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p-ADIC DIRECTIONS OF PRIMITIVE VECTORS

by

Antonin Guilloux and Tal Horesh

Abstract. — Linnik type problems concern the distribution of projections of integral points on the unit
sphere as their norm increases, and different generalizations of this phenomenon. Our work addresses
a question of this type: we prove the uniform distribution of the projections of primitive Z2 points in
the p-adic unit sphere, as their (real) norm tends to infinity. The proof is via counting lattice points in
semi-simple S-arithmetic groups.

Résumé. — (Directions p-adique de vecteurs primitifs) Les problèmes de type Linnik concernent la
distribution des projections des points entiers sur la sphère unitaire lorsque leur norme augmente et
différentes généralisations de ce phénomène. Notre travail s’intéresse à une question de ce type : nous
prouvons la distribution uniforme des projections des points primitifs de Z2 sur la sphère unitaire p-adique
lorsque leur norme (réelle) tend vers l’infini. La preuve se fait en comptant les points d’un réseau dans
des S-groupes arithmétiques semi-simples.

A primitive vector is an n-tuple (a1, . . . , an) of co-prime integers, and we let Znprim denote the
set of primitive vectors in Zn. Since every integral vector is an integer multiple of a unique
primitive vector, it is very natural to restrict questions about equidistribution of integer
vectors to the set of primitive vectors. For example, one question about an equidistribution
property for integer vectors that has been studied in the past (e.g. in [28]) is whether the di-
rections of integral vectors, i.e. their projections to the unit sphere in Rn, distribute uniformly
in the unit sphere as their norm tends to ∞. This question belongs to the well known family
of Linnik type problems (e.g. [7, 8, 23]), and the answer is positive: for every “reasonable”
subset Θ of the sphere, it holds that

(1)
#
{

v
∥v∥ ∈ Θ : v ∈ Zn, ∥v∥ ≤ R

}
#
{

v
∥v∥ ∈ Sn−1 : v ∈ Zn, ∥v∥ ≤ R

} −→
R→∞

Leb(Θ)
Leb(S1) ,

where Leb is the Lebesgue measure on the sphere. While in the above quotient every “integral
direction” on the unit sphere is hit several times (the first time for a primitive vector, and
then another time for each one of its integer multiples), restricting to v ∈ Znprim allows every
integral direction to be considered exactly once.
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86 p-adic Directions of Primitive Vectors

Questions about equidistribution of directions, as well as of other parameters of primitive
vectors, have been studied recently using dynamical methods in [1, 2, 10, 11, 24]. In the present
paper we restrict to dimension n = 2, and study the equidistribution of p-adic directions of
primitive vectors. Indeed, since primitive vectors have integer coordinates, they can be seen
as vectors over any field that contains the rationals, and in particular over the field of p-adic
numbers Qp for a positive prime number p. There, just like the direction of a real vector is
its projection to the (real) unit sphere through multiplication by inverse of the norm, the
p-adic direction of a vector is its projection to the p-adic unit sphere. However, the primitive
vectors have p-adic norm one, so in fact they are already contained in the p-adic unit sphere
S1
p (we will observe this below, where we recall some basic definitions in the p-adic setting).

So, Z2
prim is a countable subset of S1

p which is equipped with a natural height function: the
real norm. One is then led to ask whether the set Z2

prim equidistributes in S1
p, i.e., if an analog

to (1) holds when Zn is replaced by Z2
prim, and Sn−1 is replaced by S1

p. To formulate such
an analog, we need to declare what are the analogous objects in S1

p for an arc on the (real)
unit circle, and for the Lebesgue measure on it. Below, we will define the concept of a p-adic
arc, Θp ⊂ S1

p (Definition 1.4), and recall a Haar measure µp on Qp. Since S1
p is an open and

compact subset of the p-adic plane, then the restriction of the Haar measure µ2
p on the plane

Q2
p to S1

p is a finite non-zero measure on S1
p. As we shall see below, it corresponds to the

Lebesgue measure on the real unit circle.
The theorem below establishes the uniform distribution of the primitive vectors in S1

p as their
real norm tends to infinity; even more, it establishes joint equidistribution of their real and
p-adic directions in the product of unit circles S1 × S1

p.

Theorem A. — For v ∈ Z2
prim, the pairs of real and p-adic directions(

v

∥v∥
, v

)
∈ S1 × S1

p

become uniformly distributed in S1×S1
p w.r.t. Leb×µ2

p|S1
p

as ∥v∥ → ∞, meaning that for every
product of arcs Θ×Θp ⊂ S1 × S1

p it holds that

#
{
v ∈ Z2

prim :
(

v
∥v∥ , v

)
∈ Θ×Θp, ∥v∥ ≤ R

}
#
{
v ∈ Z2

prim : ∥v∥ ≤ R
} −→

R→∞

Leb(Θ) · µ2
p(Θp)

Leb(S1) · µ2
p(S1

p)
.

The convergence is at rate at most O
(
R−2τp+δ

)
for every δ > 0, where τp = 1

28 .

Remark. — The parameter τp in the error term exponent depends on the rate of decay
of the matrix coefficients of automorphic representations of SL2 (R) × SL2(Qp), and can be
improved to 1

14 when assuming the Ramanujan conjecture (cf. Remark 3.5).

A similar theorem holds when considering a finite set of primes instead of a single p. Theo-
rem 4.1 in Section 4 states a related equidistribution result in this S-arithmetic setting, that
translates into a counting statement as above, see Remark 4.3. However, we have chosen to
deal with only one prime here in order to ease the exposition.
Publications mathématiques de Besançon – 2023



Antonin Guilloux and Tal Horesh 87

Organization of the paper. — The first section of the paper is a collection of general
facts on p-adic numbers and arithmetic lattices. Sections 2 and 3 are devoted to the proof
of Theorem A, along the lines of the proof given in [19, 20] for the uniform distribution
of the real directions of primitive vectors in the unit sphere. It consists of two stages: the
first is a translation of the theorem to a statement about counting lattice points in the group
SL2 (R)×SL2(Qp) (Section 2), and the second is proving the counting statement via a method
developed in [17] (Section 3). In Section 4, we show that the same method gives a stronger
statement than the one in Theorem A, namely the joint equidistribution of real and p-adic
directions for any finite number of primes p — cf. Theorem 4.1 (and Remark 4.3). Section 5
is devoted to proving a technical result on well-roundedness in the p-adic setting that is used
in Section 4.

Acknowledgments. — The authors are grateful to Nicolas Bergeron and Frédéric Paulin
for helpful discussions, and to Tim Browning for his valuable comments on a preliminary
version of the preprint.

1. p-adic numbers and arithmetic lattices

Let us now recall some basic facts on the p-adic numbers and arithmetic lattices.

1.1. p-adic numbers and vector spaces. —

Definition 1.1 (p-adic valuation and absolute value). — For a non-zero p-adic number
a, the p-adic valuation of a is defined to be the biggest integer ν (a) such that

a =
∞∑

i=ν(a)
αip

i, αi ∈ {0, 1, . . . , p− 1} ,

where for a = 0 one defines ν (0) =∞. The p-adic absolute value is given by

|a|p = p−ν(a).

The ring of p-adic integers Zp < Qp is the p-adic unit ball, namely the set of p-adic numbers
with absolute value at most 1 (equivalently, of non-negative valuation). Inside Zp, the set
of invertible p-adic integers Z×

p ⊂ Zp is the set of p-adic numbers with absolute value 1
(equivalently, of valuation 0).

Note 1.2. — It is easy to see that every a ∈ Qp can be written (uniquely) as

a = uap
ν(a) = ua |a|−1

p

where ua ∈ Z×
p .

A norm on Q2
p (and therefore a unit circle) is then defined as follows.

