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ON COMPUTING BELYI MAPS

by

J. Sijsling & J. Voight

Abstract. — We survey methods to compute three-point branched covers of the projective line,
also known as Bely̆ı maps. These methods include a direct approach, involving the solution of a
system of polynomial equations, as well as complex analytic methods, modular forms methods,
and p-adic methods. Along the way, we pose several questions and provide numerous examples.

Résumé. — Nous donnons un aperçu des méthodes actuelles pour le calcul des revêtements
de la droite projective ramifiés en au plus trois points, connus sous le nom de morphismes de
Bely̆ı. Ces méthodes comprennent une approche directe, se ramenant à la solution d’un système
d’équations polynomiales ainsi que des méthodes analytiques complexes, de formes modulaires
et p-adiques. Ce faisant, nous posons quelques questions et donnons de nombreux exemples.
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74 On computing Belyi maps

Introduction

Every compact Riemann surface X is an algebraic curve over C, and every meromorphic
function on X is an algebraic function. This remarkable fact, generalized in the GAGA
principle, links the analytic with the algebraic in a fundamental way. A natural problem is
then to link this further with arithmetic; to characterize those Riemann surfaces that can be
defined by equations over Q and to study the action of the absolute Galois group Gal(Q/Q)
on these algebraic curves. To this end, Bely̆ı [12, 13] proved that a Riemann surface X over
C can be defined over Q if and only if X admits a Bely̆ı map, a map f : X → P1

C that is
unramified away from {0, 1,∞}. Grothendieck, in his Esquisse d’un Programme [62], called
this result “deep and disconcerting”.
Part of Grothendieck’s fascination with Bely̆ı’s theorem was a consequence of the simple
combinatorial and topological characterization that follows from it. Given a Bely̆ı map
f : X → P1

C, the preimage f−1([0, 1]) of the real interval [0, 1] can be given the structure of a
dessin (or dessin d’enfant, “child’s drawing”): a connected graph with bicolored vertices (so the
two vertices of an edge are colored differently) equipped with a cyclic ordering of the edges
around each vertex. Conversely, a dessin determines the corresponding Bely̆ı map uniquely
up to isomorphism over C or Q. The idea that one can understand the complicated group
Gal(Q/Q) by looking at children’s pictures casts an alluring spell indeed. As a consequence,
hundreds of papers have been written on the subject, several books have appeared, and the
topic remains an active area of research with many strands.
In a number of these papers, computation of particular examples plays a key role in under-
standing phemonena surrounding Bely̆ı maps; arguably, part of the richness of the subject lies
in the beauty in these examples. Shabat and Voevodsky [144, 0.1.1, 0.3] say on this point:

Here we have no general theory and only give a number of examples. The complete-
ness of our results decrease rapidly with growing genus; we are able to give some
complete lists (of non-trivial experimental material) for genus 0, but for genera
exceeding 3 we are able to give only some general remarks. [...] The main reasons
to publish our results in the present state is our eagerness to invite our colleagues
into the world of the divine beauty and simplicity we have been living in since we
have been guided by the Esquisse.

In spite of this important role, no survey of computational methods for Bely̆ı maps has yet
appeared, and in our own calculations we found many techniques, shortcuts, and some tricks
that others had also (re)discovered. In this article, we collect these results in one place in
the hope that it will be useful to others working in one of the many subjects that touch the
theory of Bely̆ı maps. We also give many examples; to our knowledge, the larger examples
are new, unless mentioned otherwise. We assume that the reader has some familiarity with
algebraic curves and with computation, but not necessarily with the theory of Bely̆ı maps or
dessins; at the same time, we hope that this paper will also be a useful and comprehensive
reference, so we will also make some remarks for the experts.
We take as input to our methods the simple group theoretic description of Bely̆ı maps: there
is a bijection between permutation triples

σ = (σ0, σ1, σ∞) ∈ S3
d that satisfy σ0σ1σ∞ = 1

up to simultaneous conjugation in the symmetric group Sd, and
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J. Sijsling and J. Voight 75

Bely̆ı maps f : X → P1 of degree d
up to isomorphism over Q. In this bijection, the curve X can be disconnected, such as the
trivial cover of degree d > 1; the cover X is connected if and only if (the dessin is connected
if and only if) the corresponding permutation triple σ generates a transitive subgroup of Sd,
in which case we call σ transitive. If σ corresponds to f in this bijection, we say that f has
monodromy representation σ.
Given the description of a Bely̆ı map f in the compressed form of a permutation triple, it has
proven difficult in general to determine explicitly an algebraic model for f and the curve X.
As a result, many authors have written on this subject of explicit computation of Bely̆ı maps,
usually subject to certain constraints or within a certain class of examples. That this is a
difficult problem is a common refrain, and the following quote by Magot and Zvonkin [106,
§1] is typical:

An explicit computation of a Belyi function corresponding to a given map is reduced
to a solution of a system of algebraic equations. It may turn out to be extremely
difficult. To give an idea of the level of difficulty, we mention that our attempts to
compute Belyi functions for some maps with only six edges took us several months,
and the result was achieved only after using some advanced Gröbner bases software
and numerous consultations given by its author J.C. Faugère.

The paper is organized as follows. In Section 1, we collect the basic background (including
a discussion of fields of definition), and mention some applications and generalizations. In
Section 2, we discuss a direct method using Gröbner methods, augmented by the Atkin–
Swinnerton-Dyer trick. We then turn to other, more practical methods. We begin in Section 3
with complex analytic methods; in Section 4, we consider methods using modular forms; in
Section 5, we consider p-adic methods. In Section 6, we briefly discuss alternative methods for
Galois Bely̆ı maps. In Section 7, we discuss the delicate subjects of field of moduli and field of
definition with an eye to its implications for computation. In Section 8, we treat simplification
and verification of Bely̆ı maps, and finally in Section 9 we conclude by considering some
further topics and generalizations. Along the way, we give explicit examples and pose several
questions.
The authors would like to thank Noam Elkies, Ariyan Javanpeykar, Curtis McMullen, John
McKay, David Roberts, Steffen Rohde, Sam Schiavone, Matthias Schütt, Marco Streng, Bernd
Sturmfels, Mark Watkins and Bruce Westbury for their comments on this work, as well as the
referee for his or her many suggestions. The first author was supported by Marie Curie grant
IEF-GA-2011-299887, and the second author was supported by an NSF CAREER Award
(DMS-1151047).

1. Background and applications

The subject of explicit characterization and computation of ramified covers of Riemann
surfaces is almost as old as Riemann himself. Klein [90] and Fricke–Klein [56] calculated some
explicit Bely̆ı maps, most notably the icosahedral Galois Bely̆ı map P1 → P1 of degree 60 [90,
I, 2, §13–14]. These appeared when constructing what we would today call modular functions
associated with the triangle groups ∆(2, 3, 5) and ∆(2, 4, 5) (see Section 4). This in turn
allowed them to find a solution to the quintic equation by using analytic functions. Around
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76 On computing Belyi maps

the same time, Hurwitz [77] was the first to consider ramified covers in some generality:
besides considering covers of small degree, he was the first to give the classical combinatorical
description of covers of the projective line minus a finite number of points, which would later
result in Hurwitz spaces being named after him.
Continuing up to the modern day, the existing literature on Bely̆ı maps with an explicit flavor
is extremely rich: surveys include Birch [18], Jones–Singerman [82, 83], Schneps [138], and
Wolfart [172]; textbooks include the seminal conference proceedings [139], work of Malle–
Matzat [107], Serre [142], and Völklein [165], mainly with an eye toward applications to
inverse Galois theory, the tome on graphs on surfaces by Lando–Zvonkin [99], and the book by
Girondo–Gonzalez-Diaz [58], which interweaves the subject with an introduction to Riemann
surfaces.
We begin this section by reviewing basic definitions; we conclude by mentioning applica-
tions and generalizations as motivation for further study. (We postpone some subtle issues
concerning fields of moduli and fields of definition until Section 7.)

Definitions, and equivalent categories. — Let K be a field with algebraic closure K.
An (algebraic) curve X over K is a smooth proper separated scheme of finite type over K that
is pure of dimension 1.
We now define precisely the main category of this paper whose objects we wish to study. A
Bely̆ı map over K is a morphism f : X → P1 of curves over K that is unramified outside
{0, 1,∞}. Given two Bely̆ı maps f1, f2 : X1, X2 → P1, a morphism of Bely̆ı maps from f1 to
f2 is a morphism g : X1 → X2 such that f1 = f2g. We thereby obtain a category of Bely̆ı
maps over K.
A curve X that admits a Bely̆ı map is called a Bely̆ı curve. Bely̆ı [12, 13] proved that a
curve X over C can be defined over Q if and only if X is a Bely̆ı curve. Consequently, in
what follows, we may pass freely between Bely̆ı maps over Q and over C: we will simply refer
to both categories as the category of Bely̆ı maps. The absolute Galois group Gal(Q/Q) acts
naturally on (the objects and morphisms in) the category of Bely̆ı maps (over Q); this action is
faithful, as one can see by considering the j-invariant of elliptic curves. We denote the action
by a superscript on the right, so the conjugate of a curve X over Q by an automorphism
τ ∈ Gal(Q/Q) is denoted by Xτ , and that of a Bely̆ı map f by f τ .
Let f : X → P1 be a Bely̆ı map of degree d. The ramification of f above {0, 1,∞} is recorded
in its ramification type, the triple consisting of the set of ramification multiplicities above
0, 1,∞, respectively. Such a ramification type is therefore given by a triple of partitions of d,
or alternatively by a triple of conjugacy classes in the symmetric group Sd.
Part of the beauty of subject of Bely̆ı maps is the ability to pass seamlessly between combi-
natorics, group theory, algebraic geometry, topology, and complex analysis: indeed, one can
define categories in these domains that are all equivalent. In the remainder of this subsection,
we make these categories and equivalences precise; the main result is Proposition 1.2 below.
To begin, we record the ramification data, or more precisely the monodromy. A permutation
triple of degree d is a triple σ = (σ0, σ1, σ∞) ∈ S3

d such that σ0σ1σ∞ = 1. Let σ′ = (σ′0, σ
′
1, σ
′
∞)

be another such triple of degree d′. Then a morphism of permutation triples from σ to σ′ is
a map t : {1, . . . , d} → {1, . . . , d′} such that t(σ0(x)) = σ′0(t(x)) for all x ∈ S and the same
for σ1, σ∞. In particular, two permutation triples σ, σ′ are isomorphic, and we write σ ∼ σ′

and say they are simultaneously conjugate, if and only if they have the same degree d = d′ and
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J. Sijsling and J. Voight 77

there exists a τ ∈ Sd such that

στ = τ−1(σ0, σ1, σ∞)τ = (τ−1σ0τ, τ
−1σ1τ, τ

−1σ∞τ) = (σ′0, σ
′
1, σ
′
∞).

It is a consequence of the Riemann existence theorem that the category of Bely̆ı maps is
equivalent to the category of permutation triples. More precisely, let

(1.1) F2 = 〈x, y, z | xyz = 1〉
be the free group on two generators. Given a group G, a finite G-set is a homomorphism
α : G→ Sym(S) on a finite set S, and a morphism between finite G-sets from α to α′ is a map
of sets t : S → S′ such that α′(g)(t(x)) = t(α(g)(x)) for all g ∈ G and x ∈ S. We see that
giving a permutation triple is the same as giving a finite F2-set, by mapping x, y, z ∈ F2 to
σ0, σ1, σ∞, and that two permutation triples are isomorphic if and only if the corresponding
F2-sets are isomorphic.
Returning to covers and topological considerations, we have an isomorphism

F2
∼= π1(P1 \ {0, 1,∞});

the generators x, y, z chosen above can be taken to be simple counterclockwise loops around
0, 1,∞. We abbreviate P1

∗ = P1 \ {0, 1,∞}. The category of finite topological covers of P1
∗

is equivalent to the category of finite π1(P1
∗)-sets; to a cover, we associate one of its fibers,

provided with the structure of π1(P1
∗)-set defined by path lifting. Therefore, a Bely̆ı map gives

rise to a cover of P1
∗ by restriction, and conversely a finite topological cover of P1

∗ can be given
the structure of Riemann surface by lifting the complex analytic structure and thereby yields
a map from an algebraic curve to P1 unramified away from {0, 1,∞}.
Let f be a Bely̆ı map, corresponding to a permutation triple σ. The corresponding F2-set
ρ : F2 → Sd is called the monodromy representation of f , and its image is called the monodromy
group of f . The monodromy group, as a subgroup of Sd, is well-defined up to conjugacy and
in particular up to isomorphism, and we denote it by G = Mon(f). By the correspondences
above, the automorphism group of a Bely̆ı map is the centralizer of its monodromy group (as
a subgroup of Sd).
We consider a final category, introduced by Grothendieck [62]. A dessin D is a triple (Γ, C,O)
where:
(D1) Γ is a finite graph with vertex set V , edge set E, and vertex map v : E → V × V ;
(D2) C : V → {0, 1} is a bicoloring of the vertices such that the two vertices of an edge are
colored differently, i.e., C(v(e)) = {0, 1} (and not a proper subset) for all edges e ∈ E; and

(D3) O is a cyclic orientation of the edges around every vertex.
Due to the presence of the bicoloring C, the cyclic orientation in (D3) is specified by two
permutations O0, O1 ∈ Sym(E) specifying the orderings around the edges marked with 0 and
1 respectively. Note that once the bicoloring C is given, the possible orientations O = (O0, O1)
can be chosen to be any pair of permutations with the property that two edges e, e′ are in
the same orbit under O0 (resp. O1) if and only if the corresponding vertices marked 0 (resp.
1) coincide. A morphism of dessins is a morphism of graphs ϕ : Γ→ Γ′ such that ϕ takes the
bicoloring C to C ′ (i.e., C ′(ϕ(v)) = C(v)) and similarly the cyclic orientation O to O′.
The category of dessins is also equivalent to that of Bely̆ı maps. Indeed, associated to a Bely̆ı
map f is the graph given by f−1([0, 1]), with the bicoloring on the vertices given by f and
with the cyclic ordering induced by the orientation on the Riemann surface. Conversely, given
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78 On computing Belyi maps

a dessin we can algebraize the topological covering induced by sewing on 2-cells as specified
by the ordering O.
Dessins were introduced by Grothendieck [62] to study the action of Gal(Q/Q) on Bely̆ı maps
through combinatorics. So far, progress has been slow, but we mention one charming result
[138]; the Galois action is already faithful on the dessins that are trees (as graphs).
We summarize the equivalences obtained in the following proposition and refer to Lenstra
[101] for further exposition and references.

Proposition 1.2. — The following categories are equivalent:

(i) Bely̆ı maps;

(ii) permutation triples;

(iii) finite F2-sets; and

(iv) dessins.

In particular, the equivalence in Proposition 1.2 yields the key bijection considered in this
paper:

(1.3)

{
permutation triples σ = (σ0, σ1, σ∞) ∈ S3

d

}
/ ∼

l 1:1
{
Bely̆ı maps f : X → P1 of degree d

}
/ ∼=Q

where the notions of isomorphism are taken in the appropriate categories. Concretely, under
the correspondence (1.3), the cycles of the permutation σ0 (resp. σ1, σ∞) correspond to the
points of X above 0 (resp. 1,∞) and the length of the cycle corresponds to the ramification
index of the corresponding point under the morphism f . Note in particular that because
the first set of equivalence classes in (1.3) is evidently finite, there are only finitely many
Q-isomorphism classes of curves X with a Bely̆ı map of given degree.
It is often useful, and certainly more intuitive, to consider the subcategories in Proposition 1.2
that correspond to Bely̆ı maps f : X → P1 whose source is connected (and accordingly, we say
the map is connected). A Bely̆ı map is connected if and only if the corresponding permutation
triple σ is transitive, i.e., the subgroup 〈σ0, σ1, σ∞〉 is a transitive group. Restricting to
transitive permutations gives a further equivalent category of finite index subgroups of F2:
the objects are subgroups H ≤ F2 of finite index and morphisms H → H ′ are restrictions of
inner automorphisms of F2 that map H to H ′. The category of finite index subgroups of F2

is equivalent to that of finite transitive F2-sets (to a subgroup H of F2, one associates the
F2-set F2/H). Proposition 1.2 now becomes the following.

Proposition 1.4. — The following categories are equivalent:

(i) connected Bely̆ı maps;

(ii) transitive permutation triples;

(iii) transitive finite F2-sets;

(iii′) subgroups of F2 of finite index; and

(iv) dessins whose underlying graph is connected.

Publications mathématiques de Besançon - 2014/1



J. Sijsling and J. Voight 79

Unless stated otherwise (e.g., Section 7), in the rest of this article we will assume without fur-
ther mention that a Bely̆ı map is connected ; this is no loss of generality, since any disconnected
Bely̆ı map is the disjoint union of its connected components.

Geometric properties and invariants. — Let f : X → P1 be a (connected) Bely̆ı map
over Q. If the cover f is Galois, which is to say that the corresponding extension of function
fields Q(X)/Q(P1) is Galois, then we call f a Galois Bely̆ı map. More geometrically, this
property boils down to the demand that a subgroup of Aut(X) act transitively on the sheets
of the cover; and combinatorially, this is nothing but saying that Mon(f) ⊆ Sd has cardinality
# Mon(f) = d. Indeed, the monodromy group of a Bely̆ı map can also be characterized as the
Galois group of its Galois closure, which is the smallest Galois cover of which it is a quotient.
The genus of X can be calculated by using the Riemann–Hurwitz formula. If we define the
excess e(τ) of a cycle τ ∈ Sd to be its length minus one, and the excess e(σ) of a permutation
to be the sum of the excesses of its constituent disjoint cycles (also known as the index of the
permutation, equal to n minus the number of orbits), then the genus of a Bely̆ı map of degree
n with monodromy σ is

(1.5) g = 1− n+
e(σ0) + e(σ1) + e(σ∞)

2
.

