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p-ADIC DIRECTIONS OF PRIMITIVE VECTORS

by

Antonin Guilloux and Tal Horesh

Abstract. — Linnik type problems concern the distribution of projections of integral points on the unit
sphere as their norm increases, and different generalizations of this phenomenon. Our work addresses
a question of this type: we prove the uniform distribution of the projections of primitive Z? points in
the p-adic unit sphere, as their (real) norm tends to infinity. The proof is via counting lattice points in
semi-simple S-arithmetic groups.

Résumé. — (Directions p-adique de vecteurs primitifs) Les problémes de type Linnik concernent la
distribution des projections des points entiers sur la sphére unitaire lorsque leur norme augmente et
différentes généralisations de ce phénomeéne. Notre travail s’intéresse a une question de ce type : nous
prouvons la distribution uniforme des projections des points primitifs de Z? sur la sphére unitaire p-adique
lorsque leur norme (réelle) tend vers l'infini. La preuve se fait en comptant les points d’un réseau dans
des S-groupes arithmétiques semi-simples.

A primitive vector is an n-tuple (ai, ..., a,) of co-prime integers, and we let Lpyivy denote the
set of primitive vectors in Z". Since every integral vector is an integer multiple of a unique
primitive vector, it is very natural to restrict questions about equidistribution of integer
vectors to the set of primitive vectors. For example, one question about an equidistribution
property for integer vectors that has been studied in the past (e.g. in [28]) is whether the di-
rections of integral vectors, i.e. their projections to the unit sphere in R™, distribute uniformly
in the unit sphere as their norm tends to co. This question belongs to the well known family
of Linnik type problems (e.g. [7, 8, 23]), and the answer is positive: for every “reasonable”

subset O of the sphere, it holds that

#{ €©:vez|v| <R} Leb(6)
H 1 s
i {L eSl:vezn |v|| < R} R—oco Leb(St)

[[]

(1)

where Leb is the Lebesgue measure on the sphere. While in the above quotient every “integral
direction” on the unit sphere is hit several times (the first time for a primitive vector, and
then another time for each one of its integer multiples), restricting to v € Zp,;,, allows every
integral direction to be considered exactly once.
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86 p-adic Directions of Primitive Vectors

Questions about equidistribution of directions, as well as of other parameters of primitive
vectors, have been studied recently using dynamical methods in [1, 2, 10, 11, 24]. In the present
paper we restrict to dimension n = 2, and study the equidistribution of p-adic directions of
primitive vectors. Indeed, since primitive vectors have integer coordinates, they can be seen
as vectors over any field that contains the rationals, and in particular over the field of p-adic
numbers Q, for a positive prime number p. There, just like the direction of a real vector is
its projection to the (real) unit sphere through multiplication by inverse of the norm, the
p-adic direction of a vector is its projection to the p-adic unit sphere. However, the primitive
vectors have p-adic norm one, so in fact they are already contained in the p-adic unit sphere
S}D (we will observe this below, where we recall some basic definitions in the p-adic setting).
So, le)rim is a countable subset of Sll7 which is equipped with a natural height function: the
real norm. One is then led to ask whether the set Z%rim equidistributes in S}D, i.e., if an analog
to (1) holds when Z™ is replaced by Zgrim, and S"7! is replaced by S}D. To formulate such
an analog, we need to declare what are the analogous objects in Szl, for an arc on the (real)
unit circle, and for the Lebesgue measure on it. Below, we will define the concept of a p-adic
arc, ©, C S}) (Definition 1.4), and recall a Haar measure p, on Q. Since S}D is an open and
compact subset of the p-adic plane, then the restriction of the Haar measure ug on the plane
QZQ, to Szl, is a finite non-zero measure on SII,. As we shall see below, it corresponds to the
Lebesgue measure on the real unit circle.

The theorem below establishes the uniform distribution of the primitive vectors in SII, as their
real norm tends to infinity; even more, it establishes joint equidistribution of their real and
p-adic directions in the product of unit circles S! x Sll,.