Definition 1.3 (norm and unit circle in Q2
p). — The p-adic norm (or just “norm”) of

a vector (a, b) ∈ Q2
p is defined to be

∥(a, b)∥p = max
{
|a|p , |b|p

}
= p− min{ν(a),ν(b)}.

Publications mathématiques de Besançon – 2023



88 p-adic Directions of Primitive Vectors

Accordingly, the p-adic unit circle in Q2
p is the set of vectors of norm one:

S1
p :=

{
v ∈ Q2

p : ∥v∥p = 1
}
.

Note that (a, b) is in S1
p if and only if both a, b are in Zp, and at least one of them is in Z×

p .
In particular, since the real integers are also p-adic integers, and since an integer lies in Z×

p

if and only if it is not divisible by p, we have that Z2
prim ⊂ S1

p.
Since Zp is the unit ball in Qp, then a ball of radius p−N around α ∈ Qp is α+pNZp. Similarly,
a ball of radius p−N around (α, β) ∈ Q2

p is (α, β) + pNZ2
p. The analog in Q2

p for an arc Θ in
the unit circle S1 is a ball that is contained in the p-adic circle:

Definition 1.4 (p-adic arc). — Let N > 0 be an integer. A p-adic arc of radius p−N is a
ball θ + pNZ2

p, where θ ∈ S1
p. It will be denoted by Θp = Θp

(
θ, p−N).

Note that it is sufficient that θ ∈ S1
p in order to have Θp ⊂ S1

p!
A Haar measure µp is defined on Qp (see, e.g. [5]) by assigning to a ball of radius p−N the
volume p−N . We let µ2

p := µp × µp denote the resulting Haar measure on Q2
p, which then

assigns to a ball of radius p−N the volume p−2N . Being a Haar measure on Q2
p, µ2

p is invariant
under the group SL2(Qp) of p-adic 2 by 2 matrices with determinant one. We note that unlike
the real case, in the p-adic plane the unit circle has positive Haar measure. Indeed, it contains
the subset Z×

p × Zp, which has measure

µp(Z×
p ) · µp(Zp) = µp(Zp − pZp) · µp(Zp) =

(
1− 1

p

)
· 1 = 1− 1

p
.

Hence, it is possible to restrict µ2
p to S1

p. This measure is the analog of the Lebesgue measure
on the real unit circle, in the sense that it is invariant under the group of norm preserving
linear transformations of Q2

p. Indeed, it is known (e.g. [15, Corollary 3.3]) that the group
SL2(Zp) is the stabilizer of the norm ∥ · ∥p on Q2

p, so in particular it preserves and acts
transitively on S1

p.

1.2. S-arithmetic lattices. — The field Qp does not contain a lattice; but, inside the ring

F := R×Qp,

the subring Z
[1
p

]
of polynomials in 1

p with integer coefficients embeds diagonally as a co-
compact lattice. It is an integral domain, and as such it plays the role of the integral lattice
inside F. According to the Borel Harish–Chandra Theorem [4], the diagonal embedding of the
subgroup SL2

(
Z
[1
p

])
, which by abuse of notation we denote by SL2

(
Z
[1
p

])
, is a lattice inside

SL2(F) := SL2 (R)× SL2(Qp).

Both these lattices, Z
[1
p

]
< F and SL2

(
Z
[1
p

])
< SL2(F), are a special case of S-arithmetic

lattices [26]. To familiarize the reader with the S-arithmetic framework, we include a proof
that these two discrete subgroups are indeed lattices, by establishing the existence of finite-
volume fundamental domains. Here a fundamental domain means a full set of representatives.
Publications mathématiques de Besançon – 2023
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Fact 1.5. — Let D∞ denote a fundamental domain for SL2 (Z) in SL2 (R). Then

1.
[1

2 ,
1
2
)
× Zp is a fundamental domain for Z

[1
p

]
in F.

2. D∞ × SL2(Zp) is a fundamental domain for SL2
(
Z
[1
p

])
in SL2(F).

Proof. —

1. — Given (x, α) ∈ R×Qp, with α =
∑∞
i=ν(α) αip

i, write

{α} =
−1∑

i=ν(α)
αip

i ∈ Z
[1
p

]
.

Then clearly α− {α} =
∑∞
i=0 αip

i ∈ Zp, and so
(x, α)− ({α} , {α}) ∈ R× Zp.

Now let m ∈ Z be an integer such that x− {α} −m ∈
[1

2 ,
1
2
)
. Since Z ⊂ Zp, then

(x, α)− ({α}+m, {α}+m) ∈
[1

2 ,
1
2

)
× Zp.

For uniqueness, assume (x, α) and (y, β) are both in
[1

2 ,
1
2
)
× Zp, with f ∈ Z

[1
p

]
such that

(x, α) + (f, f) = (y, β).

Then f = β − α ∈ Zp must be an integer since Z
[1
p

]
∩Zp = Z, and the real coordinate forces

that f = 0.

2. — For the second part, let g = (g∞, gp) ∈ SL2 (R)× SL2(Qp); we show that there exists a
unique (γ, γ) ∈ SL2

(
Z
[1
p

])
such that

(g∞, gp) · (γ, γ) ∈ D∞ × SL2(Zp).
It is a consequence of row reduction that any gp ∈ SL2(Qp) can be written (non-uniquely) as

gp = kpγp

with kp ∈ SL2(Zp) and γp ∈ SL2
(
Z
[1
p

])
. Then (g∞, gp) = (g∞, kpγp) meaning that

(g∞, gp)
(
γ−1
p , γ−1

p

)
=
(
g∞γ

−1
p , kp

)
.

Write
SL2 (R) ∋ g∞γ

−1
p = x∞γ∞

where x∞ ∈ D∞ and γ∞ ∈ SL2 (Z). Then

(g∞, gp)
(
γ−1
p γ−1

∞ , γ−1
p γ−1

∞

)
= (x∞, kpγ

−1
∞ ) ∈ D∞ × SL2(Zp),

which establishes existence. For uniqueness of (γ, γ)=(γ−1
p γ−1

∞ , γ−1
p γ−1

∞ ), assume that (g∞, gp)·
(γ, γ) = (xp, x∞) and (g∞, gp) · (γ′, γ′) =

(
x′

∞, x
′
p

)
, where both (x∞, xp) and

(
x′

∞, x
′
p

)
lie in

D∞ × SL2(Zp). Then

(x∞, xp) ·
(
γ−1γ′, γ−1γ′

)
=
(
x′

∞, x
′
p

)
∈ D∞ × SL2(Zp)

Publications mathématiques de Besançon – 2023



90 p-adic Directions of Primitive Vectors

where γ−1γ′ ∈ SL2
(
Z
[1
p

])
. From the p-adic component of the equation we have that γ−1γ′ ∈

SL2(Zp). Then γ−1γ′ ∈ SL2
(
Z
[1
p

])
∩ SL2(Zp) = SL2 (Z). On the other hand, from the real

component of the equation, we have that γ−1γ′ cannot lie in SL2 (Z), unless γ−1γ′ = id. We
conclude that γ = γ′. □

2. From primitive vectors to lattice points in the group SL2 (R)× SL2 (Qp)

It is well known that there exists a connection between primitive vectors in Z2, and integral
matrices inside SL2 (R); the goal of this section is to establish an analogous connection in the
setting of R × Qp, hence reducing the proof of Theorem A to counting lattice points in the
group SL2 (R)×SL2(Qp). To exhibit such a connection, we first extend the notion of primitive
vectors (subsection 2.1), then find suitable coordinates on SL2(F) through a Bruhat-Iwasawa
decomposition (Definition 2.6). Proposition 2.7 states the precise connection.

