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MONGE–AMPÈRE MEASURES FOR TORIC METRICS ON ABELIAN
VARIETIES

by

Walter Gubler and Stefan Stadlöder

Abstract. — Toric metrics on a line bundle of an abelian variety A are the invariant metrics under
the natural torus action coming from Raynaud’s uniformization theory. We compute here the associated
Monge–Ampère measures for the restriction to any closed subvariety of A. This generalizes the compu-
tation of canonical measures done by the first author from canonical metrics to toric metrics and from
discrete valuations to arbitrary non-archimedean fields.

Résumé. — (Mesures de Monge-Ampère pour les métriques toriques sur les variétés abéliennes) Les
métriques toriques sur un fibré en droites sur une variété abélienne A sont les métriques invariantes sous
l’action naturelle du tore issue de la théorie de l’uniformisation de Raynaud. Nous calculons les mesures
de Monge–Ampère associées pour les restrictions à toutes les sous-variétés fermées de A. Ceci généralise
des travaux du premier auteur sur le calcul des mesures canoniques pour des valuations discrètes au cas
des métriques toriques pour des corps non archimédiens arbitraires.

1. Introduction

Abelian varieties are projective geometrically integral group varieties over a field. They play a
distinguished role in arithmetic geometry. Let X be a closed subvariety of an abelian variety A
over a number field K. The group structure of A makes it easier to understand the structure of
the K-rational points of X. For example, Faltings [16] showed the Bombieri–Lang conjecture
for such X. No finiteness statements are sensible for K-rational points of X, instead we are
looking for density statements for special points. The Manin–Mumford conjecture, proven
by Raynaud [33], states that the set of torsion points of X is dense if and only if X is the
translate of an abelian subvariety by a torsion point.
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50 Monge–Ampère measures for toric metrics on abelian varieties

The height of a K-rational point of a projective variety measures the arithmetic complexity of
its coordinates. In the case of an abelian variety A, there are canonical heights called Néron–
Tate heights. A natural generalization of the Manin–Mumford conjecture is the Bogomolov
conjecture which claims that if the closed subvariety X of A has dense small points, then
X is again a torsion translate of an abelian subvariety. This was shown by Ullmo [36] for
a curve inside its Jacobian and by Zhang [39] in full generality. All the above statements
have analogues in the case of a function field K where one has to take into account that
constant abelian varieties are also a source for points of height 0. The function field variant
of the Bogomolov conjecture is called the geometric Bogomolov conjecture which was harder
to prove than the number field case. It was shown by Gao and Habegger [19] in the case of
the function field of a curve and generalized by Cantat–Gao–Habegger–Xie [11] to arbitrary
function fields, but both assuming that K has characteristic 0. In arbitrary characteristics,
the geometric Bogomolov conjecture was shown by Xie and Yuan [37] using reduction steps
by Yamaki and the Manin–Mumford conjecture over function fields by Hrushowski [28] and
Pink–Roessler [31].
Ullmo’s and Zhang’s argument relies on an equidistribution theorem for small points due
originally to Szpiro–Ullmo–Zhang [35], later generalized by Yuan [38]. This equidistribution
strategy also works to some extent in the case of function fields as shown for totally degenerate
abelian varieties in [21]. In constrast to the number field case, the equidistribution has then
to be with respect to a non-archimedean place and takes place on the associated Berkovich
space. The argument relies on a precise description of canonical measures of X, see below
for more details. This description holds for all abelian varieties A [23] and was the key in
Yamaki’s argument showing that it is enough to prove the geometric Bogomolov conjecture
for abelian varieties A with good reduction at all places of K. In the present paper, we will
generalize the description of canonical measures of X.
For the remainder of the introduction, we consider an algebraically closed field K endowed
with a complete non-archimedean absolute value and non-trivial value group Γ in R. For a
projective variety X, we will perform analytic considerations on the associated Berkovich
space Xan. The notion of continuous semipositive metrics of a line bundle L over X goes
back to Zhang and is recalled in Section 2.5. For such a metric ∥ · ∥, Chambert-Loir [12] has
introduced non-archimedean Monge–Ampère measures c1(L, ∥ · ∥)∧ dim(X) which are positive
Radon measures on Xan, see [12], [21] and Section 2.6.
Assume now that X is a closed subvariety of an abelian variety A over K and let d := dim(X).
For a rigidified ample line bundle L of A, there is a canonical metric ∥ · ∥L of L. Since ∥ · ∥L
is a continuous semipositive metric, we get the canonical measure

µL := c1(L|X , ∥ · ∥L)∧d

on the Berkovich analytification Xan of X. If X,A and L are defined over a discretely valued
field, then it was shown in [23] that the support of µL has a piecewise linear structure with
a polytopal decomposition D such that

µL =
∑
σ∈D

rσµσ

where rσ ∈ R≥0 and µσ is a Lebesgue measure on the polytope σ. Note that lower dimensional
polytopes are also allowed. The goal of this paper is to generalize these results, removing the
discreteness assumption about the field of definition and replacing canonical metrics by a
Publications mathématiques de Besançon – 2023



Walter Gubler and Stefan Stadlöder 51

more general class called toric metrics. As we will see, toric metrics on L are the variations
of canonical metrics by combinatorial means.
We continue with the above setup confirming that K is any algebraically closed non-
archimedean field with non-trivial absolute value. The Raynaud extension for the abelian
variety A is a canonical exact sequence

0 −→ T an −→ Ean q−→ Ban −→ 0

of abelian analytic groups over K which are all algebraic with T a torus of rank n and
B an abelian variety of good reduction. Raynaud’s uniformization theory gives a canonical
description Aan = Ean/Λ where E is a group scheme of finite type over K and Λ is a discrete
subgroup of Ean contained in E(K). Note that the quotient map p : Ean → Aan is in general
not algebraic. Moreover, there is a canonical tropicalization trop: Ean → NR mapping Λ
homeomorphically onto a lattice of NR ∼= Rn where N is the cocharacter lattice of T . It
induces a canonical tropicalization

trop: Aan −→ NR/ trop(Λ).

We say that a continuous metric ∥ · ∥ of the rigidified line bundle L of A is toric if there is a
function ϕ : NR → R such that p∗∥ · ∥ = e−ϕ◦tropp∗∥ · ∥L.
There is a rigidified line bundle H on B such that we have an identification p∗(Lan) = q∗(Han)
as Λ-linearized cubical line bundles on Ean. The metric q∗(∥ · ∥H) does not descend to Lan

and the obstruction leads to a cocycle (zλ)λ∈trop(Λ) encoding all tropical information about
the line bundle L, see Section 4 for details.

Theorem 1.1. — There is a bijective correspondence between continuous toric metrics ∥ · ∥
on Lan and continuous functions f : NR → R satisfying the cocycle rule

f(ω + λ) = f(ω) + zλ(ω) (ω ∈ NR , λ ∈ trop(Λ)).

The correspondence is determined by

f ◦ trop = − log(p∗∥ · ∥/q∗∥ · ∥H).

If L is ample, then the function f is convex if and only if the metric ∥ · ∥ is semipositive.

This will be shown in Proposition 4.9 and Theorem 4.10. To deduce semipositivity from
convexity, we will use an approximation result by piecewise linear convex functions satisfying
the cocycle rule which was done in [9]. The converse uses arguments from the theory of weakly
smooth forms on Berkovich analytic spaces given in [25] and recalled in Appendix A.
Recall that X is a closed d-dimensional subvariety of the abelian variety A. In Section 7,
we show that for any ample line bundle L on A, the support SX of the canonical measure
c1(L|X , ∥ · ∥L)∧d has a canonical piecewise (Q,Γ)-linear structure not depending on the choice
of L. In fact, we will show that it is a (Q,Γ)-skeleton in the sense of Ducros [14].

Theorem 1.2. — The canonical tropicalization map trop: Aan → NR/ trop(Λ) restricts to
a piecewise (Q,Γ)-linear map SX → trop(Xan) which is surjective and finite-to-one.

This result was shown in [21] in the special case of X,L,A being defined over a discretely
valued field and was crucial in Yamaki’s reduction step mentioned above. We prove at the
end of the paper that this holds for any algebraically closed non-archimedean field K.
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52 Monge–Ampère measures for toric metrics on abelian varieties

The main result of this paper describes the non-archimedean Monge–Ampère measure of a
continuous toric metric in terms of the classical real Monge–Ampère measure MA(f) associ-
ated to a convex function on Rn, see Section 2.3.

Theorem 1.3. — There is a polytopal (Q,Γ)-decomposition Σ of the canonical subset SX
such that for any ample line bundle L on A with continuous toric metric ∥ · ∥ corresponding
to the convex function f as in Theorem 1.1, there is a multiplicity mσ ∈ Q≥0 associated to
σ ∈ Σ such that

c1(L|X , ∥ · ∥)∧d(Ω) = mσ · MA(f)(trop(Ω))
for any Lebesgue measurable subset Ω of relint(σ). The multiplicity mσ depends only on X,
L and σ, but not on the toric metric ∥ · ∥.

In the special case of the canonical metric, we can say more:

Corollary 1.4. — The above polytopal decomposition Σ has the property that for any ample
line bundle L of A, there is rσ ∈ R≥0 associated to σ ∈ Σ such that

c1(L|X , ∥ · ∥L)∧d =
∑
σ∈Σ

rσµσ

where µσ is a fixed choice of a Lebesgue measure on the polytope σ ∈ Σ.

We begin proving Theorem 1.3 by showing a variant (given in Theorem 6.2) for the pull-
back to a strictly polystable alteration of X where the support is contained in the union of
the canonical faces of the skeleton which are non-degenerate with respect to the alteration.
The existence of such a strictly polystable alteration follows from a result of Adiprasito,
Liu, Pak and Temkin [1]. In Theorem 7.8, we will see that the induced morphism from the
union of these non-degenerate faces to SX is a piecewise (Q,Γ)-linear surjective map which
is finite-to-one. Then Theorem 1.3 follows from the projection formula (36).
The structure of the paper is as follows. Section 2 fixes the notation and gives the preliminaries
on convex geometry, non-archimedean geometry, formal models and semipositive metrics, and
real and non-archimedean Monge–Ampère measures. In Section 3, we deal with piecewise
linear convex approximations of convex functions in a purely combinatorial setting. The main
result is Proposition 3.8 where we show that such an approximation is possible by preserving a
cocycle rule. The approximations can be chosen such that the underlying domains of linearity
are transversal to a given fixed set of polytopes. This will be crucial later. In Section 4,
we first recall Raynaud’s uniformization theory. Then we introduce toric metrics and prove
Theorem 1.1. Finally, we recap the theory of formal Mumford models of an abelian variety
A over K. Mumford models have the advantage that they can be described in combinatorial
terms on trop(Aan) = NR/ trop(Λ).
In Section 5, we first recall strictly polystable alterations for a closed subvariety X of A, the
piecewise linear structure of the skeleton Sk(X′) of the underlying strictly polystable formal
scheme X′ over K◦ and that any polytopal decomposition of Sk(X′) leads to a formal model X′′

of the generic fiber of X′ which dominates X′. Then we relate this construction to the formal
Mumford models of A and give a combinatorial formula for the degree of an irreducible
component of the special fiber of X′′ under a transversality assumption. All the material from
Section 5 is a direct generalization of [23, Section 5] from the strictly semistable to the strictly
polystable case. In Section 6, we prove the variant of Theorem 1.3 on the strictly polystable
alteration. We use the piecewise linear approximation from Proposition 3.8 to reduce to the
Publications mathématiques de Besançon – 2023
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piecewise linear case and then the claim is a direct consequence of the combinatorial degree
formula from Section 5. Finally, in Section 7, we prove the claims about the canonical subset.

Acknowledgements. — We thank Antoine Ducros for a fruitful discussion about skeletons
of Berkovich spaces and we are grateful to Felix Herrmann for proofreading the text lin-
guistically. We thank José Burgos, Roberto Gualdi, Klaus Künnemann and Joe Rabinoff for
comments to an earlier version of this paper. We are grateful to the referee for the careful
reading and the valuable suggestions helping to improve the presentation.

2. Notation and preliminaries

2.1. Basic conventions. — The set of natural numbers N includes 0. A lattice in a finite
dimensional real vector space is a discrete subgroup which generates the vector space. For an
abelian group M and a subgroup G of R, we set MG := M ⊗Z G. By a compact space, we
mean a quasi-compact Hausdorff space.
A ring is always assumed to be commutative and with 1. The group of invertible elements in
a ring A is denoted by A×. A variety over a field F is an integral scheme which is of finite
type and separated over Spec F .
By Bourbaki’s approach to measure theory, a positive Radon measure on a locally compact
Hausdorff space X can be seen as a positive linear functional on the space of compactly
supported continuous real functions Cc(X) of X. By the Riesz represention theorem, such
a function is given by f →

∫
X f(x) dµ(x) for a unique regular Borel measure µ on X. A

sequence of Radon measures µk is called weakly convergent to a Radon measure µ on X if

lim
k

∫
X
f(x) dµk(x) =

∫
X
f(x) dµ(x)

for all f ∈ Cc(X).

