. In particu-
lar, thanks to [3, Proposition A.3], we infer that Hmin(E1 ⊗ F ) = Hmin(E1)Hmin(F ) and
Hmin(E/Eℓ−1 ⊗ F ) = Hmin(E/Eℓ−1)Hmin(F ). Moreover, the quotient Eℓ−1/E1 is multiplic-
ity free, so that Hmin(Eℓ−1/E1⊗F ) = Hmin(Eℓ−1/E1)Hmin(F ), thanks to [18, Théorème 1.1].
Finally, we can apply Corollary 2.10 and conclude that Hmin(E⊗F ) = Hmin(E)Hmin(F ). □
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