In particular, we see that the genus of Bely̆ı map is zero if and only if e(σ0)+e(σ1)+e(σ∞) =
2n− 2.
We employ exponential notation to specify both ramification types and conjugacy classes in
Sd. So for example, if d = 10, then 322112 denotes both the conjugacy class of the permutation
(1 2 3)(4 5)(6 7 8) and the corresponding ramification type; two points of ramification index
3, one of index 2, and two (unramified) of index 1.
The passport of a Bely̆ı map f : X → P1 is the triple (g,G,C) where g is the genus of X and
G ⊆ Sd is the monodromy group of f , and C = (C0, C1, C∞) is the triple of conjugacy classes
of (σ0, σ1, σ∞) in Sd, respectively [99, Definition 1.1.7]. Although the genus of the Bely̆ı map
is determined by the conjugacy classes by equation (1.5), we still include it in the passport
for clarity and ease. The size of a passport (g,G,C) is the number of equivalence classes of
triples σ = (σ0, σ1, σ∞) such that 〈σ〉 = G and σi ∈ Ci for i = 0, 1,∞.
We will occasionally need slightly altered notions of passport. The ramification passport of
f is the pair (g, C) with conjugacy classes in Sd. Another version of the passport will be
considered in Section 7. The passport has the following invariance property [84].

Theorem 1.6. — The passport and the ramification passport of a Bely̆ı map are invariant
under the action of Gal(Q/Q).

One can calculate the set of isomorphism classes of permutation triples with given passport
using the following lemma with G = Sd.

Lemma 1.7. — Let G be a group and let C0, C1 be conjugacy classes in G represented by
τ0, τ1 ∈ G. Then the map

CG(τ0)\G/CG(τ1)→ {(σ0, σ1) : σ0 ∈ C0, σ1 ∈ C1}/∼G
CG(τ0)gCG(τ1) 7→ (τ0, gτ1g

−1)
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80 On computing Belyi maps

is a bijection, where CG(τ) denotes the centralizer of τ in G and ∼G denotes simultaneous
conjugation in G.

The virtue of this lemma is that double-coset methods in group theory are quite efficient; by
using this bijection and filtering appropriately [91, Lemma 1.11], this allows us to enumerate
Bely̆ı maps with a given passport relatively quickly up to moderate degree d. One can also
estimate the size of a passport using character theory; for more on this, see Section 7.

Applications. — Having introduced the basic theory, we now mention some applications
of the explicit computation of Bely̆ı maps.
We began in the introduction with the motivation to uncover the mysterious nature of the
action of Gal(Q/Q) on dessins following Grothendieck’s Esquisse. Dessins of small degree tend
to be determined by their passport in the sense that the set of dessins with given passport
forms a full Galois orbit. However, even refined notions of passport do not suffice to distinguish
Galois orbits of dessins of high degree in general: a first example was Schneps’ flower [138,
§IV, Example I]. Some further examples of distinguishing features of non-full Galois orbits
have been found by Wood [174] and Zapponi [175], but it remains a challenge to determine
the Galois structure for the set of dessins with given passport. Even statistics in small degree
are not known yet; an important project remains to construct full libraries of dessins. The
original “flipbook” of dessins, due to Bétréma–Péré–Zvonkin [15], contained only dessins that
were plane trees but was already quite influential, and consequently systematic tabulation
promises to be just as inspiring.
Further applications of the explicit study of Bely̆ı maps have been found in inverse Galois
theory, specifically the regular realization of Galois groups over small number fields: see the
tomes of Matzat [120], Malle–Matzat [107], and Jensen–Ledet–Yui [80]. Upon specialization,
one obtains Galois number fields with small ramification set: Roberts [131, 132, 133], Malle–
Roberts [112], and Jones–Roberts [86] have used the specialization of three-point covers to
exhibit number fields with small ramification set or root discriminant. The covering curves
obtained are often interesting in their own right, spurring further investigation in the study
of low genus curves (e.g., the decomposition of their Jacobian [127]). Finally, a Bely̆ı map
f : P1 → P1, after precomposing so that {0, 1,∞} ⊆ f−1({0, 1,∞}), is an example of a rigid
post-critically finite map, a map of the sphere all of whose critical points have finite orbits.
(Zvonkin calls these maps dynamical Bely̆ı functions [176, §6].) These maps are objects of
central study in complex dynamics [7, 129]: one may study the associated Fatou and Julia
sets.
Bely̆ı maps also figure in the study of Hall polynomials, (also called Davenport-Stothers triples)
which are those coprime solutions X(t), Y (t), Z(t) ∈ C[t] of the equations in polynomials

X(t)3 − Y (t)2 = Z(t)

with deg(X(t)) = 2m, deg(Y (t)) = 3m and deg(Z(t)) = m + 1. These solutions are
extremal in the degree of Z and are analogues of Hall triples, i.e. integers x, y ∈ Z for which
|x3 − y2| = O(

√
|x|). Hall polynomials have been studied by Watkins [166] and by Beukers–

Stewart [17]; Montanus [124] uses the link with dessins (X3(t)/Y 2(t) is a Bely̆ı map) to find
a formula for the number of Hall polynomials of given degree. Hall polynomials also lead to
some good families of classical Hall triples [50], as the following example illustrates.
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Example 1.8. — Taking m = 5 above, one obtains the following Hall polynomials due to
Birch:

X(t) =
1

9
(t10 + 6t7 + 15t4 + 12t),

Y (t) =
1

54
(2t15 + 18t12 + 72t9 + 144t6 + 135t3 + 27),

Z(t) = − 1

108
(3t6 + 14t3 + 27).

Choosing t ≡ 3 mod 6, we get some decent Hall triples, notably

|3842427663 − 75319694514582| = 14668

|3906200823 − 77202586434652| = 14857

for t = ±9; remarkably, in both cases the constant factor |x3 − y2|/
√
|x| is approximately

equal to the tiny number 3/4.

Bely̆ı maps also give rise to interesting algebraic surfaces. The Bely̆ı maps of genus 0 and
degree 12 (resp. 24) with ramification indices above 0, 1 all equal to 3, 2 correspond to elliptic
fibrations of rational (resp. K3) surfaces with only 4 (resp. 6) singular fibers; given such a
fibration, the associated Bely̆ı map is given by taking its j-invariant. By work of Beauville
[9] (resp. Miranda and Persson [122]), there are 6 (resp. 112) possible fiber types for these
families. This result comes down to calculating the number of Bely̆ı maps of given degrees
with specified conjugacy classes with cycle type (3, . . . , 3) and (2, . . . , 2) for σ0 and σ1.
Especially in the degree 24 case, the explicit calculation of these Bely̆ı maps is quite a chal-
lenge. By developing clever methods specific to this case, this calculation was accomplished
by Beukers–Montanus [16]. They find 191 Bely̆ı maps, exceeding the 112 ramification types
determined by Miranda and Persson: this is an instance of the phenomenon mentioned above,
that the passport may contain more than one Bely̆ı map, so that to a given ramification triple
there may correspond multiple isomorphism classes of Bely̆ı maps.
One can also specialize Bely̆ı maps to obtain abc triples: this connection is discussed by Elkies
[45] and Frankenhuysen [55] to show that the abc conjecture implies the theorem of Faltings,
and it is also considered by van Hoeij–Vidunas [157, Appendix D].
Modular curves and certain Shimura curves possess a natural Bely̆ı map. Indeed, Elkies has
computed equations for Shimura curves in many cases using only the extant structure of a
Bely̆ı map [46, 47]. Another such computation was made by Hallouin in [65], where a more
elaborate argument using Hurwitz spaces of four-point covers is used. Explicit equations are
useful in many contexts, ranging from the resolution of Diophantine equations to cryptography
[140]. Reducing these equations modulo a prime also yields towers of modular curves that
are useful in coding theory. Over finite fields of square cardinality q, work of Ihara [78] and
Tsfasman–Vlăduţ–Zink [155] shows that modular curves have enough supersingular points that
their total number of rational points is asymptotic with (

√
q − 1)g as their genus grows; this

is asymptotically optimal by work of Drinfeld–Vlăduţ [163]. By a construction due to Goppa
[59], one obtains the asympotically best linear error-correcting codes known over square fields.
But to construct and use these codes we need explicit equations for the curves involved. A
few of these modular towers were constructed by Elkies [49]. There are extensions to other
arithmetic triangle towers, using the theory of Shimura curves, which give other results over
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prime power fields of larger exponent [41]. For the cocompact triangle quotients, the modular
covers involved are Bely̆ı maps, and in fact many congruence towers are unramified (and
cyclic) after a certain point, which makes them particularly pleasant to work with.
There are also applications of explicit Bely̆ı maps to algebraic solutions of differential equations
[100]: as we will see in Section 4, subgroups of finite index of triangle groups correspond to
certain Bely̆ı maps, and the uniformizing differential equations for these groups (resp. their
solutions) can be obtained by pulling back suitable hypergeometric differential equations (resp.
hypergeometric functions). Kitaev [89] and Vidunas–Kitaev [162] consider branched covers
at 4 points with all ramification but one occuring above three points (“almost Bely̆ı coverings”)
and apply this to algebraic Painlevé VI functions. Vidunas–Filipuk [161] classify coverings
yielding transformations relating the classical hypergeometric equation to the Heun differential
equation; these were computed by van Hoeij–Vidunas [157, 158].
There are applications to areas farther from number theory. Eyral–Oka [52] explicitly use
dessins (and their generalizations to covers of P1 branched over more than 3 points) in their
classification of the fundamental groups of the complement in the projective plane of certain
join-type sextic curves of the form a

∏
i(X − αiZ) = b

∏
j(X − βjZ). Boston [20] showed

how three-point branched covers arise in control theory, specifically with regards to a certain
controller design equation. Finally, dessins appear in physics in the context of brane tilings [68]
and there is a moonshine correspondence between genus 0 congruence subgroups of SL2(Z),
associated with some special dessins, and certain representations of sporadic groups, with
connections to gauge theory [69, 70, 71].

2. Gröbner techniques

We now begin our description of techniques for computing Bely̆ı maps. We start with the
one that is most straightforward and easy to implement, involving the solutions to an explicit
set of equations over Q. For Bely̆ı maps of small degree, this method works quite well,
and considerable technical effort has made it work in moderate degree. However, for more
complicated Bely̆ı maps, it will be necessary to seek out other methods, which will be described
in the sections that follow.

Direct calculation. — The direct method has been used since the first Bely̆ı maps were
written down, and in small examples (typically with genus 0), this technique works well
enough. A large number of authors describe this approach, with some variations relevant
to the particular case of interest. Shabat–Voevodsky [144] and Atkin–Swinnerton-Dyer [5]
were among the first. Birch [18, Section 4.1] computes a table for covers of small degree and
genus. Schneps [138, III] discusses the case of clean dessins of genus 0 and trees. Malle [111]
computed a field of definition for many Bely̆ı maps of small degree and genus 0 using Gröbner
methods, with an eye toward understanding the field of definition of regular realizations of
Galois groups and a remark that such fields of definition also give rise to number fields ramified
over only a few very small primes. Malle–Matzat [107, §I.9] use a direct method to compute
several Bely̆ı maps in the context of the inverse Galois problem, as an application of rigidity.
Granboulan studied the use of Gröbner bases for genus 0 Bely̆ı maps in detail in his Ph.D.
thesis [60]. Elkies [46] used this technique to compute equations for Shimura curves. Other
authors who have used this method are Hoshino [75] (and Hoshino–Nakamura [76]), who
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computed the non-normal inclusions of triangle groups (related to the Bely̆ı-extending maps
of Wood [174]). Couveignes [32, §2] also gives a few introductory examples.
We explain how the method works by example in the simplest nontrivial case.

Example 2.1. — Take the transitive permutation triple σ = ((1 2), (2 3), (1 3 2)) from S3,
with passport (0, S3, (2

111, 2111, 31)). Since these permutations generate the full symmetric
group S3, the monodromy group of this Bely̆ı map is S3. The Riemann–Hurwitz formula (1.5)
gives the genus as

g = 1− 3 +
1

2
(1 + 1 + 2) = 0.

So the map f : X ∼= P1 → P1 is given by a rational function f(t) ∈ K(t) where K ⊂ Q is a
number field. There are two points above 0, of multiplicities 2, 1, the same holds for 1, and
there is a single point above ∞ with multiplicity 3. The point above ∞ is a triple pole of
f(t); since it is unique, it is fixed by Gal(K/K); therefore we take this point also to be ∞,
which we are free to do up to automorphisms of P1

K , and hence f(t) ∈ K[t]. Similarly, the
ramified points above 0 and 1 are also unique, so we may take them to be 0 and 1, respectively.
Therefore, we have

f(t) = ct2(t+ a)

for some a, c ∈ K \ {0} and
f(t)− 1 = c(t− 1)2(t+ b)

for some b ∈ K \ {0,−1}. Combining these equations, we get

ct2(t+ a)− 1 = c(t3 + at2)− 1 = c(t− 1)2(t+ b) = c(t3 + (b− 2)t2 + (1− 2b)t+ b)

and so by comparing coefficients we obtain b = 1/2, c = −2, and a = −3/2. In particular, we
see that the map is defined over K = Q and is unique up to Aut(P1

Q) ∼= PGL2(Q). Thus

f(t) = −t2(2t− 3) = −2t3 + 3t2, f(t)− 1 = −(t− 1)2(2t+ 1).

If we relax the requirement that the ramification set be {0, 1,∞} and instead allow {0, r,∞}
for some r 6= 0,∞, then the form of f can be made more pleasing. For example, by taking
f(t) = t2(t+ 3) and r = 4 we obtain f(t)− 4 = (t− 1)2(t+ 2).

It is hopefully clear from this example (see Schneps [138, Definition 8]) how to set up the
corresponding system of equations for a Bely̆ı map on a curve of genus g = 0: with variable
coefficients, we equate the two factorizations of a rational map with factorization specified
by the cycle types in the permutations triple σ. We illustrate this further in the following
example; for a large list of examples of this kind, see Lando–Zvonkin [99, Example 2.3.1].

Example 2.2. — To get a small taste of how complicated the equations defining a passport
can get, consider the case G = PGL2(F7) with permutation triple σ = (σ0, σ1, σ∞) given by

σ0 =

(
−1 0
0 1

)
, σ1 =

(
−1 1
−1 0

)
, σ∞ =

(
0 1
1 1

)
.
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The permutation representation of G acting on the set of 8 elements P1(F7) is given by the
elements

(1 6)(2 5)(3 4), (0 ∞ 1)(2 4 6), (0 1 4 3 2 5 6 ∞).

The corresponding degree 8 Bely̆ı map f : X → P1 has passport

(0,PGL2(F7), (2312, 3212, 81)).

After putting the totally ramified point at ∞, the map f is given by a polynomial f(t) ∈ Q[t]
such that

(2.3) f(t) = ca(t)2b(t) and f(t)− 1 = cd(t)3e(t)

where c ∈ Q× and a(t), b(t), d(t), e(t) ∈ Q[t] are monic squarefree polynomials with deg a(t) =
3 and deg b(t) = deg d(t) = deg e(t) = 2. We write a(t) = t3 + a2t

2 + a1t+ a0, etc.
Equating coefficients in (2.3) we obtain the following system of 8 vanishing polynomials in 10
variables:

a2
0b0c− cd3

0e0,

2a1a0b0c+ a2
0b1c− 3cd1d

2
0e0 − cd3

0e1,

2a2a0b0c+ a2
1b0c+ 2a1a0b1c+ a2

0c− 3cd2
1d0e0 − 3cd1d

2
0e1 − cd3

0 − 3cd2
0e0,

2a2a1b0c+ 2a2a0b1c+ a2
1b1c+ 2a1a0c+ 2a0b0c− cd3

1e0 − 3cd2
1d0e1 − 3cd1d

2
0

− 6cd1d0e0 − 3cd2
0e1,

a2
2b0c+ 2a2a1b1c+ 2a2a0c+ a2

1c+ 2a1b0c+ 2a0b1c− cd3
1e1 − 3cd2

1d0 − 3cd2
1e0

− 6cd1d0e1 − 3cd2
0 − 3cd0e0,

a2
2b1c+ 2a2a1c+ 2a2b0c+ 2a1b1c+ 2a0c− cd3

1 − 3cd2
1e1 − 6cd1d0 − 3cd1e0 − 3cd0e1,

a2
2c+ 2a2b1c+ 2a1c+ b0c− 3cd2

1 − 3cd1e1 − 3cd0 − ce0,

2a2c+ b1c− 3cd1 − ce1.