2.2. Convex geometry. — Let N be a free abelian group of rank n and M = HomZ(N,Z)
its dual. A function f : NR → R is called affine if f = u + c for some u ∈ MR and c ∈ R.
Then u is called the slope of f . For a subring A of R and a A-submodule Γ of R, we say that
f is (A,Γ)-affine if u ∈ MA and c ∈ Γ.
A finite intersection of half-spaces {f ≤ 0} for affine functions f on NR is called a polyhedron
in NR. It is called a (A,Γ)-polyhedron if the affine functions f can be chosen (A,Γ)-affine.
A polytope is a bounded polyhedron. The relative interior of a polyhedron σ is denoted by
relint(σ). For a polyhedron σ, a face is the intersection of σ with the boundary of a half-space
containing σ. By convention, we allow σ and ∅ also as faces of σ. The notation τ ≺ σ means
that τ is a face of σ. A polyhedral complex in NR is a locally finite set C of polyhedra in
NR such that for σ ∈ C , the faces of σ are in C and for σ, ρ ∈ C we have that σ ∩ ρ is a
common face of σ and ρ. The support of C is defined by |C | :=

⋃
σ∈C σ. For k ∈ N, we set

Ck := {σ ∈ C | dim(σ) = k}. A function f : C → R on a closed subset C of NR is called
piecewise linear if there is a polyhedral complex C with support C such that f |σ is affine
for all σ ∈ C . If we can choose C as a (A,Γ)-polyhedral complex (i.e. a polyhedral complex
consisting of (A,Γ)-polyhedra) such that all f |σ are (A,Γ)-affine functions, then we call f
piecewise (A,Γ)-linear.
More generally, a piecewise (A,Γ)-linear space is a locally compact Hausdorff space X with a
compact atlas (Xi)i∈I by charts to (A,Γ)-polytopes in Rni such that the transition functions
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54 Monge–Ampère measures for toric metrics on abelian varieties

are (piecewise) (A,Γ)-affine and such that every point has a neighbourhood in X given by a
finite union of Xi’s. All the above notions are transferred to X by using the polytopal charts.
We refer to [14, Section 0] for more details.

2.3. Real Monge–Ampère measures. — Let N be a free abelian group of rank n with
dual M and let f : Ω → R be a convex function on an open convex subset Ω of NR. Then a
classical construction from real analysis gives the Monge–Ampère measure MA(f) which is a
positive Radon measure on Ω. Let λN be the Haar measure on NR normalized by requiring
that the covolume of the lattice N is one. For f ∈ C2(Ω), we have

MA(f) = n! det
(
(∂ijf)1≤i,j≤n

)
λN , ∂ijf = ∂2f

∂ui∂uj
,

where u1, . . . , un is a basis for M viewed as coordinates on NR. For any convex function f , the
construction of the Monge–Ampère measure MA(f) is local with respect to the open convex
set Ω in NR and continuous with respect to uniform convergence of convex functions and
weak convergence of Radon measures.
What we need is that for a conic piecewise linear function f on NR centered at x ∈ NR
(i.e. f(r(ω − x) + x) − f(x) = r(f(ω) − f(x)) for all ω ∈ NR and r > 0), the mea-
sure MA(f) is the Dirac measure at x with total mass equal to the volume of the dual
polytope {x}f with respect to the Haar measure λM on MR normalized such that the lat-
tice M has covolume 1. Here, the dual polytope of f is defined by {x}f = {u ∈ MR |
f(ω) − f(x) ≥ ⟨ω − x, u⟩ for all ω ∈ NR}. We refer to [10, Section 2.7] for details (replacing
convex functions by concave functions).

2.4. Non-archimedean geometry. — A non-archimedean field is a field K complete with
respect to a given ultrametric absolute value | · | : K → R≥0. The valuation is v := − log | · | and
Γ := v(K×) is the value group. The valuation ring is denoted by K◦ := {α ∈ K | v(α) ≥ 0}
with maximal ideal K◦◦ := {α ∈ K | v(α) > 0} and residue field K̃ := K◦/K◦◦.
We consider good non-archimedean analytic spaces as introduced by Berkovich in [2]. They
are characterized by the fact that every point has an affinoid neighbourhood. We are occupied
with strictly analytic spaces where we can use a closed analytic subspace of a unit ball for
this affinoid analytic neighbourhood. We assume that the reader is familiar with the notions
from [2]. We apply this to the analytification Xan of a variety X over K.
For a point x in a strictly analytic Berkovich space X, we have the completed residue field
H (x). We call x an Abhyankar point if the transcendence degree of the graded residue field
of H (x) over K is equal to the local dimension of x at X (in general, we have “≤” which is
Abhyankar’s inequality). In classical terms, this graded transcendence degree is r+ d, where
r is the transcendence degree of the usual reductions (H (x))∼ over K̃ and d is the dimension
of the Q-vector space (|H (x)×| ⊗Q)/(|K×| ⊗Q) build from the multiplicative value groups.
The important point is that for a point y in a closed analytic subspace Y of X, the completed
residue field H (y) is the same for Y as for X and hence if the local dimension of Y at y is
strictly smaller than the dimension of X at y, it follows that y is not an Abhyankar point of
X. We refer to [15, Section 1.4] for details.

2.5. Formal models and semipositive metrics. — We consider a non-trivially valued
algebraically closed non-archimedean field K. Let X be an admissible formal scheme over K◦

which means that X is a flat formal scheme over K◦ locally of topologically finite type such
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that X has a locally finite atlas by formal affine schemes over K◦. The generic fiber of X is
a paracompact strictly analytic Berkovich space over K which we will denote by Xη. This
generic fiber is not necessarily a good analytic space, but we will use it later only in the good
case as in the algebraic situation below. The special fiber Xs is a scheme locally of finite type
over K◦ and we have a reduction map red: Xη → Xs. For details, we refer to [3, Section 1.6]
and [6].
Let X be a paracompact strictly analytic space over K. A formal K◦-model of X is an
admissible formal scheme X over K◦ with an identification Xη = X. Let L be a line bundle
on X. Then a formal model L of L is a line bundle L on a formal K◦-model X of X such that
L|Xη = L along the identification Xη = X. We call L nef if the line bundle L|Xs is nef on the
special fiber Xs. The latter means by definition that for every closed curve Y of Xs, which is
proper over the residue field K̃, we have degL(Y ) ≥ 0.
A formal model L of L induces a continuous metric ∥ · ∥L on L, see [27, Definition 2.5]. A
metric ∥ · ∥ on L is called a model metric if there is a non-zero k ∈ N such that ∥ · ∥⊗k is
induced by a formal model L of L⊗k. We call a model metric nef if L can be chosen as a
nef line bundle. A continuous metric on L is called semipositive if it is a uniform limit of nef
model metrics on L.
In this paper, we work mainly in the algebraic setting where X = Y an for a proper algebraic
variety Y over K. Then one can replace formal K◦-models by proper algebraic models of Y
over K◦ (see [27, Section 2]), but working with formal models allows additional flexibility
and is more convenient.

2.6. Non-archimedean Monge–Ampère measures. — Let X be a proper algebraic va-
riety over K and let L be a line bundle over X. A construction originated by Chambert-
Loir [12] associates to a model metric ∥ · ∥ of L a discrete measure c1(L, ∥ · ∥)∧n on Xan. This
can be used to define the Monge–Ampère measure c1(L, ∥ · ∥)∧n for any continuous semiposi-
tive metric ∥ · ∥ of Lan by using that for a uniform limit of nef model metrics ∥ · ∥k on Lan the
corresponding sequence of measures c1(L, ∥ · ∥k)∧n converges weakly in the sense of positive
Radon measures, see [21, Section 2].
We briefly recall the construction of the Monge–Ampère measure for ∥ · ∥L. Since K is al-
gebraically closed, the formal models of Xan with reduced special fiber are cofinal in the
category of all formal models of Xan with respect to morphisms extending the identity of
Xan [27, Proof of Proposition 3.5]. This form of the reduced fiber theorem and the projection
formula allow us to assume that L is a line bundle on a formal K◦-model with Xs reduced.
Then for every irreducible component Y of Xs, there is a unique point ξY ∈ Xan such that
red (ξY ) is the generic point of Xs. Such points are called Shilov points for Xs. We set

c1(L, ∥ · ∥L)∧n :=
∑
Y

degL(Y ) · δξY

where Y ranges over all irreducible components of Xs and where δξY
is the Dirac measure in

the Shilov point ξY .

3. Piecewise linear approximation

In this section, we prove that convex functions can be approximated by suitable generic
piecewise linear functions in a setup later used for tropicalizations of abelian varieties.
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56 Monge–Ampère measures for toric metrics on abelian varieties

The setup is as follows: Let Γ be a non-trivial divisible subgroup of R. In the applications,
it will be the value group of a non-trivially valued algebraically closed non-archimedean field
K. We consider a free abelian group N of rank n and a lattice Λ in the base change NR of N
to R. Later, these data will come naturally from the canonical tropicalization of an abelian
variety over K. The dual group of N is denoted by M := Hom(N,Z). For m ∈ MR and
ω ∈ NR, we set ⟨m,ω⟩ := m(ω) ∈ R.
We also fix a set Σ of polytopes in NR. We assume that for ∆ ∈ Σ, all faces of ∆ are also
included in Σ. In the following, we will consider a locally finite polytopal decomposition C
of NR (or more generally of a piecewise linear space) which means a polyhedral complex C
consisting of polytopes such that the support of C is the whole ambient space NR. For a
polytope σ in NR, we will use the linear subspace Lσ of NR generated by {ω − ν | ω, ν ∈ σ}
and the affine subspace Aσ of NR generated by σ.

Definition 3.1. — A locally finite polytopal decomposition C of NR is called Σ-transversal
if for all σ ∈ Σ and all ∆ ∈ C with σ ∩ ∆ ̸= ∅, we have
(1) dim(σ ∩ ∆) = dim(∆) + dim(σ) − n.

Remark 3.2. — Let D(σ,∆) := dim(∆) + dim(σ) − n. Recall from linear algebra the
dimension formula
(2) dim(Lσ ∩ L∆) = dim(∆) + dim(σ) − dim(Lσ + L∆)
for the underlying linear spaces. Transversal intersection of Lσ and L∆ usually means that
Lσ + L∆ = NR which is equivalent to dim(Lσ ∩ L∆) = D(σ,∆).

Lemma 3.3. — A locally finite polytopal decomposition C of NR is Σ-transversal if it sat-
isfies the following two conditions for all σ ∈ Σ and ∆ ∈ C with underlying affine spaces
Aσ,A∆:

(i) If D(σ,∆) ≥ 0, then Lσ + L∆ = NR.

(ii) If D(σ,∆) < 0, then Aσ ∩ A∆ = ∅.

Proof. — The argument follows [22, Proposition 8.2]. Assume that σ ∩ ∆ ̸= ∅. Then by (i)
and (ii), we have Lσ + L∆ = NR. Using σ ∩ ∆ ̸= ∅ and Remark 3.2, we get
(3) dim(Aσ ∩ A∆) = dim(Lσ ∩ L∆) = D(σ,∆).
If relint(σ)∩relint(∆) ̸= ∅, then we have dim(∆∩σ) = dim(Aσ∩A∆) and (1) follows from (3).
It remains to see that relint(σ) ∩ relint(∆) = ∅ cannot happen. We argue by contradiction.
We may assume that ∆ and σ are minimal with relint(σ)∩relint(∆) = ∅. Using that the roles
of σ and ∆ are symmetric, we may assume that there is a proper face σ′ of σ of codimension 1
with σ′ ∩ ∆ ̸= ∅. Note that Aσ′ divides Aσ into two half-spaces, and precisely one contains
σ. By minimality, we have relint(σ′) ∩ relint(∆) ̸= ∅. Using also relint(σ) ∩ relint(∆) = ∅, we
deduce that Aσ ∩ relint(∆) ⊂ Aσ′ and hence Aσ ∩ A∆ = Aσ′ ∩ A∆. Since dim(σ′) < dim(σ),
we have D(σ′,∆) < D(σ,∆) which contradicts (3) applied to σ and σ′. □

Definition 3.4. — A locally finite polytopal decomposition C of NR is called Λ-periodic if
for all ∆ ∈ C and for all λ ∈ Λ \ {0} the polytope ∆ + λ is a face of C disjoint from ∆.

These conditions ensure that we can see the image ∆ of ∆ in NR/Λ as a polytope in NR/Λ
and that the set of all ∆ is a polytopal decomposition C of NR/Λ.
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3.5. — We fix now the following data for the remaining part of this section. We fix a positive
definite inner product b on NR such that
(4) b(λ, x) ∈ Z

for all x ∈ N and for all λ ∈ Λ. In the applications, such a bilinear form b will be induced by
an ample line bundle on the abelian variety A.
We also consider a Λ-cocycle (zλ)λ∈Λ on NR, i.e. functions zλ : NR → R satisfying
(5) zλ+ν(ω) = zλ(ω + ν) + zν(ω)
for all λ, ν ∈ Λ and all ω ∈ NR. We assume that the properties
(6) zλ(ω) = zλ(0) + b(λ, ω)
and
(7) zλ(0) ∈ Γ
hold for all λ ∈ Λ and ω ∈ NR. Using (5) and (6), we see that

zλ+ν(0) − zλ(0) − zν(0) = zλ(ν) − zλ(0) = b(λ, ν).
It follows that zλ(0) is a quadratic function in λ with associated symmetric bilinear form b.

It is in (7) that the fixed divisible subgroup Γ of R shows up first.

Lemma 3.6. — The assumptions on the bilinear form b and on the cocycle (zλ)λ∈Λ in 3.5
yield b(λ, y) ∈ Γ and ⟨m,λ⟩ ∈ Γ for all y, λ ∈ ΛQ and m ∈ M .

Proof. — Since zλ(0) is a quadratic function in λ ∈ Λ with associated symmetric bilinear
form b, we deduce that

zλ(0) + z−λ(0) = b(λ, λ)
and hence we deduce from (7) that b(λ, λ) ∈ Γ. Using that Γ is divisible, this holds even for
all λ ∈ ΛQ. For any y ∈ ΛQ and using again that Γ is divisible, we have

b(λ, y) = 1
2 (b(λ+ y, λ+ y) − b(λ, λ) − b(y, y)) ∈ Γ.

The non-degeneracy of b and (4) show that
ΛQ −→ MQ, λ 7−→ b(λ, · )

is an isomorphism of Q-vector spaces of dimension n. For m ∈ MQ, we conclude that there
is λ ∈ ΛQ with ⟨m, · ⟩ = b(λ, · ). For y ∈ ΛQ, we get ⟨m, y⟩ = b(λ, y) ∈ Γ. □

Definition 3.7. — Using a fixed cocycle (zλ)λ∈Λ as above, we say that f : NR → R satisfies
the cocycle rule if

f(ω + λ) = f(ω) + zλ(ω)
for all ω ∈ NR and λ ∈ Λ.