2.1. Primitive vectors over Z
[1
p

]
. — We aim to formulate a connection between primi-

tive vectors in Z
[1
p

]2 and matrices inside SL2
(
Z
[1
p

])
. First, let us extend the definition of a

primitive vector from Z to a general integral domain:

Definition 2.1. — Let O be an integral domain. A vector v = (a, b) ∈ O2 is called primitive
if the prime ideals ⟨a⟩ and ⟨b⟩ satisfy that ⟨a⟩ + ⟨b⟩ = O. In other words, if there exists a
solution (x, y) ∈ O2 to the O–diophantine equation

ax+ by = 1.

We refer to this equation as the gcd equation of v, and denote the set of primitive elements
in O2 by O2

prim.

Clearly, the set of primitive Z
[1
p

]2 (vectors contains the set of primitive Z2) vectors, but is
not equal to it; e.g. the vector (p, 0) is primitive in Z

[1
p

]2 but not in Z2. However, these sets
are very much related to each other: every element in Z

[1
p

]2
prim is a multiplication by a power

of p of an element in Z2
prim.

Lemma 2.2. — The primitive vectors in Z
[1
p

]2 are
{
pαv : α ∈ Z, v ∈ Z2

prim
}
.

For the proof, we observe that every element f of Z
[1
p

]
can be written as f = m

pn where
m,n ∈ Z and m is coprime to p. If deg(f) = 0 (as a polynomial in 1

p), then f is an integer
and this fact is clear. Otherwise, let n > 0 and write

f = an
pn

+ an−1
pn−1 + · · ·+ a1

p
+ a0

where a0, . . . , an are integers that are (except maybe a0) coprime to p, and an ̸= 0. Then

f = an + an−1p+ · · ·+ a1p
n−1 + a0p

n

pn
,

and the denominator is coprime to p when n > 0.
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Proof of Lemma 2.2. — Let (a, b) ∈ Z
[1
p

]2
prim and write a = a′pα and b = b′pβ where a′, b′ ∈ Z

are co-prime to p and α, β ∈ Z. We claim that gcd(a′, b′) = 1. To see this, substitute a and b
into the gcd equation ax+by = 1 (x, y variables in Z

[1
p

]
) to obtain a′pαx+b′pβy = 1. Multiply

both sides by a non-negative power of p to obtain an equation in integers: a′x′ + b′y′ = pm

where x′, y′ ∈ Z. It then follows that gcd (a′, b′) is a power of p, but since both a′, b′ are
co-prime to p, then gcd (a′, b′) = 1. Without loss of generality, assume β ≥ α. Then (a, b) =
pα
(
a′, b′pβ−α

)
= pαv where v =

(
a′, b′pβ−α

)
∈ Z2

prim. □

To formulate the connection between primitive Z
[1
p

]2–vectors to matrices in SL2
(
Z
[1
p

])
, we

introduce the Bruhat-Iwasawa decomposition of SL2(F).

2.2. Iwasawa decomposition of SL2 (R). — Let us first recall the KAN decomposition
of SL2 (R). Here SL2 (R) = K∞A∞N∞ where K∞ = SO2 (R) is maximal compact, A∞ ={(

α 0
0 α−1

)}
is the diagonal subgroup and N∞ =

{( 1 R
0 1
)}

is the subgroup of upper unipotent
matrices. Then, for ( a cb d ) ∈ SL2 (R),(

a c
b d

)
= 1√

a2 + b2

(
a −b
b a

)
︸ ︷︷ ︸

∈K∞

(√
a2 + b2 0

0 1√
a2+b2

)
︸ ︷︷ ︸

∈A∞

(
1 ac+bd

a2+b2

0 1

)
︸ ︷︷ ︸

∈N∞

.

By letting v := (a, b)t and w := (c, d)t, we obtain

(2)
(
v w

)
=
(
v̂ v̂⊥

)
︸ ︷︷ ︸

∈K∞

(
∥v∥ 0
0 ∥v∥−1

)
︸ ︷︷ ︸

∈A∞

(
1 ⟨w,v̂⟩

∥v∥
0 1

)
︸ ︷︷ ︸

∈N∞

,

where
v̂ := v/ ∥v∥

is the unit vector pointing in the direction of v,

v⊥ := (−b, a)

is the vector pointing in the orthogonal direction to v, and ⟨ · , · ⟩ is the standard dot product
in R2.
We note that any pair of the three subgroups K∞, A∞ and N∞ intersect trivially, and
therefore the decomposition SL2 (R) = K∞A∞N∞ induces coordinates on SL2 (R): every
element g ∈ SL2 (R) has a unique presentation as g = kan. In addition, a Haar measure on
SL2 (R) can be decomposed in the Iwasawa coordinates as

dµSL2(R)(g) = dµSL2(R)(kan) = dµK∞(k)dµA∞(a)dµN∞(n)
α

with α ∈ R being the first diagonal coefficient of a, and where: µN∞ is the Haar measure
on N∞ corresponding to the Lebesgue measure on R under the isomorphism ( 1 x

0 1 ) ↔ x;
µK∞ is the Haar measure on K∞ corresponding to the Lebesgue measure on S1 under the
isomorphism

(
cos θ sin θ

− sin θ cos θ

)
↔ θ; and µA∞ is a Haar measure on A∞ corresponding to the

Lebesgue measure on the multiplicative group of R>0 under the isomorphism
(
α 0
0 α−1

)
↔ α.

Publications mathématiques de Besançon – 2023



92 p-adic Directions of Primitive Vectors

With these isomorphisms in mind, and recalling that the Haar measure on (R>0, · ) is dα
α , we

have

(3) dµSL2(R)(g) = dµSL2(R)

((
cos θ sin θ
− sin θ cos θ

)(
α 0
0 α−1

)(
1 x
0 1

))
= dθdαdx

α2 ,

where dy stands for integration w.r.t. the Lebesgue measure on R.

2.3. Bruhat decomposition of SL2 (Qp). — Proceeding to the p-adic case, the group
SL2(Qp) can also be written as KpApNp, but these are not coordinates. Indeed, set

(4)

Kp :=
{(

a c
b d

)
: a, b, c, d ∈ Zp, ad− bc = 1

}
= SL2(Zp)

Ap :=
{(

p−t 0
0 pt

)
: t ∈ Z

}
Np :=

{(
1 α
0 1

)
: α ∈ Qp

}
.

Since Kp and Np intersect non-trivially, the Iwasawa decomposition on SL2(Qp) is not unique.
To remedy this, we use the Bruhat decomposition instead. Let

Mp :=
{(

u 0
0 u−1

)
: u ∈ Z∗

p

}
be the centralizer of Ap inKp,Dp :=

{(
α 0
0 α−1

)
: α ∈ Qp

}
be the diagonal subgroup (satisfying

Dp = MpAp), and

N−
p :=

{(
1 0
α 1

)
: α ∈ Qp

}
be the lower unipotent subgroup. Each two of the subgroups N−

p , Mp, Ap and Np intersect
trivially, which means that they induce coordinates — the Bruhat coordinates — on the
subset

N−
p MpApNp ⊂ SL2(Qp).

This set is not the whole of SL2(Qp), but its complement in SL2(Qp) is of Haar measure zero.
We choose the following Haar measures on the above subgroups. The natural isomorphisms
between Np and N−

p to Qp equip Np and N−
p with Haar measures that correspond to the

Haar measure µp on Qp:

dµNp
(

1 β
0 1

)
= dµp(β), dµN−

p

(
1 0
α 1

)
= dµp(α).