Using a change of variables t← t− r with r ∈ Q we may assume that b1 = 0, so b0 6= 0. Note
that if f(t) ∈ K[t] is defined over K then we may take r ∈ K, so we do not unnecessarily
increase the field of definition of the map. Similarly, if d1 6= 0, then with t← ut and u ∈ K×
we may assume d1 = b0; similarly if e1 6= 0, then we may take e1 = b0. If d1 = e1 = 0, then
f(t) = g(t2) is a polynomial in t2, whence a0 = 0 so a1 6= 0, and thus we may take a1 = b0.
This gives a total of three cases: (i) d1 = b0 6= 0, (ii) d1 = 0 and e1 = b0 6= 0, and (iii)
d1 = e1 = 0 and a1 = b0 6= 0. We make these substitutions into the equations above, adding
c 6= 0 and b1 = 0 in all cases. Note that the equation c 6= 0 can be added algebraically by
introducing a new variable c′ and adding the equation cc′ = 1.
These equations are complicated enough that they cannot be solved by hand, but not so
complicated that they cannot be solved by a Gröbner basis. There are many good references
for the theory of Gröbner bases [1, 34, 35, 64, 97].
In the degenerate cases (ii) and (iii) we obtain the unit ideal, which does not yield any
solutions. In the first case, we find two conjugate solutions defined over Q(

√
2). After some
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simplification, the first of the solutions becomes

f(t) =
(
2
√

2t3 − 2(2
√

2 + 1)t2 + (−4 + 7
√

2)t+ 1
)2(

14t2 + 6(
√

2 + 4)t− 8
√

2 + 31
)

with

f(t)− 432(4
√

2− 5) =
(
2t2 − 2

√
2 + 1

)3(
14t2 − 8(

√
2 + 4)t− 14

√
2 + 63

)
.

The direct method does not give an obvious way to discriminate among Bely̆ı maps by their
monodromy groups, let alone to match up which Galois conjugate corresponds to which
monodromy triple: all covers with a given ramification type are solutions to the above system
of equations.
To set up a similar system of equations in larger genus g ≥ 1, one can for example write
down a general (singular) plane curve of degree equal to degϕ and ask that have sufficiently
many nodal singularities so that it has geometric genus g; the Bely̆ı map can then be taken
as one of the coordinates, and similar techniques apply, though many non-solutions will still
be obtained in this way by cancellation of numerator and denominator.

Remark 2.4. — Any explicitly given quasiprojective variety X with a surjective map to the
moduli space Mg of curves of genus g will suffice for this purpose; so for those genera g
where the moduli space Mg has a simpler representation (such as g ≤ 3), one can use this
representation instead. The authors are not aware of any Bely̆ı map computed in this way
with genus g ≥ 3.

The direct method can be used to compute the curves X with Bely̆ı maps of small degree.
The curve P1 is the only curve with a Bely̆ı map of degree 2 (the squaring map), and the
only other curve that occurs in degree 3 is the genus 1 curve with j-invariant 0 and equation
y2 = x3 + 1, for which the Bely̆ı map is given by projecting onto the y-coordinate. In degree
4, there is the elliptic curve of j-invariant 1728 with equation y2 = x3 − x with Bely̆ı map
given by x2 and one other given by the the elliptic curve y2 = 4(2x + 9)(x2 + 2x + 9) and
regular function y + x2 + 4x+ 18. Both were described by Birch [18].
In the direction of tabulating the simplest dessins in this way, all clean dessins (i.e. those for
which all ramification indices above 1 are equal to 2) with at most 8 edges were computed
by Adrianov et al. [2]. Magot–Zvonkin [106] and Couveignes–Granboulan [33] computed the
genus 0 Bely̆ı maps corresponding to the Archimedean solids, including the Platonic solids,
using symmetry and Gröbner bases. For a very complete discussion of trees and Shabat
polynomials and troves of examples, see Lando–Zvonkin [99, §2.2].
In general, we can see that these Gröbner basis techniques will present significant algorithmic
challenges. Even moderately-sized examples, including all but the first few of genus 1, do not
terminate in a reasonable time. (In the worst case, Gröbner basis methods have running
time that is doubly exponential in the input size, though this can be reduced to singly
exponential for zero-dimensional ideals; see the surveys of Ayad [6] and Mayr [116].) One
further differentiation trick, which we introduce in the next section, allows us to compute
in a larger range. However, even after this modification, another obstacle remains: the
set of solutions can have positive-dimensional degenerate components. These components
correspond to situations where roots coincide or there is a common factor and are often called
parasitic solutions [95, 96]. The set of parasitic solutions have been analyzed in some cases by
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van Hoeij–Vidunas [158, §2.1], but they remain a nuisance in general (as can be seen already
in Example 2.2 above).

Remark 2.5. — Formulated more intrinsically, the naive equations considered in this section
determine a scheme in the coefficient variables that is a naive version of the Hurwitz schemes
that will be mentioned in Section 9. Besides containing degenerate components, this naive
scheme is usually very non-reduced. We will revisit this issue in Remark 2.10.
When calculating a Bely̆ı map f : P1 → P1, one usually fixes points on the source and the
target. As we saw most elaborately when working out equation (2.3), this reduces the problem
of calculating a Bely̆ı map in genus 0 to finding the points on an affine scheme. The families
of solutions in which numerator and denominator cancel give rise to some of the degenerate
components mentioned in the previous paragraph.

The ASD differentiation trick. — There is a trick, due to Atkin–Swinnerton-Dyer [5,
§2.4] that uses the derivative of f to eliminate a large number of the indeterminates (“the
number of unknowns c can be cut in half at once by observing that dj/dζ has factors
F 2

3F2”). Couveignes [32] implies that this trick was known to Fricke; it has apparently been
rediscovered many times. Hempel [73, §3] used differentiation by hand to classify subgroups
of SL2(Z) of genus 0 with small torsion and many cusps. Couveignes [29, §2,§10] used this to
compute examples in genus 0 of clean dessins. Schneps [138, §III] used this trick to describe a
general approach in genus 0. Finally, Vidunas [160] applied the trick to differential equations,
and Vidunas–Kitaev [162] extended this to covers with 4 branch points.

Example 2.6. — Again we illustrate the method by an example. Take

σ = ((1 2), (2 4 3), (1 2 3 4))

with passport (0, S4, (2
112, 3111, 41)). Choosing the points 0 and 1 again to be ramified, this

time of degrees 2, 3 above 0, 1 respectively, and choosing ∞ to be the ramified point above
∞, we can write

f(t) = ct2(t2 + at+ b)

and

f(t)− 1 = c(t− 1)3(t+ d).

The trick is now to differentiate these relations, which yields

f ′(t) = ct
(
2(t2 + at+ b) + t(2t+ a)

)
= c(t− 1)2 ((t− 1) + 3(t+ d))

t(4t2 + 3at+ 2b) = (t− 1)2 (4t+ (3d− 1)) .

By unique factorization, we must have 4t2 + 3at+ 2b = 4(t− 1)2 and 4t = 4t+ (3d− 1), so we
instantly get a = −8/3, b = 2, and d = 1/3. Substituting back we see that c = 3, and obtain

f(t) = t2(3t2 − 8t+ 6) = (t− 1)3(3t+ 1) + 1.

More generally, the differentiation trick is an observation on divisors that extends to higher
genus, as used by Elkies [47] in genus g = 1.
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Lemma 2.7. — Let f : X → P1 be a Bely̆ı map with ramification type σ. Let

div f =
∑

P

ePP −
∑

R

eRR and div(f − 1) =
∑

Q

eQQ−
∑

R

eRR

be the divisors of f and f − 1. Then the divisor of the differential df is

div df =
∑

P

(eP − 1)P +
∑

Q

(eQ − 1)Q−
∑

R

(eR + 1)R.

Proof. — Let

D =
∑

P

(eP − 1)P +
∑

Q

(eQ − 1)Q−
∑

R

(eR + 1)R.

Then div df ≥ D by the Leibniz rule. By Riemann–Hurwitz, we have

2g − 2 = −2n+
∑

P

(eP − 1) +
∑

Q

(eQ − 1) +
∑

R

(eR − 1)

so

deg(D) = 2g − 2 + 2n− 2
∑

R

eR = 2g − 2

since
∑

R eR = n. Therefore div df can have no further zeros.

Combined with unique factorization, this gives the following general algorithm in genus 0.
Write

f(t) =
p(t)

q(t)
= 1 +

r(t)

q(t)

for polynomials p(t), q(t), r(t) ∈ Q[t]. Consider the derivatives p′(t), q′(t), r′(t) with respect
to t and let p0(t) = gcd(p(t), p′(t)) and similarly q0(t), r0(t). Write

P (t) =
p(t)

p0(t)
and P̃ (t) =

p′(t)
p0(t)

and similarly Q, etc. Then by unique factorization, and the fact that P,Q,R have no common
divisor, evaluation of the expressions p(t) − q(t) = r(t) and p′(t) − q′(t) = r′(t) yields
that Q(t)R̃(t) − Q̃(t)R(t) is a multiple of p0(t), and similarly P (t)R̃(t) − P̃ (t)R(t) (resp.
P (t)Q̃(t)− P̃ (t)Q(t)) is a multiple of q0(t) (resp. r0(t)).
These statements generalize to higher genus, where they translate to inclusions of divisors;
but the usefulness of this for concrete calculations is limited and do not pass to relations of
functions, since the coordinate rings of higher genus curves are usually not UFDs. Essentially,
one has to be in an especially agreeable situation for a statement on functions to fall out,
and usually one only has a relation on the Jacobian (after taking divisors, as in the lemma
above). A concrete and important situation where a relation involving functions does occur
is considered by Elkies [47]. The methods in his example generalize to arbitrary situations
where the ramification is uniform (all ramification indices equal) except at one point of the
Bely̆ı curve: Elkies himself treats the Bely̆ı maps with passport (1,PSL2(F27), (3911, 214, 74)).
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The differentiation trick does not seem to generalize extraordinarily well to higher derivatives;
we can repeat the procedure above and further differentiate p′(t), q′(t), r′(t), but experimen-
tally this not seem to make the ideal grow further than in the first step.

Question 2.8. — Is the ideal obtained by adding all higher order derivatives equal to the one
obtained from just adding equations coming from first order derivatives (in genus 0)?

However, Shabat [143, Theorem 4.4] does derive some further information by considering
second-order differentials; and Dremov [40] calculates Bely̆ı maps using the quadratic differ-
ential

MP (f) =
df2

f(1− f)

for a regular function f and considering the equalities following from the relation

MP (f−1) = −MP (f)/f.

It is not immediately clear from these paper how to use this strategy in general, though.

Question 2.9. — How generally does the method of considering second-order differentials
apply?

The additional equations coming from the differentiation trick not only speed up the process
of calculating Bely̆ı maps, but they also tend to give rise to a Jacobian matrix at a solution
that is often of larger rank than the direct system. This is important when trying to Hensel
lift a solution obtained over C or over a finite field, where the non-singularity of the Jacobian
involved is essential. (We discuss these methods in sections that follow.)

Remark 2.10. — Phrased in the language of the naive moduli space in Remark 2.5, the
additional ASD relations partially saturate the corresponding equation ideal, so that the larger
set of equations defines the same set of geometric points, but with smaller multiplicities. (We
thank Bernd Sturmfels for this remark.) Reducing this multiplicity all the way to 1 is exactly
the same as giving the Jacobian mentioned above full rank.

Example 2.11. — The use of this trick for reducing multiplicities is best illustrated by some
small examples.
The first degree d in which the ASD differentiation trick helps to give the Jacobian ma-
trix full rank is d = 6; it occurs for the ramification triples (23, 23, 32), (2212, 32, 4121),
(32, 31211, 312111), (3113, 4121, 4121), (4121, 4112, 312111), and (4121, 312111, 312111), where it
reduces the multiplicity of the corresponding solutions from 9, 3, 3, 3, 4, 3 respectively to 1.
Note the tendency of Bely̆ı maps with many automorphisms to give rise to highly singular
points, as for curves with many automorphisms in the corresponding moduli spaces.
On the other hand, there are examples where even adding the ASD relations does not lead to
a matrix of full rank. Such a case is first found in degree 7; it corresponds to the ramification
triples (412111, 312112, 4131), and throwing in the ASD relations reduces the multiplicity from
8 to 2. Unfortunately, iterating the trick does not make the ideal grow further in this case.
More dramatically, for the ramification triples (24, 3221, 3221) and (2312, 42, 3221), differen-
tiation reduces some multiplicities from 64 to 1 (resp. 64 to 4). In the latter case, these
multiplicities are in fact not determined uniquely by the corresponding ramification type, so
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that considering these multiplicities gives a way to split the solutions into disjoint Galois
orbits.

Question 2.12. — How close is the ideal obtained from the differentiation trick (combined
with the direct method) to being radical? Can one give an upper bound for the multiplicity of
isolated points?

Further extensions. — There can be several reasons why a Gröbner basis calculation
fails to terminate. One problem is coefficient blowup while calculating the elimination ide-
als. This can be dealt by first reducing modulo a suitable prime p, calculating a Gröb-
ner basis for the system modulo p, then lifting the good solutions (or the Gröbner ba-
sis itself) p-adically, recognizing the coefficients as rational numbers, and then verifying
that the basis over Q is correct. This was used by Malle [110, 113] to compute cov-
ers with passports (0,Hol(E8), (412112, 412112, 6121)) and (0,PGL(F11), (2512, 43, 11111)) and
similarly Malle–Matzat [108] to compute covers for (0,PSL2(F11), (2413, 613121, 613121)) and
(0,PSL2(F13), (27, 4312, 6212)). This idea was also used by Vidunas–Kitaev [162, §5]. For fur-
ther developments on p-adic methods to compute Gröbner bases, see Arnold [4] or Winkler
[169]. One can also lift a solution modulo p directly, and sometimes such solutions can be
obtained relatively quickly without also p-adically lifting the Gröbner bases: this is the basic
idea presented in Section 5.
In the work of van Hoeij–Vidunas [157, 158] mentioned in Section 1, genus 0 Bely̆ı functions
are computed by using pullbacks of the hypergeometric differential equation and their solu-
tions. This method works well when the order of each ramification point is as large as possible,
e.g., when the permutations σ0, σ1, σ∞ contain (almost) solely cycles of order n0, n1, n∞ say,
and only a few cycles of smaller order. For example, this occurs when the cover is Galois,
or slightly weaker, when it is regular, that is to say, when the permutations σ0, σ1, σ∞ are a
product of disjoint cycles of equal cardinality.
The method of van Hoeij–Vidunas to calculate a Bely̆ı map f : X → P1 is to consider the
n exceptional ramification points in X of f whose ramification orders do not equal the usual
orders a, b, c. One then equips the base space P1 with the hypergeometric equation whose
local exponents at 0, 1,∞ equal a, b, c. Pulling back the hypergeometric equation by f , one
obtains a Fuchsian differential equation with singularities exactly in the n exceptional points.
The mere fact that this pullback exists implies equations on the undetermined coefficients of
f .
For example, when the number of exceptional points is just n = 3, the differential equation
can be renormalized to a Gaussian hypergeometric differential equation, which completely
determines it. When n = 4, one obtains a form of Heun’s equation [125, 157]. Heun’s
equation depends on the relative position of the fourth ramification point, as well as on an
accessory parameter; still, there are only two parameters remaining in the computation.
One shows that for fixed n and genus g (taken as g = 0 later), there are only finitely many
hyperbolic Bely̆ı functions with n exceptional points. For small n, van Hoeij and Vidunas
show that this differential method is successful in practice, and they compute all (hyperbolic)
examples with n ≤ 4 (the largest degree of such a Bely̆ı map was 60).
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Question 2.13. — Are there other sources of equations (such as those arising from differ-
ential equations, algebraic manipulation, etc.) that further simplify the scheme obtained from
the direct method?

3. Complex analytic methods

In this section we consider complex analytic methods for finding equations for Bely̆ı maps.
These methods are essentially approximative; a high precision solution over C is determined,
from which one reconstructs an exact solution over Q.

Newton approximation. — We have seen in the previous section how to write down
a system of equations which give rise to the Bely̆ı map. These equations can be solved
numerically in C using multidimensional Newton iteration, given an approximate solution
that is correct to a sufficient degree of precision and a subset of equations of full rank whose
Jacobian has a good condition number (determinant bounded away from zero). Then, given
a complex approximation that is correct to high precision, one can then use the LLL lattice-
reduction algorithm [102] (as well as other methods, such as PSLQ [53]) to guess algebraic
numbers that represent the exact values. Finally, one can use the results from Section 8
to verify that the guessed cover is correct; if not, one can go back and iterate to refine the
solution.

Remark 3.1. — We may repeat this computation for each representative of the Galois orbit
to find the full set of conjugates for each putative algebraic number and then recognize the
symmetric functions of these conjugates as rational numbers using continued fractions instead.
For example, one can compute each representative in the passport, possibly including several
Galois orbits. The use of continued fractions has the potential to significantly reduce the
precision required to recognize the Bely̆ı map exactly.

Example 3.2. — Consider the permutation triple

σ0 = (1 3 2)(4 6 5), σ1 = (1 5 2)(3 4)(6 7), σ∞ = (1 3 5 2 6 7 4).