These functions may be seen as tropical theta-functions, see [17] and [30].
In the following, we will call a piecewise linear function f : NR → R strictly convex with
respect to a locally finite polytopal decomposition C of NR if the function f is convex and if
for all σ ∈ C we have f |σ = uσ + cσ with uσ ∈ MR and cσ ∈ R such that the slopes uσ
are different for different maximal faces σ ∈ C . This is similar to the notion used in toric
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geometry [18] and should not be confused with the notation of strictly convex functions in
analysis which has a different meaning.
We can now state the main result of this section.

Proposition 3.8. — Let Σ be a finite set of polytopes in NR. We assume that Σ includes
with a polytope also all its faces. Under the above assumptions, we consider a convex function
f : NR → R satisfying the cocycle rule from Definition 3.7. Then f is the uniform limit of
functions fk satisfying the same cocycle rule such that every fk is a piecewise (Q,Γ)-linear
strictly convex function with respect to a locally finite (Z,Γ)-polytopal decomposition Ck of
NR which is Λ-periodic and Σ-transversal.

For the proof, we need a couple of lemmas first.

Lemma 3.9. — Let f be a convex piecewise linear function satisfying the cocycle rule with
respect to the given cocycle z = (zλ)λ∈Λ as above. Then the following properties hold:

(i) The maximal domains of linearity are the n-dimensional faces of a locally finite polytopal
decomposition D(f) of NR.

(ii) If f is piecewise (Q,Γ)-linear, then D(f) is a (Z,Γ)-polytopal decomposition.

(iii) For ∆ ∈ D(f) and λ ∈ Λ, we have ∆ + λ ∈ D(f).

(iv) For a maximal domain of linearity ∆ of f and a non-zero λ ∈ Λ, the open sets
relint(∆) + λ and relint(∆) are disjoint.

This shows that D(f) is almost a Λ-periodic polytopal decomposition of NR, but we can only
ensure that (∆ + λ) ∩ ∆ is contained in the relative boundary of ∆.

Proof. — A convex piecewise linear function can be written as the maximum (supremum)
of affine functions. This shows that the maximal domains of linearity are the n-dimensional
faces of a locally finite polyhedral decomposition D(f) of NR. If f is piecewise (Q,Γ)-linear,
then this also shows that every ∆ ∈ D(f) is (Z,Γ)-linear.
Let ∆ be a maximal domain of linearity for f and let λ ∈ Λ. Then assumption (6) shows that
∆ + λ is a (maximal) domain of linearity for f proving (iii).
It remains to show that ∆ is a polytope and that property (iv) holds for ∆. Using the
cocycle rule and that the coycles zλ grow quadratically in λ ∈ Λ, the polyhedron ∆ is indeed
bounded and hence is a polytope. Since ∆ + λ is also a domain of linearity for f , it is clear
for λ ∈ Λ \ {0} that relint(∆) + λ is disjoint from relint(∆) as otherwise they would agree,
hence ∆ + λ = ∆ by maximality, and an inductive argument adding successively λ would
show that ∆ is unbounded. □

In the following, we fix a polytopal decomposition C of NR assuming that the lattice Λ acts
on C by translation. Recall that the set of maximal faces of C is denoted by Cn := {σ ∈ C |
dim(σ) = n}. We choose a fixed set of representatives N for the n-dimensional faces of C
with respect to this Λ-action.

Lemma 3.10. — A polytope ∆′ is in Cn if and only if it has the form
(8) ∆′ = ∆ + λ

with ∆ ∈ N and λ ∈ Λ. Moreover, ∆ and λ are uniquely determined by ∆′.
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Proof. — This follows from the definition of a system of representatives for a Λ-action. □

Recall that b is a positive definite inner product on NR satisfying the assumptions in 3.5.

Lemma 3.11. — Let f : NR → R be a piecewise linear function with respect to C , i.e. for
∆ ∈ C , there is a slope m∆ ∈ MR and a constant term c∆ ∈ R such that

(9) f = m∆ + c∆

on ∆. Then f satisfies the cocycle rule if and only if the condition

(10) m∆+λ = m∆ + b(λ, · )

for the slopes and the condition

(11) c∆+λ = c∆ − ⟨m∆, λ⟩ + zλ(0) − b(λ, λ)

for the constant terms hold for all ∆ ∈ N and for all λ ∈ Λ. In this case, f is a piecewise
(Q,Γ)-linear function if and only if m∆ ∈ MQ and c∆ ∈ Γ for all ∆ ∈ N .

Proof. — Using that C is Λ-periodic and Lemma 3.10, it is clear that f satisfies the cocycle
rule if and only if for any ∆ ∈ N , we have

(12) ⟨m∆+λ, ω⟩ + ⟨m∆+λ, λ⟩ + c∆+λ = ⟨m∆, ω⟩ + c∆ + zλ(ω)

for any λ ∈ Λ and ω ∈ NR. Equivalently, using zλ(ω) = zλ(0) + b(λ, ω) from (6), we have the
equations (10) and (11). Finally, the last claim follows easily from (10) and (11) by using (4),
(7) and Lemma 3.6. □

Let (m, c) := (m∆, c∆)∆∈N ∈ (MR × R)N . For ∆′ ∈ Cn, Lemma 3.10 shows that there are
uniquely determined λ ∈ Λ and ∆ ∈ N such that ∆′ = ∆ + λ. Inspired by Lemma 3.11, we
define

(13) m∆′ := m∆+λ := m∆ + b(λ, · ) and c∆′ := c∆+λ := c∆ − ⟨m∆, λ⟩ + zλ(0) − b(λ, λ)

and then

(14) f(m,c) := sup{m∆+λ + c∆+λ | ∆ ∈ N , λ ∈ Λ}.

Lemma 3.12. — For every (m, c) := (m∆, c∆)∆∈N ∈ (MR × R)N , the above procedure
defines a convex piecewise linear f(m,c) satisfying the cocycle rule. If (m, c) ∈ (MQ × Γ)N ,
then f(m,c) is a piecewise (Q,Γ)-linear function.

Proof. — For ω in a bounded domain of NR, the number ⟨m∆+λ, ω⟩ grows at most linearly
in λ ∈ Λ, see (10). Since zλ(0) is a quadratic function in λ with associated bilinear form b, we
see that 2zλ(0) − b(λ, λ) is a linear function in λ and hence (11) shows that the term c∆+λ
decreases quadratically in λ. We conclude that on a bounded domain in NR only finitely many
λ ∈ Λ contribute to the supremum in (14) and hence f(c,m) is a piecewise linear function. By
construction, the slopes and the constant terms of f(c,m) transform as in (10) and in (11),
respectively. By Lemma 3.11, the function f(c,m) satisfies the cocycle rule. The last claim also
follows from Lemma 3.11. □
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Remark 3.13. — For a bounded domain Ω of NR and any constant R ∈ R, the above
argument shows that

⟨m∆′ , ω⟩ + c∆′ ≤ f(m,c)(ω) −R

for all ω ∈ Ω and for all but finitely many ∆′ ∈ Cn. Indeed, we have ∆′ = ∆ +λ with ∆ ∈ N
and λ ∈ Λ by Lemma 3.10. The argument in Lemma 3.12 shows that the slopes increase
at most linearly in λ while the constant terms decrease quadratically in λ. This proves the
claim.

Let PL(NR,Λ, z) be the space of piecewise linear functions on NR satisfying the cocycle rule
with respect to the given cocycle z = (zλ)λ∈Λ. For f, g ∈ PL(NR,Λ, z), the cocycle rule yields
that f − g is Λ-periodic and hence their distance

d(f, g) := sup
ω∈NR

|f(ω) − g(ω)|

is a well-defined real number defining a metric on PL(NR,Λ, z). On the finite dimensional
R-vector space (MR × R)N , we will use any norm.

Lemma 3.14. — With respect to the above metrics und using Lemma 3.12, we get a uni-
formly continuous map

(MR × R)N −→ PL(NR,Λ, z), (m, c) 7−→ f(m,c).

Proof. — As all norms on a finite dimensional R-vector space are equivalent, we may assume
that the distance on (MR × R)N is the max-norm induced by the same norm ∥ · ∥ on each
factor MR and by the standard norm on R. Let (m, c) and (m′, c) be elements of (MR ×R)N

with distance δ. By (13), we deduce that
(15) ∥(m′

∆+λ, c
′
∆+λ) − (m∆+λ, c∆+λ)∥ = ∥(m′

∆, c
′
∆) − (m∆, c∆)∥ ≤ δ

for all ∆ ∈ N and all λ ∈ Λ. Using (14), this easily proves uniform continuity. □

3.15. — Let f be a convex piecewise linear function satisfying the cocycle rule with respect
to the given cocycle z = (zλ)λ∈Λ. Using Lemma 3.9, we see that f is strictly convex with re-
spect to the polytopal decomposition C := D(f). Let N be again a system of representatives
for Cn with respect to the Λ-action. Since f is a convex piecewise linear function, it is the
maximum of the affine pieces obtained from Cn which shows that there is (m, c) ∈ (MR×R)N

such that f = f(m,c) as defined in (14). We use a fixed norm ∥ · ∥ on NR. For δ > 0 and ∆ ∈ Cn,
we define the δ-center of ∆ as

C(∆, δ) := {ω ∈ ∆ | ∥ω − ω′∥ ≥ δ for all ω′ ∈ NR \ ∆}.
It is clear that C(∆, δ) is a polytope contained in ∆. Moreover, we define B(∆, δ) as the set
of points in NR with distance < δ to ∆.

The next results describes the change of f = f(m,c) and the underlying polytopal complex
C = D(f) if we replace (m, c) by sufficiently good approximations in (MR × R)N .

Lemma 3.16. — Let f = f(m,c) be a function and C = D(f) a polytopal decomposition as
in 3.15. Then there is a δ > 0 and a neighbourhood U of (m, c) in (MR × R)N such that the
following properties hold for any (m′, c′) ∈ U and C ′ := D(f(m′,c′)):

(i) If f(m′,c′)(ω) = ⟨m′
∆, ω⟩ + c′

∆ for some ω ∈ NR and ∆ ∈ Cn, then ω ∈ B(∆, δ).
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(ii) The δ-centers C(∆, δ) are n-dimensional polytopes for any ∆ ∈ Cn.

(iii) For any ∆ ∈ Cn, there is a unique n-dimensional face of C ′ containing C(∆, δ).

(iv) Using the notation from (iii), we have f(m′,c′) = m′
∆ + c′

∆ on ∆′ and the map ∆ 7→ ∆′

is a canonical bijection from Cn onto C ′
n.

(v) If C is a Λ-periodic polytopal decomposition of NR (see Definition 3.4), then C ′ is also
a Λ-periodic polytopal decomposition of NR.

Proof. — Let us pick ν ∈ Cn. Strict convexity of f and Remark 3.13 applied to Ω = ν yield
that there is r > 0 such that

(16) ⟨mν , ω⟩ + cν = f(ω) > ⟨m∆, ω⟩ + c∆ + 2r

for all ∆ ∈ Cn \ {ν} and all ω ∈ ν with distance ≥ δ to ∆. We may choose r so small that the
inequality holds for all ν ∈ Cn simultaneously. Indeed, this is clear for the representatives ν
in the finite set N and then by (10) and (11) for all Λ-translates. Using (16) and (15), we
conclude for all (m′, c′) in a sufficiently small neighbourhood U of (m, c) in (MR ×R)N that
for any ∆ ∈ Cn, we have

(17) ⟨m′
ν , ω⟩ + c′

ν = f(m′,c′)(ω) > ⟨m′
∆, ω⟩ + c′

∆ + r

for all ∆ ∈ Cn \ {ν} and all ω ∈ ν with distance ≥ δ to ∆.
Now suppose that ω ∈ NR is as in (i). This means that ⟨m′

∆, ω⟩ + c′
∆ is maximal among all

⟨m′
ν , ω⟩ + c′

ν with ν ranging over Cn. There is ν ∈ Cn with ω ∈ ν. It follows from (17) that
ω ∈ B(∆, δ) proving (i).
For a fixed ∆ ∈ Cn, it is clear that the δ-center C(∆, δ) is an n-dimensional polytope contained
in ∆ if we choose δ > 0 sufficiently small. Obviously, we can choose such a δ which works for
the finitely many ∆ ∈ N . Since N is a system of representatives for Cn with respect to the
Λ-translation, this number δ works for all ∆ ∈ Cn proving (ii).
We still consider (m′, c′) ∈ U . For ∆ ∈ Cn, let ∆′ be the locus where f(m′,c′) = m′

∆ + c′
∆. It

follows from (i) that C(∆, δ) ⊂ ∆′. Since C(∆, δ) is an n-dimensional polytope, it is clear
that ∆′ is an n-dimensional face of C ′ = D(f(m′,c′)) proving (iii) and the first claim in (iv).
The definition of f(m′,c′) based on (14) shows that f(m′,c′) is given on any maximal domain of
linearity by f(m′,c′) = m′

∆ + c′
∆ for some ∆ ∈ Cn. This proves surjectivity of the map in (iv)

and injectivity follows from (17).
Now we assume that C = D(f) is a Λ-periodic polytopal decomposition of NR. To prove (v),
we may choose δ > 0 so small that

(18) B(∆, δ) ∩ (B(∆, δ) + λ) = ∅

for all non-zero λ ∈ Λ and all ∆ ∈ Cn. This is possible for a single ∆ ∈ Cn by using
∆ ∩ (∆ + λ) = ∅ based on the definition of Λ-periodicity, then obviously also for the finite
set of representatives N for Cn with respect to the Λ-translation and hence for all ∆ ∈ Cn
by the usual translation argument. Let ∆′ ∈ C ′

n. By definition of C ′ = D(f(m′,c′)), there is
a ∆ ∈ Cn such that f(m′,c′) = m′

∆ + c′
∆ on ∆′. As seen in (i), we have ∆′ ⊂ B(∆, δ) and

hence (18) proves ∆′ ∩ (∆′ + λ) = ∅ showing (v). □
Publications mathématiques de Besançon – 2023



62 Monge–Ampère measures for toric metrics on abelian varieties

Let Σ be a finite set of polytopes in NR. To deal with Σ-transversality, we look at the following
conditions for a polytopal decomposition C of NR assuming again that Λ acts by translation
on C . We fix a system of representatives N for Cn with respect to this Λ-action.