Similarly, the natural isomorphism between Ap to Z induces Ap with the Haar measure on Z
that is the counting measure:

µAp =
∑
a∈Ap

∆a,

where ∆a is the Dirac measure supported on a ∈ Ap. Finally, Dp is naturally isomorphic with
the multiplicative group Q×

p of the field Qp, from which it inherits the Haar measure:

dµDp
(
α 0
0 α−1

)
= dµQ×

p
(α) = dµp(α)

|α|p
.
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Antonin Guilloux and Tal Horesh 93

Since the measure on Q×
p restricts to the measure on Z×

p , and the latter is isomorphic to Mp

in the same way that Q×
p is isomorphic to Dp, we obtain a Haar measure on Mp:

dµMp

(
u 0
0 u−1

)
= dµZ×

p
(u) = dµp(u)

|u|p
= dµp(u).

A Haar measure on SL2(Qp) can be expressed in the Bruhat coordinates as follows.

Lemma 2.3. — The Haar measure on Gp = SL2(Qp) w.r.t. the Bruhat coordinates is

dµGp(g) = dµGp
((

1 0
α 1

)(
u 0
0 u−1

)(
p−t 0
0 pt

)(
1 β
0 1

))
= p2tdµp(α)dµp(u)∆tdµp(β)

Proof. — Let P−
p denote the subgroup of lower triangular matrices in SL2(Qp), meaning that

P−
p = N−

p Dp = N−
p MpAp. By [12, Lemma 11.31], since Gp is unimodular, a Haar measure

µGp = µSL2(Qp) is given by µGp = µL
P−
p
× µRNp , where µL

P−
p

is a left Haar measure on P−
p and

µRNp is a right Haar measure on Np, which is simply µNp . It is left to compute a left Haar
measure on P−

p . Note that P−
p can be introduced in two ways as N−

p Dp = DpN
−
p , but the

expression for the Haar measure will correspond to the choice of coordinates. It is easy to
show that µDp×µN−

p
is a left Haar measure on P−

p = DpN
−
p ; to obtain this left Haar measure

in the coordinates N−
p Dp we will perform a change of variables:

∫ ∫
f

([
α−1 0
o α

] [
1 0
y 1

])
dµDp

([
α−1 0
o α

])
dµN−

p

([
1 0
y 1

])
=
∫ ∫

f

([
1 0

yα−2 1

] [
α 0
o α−1

])
dµDp

([
α−1 0
o α

])
dµN−

p

([
1 0
y 1

])
=
∫ ∫

f

([
1 0
x 1

] [
α 0
o α−1

])
|α|2p dµDp

([
α−1 0
o α

])
dµN−

p

([
1 0
x 1

])
Since the integral on the left-hand side is invariant under replacing f(g) by f(hg) for any
h ∈ P−

p , then so is the integral on the right-hand side. Hence µL
P−
p

= |α|2p
(
µDp × µN−

p

)
.

Now, since Dp = MpAp where Mp and Ap commute and are abelian, we have that µDp =
µMp×µAp . We conclude that a left Haar measure on Gp is given in the Bruhat coordinates as

µGp = |α|2p
(
µN−

p
× µMp × µAp × µNp

)
. □

Remark 2.4. — Under this choice of Haar measure, the (compact and open) subgroup
SL2(Zp) has mass 1− 1

p . Indeed, we have

SL2(Zp) ≃ N−
p (Zp)×Mp ×Np(Zp) ≃ Zp × Z×

p × Zp

and therefore

µGp (SL2(Zp)) = µp(Zp)µp
(
Z×
p

)
µp(Zp) = 1 ·

(
1− 1

p

)
· 1 = 1− 1

p
.
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2.4. The Bruhat-Iwasawa coordinates. — While the Bruhat decomposition of SL2(Qp)
provides uniqueness, the Iwasawa decomposition provides an arithmetic interpretation of the
different components, as suggested in (2) for the SL2(R) case. Luckily, these two decomposi-
tions coincide on a “large” subset of SL2(Qp), on which we are going to focus from now on.
Consider g = ( a cb d ) ∈ SL2(Qp); assuming that a ̸= 0 we have that(

a c
b d

)
a̸=0=

(
1 0
b
a 1

)
︸ ︷︷ ︸

∈N−
p

(
a 0
0 a−1

)
︸ ︷︷ ︸

∈Dp

(
1 c

a
0 1

)
︸ ︷︷ ︸

∈Np

a=ua|a|−1
p=
(

1 0
b
a 1

)
︸ ︷︷ ︸

∈N−
p

(
ua 0
0 u−1

a

)
︸ ︷︷ ︸

∈Mp

(
|a|−1

p 0
0 |a|p

)
︸ ︷︷ ︸

∈Ap

(
1 c

a
0 1

)
︸ ︷︷ ︸

∈Np

.

Indeed, the set of g ∈ SL2(Qp) with a ̸= 0 is exactly N−
p MpApNp. If we assume further that

|a|p ≥ |b|p, then b
a ∈ Zp and therefore the N−

p component lies also in Kp; letting

G+
p = SL2(Qp)+ :=

{(
a c
b d

)
∈ SL2(Qp) : |a|p ≥ |b|p

}
,

in which necessarily a ̸= 0, we conclude that the Bruhat decomposition of G+
p , which is

unique, coincides with the Iwasawa decomposition. This is due to the fact that the N−
p Mp

component in the Bruhat decomposition coincides with the Kp component in the Iwasawa
decomposition. Denoting this component by

Qp :=
{

lower triangular
matrices in Kp

}
=
{(

u 0
m u−1

)
: m ∈ Zp, u ∈ Z×

p

}
< Kp

(note that it indeed lies in G+
p ), we have that G+

p = QpApNp, and these are coordinates
on G+

p .
Moving forward to the arithmetic interpretation of these coordinates, it is clear that the first
columns of the elements in G+

p lie in the p-adic “right half plane”:

Q2 +
p :=

{
(a, b) ∈ Q2

p : |a|p ≥ |b|p
}
.

Accordingly, the right half of the p-adic unit sphere is denoted

S1,+
p := S1

p ∩Q2 +
p =

{
(u, a) : u ∈ Z×

p , a ∈ Zp
}
,

and the Z
[1
p

]
– vectors in Q2 +

p are denoted by Z
[1
p

]2,+.

Fact 2.5. — The half-sphere S1,+
p is homeomorphic to Qp and to Z×

p ×Zp. Its Haar measure
µ2
p

(
S1,+
p

)
equals µp(Z×

p )µp(Zp) = 1− 1
p = µGp (SL2(Zp)).

To conclude, we have that for ( a cb d ) ∈ G+
p (i.e. v = (a, b)t ∈ Q2 +

p ),(
a c
b d

)
a=ua|a|−1

p=
(
ua 0
b
aua u−1

a

)
︸ ︷︷ ︸

∈Qp

(
|a|−1

p 0
0 |a|p

)
︸ ︷︷ ︸

∈Ap

(
1 c

a
0 1

)
︸ ︷︷ ︸

∈Np

,
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which means that the p-adic analog to (2) is the following. For g =
(
v w

)
∈ G+

p , it holds that

(5)
(
v w

)
=
(
v̌ ∗

)︸ ︷︷ ︸
∈Qp

(
∥v∥−1

p 0
0 ∥v∥p

)
︸ ︷︷ ︸

∈Ap

(
1 y(w)

y(v)
0 1

)
︸ ︷︷ ︸

∈Np

,

where v = (x(v), y(v))t, w = (x(w), y(w))t, and
v̌ := ∥v∥p v

is the unit vector pointing in the p-adic direction of v (the projection of v to the p-adic unit
sphere). (Note that the fact that v̌ is a p-adic unit vector is completely analogous to the fact
that ua = |a|p a is a unit in Zp).

Definition 2.6. — The Iwasawa–Bruhat decomposition of
SL2(F)+ := SL2 (R)× SL2(Qp)+

is
SL2(F)+ = K∞A∞N∞ ×QpApNp = (K∞ ×Qp)︸ ︷︷ ︸

:=Q

(A∞ ×Ap)︸ ︷︷ ︸
:=A

(N∞ ×Np)︸ ︷︷ ︸
:=N

.