From the Riemann–Hurwitz formula, we find that the associated Bely̆ı curve X has genus
g = 1. The ramification point of index 7 on X (over ∞) is unique, so we take it to be the
origin of the group law on X. Moreover, since there is a unique unramified point above 0, we
can use a normal form (due to Tate) of an elliptic curve with a marked point. This is given
by an equation

y2 + p3y = q(x) = x3 + p2x
2 + p4x(3.3)

with marked point (0, 0). The equation (3.3) is unique up to scaling the coefficients by u 6= 0
according to (p2, p3, p4) 7→ (u2a2, u

3a3, u
4a4), showing that the moduli spacesM1,2 of genus

1 curves with two marked points is isomorphic to the weighted projective space P(2, 3, 4).
Since the origin of the group law of X maps to ∞ and (0, 0) maps to 0, the Bely̆ı map
f : X → P1 of degree 7 is of the form

f(x, y) = (a3x
3 + a2x

2 + a1x) + (b2x
2 + b1x+ b0)y = a(x) + b(x)y.
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The ramification above f = 0 leads to the equation

NC(x,y)/C(x)(f(x, y)) = a(x)(a(x)− p3b(x))− b(x)2q(x) = −b22xc(x)3

where c(x) is the monic polynomial x2 + c1x+ c0. Consideration of the ramification above 1
yields

NC(x,y)/C(x)(f(x, y)− 1) = (a(x)− 1)(a(x)− 1− p3b(x))− b(x)2q(x) = −b22d(x)3e(x)2

where d(x) = x+ d0 and e(x) = x2 + e1x+ e0.
This yields 13 equations in 14 unknowns. The reason for this is that we are still free to scale
the pi. Here we have to distinguish cases. We first suppose that the point (0, 0) in (3.3) is
not 2-torsion, or equivalently, that p3 6= 0: this is the “generic” case. We can then distinguish
two further cases, namely p2 6= 0 and p4 6= 0. Accordingly, we may then ensure p2 = p3 or
p3 = p4 by scaling over the ground field, so that we do not needlessly enlarge the coefficient
of the Bely̆ı map. In either case, plugging in random choices for the vector of unknowns
(a, b, c, d, e, p) ∈ C14 and applying multivariate Newton iteration fails to yield a solution.
To improve the convergence, we now proceed to remove some degenerate cases from this set of
equations. Applying the trick from Example 2.2, we impose that c0d0e0 6= 0, as we may since
the ramification points are distinct and (0, 0) is a ramification point. (This in fact assumes
that none of the other ramification points is (0,−1), which leads to a subcase that turns
out not to yield a solution.) We further insist that c and e do not have a double root, so
(c2

1 − c0)(e2
1 − e0) 6= 0. This adds 2 more variables and equations.

Finally, we saturate our equations using the Atkin–Swinnerton-Dyer trick in Lemma 2.7. The
differential dx/(2y+p3) is holomorphic and has no zeros or poles, so denoting derivation with
respect to x by ′, we see that

df

dx/(2y + p3)
= (2y + p3)

df

dx
= a′(x)(2y + p3) + b′(x)(2y + p3)y + b(x)(2y + a3)y′

= (2b′(x)q(x) + b(x)q′(x) + p3a
′(x)) + (2a′(x)− p3b

′(x))y

satisfies

N(((2y + p3)(df/dx)) = 49b22c(x)2d(x)2e(x).

This differentation trick thus yields another 8 equations. But even after adding these and the
nondegeneracy conditions, random choices for an initial approximation fail to converge to a
solution for the new system of 23 equations in 15 unknowns.
So we are led to consider the case where p3 = 0, so that the unramified point above 0 is
2-torsion. (Here, there is some extra ambiguity, since the moduli space X0(2) = X1(2) is
not a fine moduli space.) If we write div(f) = (0, 0) + 3P1 + 3P2 − 7∞ and div(f − 1) =
2Q1 + 2Q2 + 3Q3, then we have

div(df) = 2P1 + 2P2 +Q1 +Q2 + 2Q3 − 8∞
and so we obtain the relations

Q1 +Q2 = 3Q3 = 0, 3Q3 = 0, (0, 0) + (P1 + P2) = −Q3, 2(0, 0) = 0

in the group law of X. In particular, P1 + P2 is a 6-torsion point on X. Relations such as
these can be used to find extra equations for X and f by using division polynomials. But
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again, the new system fails to yield any solutions; perhaps one can prove non-existence of
solutions directly.
Here, we look ahead to the methods of this section and Section 4 that allow us to find an
approximation to the solution. It turns out that we only need 3 decimal places to get the
Newton method converging to a real solution with p3 6= 0 and p2 = p3, approximated by the
solution

(a, b, c, d, e, p) ≈
(182.7513294, 146.8290694, 29.38993410,−308.3482399,−244.0552479

− 48.11742858, 0.7992141684, 0.1613326212, 0.1482181605, 0.9764940118,

0.2561882114, 1.165925608, 0.4430649844, 163.2364906, 3.003693522)

in C13. The condition number of the system without the additional Atkin–Swinnerton-Dyer
relations is approximately 3.3·107; but by adding some of these relations, this can be decreased
to approximately 1.2 · 105.
Using LLL, we recognize this as a putative solution over Q(α) with α3 − 3α + 12 = 0;
then we verify that the recognized solution is correct using the methods of Section 8. This
solution thereby gives rise to two more complex (conjugate) solutions. Since there are only
three permutation triples with the given ramification passport, we see that we have found all
dessins of the given ramification type, so we need not consider the other cases further.
As mentioned in Remark 3.1, the standard algorithms to recognize algebraic dependency work
better after symmetrizing over these conjugate solutions. For the most difficult algebraic
number to recognize (which is b2) using a single solution requires the knowledge of 161 digits,
whereas recognition as an algebraic number needs only 76 digits.
If we drop the demand that the unramified point is at (0, 0), then we can simplify the solution
somewhat, as in Section 8. In Weierstrass form, we can take X to be given by the curve

y2 = x3 + (−541809α2 + 898452α+ 2255040)x

+ (−2929526838α2 + 5759667648α− 11423888784).

and the function f = a(x) + b(x)y by

21331455a(x) = (1491α2 + 6902α+ 10360)x3

+ (1410885α2 + 2033262α− 4313736)x2

+ (731506545α2 + 15899218650α+ 32119846920)x

− (7127713852353α2 + 3819943520226α+ 62260261739784)

and

21331655b(x) = (−197α2 − 240α+ 528)x2

+ (906570α2 − 546840α− 8285760)x

− (715988241α2 − 2506621464α− 1458270864).

We thank Marco Streng for his help with reducing these solutions. Applying the methods
in Section 4 already gives equations that are better than those in the normalized forms
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(3.3) considered above; at least experimentally, using the modular method also tends to
give equations of relatively small height.

As we have seen in the preceding example, in order for this procedure to work, one needs
a good starting approximation to the solution. In the non-trivial examples that we have
computed so far, it seems that often this approximation must be given to reasonably high
precision (at least 30 digits for moderately-sized examples) in order for the convergence to
kick in. The required precision seems difficult to estimate from above or below. And indeed
the dynamical system arising from Newton’s method has quite delicate fractal-like properties
and its study is a subject in itself [128].

Question 3.4. — Is there an explicit sequence of Bely̆ı maps with the property that the
precision required for Newton iteration to converge tends to infinity?

One way to find a starting approximation to the solution is explained by Couveignes–
Granboulan [29, 60, 33]. They inductively use the solution obtained from a simpler map:
roughly speaking, they replace a point of multiplicity ν with two points of multiplicities ν1, ν2

with ν1 + ν2 = ν. One can use any appropriate base case for the induction, such as a map
having simple ramification. Couveignes [29] gives a detailed treatment of the case of trees,
corresponding to clean Bely̆ı polynomials f(t), i.e. those with f(t)− 1 = g(t)2: geometrically,
this means that the corresponding dessin can be interpreted as a tree with oriented edges.
In this case, after an application of the differentiation trick, one is led to solve a system of
equations where many equations are linear. See Granboulan [60, Chapter IV] for an example
with monodromy group Aut(M22).

Remark 3.5. — There is a misprint in the example of Couveignes [29, §3, pg. 8] concerning
the discriminant of the field involved, corrected by Granboulan [60, p. 64].

So far, it seems that the inductive numerical method has been limited to genus 0 Bely̆ı maps
with special features. A similar method was employed by Matiyasevich [119] for trees: he
recursively transforms the initial polynomial 2tn − 1 (corresponding to a star tree) into a
polynomial representing the desired planar tree.

Question 3.6. — Can an inductive complex analytic method be employed to compute more
complicated Bely̆ı maps in practice?

In particular, the iterative method by Couveignes and Granboulan to find a good starting value
seems to rely on intuition involving visual considerations; can these be made algorithmically
precise?

Circle packing. — Another complex analytic approach is to use circle packing methods. This
technique was extensively developed in work of Bowers–Stephenson [22], with a corresponding
Java script CirclePack available for calculations.
Given a dessin (i.e., the topological data underlying a Bely̆ı map), one obtains a triangulation
of the underlying surface by taking the inverse image of P1(R) ⊂ P1(C) together with the
corresponding cell decomposition. Choosing isomorphisms between these triangle and the
standard equilateral triangle in C and gluing appropriately, one recovers the Riemann surface
structure and as a result a meromorphic description of the Bely̆ı map.
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However, the Riemann surface structure is difficult to determine explicitly, starting from the
dessin. As an alternative, one can pass to discrete Bely̆ı maps instead. To motivate this
construction, note that a Riemann surface structure on a compact surface induces a unique
metric of constant curvature 1, 0,−1 (according as g = 0, 1,≥ 2) so that one can then speak
meaningfully about circles on such a surface. In particular, it makes sense to ask whether
or not there exists a circle packing associated with the triangulation, a pattern of circles
centered at the vertices of this triangulation satisfying the tangency condition suggested by the
triangulation. Satisfyingly enough, the circle packing theorem, due Koebe–Andreev–Thurston
[93, 114, 154], states that given a triangulation of a topological surface, there exists a unique
structure of Riemann surface that leads to a compatible circle packing. This then realizes the
topological map to the Riemann sphere as a smooth function.
In summary, starting with a dessin, one obtains a triangulation and hence a circle packing.
The corresponding discrete Bely̆ı map will in general not be meromorphic for the Riemann
surface structure induced by the circle packing; but Bowers and Stephenson prove that it does
converge to the correct solution as the triangulation is iteratively hexagonally refined.
The crucial point is now to compute the discrete approximations obtained by circle packing in
an explicit and efficient way. Fortunately, this is indeed possible; work by Collins–Stephenson
[26] and Mohar [123] give algorithms for this. The crucial step is to lift the configuration
of circles to the universal cover H (which is either the sphere P1(C), the plane C, or the
upper half-plane H) and perform the calculation in H. In fact, this means that the circle
packing method also explicitly solves the uniformization problem for the surface involved; for
theoretical aspects, we refer to Beardon–Stephenson [8]. Upon passing to H and using the
appropriate geometry, one then first calculates the radii of the circles involved from the
combinatorics, before fitting the result into H, where it gives rise to a fundamental domain
for the corresponding curve as a quotient of H.
An assortment of examples of the circle packing method is given by Bowers–Stephenson [22,
§5], and numerical approximations are computed to a few digits of accuracy. This includes
genus 0 examples of degree up to 18, genus 1 examples of degree up to 24, and genus 2 examples
of degree up to 14. For determining the conformal structure, this approach is therefore much
more effective indeed than the naive method from Section 2. Even better, one can proceed
inductively from simpler dessins by using so-called dessin moves [22, §6.1], which makes this
approach quite suitable for calculating large tables of conformal realizations of dessins.
On the other hand, there are no theoretical results on the number of refinements needed to
obtain given accuracy for the circle packing method [22, §7]. In examples, it is possible for
the insertion of a new vertex to drastically increase the accuracy needed [22, Figure 25] and
thereby the number of discrete refinements needed, quite radically increasing the complexity
of the calculation [22, §8.2]. However, the method is quite effective in practice, particularly
in genus 0.
More problematically, it seems difficult to recover equations over Q for the Bely̆ı map from
the computed fundamental domain if the genus is strictly positive. One can compute the
periods of the associated Riemann surface to some accuracy, but one still needs to recover the
curve X and transfer the Bely̆ı map f on X accordingly. Moreover, is also not clear that the
accuracy obtained using this method is enough to jump start Newton iteration and thereby
obtain the high accuracy needed to recognize the map over Q. In Section 4, we circumvent
this problem by starting straightaway with an explicit group Γ of isometries of H so that
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Γ\H ∼= X and then finding equations for X by numerically computing modular forms (i.e.,
differential forms) on X.

Example 3.7. — In Figure 3.8, we give an example from an alternate implementation by
Westbury, which is freely available [168] for the case of genus 0. In the figure, an outer polygon
is inserted instead of a circle to simplify the calculation of the radii. We show the conformal
triangulation induced by the second barycentric subdivision of the original triangulation for
one of the exactly 2 covers in Example 7.9 that descend to R.

Figure 3.8: A second subdivision for M23

Several more subdivisions would be needed to get the solution close enough to apply Newton’s
method.

Puiseux series. — Couveignes–Granboulan [33, §6] proposed an alternative method using
Puiseux series expansions to get a good complex approximation to the solution so that again
multidimensional Newton iteration can kick off.
At every regular point P in the curve X, the Bely̆ı map has an analytic expansion as a
power series in a uniformizer z at P that converges in a neighborhood of P . Similarly, at a
ramification point P , there is an expansion for f that is a Puiseux series in the uniformizer z;
more specifically, it is a power series in z1/e = exp(2πi log(z)/e) where e is the ramification
index of P and log is taken to be the principal logarithm. Now, these series expansions
must agree whenever they overlap, and these relations between the various expansions give
conditions on their coefficients. More precisely, one chooses tangential base points, called
standards, and the implied symbolic relations are then integrated with respect to a measure
with compact support. Collecting the relations, one obtains a block matrix, the positioning
of whose blocks reflects the topology of the overlaps of the cover used.
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Unfortunately, Couveignes and Granboulan do not give an example of this method in practice,
and the most detail they give concerns iterative ad hoc methods [33, §7].

Question 3.9. — How effective is the method of Puiseux series in finding a good starting
approximation? Can one prove rigorously that this method gives a correct answer to a desired
precision?

Homotopy methods. — One idea that has yet to be explored (to the authors’ knowledge)
is the use of techniques from numerical algebraic geometry, such as polyhedral homotopy
methods [10, 159], to compute Bely̆ı maps. The success of homotopy methods in solving
extremely large systems of equations, including those with positive-dimensional components,
has been dramatic. In broad stroke, one deforms the solution of an easier system to the
desired ones and carefully analyzes the behavior of the transition matrix (Jacobian) to ensure
convergence of the final solution. Because these methods are similar in spirit to the ones
above, but applied for a more general purpose, it is natural to wonder if these ideas can be
specialized and then combined into a refined technique tailored for Bely̆ı maps.

Question 3.10. — Can the techniques of numerical algebraic geometry be used to compute
Bely̆ı maps efficiently?

A potential place to start in deforming is suggested by the work above and by Couveignes [32,
§6]: begin with a stable curve (separating the branch points) and degenerate by bringing to-
gether the genus 0 components. The difficulty then becomes understanding the combinatorial
geometry of this stable curve, which is an active area of research.

Zipper method. — Complex analytic techniques can also be brought to bear on Bely̆ı maps
of extremely large degree, at least for the case of trees, using an extension of the zipper method
due to Marshall–Rohde [117, 118]. The zipper method finds a numerical approximation of the
conformal map of the unit disk onto any Jordan region [115]. In its extension, this amounts
to constructing the conformal map onto the domain of the exterior of the desired dessin,
which can be done quite simply for trees even with thousands of branches. For example,
Marshall and Rohde have computed the dessins associated to the Bely̆ı maps fn(z) where
f(z) = (3z3− 9z− 2)/4, giving a sequence of Bely̆ı trees (under the preimage of [−2, 1]), and
by extension one can obtain complex approximation to Bely̆ı maps of extremely large degree:
trees with tens of thousands of edges, far beyond the reach of other methods.

Question 3.11. — Does the zipper method extend to higher genus?

In the latter extension, one would need to consider not only the convergence of the Bely̆ı map
but also the associated Bely̆ı curve X, so it appears one will have to do more than simply solve
the Dirichlet problem. See also work by Larusson and Sadykov [100], where the connection
with the classical Riemann-Hilbert problem is discussed in the context of trees.

4. Modular forms

In this section we continue with the general strategy of using complex analytic methods but
shift our focus in the direction of geometry and consideration of the uniformization theorem;
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we work explicitly with quotients of the upper half-plane by Fuchsian groups and recast Bely̆ı
maps in this language. This point of view is already suggested by Grothendieck [62]:

In more erudite terms, could it be true that every projective non-singular algebraic
curve defined over a number field occurs as a possible “modular curve” parametris-
ing elliptic curves equipped with a suitable rigidification? . . . [T]he Soviet mathe-
matician Bely̆ı announced exactly that result.

As in the last section, the method here uses numerical approximations; however, the use of
modular functions adds considerable more number-theoretic flavor to the analytic techniques
in the previous section.

Classical modular forms. — Let F2 be the free group on two generators as in (1.1). Recall
that the map that considers the permutation action of x, y, z on the cosets of a subgroup yields
a bijection

(4.1)

{
transitive permutation triples σ = (σ0, σ1, σ∞) ∈ S3

d

}
/∼

l 1:1
{subgroups of F2 of index d} /∼ ;

here the equivalence relation on triples is again uniform conjugation, and the equivalence
relation on subgroups is conjugation in F2. In particular, by Proposition 1.4, isomorphism
classes of (connected) Bely̆ı maps are in bijection with the conjugacy classes of subgroups F2

of finite index.
The key observation is now that F2 can be realized as an arithmetic group, as follows.
The group Γ(1) = PSL2(Z) = SL2(Z)/{±1} acts on the completed upper half-plane H∗ =
H ∪ P1(Q) by linear fractional transformations

z 7→ az + b

cz + d
, for ±

(
a b
c d

)
∈ PSL2(Z).