3.17. — Let σ ∈ Σ and let ∆0, . . . ,∆p be pairwise different polytopes in N . We pick
linearly independent mi ∈ MR for i in a finite set Iσ and ci ∈ R such that Aσ is given by the
intersection of the affine hyperplanes
(19) ⟨mi, · ⟩ = ci

in NR with i ranging over Iσ.
For (m∆, c∆)∆∈N , we impose the following two conditions:

(i) If #(Iσ) + p ≤ n, we require that the vectors
(m∆j

−m∆0)j=1,...,p, (mi)i∈Iσ

are linearly independent in MR.

(ii) If #(Iσ) +p = n+ 1, we require that the system of (n+ 1)-inhomomogeneous equations
⟨m∆j

−m∆0 , ω⟩ = c∆j
− c∆0 (j = 1, . . . , p)

⟨mi, ω⟩ = ci (i ∈ Iσ)
has no solution in the n-dimensional variable ω ∈ NR.

Lemma 3.18. — There is an algebraic hypersurface H in (MR × R)N such that for all
(m∆, c∆)∆∈N in the complement of H the above conditions (i) and (ii) hold for all σ ∈ Σ
and all pairwise different ∆0, . . . ,∆p ∈ N simultaneously.

Proof. — We pick σ ∈ Σ and pairwise different polytopes ∆0, . . . ,∆p ∈ N . Using coordinates
with respect to a basis in M , condition (i) is equivalent to the non-vanishing of at least one
maximal subdeterminant of the matrix formed by the displayed vectors and hence becomes
true on the complement of an algebraic hypersurface in MN

R . Similarly, condition (ii) is
equivalent to the non-vanishing of the determinant of the extended (n+1)× (n+1)-matrix of
the system of inhomogeneous equations. We conclude that the set of (m∆, c∆)∆∈N fulfilling
both conditions is the complement of an algebraic hypersurface in (MR × R)N .
Using that Σ and N are finite sets, we conclude that there is an algebraic hypersurface H in
(MR×R)N such that for all (m∆, c∆)∆∈N in the complement of H the conditions (i) and (ii)
hold for all σ ∈ Σ and all pairwise different ∆0, . . . ,∆p ∈ N simultaneously. □

Let Σ be a finite set of polytopes in NR and let H be the hypersurface in (MR × R)N from
Lemma 3.18.

Lemma 3.19. — Let f = f(m,c) for a strictly convex piecewise linear function with re-
spect to C satisfying the cocycle rule. Then there is an open neighbourhood U of (m, c) ∈
(MR × R)N such that for any (m′, c′) ∈ U \ H, the maximal domains of linearity form a
polytopal decomposition D(f(m′,c′)) of NR which is Σ-transversal.

Proof. — Let us choose δ > 0 and the open neighbourhood U of (m, c) as in Lemma 3.16.
It is enough to show that for (m′, c′) ∈ U \H, the polytopal decomposition C ′ := D(f(m′,c′))
of NR is Σ-transversal. Since (m′, c′) ̸∈ H, the conditions (i) and (ii) from 3.17 are satisfied.
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We want to use the criterion from Lemma 3.3. Let σ ∈ Σ and ∆′ ∈ C ′. For Aσ, we use the
description in (19) and hence
(20) dim(σ) = dim(Aσ) = n− #(Iσ).
On the other hand, we have ∆′ = ∆′

0 ∩ · · · ∩ ∆′
p for some pairwise different ∆′

0, . . . ,∆′
p ∈ C ′

n.
By the bijective correspondence between Cn and C ′

n from Lemma 3.16, we know that for
every j = 0, . . . , p, there is a unique ∆j ∈ Cn such that the δ-center C(∆j , δ) of ∆j contains
∆′
j . By definition, we have C ′ = D(f(m′,c′)) and hence Lemma 3.16-(iv) shows

∆′
j = {ω ∈ NR | ⟨m′

∆j
, ω⟩ + c′

∆j
= f(m′,c′)(ω)}

We conclude that A∆′ is the set of solutions of the p inhomogeneous linear equations
⟨m′

∆j
−m′

∆0 , ω⟩ = c′
∆0 − c′

∆p
(j = 1, . . . , p)

in ω ∈ NR. Using Lemma 3.17-(i) and the underlying linear space L∆′ of A∆′ , we have
(21) dim(∆′) = dim(L∆′) = n− p.

We conclude that
(22) D(σ,∆′) = dim(σ) + dim(∆′) − n = n− p− #(Iσ).
We assume first D(σ,∆′) ≥ 0. Then Lemma 3.17-(i) yields that

dim(Lσ ∩ L∆′) = n− p− #(Iσ).
It follows from Remark 3.2 that condition (i) in Lemma 3.3 is fulfilled.
Now we assume that D(σ,∆′) < 0. Recall that Aσ∩A∆′ is the set of solutions of the p+#(Iσ)
inhomogeneous linear equations in 3.17-(ii). Using (22), the number of equations is > n and
hence 3.17-(ii) yields that Aσ ∩ A∆′ = ∅. It follows that condition (ii) in Lemma 3.3 is also
fulfilled and hence this lemma proves Σ-transversality of C ′. □

Proof of Proposition 3.8. — By [9, Proposition 8.2.6], the function f is a uniform limit of
piecewise (Q,Γ)-linear functions satisfying the cocycle rule. So we may assume that the
function f is piecewise linear, but we do not require any rationality for f at the moment.
Let C := D(f) be the locally finite polytopal decomposition of NR given by the maximal
domains of linearity for f as in Lemma 3.9-(i). We have seen in Lemma 3.9-(iv) that C
is almost Λ-periodic and so we replace C by the barycentric subdivision which is a locally
finite Λ-periodic simplex decomposition of NR in the sense of Definition 3.4. We decrease
the value of the piecewise linear function f slightly in the barycenters of the faces. Using
an inductive procedure starting with the barycenters of the n-dimensional faces and a small
enough change, the resulting piecewise linear function is strictly convex with respect to this
new subdivision C . Of course, we have to take care during this procedure that this strictly
convex f still satisfies the cocycle rule which can be easily done using Lemma 3.11.
We have seen in Lemma 3.9-(iii) that Λ acts on C by translation. We fix a system of rep-
resentatives N of Cn with respect to this Λ-action. For ∆ ∈ C , let m∆ ∈ MR be the slope
of f |∆ and let c∆ ∈ R be the constant term. We set (m, c) := (m∆, c∆)∆∈N ∈ (MR × R)N .
Using that f is a convex piecewise linear function, it is clear from 3.11 that

f = f(m,c) = sup{m∆+λ + c∆+λ | ∆ ∈ N , λ ∈ Λ}.
We fix ε with 0 < ε < 1. Our goal is to define a function f ′ : NR → R with |f − f ′| < ε
and the desired properties. Our strategy is to define the approximation f ′ by picking an
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approximation (m′, c′) of (m, c) in (MR × Γ)N and then setting f ′ := f(m′,c′). By Lemmas 3.9
and 3.12, such an f ′ is a strictly convex piecewise linear function with respect to the polytopal
decomposition C ′ := D(f ′). Moreover, we have seen there that f ′ satisfies the cocycle rule
with respect to the given cocycle z. In the following, we will deduce the desired properties for
f ′ assuming that the approximations (m′, c′) of (m, c) are sufficiently good. This will always
mean that the imposed conditions hold in a sufficiently small neighbourhood of (m, c) in
the space of all approximations (MR × Γ)N . More precisely, we choose δ > 0 and the open
neighbourhood U of (m, c) in (MR × R)N as in Lemma 3.16. In particular, Lemma 3.16-(v)
shows that the polytopal decomposition C ′ = D(f ′) is Λ-periodic as C = D(f) was assumed
to be Λ-periodic.
Choosing U sufficently small, the continuity in Lemma 3.14 ensures that we have

|f − f ′| < ε

for all (m′, c′) ∈ U . We may assume that this U works also for Lemma 3.19 and we denote the
algebraic hypersurface from there again by H. We conclude from this result that C ′ = D(f ′)
is Σ-transversal for any (m′, c′) ∈ U \H. Note that by dimensionality, the open set U \H is
non-empty. By density of MQ in M and by density of Γ in R, there is (m′, c′) ∈ (MQ×Γ)N ∩U .
By Lemma 3.12, the function f ′ is piecewise (Q,Γ)-linear, which in turn implies that C ′ is
a locally finite (Z,Γ)-polytopal decomposition using Lemma 3.9-(ii). Since |f − f ′| < ε, this
proves the proposition. □

Remark 3.20. — We note that Proposition 3.8 also holds for an infinite set Σ which includes
with a polytope all its faces if there is a finite set of polytopes Σ′ such that Σ ⊂ Σ′ +Λ. To see
this we may assume that if Σ′ contains a polytope σ, then it includes all the faces of σ. Now
we can apply Proposition 3.8 to the finite set Σ′ and finally we note that Σ′-transversality of
the locally finite polytopal decomposition Ck is equivalent to Σ′ + Λ transversality using that
Ck is Λ-translation invariant as well.
In [22, 8.1], the notion of Σ-generic polytopal decompositions has been defined and it was
shown that such decompositions are Σ-transversal. It is proven in the second author’s the-
sis [34] that we can more generally assume for the approximations fk in Proposition 3.8 that
1
mCk are Σ-generic polytopal decompositions for all non-zero m ∈ Z. This will not be used in
this paper.

4. Toric metrics

Let K be an algebraically closed non-archimedean field with additive value group Γ. We con-
sider an abelian variety A over K. Recall from [5, Theorem 9.5.4] that a rigidified line bundle
L on A has a canonical metric ∥ · ∥L. If L is ample, then ∥ · ∥L is a continuous semipositive
metric of Lan [21, 2.10].

4.1. — We first recall Raynaud’s uniformization theory based on Raynaud’s program an-
nounced in [32] and worked out by Bosch and Lütkebohmert [7], see also [2, Section 6.5] for
the formulations in the language of Berkovich spaces. There is a unique compact subgroup
A0 of Aan, which is an analytic subdomain, and the generic fiber of a formal group scheme
A0 over K◦, whose special fiber is a semiabelian variety. There is a unique formal affine torus
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T0 over K◦, which is a closed formal subgroup of A0, and we have an exact sequence

0 −→ T0 −→ A0
q0−→ B −→ 0

of formal group schemes over K◦ where B is a formal abelian scheme, i.e. B has good
reduction. Note that B is the formal completion of an abelian scheme B over K◦ (see [7, Sec-
tion 7] for the argument). Let M be the character lattice of T0 and hence T0 = Spf(K◦{M}).
We denote by T = Spec(K[M ]) the associated torus over K, then pushout with respect to
Tan

0 → T an gives the Raynaud extension

0 −→ T an −→ Ean q−→ Ban −→ 0,

which is an exact sequence of abelian analytic groups over K. Here, the analytification of the
abelian variety B is the generic fiber of B. The exact sequence is algebraic, but the canonical
morphism p : Ean → Aan is only an analytic group morphism. The kernel Λ of q is a discrete
subgroup of E(K) and we write Aan = Ean/Λ as an identification.

4.2. — The Raynaud uniformization Ean of A comes with a canonical tropicalization map.
Using that Ean = (A0 × T an)/Tan

0 with respect to the embedding Tan
0 → A0 × T an given by

t → (t, t−1), we see that the classical tropicalization map trop: T an → NR for the cocharacter
lattice N = Hom(M,Z) extends to a continuous proper map trop: Ean → NR. It is a basic
fact that trop maps Λ isomorphically onto a lattice in NR. By passing to the quotient, we get

trop: Aan −→ NR/ trop(Λ),

called the canonical tropicalization map of A. Note that the target NR/ trop(Λ) is homeo-
morphic to the n-fold power of the unit circle S1 and that trop might be seen as a canonical
deformation retraction of Aan onto its canonical skeleton [2, Section 6.5].

4.3. — A line bundle F on Ean descends to Aan = Ean/Λ if and only if F admits a Λ-
linearization over the action of Λ on Ean. Then we have F = p∗(Lan) for the line bundle
Lan = F/Λ on Aan. Using rigidified line bundles, it is shown in [7, Proposition 6.5] that there
is a line bundle H on B, unique up to tensoring with a line bundle Eu of B induced from E
by pushout with the character u ∈ M , such that q∗(Han) ∼= p∗(Lan) as Λ-linearized cubical
line bundles. Using that as an identification and the canonical metrics on L and H, we note
that p∗∥ · ∥L/q∗∥ · ∥H is a continuous function on Ean which factors through the canonical
tropicalization and hence there are functions zλ : NR → R for λ ∈ trop(Λ) with

(23) − log(p∗∥ · ∥L/q
∗∥ · ∥H)(γ · x) = − log(p∗∥ · ∥L/q

∗∥ · ∥H)(x) + zλ(trop(x))

for all x ∈ Ean and γ ∈ Λ with λ = trop(γ), see [23, 4.3]. These functions are trop(Λ)-cocycles
in the sense that

(24) zλ+ν(ω) = zλ(ω + ν) + zν(ω)

and there is a unique symmetric bilinear form b on NR such that

(25) zλ(ω) = zλ(0) + b(λ, ω)

for all λ ∈ trop(Λ) and ω ∈ NR. It follows that zλ is a quadratic function with associated
bilinear form b. Using the polarization induced by L, we have seen

(26) b(λ, · ) ∈ M = Hom(N,Z)
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in [8, Remarks 7.1.2, 8.1.3]. Since ∥ · ∥H is a model metric, we deduce from (23)
(27) zλ(0) ∈ Γ.
The line bundle L is ample if and only if H is ample and b is positive definite, see [7,
Theorem 6.13].We conclude that the assumptions in 3.5 are satisfied.

4.4. — Now we consider any line bundle F on Ean with F = q∗(Han) for a rigidified line
bundle H on B. Using the canonical metric ∥ · ∥H of H, there is a bijective correspondence
between continuous metrics ∥ · ∥ on F and continuous real functions on Ean given by

∥ · ∥ 7−→ − log(∥ · ∥/q∗∥ · ∥H).