2.5. Correspondence between primitive vectors in Z
[1
p

]2 and matrices in SL2
(
Z
[1
p

])
.

We now define natural subsets in the Bruhat-Iwasawa components.

– For D ⊂ F, we consider

ND =
{((

1 α
0 1

)
,

(
1 a
0 1

))
∈ N∞ ×Np : (α, a) ∈ D

}
;

– for R > 1, t1 ≤ t2 ∈ Z, let

AR,t1,t2 =
{((

α 0
0 α−1

)
,

(
p−t 0
0 pt

))
∈ A∞ ×Ap :

1 < α ≤ R
t1 ≤ t ≤ t2

}
;

– for a real arc Θ ⊂ S1 and a p-adic arc Θp ⊂ S1
p, let

QΘ,Θp =
{((

û û⊥
)
,
(
v̌ ∗

))
∈ K∞ ×Q :

û ∈ Θ ⊂ S1

v̌ ∈ Θp ⊂ S1
p

}
.

The following proposition establishes a 1-to-1 correspondence between vectors in Z
[1
p

]2
prim

and certain matrices in SL2
(
Z
[1
p

])
.

Proposition 2.7. — Let D ⊂ F be a fundamental domain for the lattice Z
[1
p

]
in F.

1. There is a bijection v ↔ γv,D between primitive Z
[1
p

]2,+–vectors and SL2
(
Z
[1
p

])+ matrices
in QAND.

2. For D ⊂ F, R > 1, t1 ≤ t2 ∈ Z and arcs Θ ⊂ S1, Θp ⊂ S1
p, the bijection v ↔ γv,D restricts

to being between
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(a) primitive Z
[1
p

]2,+–vectors of real norm ∥v∥ ≤ R, p-adic norm pt1 ≤ ∥v∥p ≤ pt2 and
directions (v̂, v̌) ∈ Θ×Θp ⊆ S1 × S1

p

(b) SL2
(
Z
[1
p

])+ matrices in QΘ×ΘpAR,t1,t2ND.

Proof of Proposition 2.7. — If a, b ∈ Z
[1
p

]
are such that v = (a, b) is primitive, then there

exist (infinitely many) solutions (x, y) to the gcd equation of v over Z
[1
p

]
, ax + by = 1. If

(x0, y0) is such a solution, then the set of all solutions is{
(x0, y0) +m (−b, a) : m ∈ Z

[1
p

]}
.

A choice of m ∈ Z
[1
p

]
sets a unique solution to this equation. The gcd equation of v can also

be written in the form
det

([
b x
−a y

])
= 1,

which is equivalent to setting

v⊥ = (b,−a)t

w = (x, y)t

and requiring that [
v⊥ w

]
∈ SL2

(
Z
[1
p

])
.

The possibilities for the second column w are all the solutions to the gcd equation of v; the
matrices obtained from the different possibilities are{[

v⊥ w0 +mv⊥
]

: m ∈ Z
[1
p

]}

where w0 =(x0, y0)t is some solution. This set of matrices is an orbit for the group
{[

1 Z
[

1
p

]
0 1

]}
=

Np ∩ SL2
(
Z
[1
p

])
acting by right multiplication:{[

v⊥ w0
] [1 m

0 1

]
: m ∈ Z

[1
p

]}
.

According to (2) and (5), when viewing this set of matrices (via the diagonal embedding) in
SL2(F), it equals{(

k∞a∞

[
1 ⟨w,v̂⟩

∥v∥ +m

0 1

]
, kpap

[
1 y(w)

y(v) +m

0 1

])
: m ∈ Z

[1
p

]}
.

Since D is a fundamental domain for Z
[1
p

]diag in F, there exists a unique m for which(
⟨w,v̂⟩
∥v∥ +m, y(w)

y(v) +m
)

lies in D. This m = m (D) determines a unique solution wv,D which in
turn determines a unique matrix

γv,D :=
[
v⊥ wv,D

]
∈ SL2

(
Z
[1
p

])
.
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This establishes a one to one correspondence v ↔ γv,D between Z
[1
p

]2 primitive vectors and
matrices in SL2

(
Z
[1
p

])
∩QAND, and proves part 1 of the proposition. As for part 2: the fact

that (v̂, v̌) ∈ Θ×Θp if and only if the Q–component of γv lies in QΘ,Θp follows from (2) and
the definition of QΘ,Θp , and the fact that ∥v∥ ≤ R and pt1 ≤ ∥v∥p ≤ pt2 if and only if the
A–component of γv lies in AR,t1,t2 follows from (5) and the definition of AR,t1,t2 . □

3. Counting lattice points inside well-rounded sets

Proposition 2.7 gives a reformulation of Theorem A in the form of counting matrices of the
lattice SL2

(
Z
[1
p

])
inside the S-arithmetic group SL2(F), S = {∞, p}. The next step on the

way to prove Theorem A is to solve this lattice point counting problem. This is the topic of
this section. The method we will apply was established in [17], and it relies on ergodic theory.
The corpus of work on equidistribution and counting lattice points by dynamical methods is
rather vast; for a short survey on the applied techniques in the case of lattices in real algebraic
Lie groups, we refer to [17, p. 7]. As for the techniques in (as well as an introduction to) the
S-arithmetic setting, we refer to the survey [18].

3.1. Well-roundedness and counting lattice points. — Proposition 2.7 allows us to
translate the question on the number of primitive Z

[1
p

]2,+–vectors of real norm ∥v∥ ≤ R,
p-adic norm pt1 ≤ ∥v∥p ≤ pt2 and directions (v̂, v̌) ∈ Θ × Θp ⊆ S1 × S1

p, into the problem of
counting SL2

(
Z
[1
p

])+ matrices in QΘ×ΘpAR,t1,t2ND, where D ⊂ F is a fundamental domain
for Z

[1
p

]
. From now on we fix the fundamental domain from Fact 1.5,

D :=
(
−1

2 ,
1
2

]
× Zp.

We now describe a method to approach this counting problem.

Notation 3.1. — In what follows, G will denote the product
∏
v∈S Gv (Kv) where K is a

number field, Kv is the localization of K over a place v, Gv is a simple algebraic group defined
over K and S is a finite set of places that contains ∞.

Definition 3.2. — Let G be as in Notation 3.1, µ a Borel measure on G, and {Oϵ}ϵ>0 a
family of identity neighborhoods in G.

1. For a measurable subset B ⊂ G, we define
B+ (ϵ) := OϵBOϵ =

⋃
u,v∈Oϵ

uB v,

B− (ϵ) :=
⋂

u,v∈Oϵ

uB v.

2. The set B is Lipschitz well-rounded (LWR) with (positive) parameters (C, ϵ0) if for every
0 < ϵ < ϵ0

(6) µ
(
B+ (ϵ)

)
≤ (1 + Cϵ) µ

(
B− (ϵ)

)
.

3. A family {BR}R>0 ⊂ G of measurable domains is Lipschitz well-rounded with positive
parameters (C, R0, ϵ0) if for every 0 < ϵ < ϵ0 and R > R0, the set BR is LWR with (C, ϵ0).
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Remark 3.3. — Indeed the definition of LWR depends on the choice of a family {Oϵ}ϵ>0
of identity neighborhoods; however, we disregard this fact since we will only work with a
specific family, cf. Definition 3.6.

The notion of well-roundedness of a family is by now standard (see e.g. [13]), but it is less
common to define a well-rounded set; however, this notion will be useful for us, as the sets
under our consideration will project to a well-rounded family in the real component, but to
a well-rounded set in the p-adic one.