The quotient X(1) = Γ(1)\H∗ can be given the structure of a Riemann surface of genus 0 by
the uniformizing map j : X(1)

∼−→ P1(C) (often called the modular elliptic j-function),

j(q) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + . . .

where q = exp(2πiz).
For an integer N , we define the normal subgroup Γ(N) as the kernel of the reduction map
PSL2(Z)→ PSL2(Z/NZ). We will be particularly interested in the subgroup

Γ(2) =

{
±
(
a b
c d

)
∈ PSL2(Z) : b ≡ c ≡ 0 (mod 2)

}

of index 6, with quotient isomorphic to Γ(1)/Γ(2) ∼= PSL2(F2) = GL2(F2) ∼= S3. The
group Γ(2) is in fact isomorphic to the free group F2

∼= Γ(2): it is freely generated by

±
(

1 2
0 1

)
,±
(

1 0
2 1

)
, which act on H by z 7→ z + 2 and z 7→ z/(2z + 1), respectively; the

corresponding action on the upper half plane is free as well.
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The quotient X(2) = Γ(2)\H∗ is again a Riemann surface of genus 0; the action of Γ(2) on
P1(Q) has three orbits, with representatives 0, 1,∞ ∈ P1(Q). We obtain another uniformizing
map λ : X(2)

∼−→ P1(C) with expansion

λ(z) = 16q1/2 − 128q + 704q3/2 − 3072q2 + 11488q5/2 − 38400q3 + . . . .

As a uniformizer for a congruence subgroup of PSL2(Z), the function λ(z) has a modular
interpretation: there is a family of elliptic curves over X(2) equipped with extra structure.
Specifically, given λ ∈ P1(C) \ {0, 1,∞}, the corresponding elliptic curve with extra structure
is given by the Legendre curve

E : y2 = x(x− 1)(x− λ),

equipped with the isomorphism (Z/2Z)2 ∼−→ E[2] determined by sending the standard gener-
ators to the 2-torsion points (0, 0) and (1, 0).
There is a forgetful map that forgets this additional torsion structure on a Legendre curve and
remembers only isomorphism class; on the algebraic level, this corresponds to an expression
of j in terms of λ, which is given by

(4.2) j(λ) = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2
;

indeed, the map X(2) → X(1) given by j/1728 is a Galois Bely̆ı map of degree 6 with
monodromy group S3, given explicitly by (4.2). This map is the Galois closure of the map
computed in Example 2.1.
The cusp ∞ plays a special role in the theory of modular forms, and marking it in our
correspondence will allow a suitable rigidification. With this modification, the correspondence
(4.1) becomes a bijection

(4.3)

{
transitive permutation triples σ ∈ Sd

with a marked cycle of σ∞

}
/∼

l 1:1
{subgroups of F2

∼= Γ(2) of index d} /∼
with equivalence relations as follows: given Γ,Γ′ ≤ Γ(2), we have Γ ∼ Γ′ if and only if
gΓg−1 = Γ′ for g an element of the subgroups of translations generated by z 7→ z + 2; and
two triples σ, σ′ ∈ S3

d with marked cycles c, c′ in σ∞, σ′∞ are equivalent if and only if they are
simultaneously conjugate by an element τ with τcτ−1 = c′.
It is a marvelous consequence of either of the bijections (4.1) and (4.3), combined with
Bely̆ı’s theorem, that any curve X defined over a number field is uniformized by a subgroup
Γ ≤ Γ(2) < PSL2(Z), so that there is a uniformizing map Γ\H∗ ∼−→ X(C). This is the
meaning of Grothendieck’s comment: the rigidification here corresponds to the subgroup Γ.
In general, the group Γ is noncongruence, meaning that it does not contain a subgroup Γ(N),
so membership in the group cannot be determined by congruences on the coordinate entries
of the matrices. This perspective of modular forms is taken by Atkin–Swinnerton-Dyer [5]
and Birch [18, Theorem 1] in their exposition of this subject: they discuss the relationship
between modular forms, the Atkin–Swinnerton-Dyer congruences for noncongruence modular
forms, and Galois representations in the context of Bely̆ı maps. For more on the arithmetic
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aspects of this subject, we refer to the survey by Li–Long–Yang [104] and the references
therein.
The description (4.3) means that one can work quite explicitly with the Riemann surface
associated to a permutation triple. Given a triple σ, the uniformizing group Γ is given as the
stabilizer of 1 in the permutation representation Γ(2) → Sd given by x, y, z 7→ σ0, σ1, σ∞ as
in (4.3). A fundamental domain for Γ is given by Farey symbols [98], including a reduction
algorithm to this domain and a presentation for the group Γ together with a solution to the
word problem in Γ. These algorithms have been implemented in the computer algebra systems
Sage [137] (in a package for arithmetic subgroups defined by permutations, by Kurth, Loeffler,
and Monien) and Magma [19] (by Verrill).
Once the group Γ has been computed, and the curve X = Γ\H∗ is thereby described, the
Bely̆ı map is then simply given by the function

λ : X → X(2) ∼= P1,

so one immediately obtains an analytic description of Bely̆ı map. In order to obtain explicit
equations, one needs meromorphic functions on X, which is to say, meromorphic functions on
H that are invariant under Γ.
We are led to the following definition. Let Γ ≤ PSL2(Z) be a subgroup of finite index. A
modular form for Γ ≤ PSL2(Z) of weight k ∈ 2Z is a holomorphic function f : H → C such
that

(4.4) f(γz) = (cz + d)kf(z) for all γ = ±
(
a b
c d

)
∈ Γ

and such that the limit limz→c f(z) = f(c) exists for all cusps c ∈ Q ∪ {∞} = P1(Q) (with
the further technical condition that as z → ∞, we take only those paths that remain in a
bounded vertical strip). A cusp form is a modular form where f(c) = 0 for each cusp c. The
space Sk(Γ) of cusp forms for Γ of weight k is a finite-dimensional C-vector space. If Γ is
torsion-free or k = 2, then there is an isomorphism

(4.5)
Sk(Γ)

∼−→ Ωk/2(X)

f(z) 7→ f(z) (dz)⊗k/2

where Ωk/2(X) is the space of holomorphic differential (k/2)-forms on X. In any case,
evaluation on a basis for Sk(Γ) defines a holomorphic map ϕ : X → Pr−1 where r =
dimC Sk(Γ), whenever r ≥ 1. Classical theory of curves yields a complete description of the
map ϕ; for example, for generic X of genus g ≥ 3, taking k = 2 (i.e., a basis of holomorphic
1-forms) gives a canonical embedding of X as an algebraic curve of degree 2g − 2 in Pg−1, by
the theorem of Max Noether.
Selander–Strömbergsson [141] use this analytic method of modular forms to compute Bely̆ı
maps; this idea was already present in the original work of Atkin–Swinnerton-Dyer [5] and
was developed further by Hejhal [72] in the context of Maass forms. Starting with the analytic
description of a subgroup Γ ≤ Γ(2), they compute a hyperelliptic model of a curve of genus
2 from the knowledge of the space S2(Γ) of holomorphic cusp forms of weight 2 for Γ. These
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cusp forms are approximated to a given precision by truncated q-expansions

(4.6) f(z) =

N∑

n=0

anq
n,

one for each equivalence class of cusp c and corresponding local parameter q under the action
of Γ. These expansions (4.6) have undetermined coefficients an ∈ C, and the equation (4.4)
implies an approximate linear condition on these coefficients for any pair of Γ-equivalent
points z, z′. These linear equations can then be solved using the methods of numerical linear
algebra. This seems to work well in practice, and once complex approximations for the cusp
forms are known, the approximate algebraic equations that they satisfy can be computed, so
that after a further Newton iteration and then lattice reduction one obtains an exact solution.
Atkin–Swinnerton-Dyer say of this method [5, p. 8]:

From the viewpoint of numerical analysis, these equations are of course very ill-
conditioned. The power series converge so rapidly that one must be careful not to
take too many terms, and the equality conditions at adjacent points in a subdivision
of the sides are nearly equivalent. However, by judicious choice of the number of
terms in the power series and the number of subdivision points, for which we can
give no universal prescription, we have been able to determine the first 8 or so
coefficients [...] with 7 significant figures in many cases.

Question 4.7. — Does this method give rise to an algorithm to compute Bely̆ı maps? In
particular, is there an explicit estimate on the numerical stability of this method?

For Bely̆ı maps such that the corresponding subgroup Γ is congruence, methods of modular
symbols [36, 149] can be used to determine the q-expansions of modular forms using exact
methods. The Galois groups of congruence covers are all subgroups of PGL2(Z/NZ) for some
integer N , though conversely not all such covers arise in this way; as we will see in the next
subsection, since PSL2(Z) has elliptic points of order 2 and 3, a compatibility on the orders
of the ramification types is required. Indeed, “most” subgroups of finite index in PSL2(Z) (in
a precise sense) are noncongruence [81].

Example 4.8. — To give a simple example, we consider one of the two (conjugacy classes
of) noncongruence subgroups of index 7 of PSL2(Z), the smallest possible index for a non-
congruence subgroup by Wohlfarht [170]. The cusp widths of this subgroup are 1 and 6. The
information on the cusps tells us that the ramification type of the Bely̆ı map above∞ is given
by (6, 1), whereas the indices above 0 (resp. 1) have to divide 3 (resp. 2). This forces the
genus of the dessin to equal 0, with ramification triple (6111, 3211, 2311).
There are exactly two transitive covers with this ramification type, both with passport
(0, G, (2311, 3211, 6111)). Here the monodromy group G is the Frobenius group of order 42;
the two covers correspond to two choices of conjugacy classes of order 6 in G. For one such
choice, we obtain the following unique solution up to conjugacy:

σ0 = (1 2)(3 4)(6 7), σ1 = (1 2 3)(4 5 6), σ∞ = (1 4 7 6 5 3).
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A fundamental domain for the action of Γ = Γ7 is as follows.
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)
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)
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)
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(
5 −6
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)

s4

(
3 −7
1 −2

)

s5

(
4 −17
1 −4

)

Figure 4.9: A fundamental domain and side pairing for Γ7 ≤ Γ(1) of index 7

We put the cusp of Γ(1) at t = ∞ and the elliptic point of order 3 (resp. 2) at t = 0 (resp.z
t = 1). After this normalization, the q-expansion for the Hauptmodul t for Γ is given by

t(q) =
1

ζ
+ 0 +

9 +
√
−3

2134
ζ +
−3− 5

√
−3

2235
ζ2 +

1− 3
√
−3

2137
ζ3 + . . .

where ζ = ηq1/6 and

η6 =
310

77
(−1494 + 3526

√
−3).
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From this, we compute using linear algebra the algebraic relationship between t(q) and j(q),
expressing j(q) as a rational function in t(q) of degree 7:

j = −26(1 +
√
−3)

(5−
√
−3)7

(54
√
−3t2 + 18

√
−3t+ (5− 3

√
−3))3(6

√
−3t− (1 + 3

√
−3))

(6
√
−3t− (1 + 3

√
−3))

.

We will compute this example again using p-adic methods in the next section (Example 5.5).

Modular forms on subgroups of triangle groups. — There is related method that
works with a cocompact discrete group Γ ≤ PSL2(R), reflecting different features of Bely̆ı
maps. Instead of taking the free group on two generators, corresponding to the fundamental
group of P1 \ {0, 1,∞}, we instead consider orbifold covers arising from triangle groups, a
subject of classical interest (see e.g. Magnus [105]). For an introduction to triangle groups,
including their relationship to Bely̆ı maps and dessins, see the surveys of Wolfart [172, 173].
Let a, b, c ∈ Z≥2 ∪ {∞}. We define the triangle group

∆(a, b, c) = 〈δ0, δ1, δ∞ | δa0 = δb1 = δc∞ = δ0δ1δ∞ = 1〉
where infinite exponents a, b, c are ignored in the relations. Let χ(a, b, c) = 1/a+1/b+1/c−1 ∈
Q. For example, we have ∆(2, 3,∞) ∼= PSL2(Z) and ∆(∞,∞,∞) ∼= F2

∼= Γ(2), so this
construction generalizes the previous section. The triangle group ∆(a, b, c) is the index 2
orientation-preserving subgroup of the group generated by the reflections in the sides of a
triangle T (a, b, c) with angles π/a, π/b, π/c drawn in the geometry H, where H = P1,C,H
according as χ(a, b, c) is positive, zero, or negative.
Associated to a transitive permutation triple σ from Sd is a homomorphism

∆(a, b, c)→ Sd

δ0, δ1, δ∞ 7→ σ0, σ1, σ∞

where a, b, c ∈ Z≥2 are the orders of σ0, σ1, σ∞, respectively. (Here we have no index ∞, so
∆(a, b, c) is cocompact, which is where this method diverges from that using classical modular
forms.) The stabilizer of a point Γ ≤ ∆(a, b, c) has index d, and the above homomorphism is
recovered by the action of ∆ on the cosets of Γ. The quotient map

ϕ : X = Γ\H → ∆\H
then realizes the Bely̆ı map with monodromy σ, so from this description we have a way of
constructing the Bely̆ı map associated to σ. More precisely, as in (4.1), the bijection (1.3)
generalizes to

(4.10)

{
permutation triples σ = (σ0, σ1, σ∞) ∈ S3

d
such that a, b, c are multiples of the orders of σ0, σ1, σ∞

}
/∼

1:1←→
{subgroups of ∆(a, b, c) of index n} /∼,

where the equivalences are as usual: conjugacy in the group ∆(a, b, c) and simultaneous
conjugacy of triples (σ0, σ1, σ∞). (In particular, these triples are not marked, as by contrast
they are in (4.3), though certainly our construction could be modified in this way if so desired.)
Explicitly, one obtains the Riemann surfaces corresponding to a subgroup Γ < ∆(a, b, c)
under the bijection (4.10) by gluing together triangles T (a, b, c) and making identifications.
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This gives a conformally correct way to draw dessins and a method for computing the covers
themselves numerically.
This method has been developed in recent work of Klug–Musty–Schiavone–Voight [91]. Al-
gorithms are provided for working with the corresponding triangle group ∆, determining
explicitly the associated finite index subgroup Γ, and then drawing the dessin on H together
with the gluing relations that define the quotient X = Γ\H. From this explicit description
of the Riemann surface (or more precisely, Riemann 2-orbifold) X one obtains equations for
the Bely̆ı map f numerically. The main algorithmic tool for this purpose is a generalization
of Hejhal’s method replacing q-expansions with power series expansions, due to Voight–Willis
[164]. This method works quite well in practice; as an application, a Bely̆ı map of degree 50
of genus 0 regularly realizing the group PSU3(F5) over Q(

√
−7) is computed.

Example 4.11. — Consider the permutation triple σ = (σ0, σ1, σ∞), where

σ0 = (1 7 4 2 8 5 9 6 3)

σ1 = (1 4 6 2 5 7 9 3 8)

σ∞ = (1 9 2)(3 4 5)(6 7 8).

Then σ0σ1σ∞ = 1 and these permutations generate a transitive subgroup

G ∼= Z/3Z o Z/3Z ≤ S9

of order 81 and give rise to a Bely̆ı map with passport (0, G, (91, 91, 33)). The corresponding
group Γ ≤ ∆(9, 9, 3) = ∆ of index 9 arising from (4.10) has signature (3;−), i.e., the quotient
Γ\H is a (compact) Riemann surface of genus 3. The mapX(Γ) = Γ\H → X(∆) = ∆\H ∼= P1

gives a Bely̆ı map of degree 9, which we now compute.
First, we compute a coset graph, the quotient of the Cayley graph for ∆ on the generators
δ±0 , δ

±
1 by Γ with vertices labelled with coset representatives Γαi for Γ\∆. Given a choice

of fundamental domain D∆ for ∆ (a fundamental triangle and its mirror, as above), such
a coset graph yields a fundamental domain DΓ =

⋃n
i=1 αiD∆ equipped with a side pairing,

indicating how the resulting Riemann orbifold is to be glued. We consider this setup in the
unit disc D, identifying H conformally with D taking a vertex to the center w = 0; the result
is Figure 4.12. We obtain in this way a reduction algorithm that takes a point in z ∈ H (or
D) and produces a representative z′ ∈ DΓ and γ ∈ Γ such that z′ = γz.
We consider the space S2(Γ) of cusp forms of weight 2 for Γ, defined as in (4.4) (but note
that since no cusps are present we can omit the corresponding extra conditions). As in (4.5),
we have an isomorphism S2(Γ) ∼= Ω1(X) of C-vector spaces with the space of holomorphic
1-forms on X. Since X has genus 3, we have dimC S2(Γ) = 3. We compute a basis of forms
by considering power series expansions

f(w) = (1− w)2
∞∑

n=0

bnw
n

for f ∈ S2(Γ) around w = 0 in the unit disc D. (The presence of the factor (1 − w)2

makes for nicer expansions, as below.) We compute with precision ε = 10−30, and so
f(w) ≈ (1−w)2

∑N
n=0 bnw

n with N = 815. We use the Cauchy integral formula to isolate each
coefficient bn, integrating around a circle of radius ρ = 0.918711 encircling the fundamental
domain. This integral is approximated by summing the evaluations at O(N) points on this
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circle, which can be explictly represented by elements in the fundamental domain DΓ after
using the reduction algorithm.
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Figure 4.12: A fundamental domain and side pairing for Γ ≤ ∆(9, 9, 3) of index 9
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We find the echelonized basis

x(w) = (1− w)2

(
1− 40

6!
(Θw)6 +

3080

9!
(Θw)9 − 1848000

12!
(Θw)12 +O(w15)

)

y(w) = (1− w)2

(
(Θw) +

4

4!
(Θw)4 +

280

7!
(Θw)7 − 19880

10!
(Θw)10 +O(w13)

)

z(w) = (1− w)2

(
(Θw)3 − 120

6!
(Θw)6 − 10080

9!
(Θw)9 − 2698080

12!
(Θw)12 +O(w15)

)

where Θ = 1.73179 . . . + 0.6303208 . . .
√
−1. The algebraicity and near integrality of these

coefficients are conjectural [91], so this expansion is only numerically correct, to the computed
precision.
We now compute the image of the canonical map

X(Γ) = Γ\H → P2

w 7→ (x(w) : y(w) : z(w));

we find a unique quartic relation

216x3z − 216xy3 + 36xz3 + 144y3z − 7z4 = 0

so at least numerically the curve X is nonhyperelliptic. Evaluating these power series at
the ramification points, we find that the unique point above f = 0 is (1 : 0 : 0), the point
above f = 1 is (1/6 : 0 : 1), and the three points above f = ∞ are (0 : 1 : 0) and
((−1± 3

√
−3)/12 : 0 : 1).