Definition 4.5. — A continuous metric ∥ · ∥ on F is called toric if the corresponding func-
tion factors through the canonical tropicalization of E.

Remark 4.6. — Using 4.4, we get a bijective correspondence between continuous toric
metrics ∥ · ∥ on F and continuous functions f : NR → R given by

f 7−→ ∥ · ∥f := e−f◦trop · q∗∥ · ∥H .

Remark 4.7. — As in 4.3, we assume that F = q∗(H) = p∗(Lan) leading to the cocy-
cle (zλ)λ∈Λ. For a continuous toric metric ∥ · ∥f on F , it is clear that ∥ · ∥f = p∗∥ · ∥ for a
continuous metric ∥ · ∥ of L if and only if f satisfies the cocycle rule
(28) f(ω + λ) = f(ω) + zλ(ω)
for all ω ∈ NR and λ ∈ trop(Λ).

In the following, we consider a rigidified line bundle L on A with canonical metric ∥ · ∥L.

Definition 4.8. — We call a continuous metric ∥ · ∥ on Lan toric if the function
− log(∥ · ∥/∥ · ∥L) is A0-invariant.

Proposition 4.9. — Let F = p∗(Lan) = q∗(Han) with cocycle (zλ) as in 4.3. Then there
is a bijective correspondence between continuous toric metrics ∥ · ∥ on Lan and continuous
functions f on NR satisfying the cocycle rule (28), where the function f∥ · ∥ associated to ∥ · ∥
is characterized by

p∗∥ · ∥ = e−f∥ · ∥◦trop · q∗∥ · ∥H .

Proof. — This follows from Remark 4.7. □

Theorem 4.10. — Under the assumptions in Proposition 4.9, assume that L is ample. Then
the function f∥ · ∥ is convex if and only if the continuous metric ∥ · ∥ on Lan is semipositive.

Proof. — We first assume that f := f∥ · ∥ is convex. Then semipositivity of ∥ · ∥ is just a
reformulation of [9, Proposition 8.3.1].
Conversely, assume that ∥ · ∥ is semipositive. Using currents and forms on Berkovich spaces
introduced by Chambert-Loir and Ducros [13], it is shown in [25, Theorem 1.3] that the
first Chern current c1(L, ∥ · ∥) is positive. This means that the current evaluated at the pull-
back of a compactly supported smooth positive Lagerberg form with respect to a smooth
tropicalization map is non-negative. The canonical tropicalization map of A is (locally) not
necessarily a smooth tropicalization map [25, Section 17], but it is a harmonic tropicalization
map, see [25, Proposition 16.2]. We show in the appendix that the above fact also holds
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for pull-backs with respect to harmonic tropicalization maps. We conclude that d′d′′[f ] is a
positive current on NR. By [29, Proposition 2.5], this is equivalent for f to be convex. □

Next, we will see that if f∥ · ∥ is a piecewise linear function, then ∥ · ∥ is a model metric given
by an explicit construction due to Mumford.

4.11. — Let C be a locally finite (Z,Γ)-polytopal decomposition of NR for the cocharacter
lattice N from the Raynaud extension. Then there is an associated Mumford model E of E.
This is a scheme locally of finite type over K◦ with generic fiber E and reduced special fiber
Es. In this context, it is often more convenient to work with formal K◦-models and we denote
the formal completion of E along the special fiber by E. We refer to [23, Section 4] and [9,
8.2.2] for the construction and the following properties.
There is a bijective correspondence between the irreducible components Y of Es = Es and
the vertices ω of C given by the facts that the generic point of Y has a unique preimage ξ in
Ean with respect to the reduction map and that trop(ξ) is a vertex ω of C .
Let ϕ : NR → R be a piecewise (Z,Γ)-linear function. Then ϕ determines a line bundle OE(ϕ)
on E which is a formal model of OE determined by

(29) − log ∥1∥OE(ϕ) = ϕ ◦ trop

on Ean where ∥ · ∥OE(ϕ) is the associated formal metric.

4.12. — Let L be a line bundle on A with F = p∗(Lan) = q∗(Han) and cocycle (zλ) as
in 4.3. We assume that the locally finite (Z,Γ)-polytopal decomposition C is trop(Λ)-periodic
in the sense of 3.4. Then A := E/Λ is a formal K◦-model for A called the formal Mumford
model associated to C , where C is the polytopal decomposition C / trop(Λ) of trop(Aan) =
NR/ trop(Λ).
Recall from [7, Theorem 6.7] that H has a model H on B, unique up to isomorphism. We
denote by H the associated formal model on B. The morphism q : E → B extends uniquely to
a morphism E → B which we also denote by q. For a trop(Λ)-periodic function ϕ : NR → R,
let

(30) H(f) := q∗H ⊗ OE(ϕ),

where f(λ) := ϕ(λ)+zλ(0) for λ ∈ NR. Note that we have defined zλ(0) only for λ ∈ trop(Λ),
but we have seen in 4.3 that zλ(0) is a quadratic function in λ and hence extends uniquely
to a quadratic function on NR. The Λ-periodicity of ϕ is equivalent to the cocycle rule for
f . This yields that L(f) := H(f)/Λ is a line bundle on the formal Mumford model A = E/Λ
such that L(f) is a formal model of L. By Proposition 4.8, the formal metric ∥ · ∥L(f) is the
toric metric of L associated to f .

The following result will be crucial for computing toric Monge–Ampère measures.

Proposition 4.13. — Let ∥ · ∥ be a semipositive toric metric on an ample line bundle L of
A and let Σ be a finite set of polytopes in NR including all its faces. Then ∥ · ∥ is the uniform
limit of semipositive model metrics ∥ · ∥k with the following properties:

(i) For any k, there is a non-zero mk ∈ N such that ∥ · ∥⊗mk is the formal metric associated
to a formal model Lk of L⊗mk on a formal Mumford model Ak of A.
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(ii) The Mumford models Ak are associated to locally finite trop(Λ)-periodic (Z,Γ)-polytopal
decompositions Ck of NR which are Σ-transversal (see Definition 3.1).

(iii) For any k, there is a piecewise (Z,Γ)-linear strictly convex function gk with respect to
Ck satisfying the cocycle rule such that Lk = L(gk) by the construction in 4.12.

Proof. — We have seen in 4.3 that there is an ample line bundle H with p∗(Lan) = q∗(Han)
for an ample line bundle H on B leading to the cocycle (zλ). By Proposition 4.8, the toric
metric ∥ · ∥ corresponds to a continuous function f : NR → R satisfying the cocycle rule. By
Theorem 4.10, the function f is convex. We have seen in 4.3 that the cocycle (zλ) satisfies the
assumptions required in 3.5 and hence we may apply Proposition 3.8. We conclude that f is
the uniform limit of piecewise (Q,Γ)-linear functions fk satisfying the cocycle rule. Moreover,
we may assume that every fk is a strictly convex piecewise linear function with respect to a
locally finite Λ-periodic Σ-transversal polytopal decomposition Ck of NR. By Proposition 4.8
and Theorem 4.10, the function fk corresponds to a semipositive toric metric ∥ · ∥k of L.
Since fk satisfies the cocycle rule, we deduce from (25) and (26) that there is a non-zero
mk ∈ N such that gk := mkfk is piecewise (Z,Γ)-linear. By 4.12, we get that ∥ · ∥⊗mk

k is the
formal metric induced by the line bundle L(gk) on the formal Mumford model Ak associated
to Ck. □

Remark 4.14. — Due to the analytic nature of the quotient, formal Mumford models
A = E/Λ of A as in 4.12 are not necessarily algebraic. But in Proposition 4.13, we may also
assume that every formal Mumford model Ak is the formal completion of an algebraic model
Ak of A and that a positive tensor power of the model metric ∥ · ∥k is induced by an ample
model on Ak. Using [9, Remark 8.2.7], this follows from strict convexity of the fk.

5. Strictly polystable alterations

In this section, we recall strictly polystable alterations and their refinements obtained from
polytopal decompositions of the skeletons. Let K be an algebraically closed non-archimedean
field K with non-trivial additive valuation v and value group Γ := v(K×) as a subgroup of R.
We will study strictly polystable alterations for a closed subvariety X of an abelian variety
A over a non-trivially valued algebraically closed non-archimedean field K and we will relate
it to Mumford models of A. At the end, we give a degree formula which is rather technical,
but will be crucial for computing the Monge–Ampère measure of toric metrics in the next
section. The material covered generalizes [23, Section 5] from strictly semistable to strictly
polystable alterations; the arguments remain the same.

5.1. — Let Y be any reduced scheme locally of finite type over a field. Then Y has a canonical
stratification. The strata of codimension 0 are the irreducible components of the normality
locus of Y , the strata of codimension 1 are the irreducible components of the normality locus
of the complement of the previous normality locus and so on, see [4, Section 2]. The strata
are partially ordered by inclusion of their closures.

5.2. — We recall the notion of toric schemes. Let T = Gr
m be a split torus over K with toric

coordinates x1, . . . , xr leading to the classical tropicalization map
trop: (Gr

m)an −→ Rr, p 7−→ (v(p1), . . . , v(pr)).
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For a (Z,Γ)-polytope ∆ of Rr, there is an associated toric formal scheme U∆ = Spf(A∆) over
K◦ given by

A∆ :=

 ∑
m∈Zr

amx
m1
1 . . . xmr

r

∣∣∣∣∣∣ lim
|m|→∞

v(am) +m · ω = ∞ for all ω ∈ ∆


where m · ω is the standard inner product on Rr and |m| = m1 + · · · + mr. More generally,
for any (Z,Γ)-polytopal decomposition D of ∆, we get an associated toric formal scheme UD

over K◦ with open subsets Uσ for σ ∈ D by gluing. These are admissible formal schemes with
generic fiber trop−1(∆) and reduced special fiber. We refer to [22, Section 4] for more details
and to [24] for an algebraic description of these toric schemes.
Note that T an has a canonical skeleton Sk(T ) given by the weighted Gauss norms and a
canonical retraction map τT : T an → Sk(T ) such that trop ◦τT = trop and such that the
tropicalization map restricts to a homeomorphism from Sk(U∆) onto Rr, see [2, Section 6.3].
Then we define Sk(U∆) := Sk(T ) ∩ trop−1(∆).

5.3. — A non-degenerate strictly polystable formal scheme X′ overK◦ is an admissible formal
scheme with reduced special fiber defined as follows. The formal scheme X′ is covered by open
affine formal schemes U′ with etale morphisms ψ : U′ → U∆ to an affine toric formal scheme
associated to a (Z,Γ)-standard polysimplex ∆ in Rr. Here, the number r might depend on
U′ and a standard polysimplex is the product of standard simplices ∆j in Rrj with r =

∑
rj

of the form ∆j = {ω ∈ [0, 1]rj | ω1 + · · · + ωrj ≤ γj} for some γj ∈ Γ≥0. If U′
s has a unique

minimal stratum which maps to the minimal stratum of the special fiber of U∆, then we call
(U′, ψ) a building block of X′. By shrinking the above covering, we deduce easily that every
non-degenerate strictly polystable formal scheme is covered by building blocks. We refer to [4,
Section 1]for more details.

5.4. — Berkovich has shown that for a strictly polystable formal scheme X′ over K◦, there
is a skeleton Sk(X′), given as a closed subset of X′

η, and a canonical retraction map τ : X′
η →

Sk(X′) which is a proper strong deformation retraction of X′
η, see [4, Theorem 5.2].

In fact, the skeleton is constructed from the building blocks ψ : U′ → U∆ using Sk(X′) ∩U′
η =

Sk(U′) and Sk(U′) = ψ−1(Sk(U∆)). Since ψ restricts to a homeomorphism from Sk(U′) onto
Sk(U∆) and the latter is mapped by trop homeomorphically onto the polysimplex ∆, we can
endow the skeleton Sk(X′) with a piecewise (Z,Γ)-linear structure coming with canonical
faces Sk(U′) related to the building blocks such that the canonical face Sk(U′) is isomorphic
to the polysimplex ∆ via trop ◦ψ. We refer to [4, Section 5] for details.
The canonical faces are in bijective correspondence to the strata of X′

s. The canonical face ∆S

of Sk(X′) corresponding to a stratum S of Sk(X′) is determined by relint(∆S) = τ(red−1(S)).
This stratum-face correspondence is order reversing and hence the irreducible components of
X′
s correspond to the vertices of Sk(X′).

In the following, we define a polytope in Sk(X′) as a (convex) polytope contained in a canonical
face of Sk(X′) identifying the latter with a polysimplex ∆ as above.

Definition 5.5. — Let X′ be a strictly polystable formal scheme over K◦ with skeleton
Sk(X′). Then a polytopal subdivision of Sk(X′) is a finite set D of polytopes in Sk(X′) such
that for every stratum S the set DS := {∆ ∈ D | ∆ ⊂ ∆S} is a polytopal decomposition
of ∆S .
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5.6. — Let X′ be a strictly polystable formal scheme over K◦ with generic fiber X ′ and let
D be a (Z,Γ)-polytopal subdivision of Sk(X′) as above. Then there is an associated formal
K◦-model X′′ of X ′ with reduced special fiber and with a morphism ι : X′′ → X′ extending
the identity on X ′. Locally, over a building block U′ with etale morphism ψ : U′ → U∆, the
preimage U′′ of U′ with respect to ι′ is given by the cartesian diagram

(31)
U′′ ψ′

//

ι′

��

UDS

ι

��
U′ ψ // U∆

of formal schemes over K◦ and in general we obtain X′′ and ι′ by gluing. Here, we used
the induced polytopal decomposition DS of ∆ = ∆S and the canonical morphism ι of the
toric formal K◦-models from 5.2. We refer to [23, Section 5.6] for more details in the strictly
semistable case and to [23, Remark 5.19] for the generalization to the polystable case.