Theorem 3.4 ([17, Theorems 1.9, 4.5, and Remark 1.10]). — Let G as in Notation 3.1
and with Haar measure µ, and let Γ < G be a lattice. Assume that {BR} ⊂ G is a family of
finite-measure domains which satisfy µ (BR)→∞ as T →∞. If the family {BR} is Lipschitz
well-rounded, then there exists a parameter τ (Γ) ∈

(
0, 1

2(1+dim G)

)
such that for R large

enough and every δ > 0:∣∣∣∣# (BR ∩ Γ)− µ (BR)
µ (G/Γ)

∣∣∣∣ ≪G,Γ,δ
const ·µ (BR)1−τ(Γ)+δ

as T →∞, where µ (G/Γ) is the measure of a fundamental domain of Γ in G.

Remark 3.5 (The error exponent). — The parameter τ (Γ) depends on estimates on the
rate of decay of matrix coefficients of automorphic representations of G. For G = SL2 (R)×
SL2(Qp), any bound toward the generalized Ramanujan conjecture, from Gelbart–Jacquet [14]
to Kim–Sarnak [22], implies that these coefficients are Lq+ for some 2 < q ≤ 4 (see e.g. [6]).
These bounds give τp = τ(SL2

(
Z
[1
p

])
) = 1

4(1+dim(G)) = 1
28 , and only the full Ramanujan

conjecture would give a better exponent, namely τp = 1
2(1+dim(G)) = 1

14 . This exponent is
obtained by a combination of Theorems 1.9, 4.5 and Definition 3.1 in [17].

According to Theorem 3.4, the goal of counting lattice points inside QΘ×ΘpAR,t1,t2ND will
be achieved by establishing that these sets are Lipschitz well-rounded w.r.t. a certain choice
of identity neighborhoods in SL2 (R)× SL2(Qp). The LWR of these sets reduces to the LWR
of their projections to both the real and to the p-adic components; the LWR of the real
component is known (see more details in the proof of Theorem A below), and so it remains
to verify the LWR of the projection to the p-adic part. To this end, we will consider the
following identity neighborhoods inside SL2(Qp):

Definition 3.6. — For any subgroup Hp of Gp = SL2(Qp) and a positive integer N we set

Op−N = ker
{
Gp(Zp)→ Gp

(
Zp/pNZp

)}
=
(
I2 +pN Mat2(Zp)

)
∩Gp(Zp) ⊂ Kp

and
OHp
p−N = Op−N ∩Hp ⊂ Kp ∩Hp.

Let us now state explicitly the LWR property for the p-adic factor. We note that the LWR
property is rather strong here, since the Lipschitz constant equals zero. The following propo-
sition concerns a family of sets inside SL2(Qp), and it should be understood that the nota-
tions for the Bruhat-Iwasawa subsets are the p-adic parts of the Bruhat-Iwasawa subsets of
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SL2(R)×SL2(Qp) that were defined in Section 2.5; e.g., (Ap)t1,t2 is the p-adic part of AR,t1,t2 ,
(Qp)Θp is the p-adic part of QΘ,Θp , etc.

Proposition 3.7. — Consider the family Bt1,t2 = (Qp)Θp (Ap)t1,t2 (Np)α+pψZp of subsets in
SL2(Qp) with:

1. Θp ⊆ S1
p a fixed p-adic arc;

2. ψ ∈ Z;

3. t1 and t2 two real parameters satisfying t1 ≤ t2.

Then the family {Bt1,t2}t0<t1≤t2 for an arbitrary t0 ∈ R is Lipschitz well-rounded, with Lips-
chitz constant zero.

The proof of Proposition 3.7 is quite technical, we postpone it to the end of the paper; see
Section 5. Note that in the following proof of Theorem A, we will only need the very special
case where t1 = t2 = 0. In this case the family is indeed reduced to a single set!
We now have all the tools to prove Theorem A.

Proof of Theorem A. — We first note that according to Lemma 2.2,

Z2
prim = Z

[1
p

]2
prim ∩ S1

p.

It then follows from Proposition 2.7 that there is a bijection between the sets{
v ∈ Z2

prim : (v̂, v) ∈ Θ×Θp,
∥v∥ ≤ R

}
←→

{
γ ∈ SL2

(
Z
[1
p

])
∩
(
QΘ×ΘpAR,0,0N[− 1

2 ,
1
2 ]×Zp

)}
.

The sets QΘ×ΘpAR,0,0N[− 1
2 ,

1
2 ]×Zp are a product of a real factor (K∞)Θ (A∞)R (N)[− 1

2 ,
1
2 ] and a

p-adic factor (Qp)Θp (Ap)0,0 (Np)Zp ; the family of projections to real component is LWR by [19,
Theorem 1.1], and the projection to the p-adic part is LWR according to Proposition 3.7.
Since a product of LWR sets is LWR [21, Corollary 4.3 and Remark 4.4], it follows that
the family

{
QΘ×ΘpAR,0,0N[− 1

2 ,
1
2 ]×Zp

}
R>0

is LWR. In the notations of Theorem 3.4, let τp =

τ
(
SL2

(
Z
[1
p

]))
= 1

4(1+dim(G)) , see Remark 3.5. By Theorem 3.4,

#
{
γ ∈ SL2

(
Z
[1
p

])
∩
(
QΘ×ΘpAR,0,0N[− 1

2 ,
1
2 ]×Zp

)}

=
µSL2(F)

(
QΘ×ΘpAR,0,0N[− 1

2 ,
1
2 ]×Zp

)
µSL2(F)

(
SL2(F)/SL2

(
Z
[1
p

])) +O

(
µ
(
QΘ×ΘpAR,0,0N[− 1

2 ,
1
2 ]×Zp

)1−τp+δ
)

=
µSL2(R)

(
(K∞)Θ (A∞)R (N∞)[− 1

2 ,
1
2 ]
)

µSL2(R) (SL2 (R) /SL2 (Z)) ·
µSL2(Qp)

(
(Qp)Θp (Ap)0,0 (Np)Zp

)
µSL2(Qp) (SL2(Zp))

+O

(
µ
(
QΘ×ΘpAR,0,0N[− 1

2 ,
1
2 ]×Zp

)1−τp+δ
)
,
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where the last equality was deduced using Fact 1.5. The main term is a product of two factors,
one real and one p-adic. The real factor equals

Leb(Θ)R2

π2/3 ,

by (3). We turn to compute the p-adic factor. By Lemma 2.3 and Fact 2.5,

µSL2(Qp)
(
(Kp)Θp (Ap)0,0 (Np)Zp

)
= µ2

p (Θp) · 1 · µp(Zp) = µ2
p (Θp) .

Furthermore, as noted in Fact 2.5, we have µSL2(Qp) (SL2(Zp)) = 1− 1
p . Then we may conclude:

(7) #
{
v ∈ Z2

prim : (v̂, v) ∈ Θ×Θp,
∥v∥ ≤ R

}
= 3
π2 ·

p

p− 1 · Leb(Θ)µ2
p (Θp)R2 +O

(
R2(1−τp+δ)

)
.

Applying (7) to Θ×Θp = S1 × S1,+
p , we have that the total number of primitive vectors up

no norm R is asymptotic to
3
π2 ·

p

p− 1 · Leb(S1)µ2
p

(
S1,+
p

)
R2,

and upon dividing (7) by the above and applying symmetry considerations to pass from S1,+
p

to S1
p, we obtain the desired limit. □

As an evidence for the asymptotics in (7), notice that when taking Θ = S1 and Θp = S1,+
p ,

and recalling that Leb(S1) = 2π and µ2
p

(
S1,+
p

)
= 1− 1

p (Fact 2.5), we have that

#
{
v ∈ Z2

prim : (v̂, v) ∈ S1 × S1,+
p ,

∥v∥ ≤ R

}
= #

{
v ∈ Z2

prim : ∥v∥ ≤ R
}

= 6
π
R2 + o (R) ,

which coincides with the well known asymptotics for the primitive circle problem.