The uniformizing map f : X(Γ) → X(∆) ∼= P1 is given by the reversion of an explicit ratio
of hypergeometric functions:

f(w) = −1

8
(Θw)9 − 11

1280
(Θw)18 − 29543

66150400
(Θw)27 +O(w36).

Using linear algebra, we find the expression for f in terms of x, y, z:

f(w) =
−27z3

216x3 − 108x2z + 18xz2 − 28z3
.

Having performed this numerical calculation, we then verify on the curve X(Γ) that this
rational function defines a three-point cover with the above ramification points, as in Section 8.

An important feature of methods using modular forms is that it allows a much more direct
algebraic approach to determining the algebraic structure on the target Riemann surface.
There are no “parasitic” solutions to discard, just as when using the more advanced analytic
method of Section 3. Moreover, the equation for the source surface are much easier to find
than with the analytic method, where one typically needs to compute period matrices to high
precision.

Question 4.13. — What are the advantages of the noncocompact (q-expansions) and co-
compact (power series expansions) approaches relative to one another? How far (degree,
genus) can these methods be pushed? Can either of these methods be made rigorous?
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5. p-adic methods

As an alternative to complex analytic methods, we can use p-adic methods to find a solution;
in this section we survey this method, and give a rather elaborate example of how this
works in practice. It is simply the p-adic version of the complex analytic method, with
the big distinction that finding a suitable approximation and then Hensel lifting can be much
easier; usually finding a solution over a finite field suffices to guarantee convergence of Newton
approximation.

Basic idea. — The p-adic method begins by finding a solution in a finite field of small
cardinality, typically by exhaustive methods, and then lifts this solution using p-adic Newton
iteration. Again, lattice methods can be then employed to recognize the solution over Q.
Turning the ‘p-adic crank’, as it is called, has been a popular method, rediscovered many times
and employed in a number of contexts. Malle [109] used this method to compute polynomials
with Galois groups M22, Aut(M22), and PSL3(F4) : 2 over Q. Elkies [47] computed a degree
28 cover f : X → P1 with group G = PSL2(F27) via its action on P1(F27) modulo 29, and
other work of Elkies [48], Watkins [166] and Elkies–Watkins [50] have also successfully used
p-adic methods to compute Bely̆ı maps. Elkin–Siksek [51] used this method and tabulated
Bely̆ı maps of small degree. Van Hoeij–Vidunas [157] used this approach to compute a list
of examples whose branching is nearly regular, before extending the direct method [158] as
explained in Section 2. More recently, Bartholdi–Buff–von Bothmer–Kröker [7] computed a
Bely̆ı map in genus 0 that is of degree 13 and which arises in a problem of Cui in dynamical
systems; they give a relatively complete description of each of the steps involved.
A foundational result by Beckmann indicates which primes are primes of good reduction for
the Bely̆ı map; which primes, therefore, can be used in the procedure above.

Theorem 5.1 (Beckmann [11]). — Let f : X → P1 be a Bely̆ı map and let G be the
monodromy group of f . Suppose that p - #G. Then there exists a number field L such that p
is unramified in L and f is defined over L with good reduction at all primes p of L lying over
p.

Remark 5.2. — In fact, Beckmann proves as a consequence that under the hypotheses of
the theorem, the prime p is unramified in the field of moduli K of f . (For the definition of
the field of moduli, see Section 7.)

If one works with a pointed cover instead, then the statement of Beckmann’s theorem is
simpler [18, Theorem 3]. In the notation of this theorem, if p divides the order of one of
the permutations σ then f has bad reduction at p [18, Theorem 4]. But for those p that
divide #G but not any of the ramification indices, it is much harder to find methods (beyond
explicit calculation) to decide whether or not a model of f with good reduction over p exists.
Important work in this direction is due to Raynaud [130] and Obus [126].

Question 5.3. — Can one perform a similar lifting procedure by determining solutions mod-
ulo primes where f has bad reduction?

As the matrix of derivatives of the equations used is almost always of full rank (see Section 2),
the most time-consuming part is usually the search for a solution over a finite field. In order for
this method to be efficient, one must do better than simply running over the potential solutions
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over Fq. Bartholdi–Buff–van Bothmer–Kröker describe [7, Algorithm 4.7] a more careful
method for genus 0, working directly with univariate polynomials (and rational functions)
with coefficients in Fq. In the example below, we show an approach that is similar in spirit
to theirs and that works for hyperelliptic curves as well.
When the field of definition is “generic” in some sense, then there is often a split prime of
small norm, so this method is often efficient in practice. The following question still merits
closer investigation.

Question 5.4. — How efficiently can a Bely̆ı map be computed modulo a prime p? How far
can one reduce the dimension of the affine space employed in the enumeration?

In particular, can a “partial projection” (partial Gröbner basis) be computed efficiently to
reduce the number of looping variables?

Example 5.5. — We return to the Bely̆ı maps with ramification type (6111, 3211, 2311)
considered in Example 4.8.
Theorem 5.1 suggests to reduce modulo 5 first. We put the ramification type (6, 1) over ∞
and the corresponding points at ∞ and 0; we can do this without risking an extension of the
field of definition since these points are unique. In the same way, we put the type (32, 1) over
0 and the single point in this fiber at 1. This defines a reasonably small system over F5 of
dimension 7, which could even be checked by enumeration. We get the solutions

f(t) =
α8(t− 2)3(t+ α)3(t− 1)

t
and its conjugate, where α is a root of the Conway polynomial defining F52 over F5, i.e.,
α2 − α+ 2 = 0. At the prime 13, we get two solutions defined over F13:

f(t) =
−3(t2 + 3t+ 8)3(t− 1)

t
, f(t) =

2(t2 + 6)3(t− 1)

t
.

In both cases, the derivative matrices of the equations (with or without ASD) are non-singular,
so we can lift to the corresponding unramified p-adic fields. After a few iterations of the second
pair of solutions, we get the 13-adic approximations

f(t) = (−3− 5 · 13− 132 + . . . )(t− 1)t−1

· (t2 + (3 + 8 · 13− 2 · 132 + . . . )t+ (8− 3 · 13− 6 · 132 + . . . ))3

f(t) = (2− 3 · 13 + 3 · 132 + . . . )(t− 1)t−1

· (t2 + (−4 · 13 + 6 · 132 + . . . )t+ (6− 3 · 132 + . . . ))3.

We continue, with quadratically growing accuracy, in order to use LLL in the end. This
suggests a pair of solutions over Q(

√
−3) given by

f(t) =
−1 +

√
−3

4
√
−3

3
(
√
−3 + 2)7

(162t2 + 18(−
√
−3− 6)t+ (

√
−3 + 3))3(t− 1)

t

and its conjugate. One verifies as in Section 8 that this yields a solution over Q(
√
−3) to

the given equations and that they are the requested Bely̆ı maps. Though we stop here, one
could further simplify the equation even further by suitable scalar multiplications in t, or even
better, the general methods described in Section 8.
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Example 5.6. — We now illustrate the complexities involved in employing the above method
in an example. It arose during a study of Galois Bely̆ı maps with monodromy group PSL2(Fq)
or PGL2(Fq), undertaken by Clark–Voight [25].
Consider the passport with uniform ramification orders 3, 5, 6 and monodromy group G =
PSL2(F11) ≤ S11. Here the embedding of G in S11 results from its conjugation action on the
cosets of its exceptional subgroup A5 (and indeed #G/#A5 = 660/60 = 11).
Let f : E → P1 be the degree 11 Bely̆ı map defined by the above data, and let ϕ : X → P1

be its Galois closure, with Galois group G. We anticipate [25] that ϕ with its Galois action
is defined over an at most quadratic extension of Q(

√
3,
√

5), in which case by the Galois
correspondence the quotient map f will be defined over the same field. We confirm this by
direct computation.
Using the representation of G above, we find that f has passport

(1,PSL2(F11), (3312, 5211, 613121));

in accordance with the construction above, the ramification orders are divisors of 3, 5, 6, and
E has genus 1.
We distinguish the point of ramification degree 6 above ∞ and obtain a corresponding group
law on E. We fix two more points by taking the other points above ∞ (with ramification 3
and 2, respectively) to be (0, 1) and (1, y1). We write the equation

y2 = π3x
3 + π2x

2 + (y2
1 − π3 − π2 − 1)x+ 1 = π(x)

for the curve E. The Bely̆ı function f has the form

f(x, y) =
q(x) + r(x)y

(x− 1)2x3

where q(x) = q8x
8 + · · ·+ q0 and r(x) = r6x

6 + · · ·+ r0 have degree 8, 6 respectively and the
numerator fnum(x, y) = q(x) + r(x)y vanishes to degree 3 at (0,−1) and 2 at (0,−y1).
By the ramification description above 0, we must have

(5.7)
NQ(x,y)/Q(x)(fnum(x, y)) = q(x)2 − r(x)2π(x)

= q2
8x

3(x− 1)2s(x)3t(x)

where s(x) = x3 + s2x
2 + s1x+ s0 and t(x) = x2 + t1x+ t0, and similarly above 1 we should

have

(5.8)
NQ(x,y)/Q(x)((f(x, y)− 1)num) = (q(x)− (x− 1)2x3)2 − r(x)2π(x)

= q2
8x

3(x− 1)2u(x)v(x)

where u(x) = x2 + u1x+ u0 and v(x) = x+ v0.
An approach using Gröbner basis techniques utterly fails here, given the number of variables
involved. This calculation is also made more difficult by the possibility that other Bely̆ı
covers will intervene: the Mathieu group M11 ↪→ S11 also has a (3, 5, 6) triple of genus 1,
and it is a priori conceivable that S11 occurs as well. Discarding these parasitic solutions is a
nontrivial task until one has already computed all of them along with the correct ones, just
as in Section 2.
As explained above, we search for a solution in a finite field Fq, lift such a solution using
Hensel’s lemma (if it applies), and then attempt to recognize the solution p-adically as an
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algebraic number using the LLL lattice reduction algorithm. The primes of smallest norm
in the field Q(

√
3,
√

5) that are relatively prime to # PSL2(F11) have norm q = 49, 59, so
there is no hope of simply running over all the Fq-rational values in the affine space in
y1, π, q, r, s, t, u, v, which is 28-dimensional.
We speed up the search with a few tricks. Subtracting the two equations (5.7)–(5.8), we have

q2
8s(x)3t(x)− 2q(x) + (x− 1)2x3 = r2

8u(x)5v(x).

Comparing coefficients on both sides, by degree we see that the coefficients of x9 and x10 of
s(x)3t(x) and u(x)5v(x) must agree. So we precompute a table of the possible polynomials of
the form u(x)5v(x); there are O(q3) such, and we sort them for easy table lookup. Then, for
each of the possible polynomials of the form s(x)3t(x), of which there are O(q5), we match
the above coefficients. Typically there are few matches. Then for each q2

8 ∈ F×2
q , we compute

q(x) as

q(x) =
1

2

(
q2

8s(x)3t(x)− q2
8u(x)5v(x)− (x− 1)2x3

)
.

From equation (5.7) we have

q(x)2 − q2
8(x− 1)2x3s(x)3t(x) = π(x)r(x)2,

so we compute the polynomial on the right and factor it into squarefree parts. If the
corresponding π(x) has degree 3, then we find r(x) as well, whence also our solution.
Putting this on a cluster at the Vermont Advanced Computing Center (VACC) using Magma
[19], after a few days we have our answer. We find several solutions in F49 but only one solution
lifts p-adically without additional effort; it turns out the Jacobian of the corresponding system
of equations is not of full rank. After some effort (see also Section 8), we recognize this cover
as an M11-cover with ramification (3, 5, 6), defined over the number field Q(α) where

α7 − α6 − 8α5 + 21α4 + 6α3 − 90α2 + 60α+ 60 = 0.

We find 62 solutions in F59. Note that the M11-covers above do not reappear since there is no
prime of norm 59 in Q(α). Only 8 of these solutions yield covers with the correct ramification
data; our above conditions are necessary, but not sufficient, as we have only considered the
x-coordinates and not the y-coordinates. These 8 covers lift to a single Galois orbit of curves
defined over the field Q(

√
3,
√

5,
√
b) where

b = 4
√

3 +
11 +

√
5

2
;

with N(b) = 112; more elegantly, the extension of Q(
√

3,
√

5) is given by a root β of the
equation

T 2 − 1 +
√

5

2
T − (

√
3 + 1) = 0.
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The elliptic curve E has minimal model

y2 + ((1
2(13
√

5 + 33)
√

3 + 1
2(25
√

5 + 65))β + (1
2(15
√

5 + 37)
√

3 + (12
√

5 + 30)))xy

+ (((8
√

5 + 15)
√

3 + 1
2(31
√

5 + 59))β + (1
2(13
√

5 + 47)
√

3 + 1
2(21
√

5 + 77)))y

= x3 + ((1
2(5
√

5 + 7)
√

3 + 1
2(11
√

5 + 19))β + (1
2(3
√

5 + 17)
√

3 + (2
√

5 + 15)))x2

+ ((1
2(20828483

√
5 + 46584927)

√
3 + 1

2(36075985
√

5 + 80687449))β

+ (1
2(21480319

√
5 + 48017585)

√
3 + 1

2(37205009
√

5 + 83168909)))x

+ (((43904530993
√

5 + 98173054995)
√

3 + 1
2(152089756713

√
5 + 340081438345))β

+ ((45275857298
√

5 + 101240533364)
√

3 + (78420085205
√

5 + 175353747591))).

The j-invariant of E generates the field Q(
√

3,
√

5, β), so this is its minimal field of definition.
This confirms that ϕ : X → P1 as a G-cover is defined over an at most quadratic extension
of Q(

√
3,
√

5) contained in the ray class field of conductor 11∞, as predicted by the results of
Clark–Voight [25].

6. Galois Bely̆ı maps

In this short section we sketch some approaches for calculating Galois Bely̆ı maps, i.e.,
those Bely̆ı maps f : X → P1 corresponding to Galois extensions of function fields. The
flavor of these computations is completely different from those in the other sections, as the
representation-theoretic properties of the Galois group involved are used heavily. In light of
the Galois correspondence, all Bely̆ı maps are essentially known once the Galois Bely̆ı maps
are known; however, the growth in degree between the degree of the Bely̆ı map and that of
its Galois closure makes it very difficult in general to make this remark a feasible approach
to computing general Bely̆ı maps. We therefore consider the subject only in itself, and even
here we limit ourselves to the general idea: exploiting representations and finding invariant
functions.
The Galois Bely̆ı maps in genus 0 correspond to the regular solids, and can be computed using
the direct method (see the end of Section 2). The most difficult case, that of the icosahedron,
was calculated first by Klein [90]. The Galois Bely̆ı maps in genus 1 only occur on curves
with CM by either Q(

√
−3) or Q(

√
−1), and can therefore be calculated by using explicit

formulas for isogenies; see work of Singerman–Syddall [147].
So it remains to consider the case of genus ≥ 2, where Bely̆ı maps are related with hyperbolic
triangle groups (see Section 4). In genus ≥ 2, Wolfart [173] has shown that Galois Bely̆ı
maps can be identified with quotient maps of curves with many automorphisms, that is, those
curves that do not allow nontrivial deformations that leave the automorphism group intact
and whose automorphism group therefore defines a zero-dimensional subscheme of the moduli
space of curves Mg of genus g ≥ 2. Wolfart [171] compares these Bely̆ı maps with the
related phenomenon of Jacobians of CM type, which define zero-dimensional subschemes of
the moduli space of principally polarized abelian varieties Ag. In particular, the CM factors
of the Jacobians of the Galois Bely̆ı curves are essentially known; they come from Fermat
curves [171, §4].
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A fundamental technique for proving these theorems is to determine the representation of
the automorphism group on the space of differentials, first considered by Chevalley and Weil
[24]; this is elaborated by Berry–Tretkoff [14] and Streit [150]. Once this is done, one
typically recovers the curve by determining the shape of its canonical embedding, often an
intersection of quadrics. (When the canonical embedding is not injective, the situation is even
simpler; since the hyperelliptic involution is central in the automorphism group, this reduce
to the calculations in genus 0 mentioned above.) The particular form of the equations is then
determined by being fixed under the action of the automorphism group, which acts by linear
transformations.