5.7. — We will now describe the crucial properties of the above formal K◦-model X′′. We re-
fer to [23, Proposition 5.7, Corollary 5.8] for the arguments which generalize to our polystable
setting [23, Remark 5.19]. There is again a bijective order-reversing correspondence between
the strata R of X′′ and the faces σ of D given by

(32) R = red
(
τ−1(relint(σ))

)
, relint(σ) = trop

(
red−1(Y )

)
,

where Y is any non-empty subset of R. We have dim(σ) = codim(R,X′′
s) and hence the

irreducible components Y of X′′
s are in bijective correspondence to the vertices ξ of D . The

vertex corresponding to Y is the unique point ξ of X ′ with red(ξ) being the generic point
of Y .
Let R be a stratum of X′′

s with corresponding face ∆ ∈ D . Then relint(∆) is contained in the
relative interior of a unique canonical face ∆S of Sk(X′) corresponding to a stratum S of X′

s.
Then R is a fiber bundle over S via ι′ with the fiber being a torus of rank codim(∆,∆S) and
hence R is smooth. The closure of R is the union of the strata corresponding to the faces
σ ∈ D with ∆ ⊂ σ.

Definition 5.8. — Let X be a proper variety over K with formal K◦-model X over K◦.
Then a strictly polystable alteration is a generically finite proper morphism X ′ → X from
a smooth variety X ′ over K which extends to a morphism φ : X′ → X for a non-degenerate
strictly polystable formal K◦-model X′ of X ′.

Remark 5.9. — It has been shown in [1, Theorem 5.2.19] that a strictly polystable alter-
ation always exists, at least when X is algebraic. By [27, Lemma 2.4], any formal K◦-model
is dominated by the formal completion of an algebraic K◦-model.

5.10. — Now we fix the following setup. Let X be a closed subvariety of the abelian variety
A. We use the Raynaud extension

0 −→ T an −→ Ean q−→ Ban −→ 0
and the notation from the previous section. We choose a formal Mumford model A0 of A over
K◦ associated to a trop(Λ)-periodic (Z,Γ)-polytopal decomposition C0 of NR and we denote
by X the closure of Xan in A0 as in [20, Proposition 3.3]. It is called closure as it is similar
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to the construction of the schematic closure of X in an algebraic model of A over K◦. We
assume that there is a strictly polystable alteration φ0 : X′ → X. We denote the generic fiber
of φ0 by f : X′

η → Xan. Using Remarks 4.14 and 5.9, for any closed subvariety X of A such
a Mumford model A0 with a strictly polystable alteration for X exists.

5.11. — By [23, Proposition 5.11, Remark 5.19], there is a unique map
faff : Sk(X′) −→ trop(Aan) = NR/ trop(Λ)

with faff ◦ τ = trop ◦f . For every canonical face ∆′ of Sk(X′), there is a unique face ∆ of the
polytopal decomposition C0 of NR/ trop(Λ) such that faff(relint(∆′)) ⊂ relint(∆). Moreover,
the restriction of faff to ∆′ is a (Z,Γ)-affine map. We denote by faff : Sk(X′) → NR a lift of
faff which might be multi-valued and which is unique up to trop(Λ)-translation. Note that
the restriction of faff to a canonical face ∆′ is a single-valued affine function, unique up to
trop(Λ)-translation.

5.12. — Using the uniformization Aan = Ean/Λ, there is a multi-valued continuous lift
F : X′

η → Ean of f which is unique up to Λ-translation. Then q ◦F extends to a multi-valued
continuous morphism G : X′ → B for the formal abelian scheme B over K◦ associated to
B. To omit multi-valued morphisms, we consider a stratum S of X′

s. One can show that the
restriction of G to S is a morphism which is canonical up to q(Λ)-translation. This is based
on the fact that red−1

X′ (S) is contractible as its skeleton ∆S is contractible and hence the
restriction of f to red−1

X′ (S) lifts to the universal cover Ean of Aan. We refer to [23, Remarks
5.16 and 5.19] for details.

5.13. — Let L be a rigidified line bundle on A. Then there is a rigidified line bundle H on
B with p∗(Lan) = q∗(Han) and cocycle (zλ) as in 4.3. Let us consider a function h : NR → R
which is piecewise (Z,Γ)-linear with respect to the trop(Λ)-periodic (Z,Γ)-polytopal decom-
position C1 of NR. Let A1 be the associated formal Mumford model of A, let L = L(h) be
the line bundle on A1 induced by h and let H be the model of H on B, see 4.12. Similarly as
in [23, 5.17], we see that Sk(X′) has the (Z,Γ)-polytopal subdivision
(33) D = {∆S ∩ f−1

aff (σ) | S stratum of X′, σ ∈ C1}
such that f : X′

η → Aan extends to a morphism φ1 : X′′ → A1. Here, we use the formal scheme
X′′ over X′ associated to the subdivision D by the construction in 5.6.
Our goal is to compute the degree of an irreducible component Y of X′′

s with respect to (the
pull-back of) L. By 5.7, Y corresponds to a vertex ξY of D . Let σ be the unique face of C1
such that faff(ξY ) is contained in relint(σ). Since ξY is a vertex of the polytopal subdivison
given by (33), we conclude that faff is injective on ∆S and that
(34) faff(ξY ) = faff(∆S) ∩ σ.

Since ∆S is a (Z,Γ)-polytope, the underlying linear space L∆S
has a well-defined Z-linear

structure which we will use to compute Monge–Ampère measures in the following result.

Proposition 5.14. — Using the above notation, we assume that h ◦ faff is convex in ξY
and we denote by hY the induced conic convex function in ξY on the linear space L∆S

. If the
intersection in (34) is transversal, which means dim(∆S) = codim(σ,NR), then

degL(Y ) = d!
e! · degH(S) · MA(hY )({ξY })
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where d := dim(X), e is the dimension of the stratum S and the real Monge–Ampère measure
on the right is computed with respect to the Z-linear structure of L∆S

.

Proof. — Note that the Monge–Ampère measure MA(hY ) is a discrete measure on ∆S sup-
ported in the vertex ξY of D , see 2.3 for a description. The strictly semistable case has been
proven in [23, Proposition 5.18] and the arguments generalize to the case of strictly polystable
alterations, see [23, Remark 5.19]. □

6. Monge–Ampère measures of toric metrics

In this section, we use the results from the previous sections to compute the Monge–Ampère
measures of toric metrics on a closed d-dimensional subvariety X of an abelian variety A over
an algebraically closed non-archimedean field K with non-trivial value group Γ. To describe
Monge–Ampère measures of toric metrics on Xan, we choose a formal Mumford model A0 of
A and a strictly polystable alteration φ0 : X′ → X for the closure X of Xan in A0 as in 5.10.
We will first compute the Monge–Ampère measures for the pull-back metrics on X′

η and then
we will use the projection formula with respect to the generic fiber f : X′

η → Xan of φ0.

6.1. — Recall the uniformization Aan = Ean/Λ from the Raynaud extension

0 −→ T an −→ Ean q−→ Ban −→ 0.
Let B be the formal abelian scheme over K◦ with generic fiber Ban. We fix an ample line
bundle L on A. We have seen in 4.3 that L has an associated ample line bundle H on B and
we denote by H the associated formal model of H on B.
By Proposition 4.6 and denoting the cocharacter lattice of T by N , a continuous toric metric
∥ · ∥ on Lan corresponds to a function f∥ · ∥ : NR → R, satisfying the cocycle rule. The metric
∥ · ∥ is semipositive if and only if f∥ · ∥ is a convex function, see Theorem 4.10.
For a canonical face ∆S with associated stratum S of X′

s, there is an affine map faff : ∆S → NR
which is canonical up to trop(Λ)-translation and a morphism G : S → Bs which is canonical
up to q(Λ)-translation, see 5.11 and 5.12.

Theorem 6.2. — Using the above notation, a continuous semipositive toric metric ∥ · ∥ on
the ample line bundle L and an e-dimensional stratum S of X′

s, we have

c1(f∗L, f∗∥ · ∥)∧d(Ω) = d!
e! · degH(S) · MA(f∥ · ∥ ◦ faff |relint(∆S))(Ω)

for any Lebesgue measurable subset Ω of relint(∆S) where degH(S) := degG∗H(S).

In case of a discretely valued complete field K, a strictly semistable alteration φ0 and the
canonical metric for L, this result has been shown in [23, Theorem 6.7].

Proof. — Both sides of the claim are continuous with respect to uniform convergence of the
semipositive metrics and weak convergence of Radon measures, hence by Proposition 4.13 we
may assume that ∥ · ∥ is a semipositive model metric of L determined on a formal Mumford
model A1 associated to a locally finite trop(Λ)-periodic (Z,Γ)-polytopal decomposition C1 of
NR and that h := f∥ · ∥ is a piecewise (Q,Γ)-linear strictly convex function with respect to C1.
We may even assume for a given finite set Σ of polytopes in NR that C1 is Σ-transversal. We
use this for the set Σ consisting of the polytope faff(∆S) and all its faces.
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We have also seen that there is a non-zero m ∈ N such that mh is piecewise (Z,Γ)-linear. If
we replace (L, ∥ · ∥) by (L⊗m, ∥ · ∥⊗m), then both sides of the claim are multiplied by md and
hence we may assume that h = f∥ · ∥ is piecewise (Z,Γ)-linear. Then Proposition 4.13 shows
that ∥ · ∥ is the model metric associated to the model L := L(h) of L on A1.
The polytopal decomposition C1 induces a formal K◦-model X′′ of X over X′ given by the
polytopal subdivision D of Sk(X′) from (33) and a morphism φ1 : X′′ → A1 as in 5.13. By
construction, the metric f∗∥ · ∥ is the formal metric associated to the model φ∗

1(L) of f∗(L)
on X′′. It follows from 5.13 that the Monge–Ampère measure c1(f∗(L), f∗∥ · ∥) is supported
in the vertices of D , as the latter are the Shilov points ξY for the irreducible components Y
of X′′

s . On the other hand, we note that h ◦ faff |∆S
is a piecewise linear convex function with

respect to DS = D ∩ ∆S and hence the Monge–Ampère measure MA(g ◦ faff |relint(∆S)) is a
discrete measure supported in those vertices of D which are contained in relint(∆S), see 2.3.
It remains to check the claim for Ω consisting of a single vertex ξY of D . Then we may replace
h ◦ faff on the right hand side by hY for the conic piecewise linear convex function hY in ξY
induced by h ◦ faff and the claim follows from Proposition 5.14. Note that the transversality
assumption there holds as C1 is Σ-transversal. □

In the setting of Theorem 6.2, we call the canonical face ∆S of the skeleton Sk(X′) non-
degenerate with respect to f if

(35) dim(faff(∆S)) = dim(∆S) and dim(G(S)) = dim(S).

Obviously, the second condition in (35) does not depend on the choice of G. We define
Sknd(X′) as the union of all non-degenerate canonical faces with respect to f .

Proposition 6.3. — Let ∥ · ∥ be a continuous semipositive toric metric on the ample line
bundle L of A. Using the above notation, the support of the Monge–Ampère measure
c1(f∗L, f∗∥ · ∥)∧d is contained in Sknd(X′). This applies in particular to the canonical metric
∥ · ∥L of the ample line bundle L and then the above support agrees with Sknd(X′).

Proof. — It follows from the proof above and especially from the degree formula in Propo-
sition 5.14 that the support of the Monge–Ampère measure c1(f∗L, f∗∥ · ∥)∧d is contained in
Sknd(X′). If ∥ · ∥ is the canonical metric ∥ · ∥L of L, then the restriction of c1(f∗L, f∗∥ · ∥L)∧d

to the relative interior of a canonical face ∆S of Sk(X′) is a multiple of the Lebesgue measure
on relint(∆S) as f∥ · ∥L

◦faff is a quadratic function on relint(∆S). It follows from the positive
definiteness of the bilinear form associated to the ample line bundle L that this multiple is
non-zero if and only if ∆S is non-degenerate with respect to f . We conclude in this case that
the support of c1(f∗L, f∗∥ · ∥L)∧d agrees with Sknd(X′). □

Remark 6.4. — We note that Theorem 6.2 also yields a formula for the Monge–Ampère
measure of the toric metric ∥ · ∥ restricted to L|X by using the projection formula

(36) c1(L|X , ∥ · ∥)∧d = f∗(c1(f∗L, f∗∥ · ∥)∧d).

We will show in the next section that Xan has a smallest subset SX containing the supports
of all these canonical measures and that SX has a canonical piecewise (Q,Γ)-linear structure.
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7. The canonical subset

As in the previous section, we consider a closed d-dimensional subvariety X of an abelian
variety A over an algebraically closed non-archimedean field K with non-trivial value group
Γ. We will show that the supports of canonical measures on Xan give rise to a canonical
subset SX of Xan endowed with a canonical piecewise (Q,Γ)-linear structure.
We will start with the definition of the canonical subset of Xan. Then we will recall (Q,Γ)-
skeletons introduced by Ducros which will be an important tool to proof our main results at
the end.
Let L be a rigidified ample line bundle on A and let ∥ · ∥L be the canonical metric of L.

Definition 7.1. — The support of the Radon measure c1(L|X , ∥ · ∥L)∧d is called the canon-
ical subset of Xan and will be denoted by SX .

Remark 7.2. — We have seen in Remark 5.9 that there is a Mumford model A0 associated
to a trop(Λ)-periodic (Z,Γ)-polytopal decomposition C0 such that for the closure X of X in
A0, we have a strictly polystable alteration φ0 : X′ → X. Let f : X′

η → Xan be the generic
fiber of φ0. By Remark 6.3, the support of c1(f∗L, f∗∥ · ∥L)∧d is equal to Sknd(X′) and hence
the projection formula (36) proves
(37) SX = f(Sknd(X′)).

Proposition 7.3. — The canonical subset SX does not depend on the choice of the ample
line bundle L. Moreover, for any continuous semipositive metric ∥ · ∥ on Lan, the support of
the Radon measure c1(L|X , ∥ · ∥)∧d is contained in SX .

Proof. — Since Sknd(X′) does not depend on the ample line bundle L, the first claim follows
from (37). By Remark 6.3, the support of c1(f∗L, f∗∥ · ∥)∧d is contained in Sk(X′)nd and
hence the second claim follows from the projection formula (36). □

Proposition 7.4. — If ψ : A → B is a finite homomorphism of abelian varieties over K,
then we have Sψ(X) = ψ(SX).