4. Equidistribution of Iwasawa components in the S-arithmetic case

We have used a special case of Proposition 3.7 to prove Theorem A. The full proposition
(together with Theorem 3.4) implies a stronger equidistribution result: the equidistribution
of both Q and N components of the Bruhat-Iwasawa decomposition for an S-arithmetic
lattice, in product of SL2’s. Let us begin by introducing this set up.
So far we have only dealt with the group SL2 (R)×SL2(Qp), meaning the case of one infinite
place, and one finite place. But in fact, we can allow any finite number of finite or infinite
places, and consider the group

G = (SL2 (R))n∞ ×
∏
p∈Sf

(SL2(Qp))np ,

where Sf is a finite set of primes. The notion of arithmetic lattice, which generalizes
SL2

(
Z
[1
p

])
< SL2 (R) × SL2(Qp), is described e.g. in [26, Section 5.4]. As noted in [17, Re-

mark 4.6], the ergodic method of Gorodnik and Nevo applies to these lattices. The analogous
sets to QΘ×ΘpAR,t1,t2NΨ∞×Ψp ⊂ SL2(F) inside G are the following. For 1 ≤ i ≤ n∞, let
Θi ⊂ S1 be arcs on the unit circle, Ψi ⊂ R intervals, and Ri ≥ 1 positive real numbers. Set

R = (R1, . . . , Rn∞),
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and consider

BIw
R :=

n∞∏
i=1

(K∞)Θi (A∞)Ri (N∞)Ψi ×
∏
p∈Sf

(Qp)
np
Θp (Ap)

np
tp1,t

p
2

(Np)
np
αp+pψpZp

where for every p ∈ Sf :

1. Θp ⊆ S1
p is a fixed p-adic arc,

2. ψp ∈ Z,

3. tp1 and tp2 are two real parameters that satisfy tp1 ≤ t
p
2 and are bounded from below, namely

there exist tp0 ∈ R such that tp0 < tp1 ≤ t
p
2.

Let µ denote a Haar measure on G.

Theorem 4.1. — Let Γ < G be an S-arithmetic lattice, and ∥·∥ any norm on Rn∞. Then, for
τ = 1

4(1+3(n∞+
∑

np)) , the following asymptotic formula holds for every δ > 0 as ∥R∥ → ∞:

#
{(
BIw
R

)
∩ Γ+

}
=
µ
(
BIw
R

)
µ (G/Γ) +O

(
µ
(
BIw
R

)1−τ+δ
)

= 6
π2 ·

n∞∏
i=1

(
LebS1(Θi) LebR(Ψi) ·R2

i

)
·
∏
p∈Sf

µ
2
p (Θp)

(∑tp2
t=tp1

p−2t
)(

1− p−ψp
)

1− 1
p


np

+O

(n∞∏
i=1

R2
i

)1−τ+δ
 .

The implied constant depends on Θ, Ψ, and ψp, Θp, tp1, tp2 for every p.

The exponent τ , as discussed in Remark 3.5, would be improved to τ = 1
2(1+3(n∞+

∑
np))

with the full Ramanujan conjecture.

Remark 4.2. — If tp2 grows to infinity, then the O-constant does not depend on it.

Proof. — We first note that the family
{
BIw
R

}
is LWR, since it is a product of the projections

(K∞)Θi (A∞)Ri (N)Ii to the real components, which are LWR according to [19, Theorem 1.1],
and the projections (Qp)Θp (Ap)tp1,tp2 (Np)αp+pψpZp to the finite components, which are LWR
according to Proposition 3.7. Now the result follows from Theorem 3.4, combined with the
fact that the µ×n∞

SL2(R) ×
∏
p µSL2(Qp)-volume of BIw

R is the expression appearing in the main
term, according to 3 and to Lemma 2.3. □

Remark 4.3. — We note that when considering the more general S-arithmetic setting as
in Theorem 4.1, we obtain a generalization of Theorem A to joint equidistribution of several
p-adic directions of primitive vectors. For this, one should apply Theorem 4.1 to the lattice
Γ = SL2

(
Z[{1

p}p∈Sf ]
)
.
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Remark 4.4. — 1. Theorem 4.1 is in fact an equidistribution result, since it is completely
standard to pass from a counting formulation to an equidistribution formulation; see, for
example, the proof of Theorem A.

2. Equisitribution of Iwasawa components, and especially of the N -component, has been
considered in a number of papers, e.g. [16, 19, 25, 27, 29]. All of the above in rank one
real Lie groups; in higher rank, we mention [20]. We are unaware of equidistribution
results of the Iwasawa components of lattice elements in the S-arithmetic setting.

3. For more equidistribution and counting results in the S-arithmetic or adelic settings, we
refer to [3, 6, 9, 17].

5. Proof of Well-roundedness in SL2 (Qp)

The goal of this final subsection is to prove Proposition 3.7, i.e. the well-roundedness of
the sets (Qp)Θp (Ap)t1,t2 (Np)α+pψZp in SL2(Qp). The main step is a measurement of how
the Bruhat components are modified by a small left or right perturbation. To state this
proposition, we need an additional notation: for any g ∈ SL2(Qp), we denote by ∥Adg ∥op the
operator norm of Adg acting on Mat2(Qp). Note that this operator norm takes values in pZ,
as the max norm on Q2

p.

Proposition 5.1 (Effective Bruhat-Iwasawa decomposition). — Let g = qan ∈
SL+

2 (Qp) with a =
[
p−t 0
o pt

]
. Let c (a, n) = ∥Adn∥op max(p−t, 1) ∈ pZ. The function c is

bounded when n is restricted to a bounded set and t is bounded from below Moreover, we have

OGpϵ qanOGpϵ ∈ qO
Qp
c(a,n)·ϵaO

Np
c(a,n)·ϵn

when ϵ ∈ p−N is small enough.

The proof of Proposition 5.1 requires the following three Lemmas:

Lemma 5.2. — For g ∈ SL2(Qp),

gOp−N g
−1 ⊆ O∥Adg∥opp

−N

where ∥Adg∥op ∈ p
Z is the operator norm of conjugation by g.

Proof. — Indeed,

gOp−N g
−1 ⊆ g

(
I2 +pN Mat2(Zp)

)
g−1

=
(
I2 +g · pN Mat2(Zp) · g−1

)
⊆
(
I2 + ∥Adg∥op p

N Mat2(Zp)
)

= O∥Adg∥opp
−N .

It is clear that ∥Adg∥op is a power of p, since, as an operator norm, it is the maximum of
norms of (p-adic) vectors. □

Lemma 5.3. — For every kp ∈ Kp,
∥∥∥Adkp

∥∥∥
op

= 1.
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Proof. — We know that Kp · S1
p = S1

p, and that this action preserves the p-adic norm. For
T ∈ Mat2(Qp), we need to show that

∥∥∥Adkp (T )
∥∥∥ = ∥T∥, where the norm on Mat2(Qp) is the

operator norm. Indeed∥∥∥Adkp (T )
∥∥∥ = sup

x∈S1
p

∥∥∥Adkp (T ) · x
∥∥∥
p

= sup
x∈S1

p

∥∥∥k−1
p Tkp · x

∥∥∥
p

= sup
y∈S1

p

∥Ty∥p = ∥T∥ .

Then Adkp is norm preserving, and therefore has operator norm 1. □

Lemma 5.4. — For any N ≥ 1,

OGp
p−N = OQp

p−NO
Np
p−N ,

OQp
p−N = ON

−
p

p−NO
Mp

p−N .