Question 6.1. — Can the representation of the automorphism group G on the space of
differentials be used to give a rigorous algorithm for the computation of G-Galois Bely̆ı maps
(with a bound on the running time)?

Put another way, computing a Galois Bely̆ı map amounts to determining G-invariant poly-
nomials of a given degree; in some cases, there is a unique such polynomial with given degree
and number of variables, and so it can be found without any computation.

Example 6.2. — We illustrate the invariant theory involved by giving an example of a
calculation of a quotient map X → X/Aut(X) ∼= P1 that turns out to be a Bely̆ı map;
the example was suggested to us by Elkies.
Consider the genus 9 curve X defined by the following variant of the Bring equations:

v + w + x+ y + z = 0,

v2 + w2 + x2 + y2 + z2 = 0,

v4 + w4 + x4 + y4 + z4 = 0.

This curve is known as Fricke’s octavic curve, and it was studied extensively by Edge [44].
There is an obvious linear action by S5 on this curve by permutation of coordinates. To find
coordinates on the quotient X/S5 it therefore suffices to look at the symmetric functions in
the variables v, w, x, y, z. We see that the power sums with exponents 1, 2, 4 vanish on X.
Since the ring of invariants function for S5 is generated by the power sums of degree at most
5, this suggests that we cook up a function from the power sums p3 and p5 of degree 3 and 5.
These functions do not have the same (homogeneous) degree; to get a well-defined function,
we consider their quotient f = (p5

3 : p3
5) as a morphism from f : X → P1.

The intersection of the hyperplanes defined by p3 = 0 and p5 = 0 withX are finite; indeed, this
is obvious since the corresponding functions do not vanish indentically on X. By Bézout’s
theorem, these zero loci are of degrees 24, 40. But whereas in the former case one indeed
obtains 24 distinct geometric points in the intersection, one obtains only 20 geometric points
in the latter case. This shows that the ramification indices over 0 and ∞ of the degree 120
morphism f are 6 and 5.
This is in fact already enough to conclude that there is only one other branch point for q.
Indeed, the orbifold X/Aut(X) is uniformized by the upper half plane H since the genus 9
curve X is, so X/Aut(X) is a projective line with at least 3 branch points for the quotient
by the action of S5. On the other hand, the Riemann–Hurwitz formula shows that adding a
single minimal contribution of 2 outside the contributions 5 and 6 already known from∞ and
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0 already makes the genus grow to 9, so additional ramification is impossible. The additional
branch point of f can be found by considering the divisor of df on X; this point turns out to
be −(15/2)2. So the morphism f : X → P1 defined by

f(v, w, x, y, z) =
−22p5

3

152p3
5

= −
(

2

15

)2 (v3 + w3 + x3 + y3 + z3)5

(v5 + w5 + x5 + y5 + z5)3

realizes the quotient X → X/S5 as a Bely̆ı map. Moreover, we see that the Galois action is
defined over Q, since it is given by permuting the given coordinate functions on X.
In fact we have an isomorphism Aut(X) ∼= S5 since Aut(X) cannot be bigger than S5; such
a proper inclusion would give rise to a Fuchsian group properly containing the triangle group
∆(2, 5, 6), whereas on the other hand this group is maximal (by work of Takeuchi [153], or
more generally see Singerman [146] or Greenberg [63, Theorem 3B]).
We therefore have found a Galois cover realizing S5 with ramification indices 2, 5, 6. It
turns out that this is the only such cover up to isomorphism. Considering the exceptional
isomorphism PGL2(F5) ∼= S5, we see that our calculation also yields a Galois cover realizing
a projective linear group.

7. Field of moduli and field of definition

Considering Grothendieck’s original motivation for studying dessins, it is important to con-
sider the rather delicate issue of fields of definition of Bely̆ı maps. In fact this is not only an
engaging question on a theoretic level, but it is also interesting from a practical point of view.
Indeed, as we have seen in our calculations above, it is often necessary to determine equations
for Bely̆ı maps by recognizing complex numbers as algebraic numbers. A bound on the degree
K is an important part of the input to the LLL algorithm that is typically used for this.
Moreover, having an estimate for the degree of K is a good indication of how computable a
given cover will be—if the estimate for the size is enormous, we are very unlikely to succeed
in practice!

Field of moduli. — For a curve X defined over Q, the field of moduli M(X) of X is the
fixed field of the group {τ ∈ Gal(Q/Q) : Xτ ∼= X} on Q, where as before Xτ is the base
change of X by the automorphism τ ∈ Gal(Q/Q) (obtained by applying the automorphism
τ to the defining equations of an algebraic model of X over Q). One similarly defines the
field of moduli of a Bely̆ı map: M(f) is the fixed field of {τ ∈ Gal(Q/Q) : f τ ∼= f} with
isomorphisms as defined in Section 1.
Now let f : X → P1 be a Bely̆ı map with monodromy representation σ : F2 → Sd and
monodromy group G. By Theorem 1.6, the monodromy group G of f , considered as a
conjugacy class of subgroups of Sd, is invariant under the Galois action. Therefore, given
τ ∈ Gal(Q/Q), the conjugated morphism f τ : Xτ → P1 is a Bely̆ı map, and its monodromy
representation στ : F2 → Sd, which is well-defined up to conjugation, can be taken to have
image G. Because the Galois action preserves the monodromy group up to conjugation and
the ramification indices [84], the Bely̆ı map f τ has the same passport P as f . We therefore
get an action of Gal(Q/Q) on the set S of Bely̆ı maps with passport P . Since the stabilizer
of an element of S under this action has index at most #S in Gal(Q/Q), we get the following
result.
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Proposition 7.1. — Let f be a Bely̆ı map with passport P and field of moduli K. Then the
degree [K : Q] is bounded above by the size of P .

As mentioned at the end of Section 1, finding better bounds than in Proposition 7.1 is far
from trivial and a subject of ongoing research. Experimentally, the bound is often an equality
for generic (non-Galois) Bely̆ı maps.

Rigidified categories. — Working with Galois Bely̆ı maps and the additional structure
coming from their automorphism group naturally leads one to consider a new, more rigidified
category [38]. A G-Bely̆ı map is a pair (f, i), where f : X → P1 is a Galois Bely̆ı map and
i : G

∼−→ Mon(f) is an isomorphism of the monodromy group of f with G. A morphism of
G-Bely̆ı maps from (f, i) to (f ′, i′) is an isomorphism of Bely̆ı maps h : X

∼−→ X ′ that identifies
i with i′, i.e., such that

(7.2) h(i(g)x) = i′(g)h(x) for all g ∈ G and x ∈ X.
A G-permutation triple is a triple of permutations (σ0, σ1, σ∞) in G such that σ0σ1σ∞ = 1
and such that σ0, σ1, σ∞ generate G. A morphism of G-permutation triples is an isomorphism
of permutation triples induced by simultaneous conjugation by an element in G. The main
equivalence is now as follows.

Proposition 7.3. — The following categories are equivalent:

(i) G-Bely̆ı maps;

(ii) G-permutation triples;

(iii) surjective homomorphisms F2 → G.

We leave it to the reader to similarly rigidify the notion of dessins; it will not be needed in
what follows.
We will need a slight weakening of this notion in the following section. A weak G-Bely̆ı map is
a pair (f, i), where f : X → P1 is a Galois Bely̆ı map and i : H ↪→ Mon(f) is an isomorphism
of the monodromy group of f with a subgroup H of G. A morphism of weak G-Bely̆ı maps
from (f, i) to (f ′, i′) is an isomorphism of Bely̆ı maps h : X

∼−→ X ′ such that (7.2) holds up
to conjugation, i.e., such that there exists a t ∈ G such that h(i(g)x) = i′(tgt−1)h(x) for all
g ∈ G and x ∈ X.
A weakG-permutation triple is a triple of permutations (σ0, σ1, σ∞) inG such that σ0σ1σ∞ = 1.
A morphism of weak G-permutation triples is an isomorphism of permutation triples induced
by simultaneous conjugation by an element in G. The equivalence of Proposition 7.3 now
generalizes to the following result.

Proposition 7.4. — The following categories are equivalent:

(i) weak G-Bely̆ı maps;

(ii) weak G-permutation triples;

(iii) homomorphisms F2 → G.

The set of Bely̆ı maps of degree d can be identified with the set of weak Sd-Bely̆ı maps. In
particular, whereas G-Bely̆ı maps are always connected, weak G-Bely̆ı maps need not be.
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The absolute Galois group Gal(Q/Q) acts on the set of (weak) G-Bely̆ı maps, so we can again
define the field of moduli of these rigidified Bely̆ı maps.
Having introduced weak G-Bely̆ı maps, it makes sense to consider passports up to the action
of the monodromy group G ⊂ Sd instead of the full group Sd. We accordingly define the
refined passport of a (not necessarily Galois) Bely̆ı map f : X → P1 to be the triple (g,G,C),
where g is the genus of X, the group G is the monodromy group of f , and C = (C0, C1, C∞)
are the conjugacy classes of σ0, σ1, σ∞ in G, not the conjugacy classes in Sd included in the
(usual) passport.
Fried [57] shows how the conjugacy classes Ci change under the Galois action. Let σ ∈
Gal(Q/Q), let n = #G, and let ζn ∈ Q be a primitive n-th root of unity. Then σ sends ζn to
ζan for some a ∈ (Z/nZ)×. We obtain new conjugacy classes Cai by raising a representative of
Ci to the ath power. Then for any character χ of G we have

σ(χ(Ci)) = χ(Cai ).(7.5)

Let Q(χ(Ci)) be the field generated by the character values of the conjugacy classes Ci. We
have Q(χ(Ci)) = Q if and only if all conjugacy classes of G are rational, as for instance in the
case G = Sd.

Proposition 7.6. — Let (f, i) be a weak G-Bely̆ı map with refined passport R and field of
moduli K as a weak G-Bely̆ı map. Then the degree [K : Q(χ(Ci))] is bounded above by the
size of R.

Calculating in the category of weak G-Bely̆ı maps can be useful even when considering Bely̆ı
maps without this additional structure. More precisely, this is useful when using formulas
that approximate the size of a passport. To this end, let G be a finite group and let C0, C1, C∞
be conjugacy classes in G. Let S be the set of isomorphism classes of weak G-Bely̆ı maps
σ = (σ0, σ1, σ∞) with the property that σi ∈ Ci for i ∈ {0, 1,∞}. Then a formula that goes
back to Frobenius (see Serre [142, Theorem 7.2.1]) shows that

∑

(f,i)∈S

1

AutG(f, i)
=

#C0#C1#C∞
(#G)2

∑

χ

χ(C0)χ(C1)χ(C∞)

χ(1)
.(7.7)

Here the automorphism group AutG(f, i) is the group of automorphisms of (f, i) as a weak G-
Bely̆ı map. The sum on the left of (7.7) runs over all weak Bely̆ı maps with the aforementioned
property; in particular, one often obtains non-transitive solutions that one does not care about
in practice.
When working with mere Bely̆ı maps (without rigidification as a weak G-Bely̆ı map), it can
still be useful to consider the estimate (7.7) when the monodromy group of the Bely̆ı map is
question is included in G. We illustrate this by a few concrete examples.

Example 7.8. — We start by taking G to be a full symmetric group and give the above-
mentioned estimate for the number of genus 0 Bely̆ı maps with ramification passport

(0, (3223, 51412111, 614121)),

Before giving it, we calculate the possible permutation triples up to conjugacy directly using
Lemma 1.7. This shows that the number of solutions is 583, of which 560 are transitive. The
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transitive solutions all have monodromy group S23 and hence trivial automorphism group.
On the other hand, the Serre estimate (7.7) equals 5671

4 , which more precisely decomposes as

567
1

4
=

560

1
+

1

1
+

3

2
+

19

4
;

of the 23 nontransitive solutions, there is only one with trivial automorphism group, whereas
there are 3 (resp. 19) with automorphism group of cardinality 2 (resp. 4). For each of the
nontransitive solutions, the associated Bely̆ı maps are disjoint unions of curves of genus 1,
such as those corresponding to the products of the genus 1 Bely̆ı maps with ramification types
(23, 5111, 61) (which always have trivial automorphism group) with those with ramification
types (32, 4121, 4121) (which have either 1 or 2 automorphisms, depending on the solution).

Example 7.9. — Another example is the case (0, H, (442213, 442213, 5413)) with H ≤ M23.
We can identify M23-conjugacy classes with S23-conjugacy classes for these groups, as the
conjugacy classes of S23 do not split upon passing to M23.
The calculations are much more rapid working withM23 than for the full group S23. We obtain
the estimate 909, which fortunately enough equals the exact number of solutions because the
corresponding subgroups of M23 all have trivial centralizer; this is not the case when they
are considered as subgroups of S23. Of these many solutions, it turns out that only 104 are
transitive.
As mentioned before, this estimate only gives the number of weak M23-Bely̆ı maps; accord-
ingly, permutation triples are only considered isomorphic if they are conjugated by an element
of M23 rather than S23. However, since M23 coincides with its own normalizer in S23, this
coincides with the number of solutions under the usual equivalence. Directly working with
the group M23 indeed saves a great deal of computational overhead in this case.

An explicit (but complicated) formula, using Möbius inversion to deal with the disconnected
Bely̆ı maps, was given by Mednykh [121] this vein; in fact, his formula can be used to count
covers with specified ramification type of an arbitrary Riemann surface.
Finally, we mention that in the Galois case, the situation sometimes simplifies: there are
criteria [27, 85] for Galois Bely̆ı maps to have cyclotomic fields of moduli, in which case
the Galois action is described by a simple powering process known as Wilson’s operations.
Additionally, Streit–Wolfart [152] have calculated the field of moduli of an infinite family of
Bely̆ı maps whose Galois group is a semidirect product ZpoZq of cyclic groups of prime order.

Field of moduli versus field of definition. — We have seen that in all the categories
of objects over Q considered so far (curves, Bely̆ı maps, etc.) there is a field of moduli for
the action of Gal(Q/Q). Given an object Y of such a category with field of moduli M , it
is reasonable to ask whether Y is defined over M , i.e., if there exists an object YM in the
appropriate category over M that is isomorphic with Y over Q, in which case M is said to be
a field of definition of Y . For example, if Y = (X, f) is a Bely̆ı map over Q, this means that
there should exist a curve XM over M and a Bely̆ı map fM : XM → P1

M such that (X, f) can
be obtained from (XM , fM ) by extending scalars to Q.
We first consider the case of curves. Curves of genus at most 1 are defined over their field of
moduli. But this ceases to be the case for curves of larger genus in general, as was already
observed by Earle [42] and Shimura [145]. The same is true for Bely̆ı maps and G-Bely̆ı maps.
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This issue is a delicate one, and for more information, we refer to work of Coombes–Harbater
[28], Dèbes–Ensalem [39], Dèbes–Douai, [38], and Köck [92].
The obstruction can be characterized as a lack of rigidification. For example, a curve furnished
with an embedding into projective space is trivially defined over its field of moduli (as a
projectively embedded curve). Additionally, marking a point on the source X of a Bely̆ı map
and passing to the appropriate category, [18, Theorem 2] states that the field of moduli is
a field of definition for the pointed Bely̆ı curve [18, Theorem 2]; however, this issue seems
quite subtle, and in [92] only auxiliary points with trivial stabilizer in Aut(X) are used.
Note that the more inclusive version of this rigidification (with possibly non-trivial stabilizer)
was considered in Section 4 (see e.g. (4.3)). As mentioned at the beginning of the previous
subsection, this implication can then be applied to give an upper bound on the degree of the
field of definition of a Bely̆ı map, an important bit of information needed when for example
applying LLL to recognize coefficients algebraically.
Note that for a Bely̆ı map f : X → P1, the curve X may descend to its field of moduli in
the category of curves while f does not descend to this same field of moduli in the category
of Bely̆ı maps. Indeed, this can be seen already for the example X = P1, as Gal(Q/Q) acts
faithfully on the set of genus 0 dessins. In general, the problem requires careful consideration
of obstructions that lie in certain Galois cohomology groups [38].

Remark 7.10. — Although in general we will have to contend with arbitrarily delicate
automorphism groups, Couveignes [31] proved that every curve defined over a number field K
admits a Bely̆ı map without automorphisms defined over K. This map will then necessarily
not be isomorphic to any of its proper conjugates.

On top of all this, a Bely̆ı map may descend to its field of moduli in the weak sense, i.e., as a
cover of a possibly non-trivial conic ramified above a Galois-stable set of three points, rather
than in the strong sense, as a cover of P1\ {0, 1,∞} (i.e., in the category of Bely̆ı maps over
the field of moduli). This distinction also measures the descent obstruction for hyperelliptic
curves, as in work of Lercier–Ritzenthaler–Sijsling [103]. For Bely̆ı maps, a deep study of
this problem in genus 0, beyond the general theory, was undertaken by Couveignes [29, §§4–
7]: he shows that for the clean trees, those Bely̆ı maps with a single point over ∞ and only
ramification index 2 over 1, on the set of which Gal(Q/Q) acts faithfully, the field of moduli
is always a field of definition in the strong sense. Moreover, he shows that in genus 0, the
field of moduli is always a field of definition in the weak sense as long as the automorphism
group of the Bely̆ı map is not cyclic of even order, and in the strong sense as long as the
automorphism group is not cyclic.
These considerations have practical value in the context of computations. For example,
Couveignes [29, §10] first exhibits a genus 0 Bely̆ı map that descends explicitly to Q in the
strong sense. Then, due to the presence of non-trivial automorphisms of this Bely̆ı map, one
can realize it as a morphism f : C → P1 for infinitely many mutually non-isomorphic conics C
over Q. And by choosing C appropriately (not isomorphic to P1 over Q), Couveignes manages
to condense his equations from half a page to a few lines. Further simplification techniques
will be considered in the next section.
We mention some results on the field of moduli as a field of definition that are most useful
for generic (G-)Bely̆ı maps.
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1. If a curve or (G-)Bely̆ı map has trivial automorphism group, then it can be defined over
its field of moduli, by Weil’s criterion for descent [167].