Proof. — Let L be a rigidified ample line bundle on A. Note that ψ∗(L) is ample and that
ψ∗∥ · ∥L is the canonical metric of ψ∗(L). Then the claim follows from the projection formula

ψX,∗(c1(ψ∗
XL,ψ

∗
X∥ · ∥L))∧d = deg(ψX) · c1(L|X , ∥ · ∥L)∧d

for Monge–Ampère measures where ψX : X → ψ(X) is given by ψ. □

We will show below that SX is a (Q,Γ)-skeleton of Xan as defined by Ducros [14, 4.6]. We
will now briefly recall these notions for Xan, but they can be used more generally for any
topologically separated strictly analytic space (see [14, Section 4]).

7.5. — For any strictly analytic domain Y in Xan and an m-tuple g = (g1, . . . , gm) of
invertible analytic functions on Y , we define the tropicalization map

tropg : Y −→ Rm, y 7−→ (− log |g1(y)|, . . . ,− log |gm(y)|).
A compact subset P of Xan consisting of Abhyankar points is called an analytic (Q,Γ)-
polytope if there is a strictly analytic domain Y containing P and g1, . . . , gm ∈ O(Y )× such
that tropg induces a homeomorphism of P onto a finite union of (Q,Γ)-polytopes in Rm with
the following properties for the induced piecewise (Q,Γ)-linear structure on P : For any strictly
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subdomain Z of Xan and any h ∈ O(Z)×, we require that P ∩ Z is a piecewise (Q,Γ)-linear
subspace of P and that the restriction of − log |h| to P ∩ Z is piecewise (Q,Γ)-linear.
A (locally) closed subset S of Xan is called a (Q,Γ)-skeleton if the analytic (Q,Γ)-polytopes
contained in S form an atlas for a piecewise (Q,Γ)-linear structure on S. It follows from [14,
4.1.2] that the piecewise (Q,Γ)-linear structure on S is completely determined by the under-
lying set S and the analytic structure of Xan.

We will use the following criterion of Ducros.

Lemma 7.6. — Let Y be an integral strictly affinoid space over K and let S be a compact
subset of Y consisting of Abhyankar points. Then S is an analytic (Q,Γ)-polytope of Y if the
following properties hold:

(i) tropg(S) is a piecewise (Q,Γ)-linear subspace of Rm for any g1, . . . , gm ∈ O(Y ) \ {0};

(ii) there are g1, . . . , gm ∈ O(Y ) \ {0} such that the restriction of tropg to S is injective.

Since S consists of Abhyankar points, the analytic functions gj are nowhere zero on S and
hence tropg(S) ⊂ Rm.

Proof. — This is criterion 2) in [14, Lemma 4.4]. □

Lemma 7.7. — Let Y be an integral strictly affinoid space over K. Then a finite union of
analytic (Q,Γ)-polytopes of Y is an analytic (Q,Γ)-polytope of Y .

Proof. — By induction, it is enough to show for analytic (Q,Γ)-polytopes P and Q of Y
that P ∪ Q is an analytic (Q,Γ)-polytope of Y . We will use the criterion of Ducros from
Lemma 7.6. Let g1, . . . , gm ∈ O(Y ) \ {0}. Since tropg(P ) and tropg(Q) are finite unions of
(Q,Γ)-polytopes in Rm, it follows that the same is true for tropg(P ) ∪ tropg(Q) proving (i)
for P ∪ Q. To prove (ii), we include in the list g1, . . . , gm the functions appearing in (ii) for
the analytic (Q,Γ)-polytopes P and Q. Then tropg restricts to an injective function on P
and also to an injective function on Q. We will enlarge the list to get an injective function on
P ∪Q. For any x ∈ P , there is at most one y ∈ Q such that tropg(x) = tropg(y). Since Y is
affinoid, there is an analytic function h on Y with |h(x)| ≠ |h(y)|. Including h in the list, we
conclude that x is the only point in P ∪Q mapping to tropg(x). By continuity, the same holds
for all x′ in a neighbourhood of x in P . By compactness of P , we conclude that we may add
a finite number of non-zero analytic functions of Y to the list g1, . . . , gm to ensure that tropg
is injective on P ∪Q. This proves (ii) and hence P ∪Q is an analytic (Q,Γ)-polytope. □

We will frequently use the following notions introduced in Section 4: We have the uniformiza-
tion Aan = Ean/Λ from the Raynaud extension

0 −→ T an −→ Ean q−→ Ban −→ 0,
where Ban is the generic fiber of a formal abelian scheme B over K◦. Let N be the cocharacter
lattice of the torus T and let trop: Aan → NR/ trop(Λ) the canonical tropicalization.

Theorem 7.8. — The canonical subset SX of Xan is a (Q,Γ)-skeleton of Xan for any closed
subvariety X of A. For any strictly polystable alteration φ0 : X′ → X as in Remark 7.2 with
generic fiber f : X′

η → Xan and any canonical face ∆S of Sk(X′) which is non-degenerate with
respect to f , the morphism f induces a piecewise (Q,Γ)-linear isomorphism ∆S → f(∆S).
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Proof. — By definition, the support of a Radon measure is closed, so SX is closed in Xan

and hence compact. We choose a strictly polystable alteration φ0 : X′ → X as in Remark 7.2.
Let f : X′

η → Xan be the generic fiber. The skeleton Sk(X′) is a (Q,Γ)-skeleton of X′
η [14,

Exemple 4.8] and hence it consists of Abhyankar points. Since Abhyankar points cannot be
contained in a lower dimensional closed analytic subset, we conclude that Sk(X′) is contained
in the finite part of the generically finite morphism f . By [15, 1.4.14], it follows that f(Sk(X′))
consists of Abhyankar points. In particular, this holds for SX .
To show that SX is a (Q,Γ)-skeleton of Xan, we may argue G-locally at any x ∈ Xan with
respect to the Grothendieck topology induced by the strictly analytic domains of Xan, see [14,
Proposition 4.9]. If x ̸∈ SX , then SX is empty in a neighbourhood of x and the claim holds. So
we may assume that x ∈ SX . We recall from 5.10 that X is the closure of X in the Mumford
model A0 associated to a trop(Λ)-periodic (Z,Γ)-polytopal decomposition C0 of NR. We pick
a lift x̃ ∈ Ean of x with respect to the quotient morphism p : Ean → Aan = Ean/Λ. There is a
unique ∆ ∈ C0 such that trop(x̃) ∈ relint(∆). We fix torus coordinates x1, . . . , xn of T giving
NR ∼= Rn. It is explained in [23, 4.2] that there is a formal affine open covering of B such
that, for the generic fiber W of any member of the covering, the morphism q : Ean → Ban

splits over W and such that for y ∈ trop−1(W ), the canonical tropicalization is given by

(38) trop(y) = troph(y) = (− log |h1(y)|, . . . ,− log |hn(y)|)

where hj := p∗
1(xj) for the first projection p1 with respect to the splitting q−1(W ) ∼= T an ×W .

We pick such a W with q(x̃) ∈ W . Since trop(x̃) ∈ relint(∆), we deduce that U∆,W :=
trop−1(∆) ∩ q−1(W ) ∼= U∆ × W is a strictly affinoid domain of Ean containing x̃, where
U∆ is the polytopal domain of T an given by the preimage of ∆ with respect to the classical
tropicalization map T an → NR ∼= Rn.
The quotientAan =Ean/Λ and the construction of the Mumford model A0 identifies q−1(W )/Λ
with the generic fiber V∆,W of a formal affine open subset V∆,W of A0 such that x ∈ V∆,W .
We will view h1, . . . , hn as invertible analytic functions on V∆,W . It follows from (38) and
the definitions that troph ◦f |Sk(X′) is a lift of faff |Sk(X′) from trop(Aan) = NR/ trop(Λ) to
NR ∼= Rn. If ∆S is a canonical face of Sk(X′) which is non-degenerate with respect to f , then
we conclude that the restriction of troph to f(∆S) is injective.
Since x ∈ SX , we know that x is an Abhyankar point and hence x ∈ Xan

reg. We conclude that
Xan is G-locally integral at x and hence there is an integral strictly affinoid domain Y of Xan

with x ∈ Y ⊂ V∆,W . By [14, 4.6.1], it is enough to prove that SX ∩ Y is a (Q,Γ)-analytic
polytope of Y . Note that SX is the union of f(∆S) with S ranging over all canonical faces
∆S of Sk(X′) which are non-degenerate with respect to f . Therefore Lemma 7.7 yields that
it is enough to show that f(∆S) ∩ Y is an analytic (Q,Γ)-polytope of Y for any canonical
face ∆S which is non-degenerate with respect to f . To show this, we will use the criterion of
Ducros recalled in Lemma 7.6. Let g1, . . . , gm be non-zero analytic functions on Y . Since ∆S

consists of Abhyankar points, the restriction of any gj to f(∆S) is invertible and hence there
is a strictly affinoid neighbourhood Z of f(∆S) ∩ Y in Y such that every gj is an invertible
analytic function on Z. Note that Z ′ := f−1(Z) is a strictly analytic domain of X′

η and we
have ∆S ∩ f−1(Y ) = ∆S ∩ Z ′. The analytic function g′

j := gj ◦ f is invertible on Z ′ for
j = 1, . . . ,m. We have

(39) tropg(f(∆S) ∩ Y ) = tropg′(∆S ∩ f−1(Y )) = tropg′(∆S ∩ Z ′).
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Since Sk(X′) is a (Q,Γ)-skeleton and Z ′ is a strictly analytic domain in X′
η, it follows from [14,

4.6.2, 4.6.3] that ∆S ∩Z ′ is a (Q,Γ)-skeleton in Z ′. By [14, 4.6.4], the map tropg′ is piecewise
(Q,Γ)-linear on ∆S ∩ Z ′ and hence we deduce from (39) that tropg(f(∆S) ∩ Y ) is a finite
union of (Q,Γ)-polytopes in Rm. This proves (i) of the criterion.
Now we choose for g1, . . . , gm the restrictions of the functions h1, . . . , hn to Y . We have
already seen that the restriction of troph to f(∆S) is injective. We conclude that the same
is true for the restriction to the subset f(∆S) ∩ Y which proves (ii) of the criterion. Then
the criterion yields that f(∆S) ∩ Y is an analytic (Q,Γ)-polytope of Y proving that SX is a
(Q,Γ)-skeleton.
Since troph is injective on f(∆S) for any non-degenerate canonical face ∆S of Sk(X′), we get
an induced piecewise (Q,Γ)-linear isomorphism f(∆S) → troph(f(∆S)). We have seen that
troph ◦f |∆S

is a lift of faff |∆S
and hence a (Q,Γ)-linear isomorphism of ∆S onto troph(f(∆S)).

Therefore f induces a piecewise (Q,Γ)-linear isomorphism ∆S → f(∆S). □

By Theorem 7.8, the set SX has a canonical piecewise (Q,Γ)-linear structure.

Corollary 7.9. — There is a polytopal (Q,Γ)-decomposition Σ of the canonical subset SX
such that for any rigidified ample line bundle L on A with canonical metric ∥ · ∥L, we have

c1(L|X , ∥ · ∥L)∧d =
∑
σ∈Σ

rσµσ

where µσ is a fixed choice of a Lebesgue measure on the polytope σ and where rσ ∈ R≥0 with
rσ > 0 for all maximal σ.

Proof. — We choose a strictly polystable alteration φ0 : X′ → X as in Remark 7.2 with
generic fiber f : X′

η → Xan. We have seen in Theorem 7.8 that f restricts to a surjective
piecewise (Q,Γ)-linear map Sk(X′)nd → SX with finite fibers. It follows that there is a (Q,Γ)-
polytopal decomposition Σ′ of Sk(X′)nd refining the canonical face structure of Sk(X′) such
that Σ := f(Σ′) is a polytopal decomposition of SX . Note that f restricts to a (Q,Γ)-affine
isomorphism σ′ → σ := f(σ′) for all σ′ ∈ Σ′. We conclude that the push-forward of a
Lebesgue measure on σ′ is a Lebesque measure on σ. Using the projection formula (36), the
claim follows from Remark 6.3. □

The following tropical description of the canonical Monge–Ampère measures has been shown
in [23, Theorem 1.1] in the special case of K being the completion of the algebraic closure
of a field with a discrete valuation. This statement is crucially used in Yamaki’s reduction
theorem, which is a major contribution to the proof of the geometric Bogomolov conjecture
by Xie and Yuan [37]. We show here that this tropical description is true for any algebraically
closed non-trivially valued non-archimedean field K.

Theorem 7.10. — The canonical tropicalization map trop: Aan → NR/Λ gives a surjective
piecewise (Q,Γ)-linear map SX → trop(Xan) with finite fibers.

Proof. — The proof follows the same lines as in [23, Section 7] and so we only give a sketch,
mainly pointing out the necessary adaptions. We have seen in Theorem 7.8 that the canonical
subset SX of Xan is a (Q,Γ)-skeleton in Xan, which implies that trop induces a piecewise
(Q,Γ)-linear map SX → trop(Xan). We use a strictly polystable alteration φ0 : X′ → X as
in Remark 7.2 with generic fiber f : X′

η → Xan. Since faff agrees with trop ◦f on Sk(X′), it
follows easily from SX = f(Sk(X′)nd) that the piecewise linear map SX → trop(Xan) has
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finite fibers. It remains to prove surjectivity. We have to show that for any ω ∈ trop(Xan)
there is a canonical face ∆S of Sk(X′) which is non-degenerate with respect to f such that

(40) ω ∈ faff(∆S) = trop(f(∆S)).