Proof. — We note that when N ≥ 1

OQp
p−N =


1 + pNa 0

pNb
(
1 + pNa

)−1

 : a, b ∈ Zp

 ,
ONp
p−N =

{(
1 pNZp
0 1

)}
and

OMp

p−N =


1 + pNα 0

0
(
1 + pNα

)−1

 : α ∈ Zp

 .
The inclusions ⊇ in the statement of the lemma are trivial. For the opposite direction, observe
that

OGp
p−N ∋

(
1 + pNa pNc
pNd 1 + pNb

)
=

1 + pNx 0
pNy

(
1 + pNx

)−1

(1 pNz
0 1

)
for

x = a, y = d, z = c
1+pNa ,

as
(
1 + pNx

)−1
= 1− PNx

1+pNx and the determinant of the left-hand matrix is 1. Similarly,

OQp
p−N ∋

1 + pNa 0
pNb

(
1 + pNa

)−1

 =
( 1 0
pNz 1

)1 + pNx 0
0

(
1 + pNx

)−1


for

x = a, z = b
1+pNa . □

We now turn to prove Proposition 5.1.
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Proof of Proposition 5.1. — Let g = qan with q ∈ Q, a =
(
p−t 0

0 pt

)
∈ Ap and n = ( 1 x

0 1 ) ∈ Np.
We will use the fact that

(8)

a−1nxa =
(
pt 0
0 p−t

)(
1 x
0 1

)(
p−t 0
0 pt

)
=
(

1 xp2t

0 1

)
= nxp2t

an−
y a

−1 =
(
p−t 0
0 pt

)(
1 0
y 1

)(
pt 0
0 p−t

)
=
(

1 0
yp2t 1

)
= n−

yp2t

where nx = ( 1 x
0 1 ) ∈ Np, n−

y =
(

1 0
y 1
)
∈ N−

p and a =
(
p−t 0
o pt

)
.

Step 1: Left perturbations. — Set ϵ = p−N . Since ∥Adq∥op = 1 (Lemma 5.3), then by Lem-
mas 5.2 and 5.4 we have that,

OGpϵ qan = q
(
q−1OGpϵ q

)
an ⊆ qOGpϵ an = qOQpϵ ONpϵ an.

According to (8),
= qOQpϵ a · a−1ONpϵ an = qOQpϵ · a · O

Np
p−2tϵn.

Step 2: Right perturbations. — By letting C (n) = ∥Adn∥op ∈ pZ, we have according to
Lemma 5.2 that

qanOGpϵ = qa
(
nOGpϵ n−1

)
n ⊆ qaOGpC(n)ϵn;

By Lemma 5.4 and to (8),

⊆ qa · ON
−
p

C(n)ϵO
Mp

C(n)ϵO
Np
C(n)ϵ · n

= qa · ON
−
p

C(n)ϵa
−1 · aOMp

C(n)ϵO
Np
C(n)ϵ · n

= qON
−
p

p−2tC(n)ϵa · O
Mp

C(n)ϵO
Np
C(n)ϵ · n.

Since A and M commute,

= qON
−
p

p−2tC(n)ϵO
Mp

C(n)ϵ · aO
Np
C(n)ϵn.

By letting C (a) = max
{
p−2t, 1

}
we have

⊆ qON
−
p

C(a)C(n)ϵO
Mp

C(a)C(n)ϵ · aO
Np
C(n)ϵn.

and then by Lemma 5.4

⊆ qOQpC(a)C(n)ϵO
Np
C(a)C(n)ϵaO

Np
C(n)ϵn.

Finally, by (8)

= qOQpC(a)C(n)ϵa · a
−1ONpC(a)C(n)ϵaO

Np
C(n)ϵn

= qOQpC(a)C(n)ϵaO
Np
p−2kC(a)C(n)ϵO

Np
C(n)ϵn

⊆ qOQp
C(a)2C(n)ϵaO

Np

C(a)2C(n)ϵn.
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Combining the effect of both left and right perturbations, we obtain that

OGpϵ qanOGpϵ ∈ qO
Qp
c(a,n)·ϵaO

Np
c(a,n)·ϵn

where c (a, n) = C (a)2C (n) is a power of p (since C (a) and C (n) are) that is bounded when
t is bounded from below and n is restricted to a bounded set. Require that ϵ < c (a, n)−1 to
obtain that c (a, n) ϵ ∈ p−N. □

We can now prove Proposition 3.7. The proof essentially relies on the ultrametric nature of
Qp: a small enough perturbation of a ball is the ball itself. The first claim (9) is the translation
of this phenomenon in our setting.

Proof of Proposition 3.7. — We first claim that for N ≥ 0 large enough and cϵ ≤ p−N we
have:

(9)

O
Np
cϵ · (Np)α+pψZp ⊆ (Np)α+pψZp and (Np)α+pψZp · O

Np
cϵ ⊆ (Np)α+pψZp

OQpcϵ (Qp)Θp ⊆ (Qp)Θp and (Qp)Θp · O
Qp
cϵ ⊆ (Qp)Θp .

.

The inclusions in the first row are a trivial computation. For the inclusions in the second
row, write Θp = Θp

(
v̌, pk

)
where k ≥ 0 and v̌ ∈ S1,+

p . Let N ≥ 0 such that Ocϵ = O
pN

, and
assume that N ≥ k. Observe that

OQpcϵ = OQp
pN

=
{(

1 + pNZp 0
pNZp ∗

)}
.

By letting v̌ =
(

u1
pℓu2

)
∈ S1,+

p where u1, u2 ∈ Z×
p and ℓ ≥ 0, then

(Qp)Θp(v̌,pk) =
{(
v̌ + pkZ2

p 0
)}

=
{(

u1 + pkZp 0
pℓu2 + pkZp ∗

)}
.

Take
(

u1+pkα 0
pℓu2+pkβ (u1+pkα)−1

)
∈ (Qp)Θp(v̌,pk) and

(
1+pNγ 0
pN δ (1+pNγ)−1

)
∈ OQp

p−N (here α, β, γ ∈
Zp). Now,1 + pNγ 0

pNδ
(
1 + pNγ

)−1

 ·
 u1 + pkα 0
pℓu2 + pkβ

(
u1 + pkα

)−1

 N≥k
∈

{(
u1 + pkZp 0
pℓu2 + pkZp ∗

)}
= (Qp)Θp(v̌,pk) ,

 u1 + pkα 0
pℓu2 + pkβ

(
u1 + pkα

)−1

 ·
1 + pNγ 0

pNδ
(
1 + pNγ

)−1

 N≥k
∈

(
u1 + pkZp 0
pℓu2 + pkZp ∗

)
= (Qp)Θp(v̌,pk) .

Having proved the inclusions in (9), the statement of Proposition 3.7 follows: according to
Proposition 5.1, when gp = qan ∈ G+

p lies in QΘ+
p
At1,t2Nα+pψZp , then

OGpϵ qanOGpϵ ⊆ qOQpcϵ aONpcϵ n
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(where c = c (a, n)); but then according to (9), this is contained in QΘ+
p
At1,t2Nα+pψZp . Thus(

QΘ+
p
At1,t2Nα+pψZp

)+ϵ
⊆ QΘ+

p
At1,t2Nα+pψZp ,

and the opposite inclusion is obvious. Similarly,

QΘ+
p
At1,t2Nα+pψZp ⊆

(
QΘ+

p
At1,t2Nα+pψZp

)−ϵ

and the opposite inclusion is obvious. Then(
QΘ+

p
At1,t2Nα+pψZp

)−ϵ
= QΘ+

p
At1,t2Nα+pψZp =

(
QΘ+

p
At1,t2Nα+pψZp

)+ϵ
,

meaning that the well-roundedness condition holds trivially. □
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