2. If the center of the monodromy group of a Galois Bely̆ı map is trivial, then it can be
defined over its field of moduli by the main result in the article by Dèbes–Douai [38].

3. A G-Bely̆ı map, when considered in the category of Bely̆ı maps (without extra structure)
is defined over its field of moduli as a Bely̆ı map [28].

To give an impression of the subtleties involved, we further elaborate on Example 6.2 from
the previous section. Along the way, we will illustrate some of the subtleties that arise when
considering fields of moduli. As we will see, these subtleties correspond with very natural
questions on the level of computation.

Example 7.11. — Since ∆(3, 5, 5) is a subgroup of ∆(2, 5, 6) of index 2, we also obtain from
this example a Bely̆ı map with indices 3, 5, 5 for the group A5 by taking the corresponding
quotient. Indeed, ramification can only occur over the points of order 2 and 6, which means
that in fact the cover is a cyclic degree 2 map of conics ramifying of order 2 over these points
and under which the point of order 5 has two preimages. An equation for this cover (which
is a Bely̆ı map) can now be found by drawing an appropriate square root of the function
(s5

3/s
3
5) + (15/2)2 (which indeed ramifies of order 6 over∞ and of order 2 over 0) and sending

the resulting preimages ±15/2 of the point of order 5 to 0 and 1, respectively.
Alternatively, we can calculate as follows. The full ring of invariant homogeneous polynomi-
als for A5 (acting linearly by permutation of coordinates) is generated by the power sums
p1, . . . , p5 and the Vandermonde polynomial

a = (v − w)(v − x)(v − y)(v − z)(w − x)(w − y)(w − z)(x− y)(x− z)(y − z).
One easily determines the expression for a2 in terms of the pi; setting p1 = p2 = p4 = 0, we
get the relation

a2 =
4

45
s5

3s5 + 5s3
5.

This suggests that to get a function realizing the quotient X → X/A5, we take the map
g : X → C, where C is the conic

C : 45y2 = 4xz + 225z2

and g is given by

g(v, w, x, y, z) = (s5
3 : as5 : s3

5).

Note that Q admits the rational point (1 : 0 : 0).
This result is not as strong as one would like. As we have seen when calculating the full
quotient f , the branch points of g of order 5 on C satisfy (x : z) = (0 : 1). But the
corresponding points are only defined over Q(

√
5), so this is a descent of a Bely̆ı map in the

weak sense. We explain at the group-theoretical level what other kinds of descent can be
expected.
There are actually two Galois covers with ramification indices (3, 5, 5) for A5 up to isomor-
phism. The other cover is not found as a subcover of f ; when composing with the same
quadratic map, we instead get a Galois Bely̆ı map whose Galois group is the direct product
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of A5 and Z/2Z. The corresponding curve is given by taking the hyperelliptic cover ramified
over the vertices of an icosahedron, leading to the equation

t2 = s20 + 228s15 + 494s10 − 228s5 + 1.

In particular, this means that the Galois orbit of these covers consists of a single isomorphism
class, as their monodromy groups upon composition differ [174]. As mentioned above, an
A5-Bely̆ı map, considered as a mere Bely̆ı map, is defined over its field of moduli as a Bely̆ı
map, so our equations above can be twisted to a Bely̆ı map over Q, that is, with ramification
at three rational points.
However, the Galois cover does not descend as an A5-Bely̆ı map (so in the strong sense, as a
Galois cover unramified outside {0, 1,∞}). Indeed, the character table of A5 is only defined
over Q(

√
5). Twisting may therefore give a cover defined over Q, but the Galois action will

then only be defined over Q(
√

5) and be accordingly more complicated. We therefore forgo
this calculation and content ourselves with the symmetric form above.

For more on the questions considered in this section, see also further work by Couveignes [30],
and in a similar vein, the work of van Hoeij–Vidunas on covers of conics [158, §§3.3–3.4], [157,
§4]. We again refer to the fundamental paper of Dèbes–Douai [38], in which strong results
are given for both Bely̆ı maps and G-Bely̆ı maps that suffice in many concrete situations.
Admittedly, this subject is a delicate one, and we hope that computations will help to further
clarify these nuances.

8. Simplification and verification

Once a potential model for a Bely̆ı map has been computed, it often remains to simplify the
model as much as possible and to verify its correctness (independently of the method used
to compute it). The former problem is still open in general; the latter has been solved to a
satisfactory extent.

Simplification. — By simplifying a Bely̆ı map f : X → P1, we mean to reduce the total
(bit) size of the model. Lacking a general method for doing this, we focus on the following:

1. If X is of genus 0, we mean to find a coordinate on X that decreases the (bit) size of
the defining coefficients of f .

2. If X is of strictly positive genus, we mean to simplify the defining equations for X. (In
practice, this will also lead to simpler coefficients of the Bely̆ı map f .)

Problem (1) was considered by van Hoeij–Vidunas [158, §4.2] under the hypotheses that
one of the ramification points has a minimal polynomial of degree at most 4; one tries to
find a smaller polynomial defining the associated number field and changes the coordinate
accordingly, which typically yields one a simpler expression of the Bely̆ı map.
Problem (1) is directly related with Problem (2) for hyperelliptic curves, since simplifying the
equations for hyperelliptic curves over a field K boils down to finding a small representative of
the GL2(K)-orbit of a binary form. Typically one also requires the defining equation to have
integral coefficients. For the case K = Q, this leads one to consider the problem of finding
simpler representations for binary forms under the action of the group of integral matrices
SL2(Z). This is considered by Cremona–Stoll [37], using results from Julia [87] to find a binary
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quadratic covariant, to which classical reduction algorithms are then applied. The resulting
algorithms substantially reduce the height of the coefficients of the binary form in practice,
typically at least halving the bit size of already good approximations in the applications [37].
A generalization to, and implementation for, totally real fields is given in Bouyer–Streng [21].
In fact, corresponding results for the simplification of Bely̆ı maps can be obtained by taking the
binary form to be the product of the numerator and denominator of the Bely̆ı map. That the
resulting binary form may have double roots and hence may not correspond to hyperelliptic
curves is no problem; see the discussion by Cremona–Stoll [37, after Proposition 4.5].
This problem of reduction is intimately related with the problem of finding a good model of a
Bely̆ı map or hyperelliptic curve over Z. Note that even for the case K = Q we have not yet
used the full group GL2(Q); the transformations in SL2(Z) considered by Cremona and Stoll
preserve the discriminant, but it could be possible that a suitable rational transformation
decreases this quantity while still preserving integrality of the binary form. An approach to
this problem is given by Bouyer–Streng [21, §3.3].
In general, Problem (2) is much harder, if only because curves of high genus become more
difficult to write down.

Question 8.1. — Are there general methods to simplifying equations of curves defined over
a number field in practice?

Verification. — Let f : X → P1 be a map defined over a number field K of degree d that
we suspect to be a Bely̆ı map of monodromy group G, or more precisely to correspond to a
given permutation triple σ or a given dessin D. To show that this is in fact the case, we have
to verify that
(i) f is indeed a Bely̆ı map;
(ii) f has monodromy group G; and
(iii) f (or its monodromy representation) corresponds to the permutation triple σ; or
(iii)’ the pullback under f of the closed interval [0, 1] is isomorphic (as a dessin) to D.
This verification step is necessary for all known methods, and especially when using the direct
method from Section 2; the presence of parasitic solutions means that not even all solutions of
the corresponding system of equations will be Bely̆ı maps, let alone Bely̆ı maps with correct
monodromy group or pullback.
Point (i) can be computationally expensive, but it can be accomplished, by using the methods
of computational algebraic geometry. Not even if X = P1 is this point trivial, since although
verifying that a Bely̆ı map is returned is easy for dessins of small degree, we need better
methods than direct factorization of the polynomials involved as the degree mounts.
As for point (ii), one simple sanity check is to take a field of definition K for f and then to
substitute different K-rational values of t 6∈ {0, 1,∞}. One obtains an algebra that is again an
extension of K of degree d and whose Galois group H must be a subgroup of the monodromy
group G by an elementary specialization argument. So if we are given a finite number of
covers, only one of which has the desired monodromy group G, then to eliminate a cover in
the given list it suffices to show that specializing this cover gives a set of cycle type in H that
is not contained in the given monodromy group G when considered as a subgroup of Sd. Such
cycle types can be obtained by factoring the polynomial modulo a small prime of K.
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There are many methods to compute Galois groups effectively in this way; a general method
is given by Fieker–Klüners [54]. This method proceeds by computing the maximal subgroups
of Sd and checking if the Galois group lies in one of these subgroups by evaluating explicit
invariants. This method works well if G has small index in Sd. Iterating, this allows on to
compute the monodromy group of a Bely̆ı map explicitly instead of merely giving the maximal
groups in which is it included. To this end, one may work modulo a prime p of good reduction,
and in light of Beckmann’s Theorem, we may still reasonably expect a small prime of the ring
of integers of K that is coprime with the cardinality #G of the monodromy group to do the
job.
Second, one can compute the monodromy by using numerical approximation. This has been
implemented by van Hoeij [156], though one must be very careful to do this with rigorous
error bounds. This idea was used by Granboulan [61] in the computation of a cover with
Galois group M24, first realized (without explicit equation) by Malle–Matzat [107, III.7.5].
In particular, Schneps [138, §III.1] describes a numerical method to draw the dessin itself,
from which one can read off the mondromy. This method is further developed by Bartholdi–
Buff–von Bothmer–Kröker [7], who lift a Delaunay triangulation numerically and read off the
permutations by traversing the sequence of edges counterclockwise around a basepoint. In
particular this solves (iii): if we express each of the complex solutions obtained by embedding
K ↪→ C, we may also want to know which cover corresponds to which permutation triple up
to conjugation.
A third and final method is due to Elkies [48], who uses an effective version (due to Weil’s proof
of the Riemann hypothesis for curves over finite fields) of the Chebotarev density theorem
in the function field setting. This was applied to distinguish whether the Galois group of a
given cover was equal to M23 or A23. More precisely, one relies on reduction modulo a prime
whose residue field is prime of sufficiently large characteristic (in his case, > 109) and uses
the resulting distribution of cycle structures to deduce that the cover was actually M23. This
method has the advantage of using exact arithmetic and seems particularly well-suited to
verify monodromy of large index in Sd.

9. Further topics and generalizations

This section discuss some subjects that are generalizations of or otherwise closely related
with Bely̆ı maps. At the end, we briefly discuss the theoretical complexity of calculating
Bely̆ı maps.

Generalizations. — Over Fp, one can consider the reduction of Bely̆ı maps from charac-
teristic 0; this is considered in Section 5 above. Switching instead to global function fields
might be interesting, especially if one restricts to tame ramification and compares with the
situation in characteristic 0. As a generalization of Bely̆ı’s theorem, over a perfect field of
characteristic p > 0, every curve X has a map to P1 that is ramified only at ∞ by work of
Katz [88]. But this map is necessarily wildly ramified at∞ if g(X) > 0, so the corresponding
theory will differ essentially from that of Bely̆ı maps over Q.
If we view Bely̆ı’s theorem as the assertion that every curve over a number field is an étale
cover of P1 \ {0, 1,∞} ∼= M0,4, the moduli space of genus 0 curves with 4 marked points,
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then Bely̆ı’s result generalizes to a question by Braungardt [23]: is every connected, quasi-
projective variety X over Q birational to a finite étale cover of some moduli space of curves
Mg,n? Easton and Vakil also have proven that the absolute Galois group acts faithfully on
the irreducible components of the moduli space of surfaces [43]. Surely some computations
in small dimensions and degree will be just as appealing as in the case of Bely̆ı maps.
As mentioned on a naive level in Remarks 2.5 and 2.10, another more general way to look
at Bely̆ı maps is through the theory of Hurwitz schemes, which give a geometric structure to
the set Hn,r(Q) parametrizing degree n morphisms to P1 over Q that are ramified above r
points. The theorem of Bely̆ı then amounts to saying that by taking the curve associated to a
morphism, one obtains a surjective map from the union of the Q-rational points of the spaces
Hn,3 to the union of the Q-rational points of the moduli spaces of curvesMg of genus g. We
refer to work of Romagny–Wewers [134] for a more complete account.

Origamis. — One generalization of Bely̆ı maps is given by covers called origamis: covers
of elliptic curves that are unramified away from the origin. For a more complete account
on origamis, see Herrlich–Schmithüsen [74]; Bely̆ı maps can be obtained from origamis by a
degeneration process [74, §8].
The reasons for considering origamis are many. First, the fundamental group of an elliptic
curve minus a point is analogous to that of the Riemann sphere, in that it is again free
on two generators. The ramification type above the origin is now given by the image of the
commutator of these two generators. The local information at this single point of ramification
reflects less information about the cover than in the case of Bely̆ı maps. Additionally, the
base curve can be varied, which makes the subject more subtle, as Teichmüller theory makes
its appearance.
An exciting family of special origamis was considered by Anema–Top [3]: they consider the
elliptic curve E : y2 = x3 + ax+ b over the scheme B : 4a3 + 27b2 = 1 defined by the constant
non-vanishing discriminant 1 of E. Considering the torsion subschemes E[n] over B, one
obtains a family of covers over the base elliptic curve B of j-invariant 0 that is only ramified
above the point at infinity and whose Galois groups are subgroups of special linear groups.
It would be very interesting to deform this family to treat the case of arbitrary base curves,
though it is not clear how to achieve this.

Question 9.1. — How does one explicitly deform special origamis to families with arbitrary
base curves?

Explicit examples of actual families of origamis were found by Rubinstein-Salzedo [135, 136].
In particular, by using a deformation argument starting from a nodal cubic, he obtains a
family of hyperelliptic origamis that are totally ramified at the origin. For the case of degree
3, this gives a unique cover of genus 2. More precisely, starting with an elliptic curve E with
full 2-torsion in Legendre form

y2 = x(x− 1)(x− λ),

the hyperelliptic curve

y2 =
1

2

(
−4x5 + 7x3 − (2λ− 1)x2 − 3x+ (2λ− 1)

)
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admits a morphism to E given by

(x, y) 7−→
(

1

2

(
−4x3 + 3x+ 1

)
,
y

2

(
−4x2 + 1

))

that is only ramified at the points at infinity of these curves.
It is important to note here that the field of moduli of these covers is an extension of the field
of moduli of the base elliptic curve; more precisely, as suggested by the formulas above, this
field of moduli is exactly the field obtained by adjoint the 2-torsion of the curve. This is a
variation on a result in Rubinstein-Salzedo [135], where simpler expressions for similar covers
are found in every degree. Amusingly enough, adjoining the full 2-torsion of the base curves
always suffices to define these covers. This result is appealing and quite different from the
corresponding situation for Bely̆ı maps, and therefore we ask the following question.

Question 9.2. — Which extension of the field of moduli is needed to define similar covers
totally ramified above a single point for general curves?

Specialization. — Covering maps of the projective line with more than 3 ramification
points specialize to Bely̆ı maps by having the ramification points coincide. In many cases, the
covers in the original spaces are easier to compute, and this limiting process will then lead to
some non-trivial Bely̆ı maps. This also works in reverse, and provides another application of
computing Bely̆ı maps. Hallouin–Riboulet-Deyris [66] explicitly computed polynomials with
Galois group An and Sn over Q(t) with four branch points for small values of n; starting from
a relatively simple “degenerate” three-point branched cover, the four-point branched cover
is obtained by complex approximation (using Puiseux expansions). These methods were
considerably augmented by Hallouin in [67] to find another such family with group PSL2(F8).
More recently, König [94] similarly computed such an extension of Q(t) with Galois group
PSL5(F2), using a p-adic approximation to calculate the initial three-point degeneration. In
all aforementioned cases, the resulting covers can be specialized to find explicit solution to
the inverse Galois problem for the groups involved, and as mentioned at the end of Section 1,
the results from [67] have also found an application in the determination of equations for
Shimura curves [65].
As mentioned in Section 3, Couveignes [32] has used a patching method to describe more
generally the computation of families of ramified branch covers, using a degeneration to the
situation of three-point covers. More extensive algorithmic methods to deal with this question
should therefore be in reach of the techniques of numerical algebraic geometry.

Complexity. — In this article, we have been primarily concerned with practical methods
for computing Bely̆ı maps; but we conclude this section by posing a question concerning the
theoretical complexity of this task.

Question 9.3. — Is there an algorithm that takes as input a permutation triple and produces
as output a model for the corresponding Bely̆ı map over Q that runs in time doubly exponential
in the degree n?

There is an algorithm (without a bound on the running time) to accomplish this task, but it
is one that no one would ever implement: there are only countably many Bely̆ı maps, so one
can enumerate them one at a time in some order and use any one of the methods to check
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if the cover has the desired monodromy. It seems feasible that the Gröbner method would
provide an answer to the above problem, but this remains an open question. Javanpeykar
[79] has given explicit bounds on the Faltings height of a curve in terms of the degree of a
Bely̆ı map; in principle, this could be used to compute the needed precision to recover the
equations over a number field.
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