Let d− e be the local dimension of trop(Xan) at ω. Using the density of the value group Γ,
we may assume that ω ∈ NΓ/ trop(Λ) and that ω is not contained in a polytope faff(∆T ) of
lower dimension.
Our tropical dimensionality assumption at ω allows us to find a trop(Λ)-periodic (Z,Γ)-
polytopal decomposition C1 of NR such that for the unique ∆ ∈ C1 with ω ∈ relint(∆) we
have trop(Xan) ∩ ∆ = {ω} and codim(∆) = d− e. Similarly as in the proof of Theorem 6.2,
we have a canonical morphism φ1 : X′′ → A1 to the Mumford model A1 associated to C1,
where X′′ is the formal scheme over X′ associated to the subdivision D = {∆S ∩ f−1

aff (σ) |
S stratum of X′, σ ∈ C1}. The analytic domain trop−1(∆) is the generic fiber of a formal
open subset U of A1. Let X1 be the closure of X in A1. The special fiber of X1 has an
irreducible component Y intersecting U. Since the map φ1 induces a surjective proper map
X′′ → X1, there is an irreducible component Y ′ of X′′

s mapping onto Y . Let ξ′ be the vertex
of D corresponding to Y ′ (see 5.7), then one deduces from the choice of C1 that faff(ξ′) = ω.
We claim that the unique canonical face ∆S of Sk(X′) with ξ′ ∈ relint(∆S) is non-degenerate
with respect to f which then proves (40) and the theorem.
Using that relint(∆S) contains a vertex of D , one deduces that faff is injective on ∆S proving
the first condition for non-degeneracy with respect to f . Since faff(∆S) contains ω, we have
dim(∆S) = dim(faff(∆S)) = d− e, hence the corresponding stratum S is e-dimensional. Let
G : S → B be the morphism from 6.1. Then it is clear that dim(G(S)) ≤ e and it remains to
show equality. It is shown in [23, Proposition 4.8] that the strata of the special fiber of the
formal Mumford model A1 correspond bijectively to the faces of C 1. Using the construction of
Mumford models, there is a canonical multi-valued morphism q1 : A1 → B. The restriction of
q1 to a stratum closure becomes a single-valued morphism which is canonical up to translation.
We have seen in 5.7 that the dense stratum of Y ′ is a fiber bundle over S which can be used
together with φ1(Y ′) = Y to show that G(S) = q1(Y ) for a suitable choise of the morphism
q1 : Y → Bs. By [23, Proposition 4.8] again, if W∆ is the stratum corresponding to ∆, then
W∆ is a fiber bundle over Bs with fiber isomorphic to the codim(∆)-dimensional toric variety
given by the star of ∆. Since ξ := f(ξ′) is a point of Xan with reduction equal to the generic
point of Y and since trop(ξ) = faff(ξ′) = ω ∈ relint(∆), we conclude that Y is contained in
W∆. As this stratum has relative dimension d− e over Bs and since d = dim(Y ), we deduce
that dim(q1(Y )) ≥ e. We conclude that

e ≥ dim(G(S)) = dim(q1(Y )) ≥ e

proving equality everywhere and hence ∆S is non-degenerate with respect to f . □

Appendix A. Differential forms, currents and positivity

Here, we summarize results about differential forms and currents on tropical and non-
archimedean spaces. Let N be a free abelian group of rank n and NR the base extension
to R. In the applications below, we usually take N = Zn and hence NR = Rn, which amounts
to fix a basis in the lattice N .
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A.1. — In Lagerberg’s thesis [29], he has introduced a bigraded differential sheaf of R-
algebras A•,• on NR with differentials d′, d′′. We call the elements Lagerberg forms. They
have similar properties as the complex (p, q)-forms.
More generally, by restriction we get a bigraded differential sheaf A•,• of R-algebras with
differentials d′, d′′ on any tropical cycle S of NR and a dual notion of currents on S, see [26,
Section 3]. The elements of A•,• can be seen as functions on S which we call smooth functions.

A.2. — There is a unique involution J of the sheaf A•,• which leaves the smooth functions
invariant and satisfies Jd′ = d′′J . A smooth (p, p)-form α on S is called positive if

α = (−1)
p(p−1)

2

m∑
j=1

fjαj ∧ Jαj

for smooth non-negative functions fj and smooth (p, 0)-forms αj on S. Again, positive forms
are obtained from positive forms on NR and the latter are studied in [8]. In particular, we
deduce that positive Lagerberg forms on S are closed under products.
A Lagerberg current T on S is called of type (p, q) if it acts on the compactly supported (p, q)-
forms on S. A Lagerberg current T on S of type (p, p) is called symmetric if TJ = (−1)pT . A
positive Lagerberg current is a symmetric Lagerberg current T of type (p, p) on S such that
T (α) ≥ 0 for all compactly supported smooth (p, p) forms α on S.

In the following, we denote by X a good strictly analytic space over a non-trivially valued
non-archimedean field K. Recall that Berkovich introduced the boundary ∂X of X in [2,
Section 3.1]. We call X boundary-free if ∂X = ∅. The analytification of an algebraic variety
over K is always boundary-free [2, Theorem 3.4.1].

A.3. — Let W be a compact strictly analytic domain in X. We call h : W → Rn a smooth
tropicalization map if all the coordinate functions are given by hi = − log |fi| for invertible
analytic functions fi on W . We call h a harmonic tropicalization map if all the hi are har-
monic functions, see [25, Section 7]. Since every smooth function is harmonic, every smooth
tropicalization map is harmonic. For a harmonic tropicalization map h, a generalization of
Berkovich of the Bieri–Groves theorem from tropical geometry shows that the tropical variety
h(W ) is a finite union of (Z,Γ)-polytopes in Rn of dimension at most dim(W ).

Chambert-Loir and Ducros [13] used smooth tropicalization maps to introduce smooth (p, q)-
forms on Berkovich spaces. In [25], the smooth tropicalization maps were replaced by har-
monic tropicalization maps to obtain a larger class of weakly smooth forms with better
cohomological behavior. The constructions can be summarized as follows.

Proposition A.4. — There is a bigraded differential sheaf A•,•
sm (resp. A•,•) of R-algebras

on X with an alternating product ∧ and differentials d′, d′′ satisfying the following properties:

(i) For a morphism f : X ′ → X of good strictly analytic spaces, there is a functorial ho-
momorphism f∗ : AX → f∗AX′ of sheaves of bigraded differential R-algebras.

(ii) If h : W → Rn is a smooth (resp. harmonic) tropicalization map on a compact strictly
analytic subdomain W of X, there is an injective homomorphism

h∗ : A•,•(h(W )) → A•,•(W )
of bigraded differential R-algebras lifting smooth Lagerberg forms from h(W ) to W .
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(iii) Using the above notation, we have (h ◦ f)∗ = f∗ ◦ h∗.

(iv) For ω ∈ A(X), any x ∈ X has a strictly affinoid neighbourhood W with a smooth
(resp. harmonic) tropicalization map h : W → Rn such that ω|W = h∗(α) for some
α ∈ A(h(W )).

We call A•,•
sm (resp. A•,•) the sheaf of smooth (resp. weakly smooth) forms. These sheaves of

bigraded differential R-algebras are characterized up to unique isomorphisms by (i)–(iv).

A.5. — If X is also boundary-free and separated, Chambert-Loir and Ducros introduced
currents of type (p, q) as continuous linear functionals acting on compactly supported smooth
forms of bidegree (p, q) [13, Section 4]. The analogous continuous linear functionals on the
space of compactly supported weakly smooth forms are called strong currents. We denote by
Dsm
p,q (resp. Dp,q) the sheaf of currents (resp. strong currents) of type (p, q) on X.

For any smooth (resp. weakly smooth) form ω, the theory of integration for top dimensional
forms [13, Section 3] yields an associated current [ω]sm (resp. strong current [ω]) similarly as
in complex analysis, see [13, Section 4.3] and [25, Section 11].

A.6. — We call a smooth (resp. weakly smooth) (p, p)-form on X positive if it is locally given
by the pull-back of a smooth positive Lagerberg form with respect to a smooth (resp. har-
monic) tropicalization map in the sense of Proposition A.4-(iv). Again, there is a unique
involution J acting on A and on its subsheaf Asm which leaves the weakly smooth functions
invariant and satisfies d′J = Jd′′.
Now assume that X is also boundary-free and separated. By duality, we also get a Lagerberg
involution J acting on Dsm (resp. D). A (strong) current T of type (p, p) on X is called
symmetric if TJ = (−1)pT . We say that a symmetric (strong) current T of type (p, p) is
positive if T (ω) ≥ 0 for all compact supported (weakly) smooth positive forms α of bidegree
(p, p) on X.

A.7. — Still assuming X boundary-free and separated, we assume that L is a line bundle
on X endowed with a continuous metric ∥ · ∥. Then the first Chern current (resp. strong
first Chern current) of (L, ∥ · ∥) is given as follows: Locally, we choose an open subset U of
X which is a trivialization of L over U . Hence there is a frame s ∈ L(U). Then the first
Chern current (resp. strong first Chern current) of (L, ∥ · ∥) is given on U by d′d′′[− log ∥s∥]sm
(resp. d′d′′[− log ∥s∥]). As this does not depend on the choice of the trivialization, this defines
a globally defined (strong) current, see [13, Section 6.4]. Note that the restriction of the strong
first Chern current to compactly supported smooth forms agrees with the first Chern current.

The following result has been shown by Chambert-Loir and Ducros [13, Lemme 5.5.3] for
smooth tropicalization maps. Their argument generalizes to harmonic tropicalization maps.
For convenience of the reader, we will provide the proof here.

Proposition A.8. — Let X be a compact good strictly analytic space over K of pure di-
mension d with a harmonic tropicalization map h : X → Rn. We consider a smooth function
f : h(X) → R. Then d′d′′[f ◦ h] is a positive strong current on X \ ∂X if and only if the
restriction of f to any d-dimensional face of the tropical variety h(X) is convex.

Proof. — We assume first that d′d′′[f ◦ h] is a positive strong current on X \ ∂X. Using
results of Berkovich and Ducros [14, Theorem 3.4], the tropical variety h(X) is the support
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of a (Z,Γ)-polytopal complex of dimension at most d such that h(∂X) is contained in faces
of dimension at most d − 1. Let ∆ be any d-dimensional face of h(X). Then positivity of
d′d′′[f ◦ h] on X \ ∂X yields that d′d′′[f ] is a positive current on relint(∆) and hence f is a
convex function on the relative interior of ∆ by [29, Proposition 2.5]. By continuity of f , we
conclude that f is convex on ∆.
To prove the converse, we assume that the restriction of f to any d-dimensional face of ∆
is convex. Let ω be a positive weakly smooth form on X \ ∂X with compact support and of
bidegree (n− 1, n− 1). Using the theorem of Stokes, we have to prove that∫

X\∂X
d′d′′(f ◦ h) ∧ ω ≥ 0.

We view ω as a compactly supported weakly smooth form on X. Since X is good, there
is a family (Ui)i∈I of strictly affinoid subdomains of X whose interiors U◦

i cover X and
harmonic tropicalization maps hi : Ui → Rni such that ω|Ui = h∗

i (αi) for some smooth positive
(n − 1, n − 1)-Lagerberg form αi on hi(Ui). By [13, Proposition 3.3.6], there is a smooth
partition of unity (φi)i∈I subordinated to the covering (U◦

i )i∈I . We may assume that the
tropicalization map hi is a refinement of h, i.e. there is a (Z,Γ)-affine map Li : hi(Ui) → h(X)
such that h = Li ◦ hi. Then the function fi := f ◦ Li is a smooth function on hi(X) with
convex restriction to each d-dimensional face. We conclude that∫

X\∂X
d′d′′(f ◦ h) ∧ ω =

∑
i∈I

∫
Ui

φi · h∗
i (d′d′′fi ∧ αi).

The support Ki of the weakly smooth form ηi := φi · h∗
i (fid′d′′αi) is a compact subset of

U◦
i ∩ (X \ ∂X) = Ui \ ∂Ui [2, Proposition 3.1.3]. It follows from [13, Lemme 3.2.5] that we

can apply [13, Proposition 3.4.4] to this compact subset Ki of Ui \ ∂Ui. We conclude that
there is a strictly affinoid neighbourhood Vi of supp(ηi) in Ui and a smooth tropicalization
map Fi : Vi → Rmi which satifies φi|Vi = ϕi ◦ Fi on Vi for a smooth function ϕi on Fi(Vi).
Replacing Fi by a harmonic tropicalization map refining hi, we may assume that Fi = hi.
We conclude that∫

X\∂X
d′d′′(f ◦ h) ∧ ω =

∑
i∈I

∫
Vi

h∗
i (ϕi) · h∗

i (d′d′′fi ∧ αi) =
∫
hi(Vi)

d′d′′fi ∧ (ϕiαi).

Since ϕiαi is a positive Lagerberg form on hi(Vi) and since d′d′′fi is a positive Lagerberg form
on each maximal face ∆ of hi(Vi) as fi|∆ is a smooth convex function, the above integral is
non-negative proving the claim. □

Corollary A.9. — With the setup of Proposition A.8 and assuming h is a smooth tropical-
ization map, we have d′d′′[f ◦h] is a positive strong current on X \∂X if and only d′d′′[f ◦h]sm
is a positive current on X \ ∂X.

Proof. — This follows immediately from Proposition A.8 as the same criterion holds for
positivity of the current d′d′′[f ◦ h]sm on X \ ∂X with respect to the smooth tropicalization
map h, see [13, Lemme 5.5.3]. □

In the following, we assume that X is a good strictly analytic boundary-free separated
Berkovich space (for example the analytification of an algebraic variety). We consider a line
bundle L over X endowed with a continuous semipositive metric ∥ · ∥. It was shown in [25,
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Theorem 1.3] that the first Chern current of (L, h) is positive. Using the above, the same
arguments show the following result:

Theorem A.10. — Let ∥ · ∥ be a continuous semipositive metric on L. Then the strong first
Chern current of (L, ∥ · ∥) is positive.

Proof. — By restriction to the irreducible components of X, we may assume that X is of
pure dimension. By assumption, the metric ∥ · ∥ is a uniform limit of semipositive model
metrics. Since such a limit obviously preserves positivity of the strong first Chern current, we
may assume that ∥ · ∥ is a semipositive model metric. Then [25, 7.14, Proposition 7.10] yields
that ∥ · ∥ is locally a uniform limit of smooth metrics with positive first Chern currents. By
Corollary A.9, the strong first Chern currents of the smooth metrics are also positive. As the
claim is local, the above limit argument shows positivity of the strong first Chern current of
(L, ∥ · ∥). □
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