Theorem A. — Forv € Z%rim, the pairs of real and p-adic directions
v 1 1
— V] €S XS
(HUH’ ) 8

become uniformly distributed in S* x S}, w.r.t. Leb X,U,Z%‘Szl) as ||v|| — oo, meaning that for every
product of arcs © x ©,, C S! x S}, it holds that

# {v € mem : (”f}—”,v) €O X0, < R} R Leb(©) ',ug(@p)
# {v €Z%im: v < R} R0 Leb(S1) - p3(Sp)

prim

The convergence is at rate at most O (R*QTP”) for every 6 > 0, where 1, = %.

Remark. — The parameter 7, in the error term exponent depends on the rate of decay
of the matrix coefficients of automorphic representations of SLy (R) x SLy(Q,), and can be
improved to ﬁ when assuming the Ramanujan conjecture (cf. Remark 3.5).

A similar theorem holds when considering a finite set of primes instead of a single p. Theo-
rem 4.1 in Section 4 states a related equidistribution result in this S-arithmetic setting, that
translates into a counting statement as above, see Remark 4.3. However, we have chosen to
deal with only one prime here in order to ease the exposition.
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Antonin Guilloux and Tal Horesh 87

Organization of the paper. — The first section of the paper is a collection of general
facts on p-adic numbers and arithmetic lattices. Sections 2 and 3 are devoted to the proof
of Theorem A, along the lines of the proof given in [19, 20] for the uniform distribution
of the real directions of primitive vectors in the unit sphere. It consists of two stages: the
first is a translation of the theorem to a statement about counting lattice points in the group
SLy (R) x SL2(Qy) (Section 2), and the second is proving the counting statement via a method
developed in [17] (Section 3). In Section 4, we show that the same method gives a stronger
statement than the one in Theorem A, namely the joint equidistribution of real and p-adic
directions for any finite number of primes p — cf. Theorem 4.1 (and Remark 4.3). Section 5
is devoted to proving a technical result on well-roundedness in the p-adic setting that is used
in Section 4.

Acknowledgments. — The authors are grateful to Nicolas Bergeron and Frédéric Paulin
for helpful discussions, and to Tim Browning for his valuable comments on a preliminary
version of the preprint.

1. p-adic numbers and arithmetic lattices

Let us now recall some basic facts on the p-adic numbers and arithmetic lattices.

1.1. p-adic numbers and vector spaces. —

Definition 1.1 (p-adic valuation and absolute value). — For a non-zero p-adic number
a, the p-adic valuation of a is defined to be the biggest integer v (a) such that

oo

a= Z ap', a;€{0,1,...,p—1},

i=v(a)
where for a = 0 one defines v (0) = co. The p-adic absolute value is given by
|a‘|p = p_y(a)‘

The ring of p-adic integers Z, < Q, is the p-adic unit ball, namely the set of p-adic numbers
with absolute value at most 1 (equivalently, of non-negative valuation). Inside Z,, the set
of invertible p-adic integers Z; C Zy is the set of p-adic numbers with absolute value 1
(equivalently, of valuation 0).

Note 1.2. — It is easy to see that every a € Q, can be written (uniquely) as
a = ugp”\? = u, \a|;1

where u, € Z;.

A norm on Q]% (and therefore a unit circle) is then defined as follows.

Definition 1.3 (norm and unit circle in QZQ)). — The p-adic norm (or just “norm”) of
a vector (a,b) € Q2 is defined to be

I(a,b)ll, = max {Jal,, b], } = p~ @O},
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88 p-adic Directions of Primitive Vectors

Accordingly, the p-adic unit circle in @g is the set of vectors of norm one:
1 2
sp={ve@: o], =1}

Note that (a,b) is in Sll, if and only if both a,b are in Z;, and at least one of them is in Z.
In particular, since the real integers are also p-adic integers, and since an integer lies in Z;
if and only if it is not divisible by p, we have that Zgrim - S}j.

Since Zj, is the unit ball in Q,,, then a ball of radius p~ NV around o € Qp is a+ pN Zy. Similarly,
a ball of radius p~" around («, 8) € QIQD is (o, B) + pNZZZO. The analog in QZ for an arc © in

the unit circle S' is a ball that is contained in the p-adic circle:

Definition 1.4 (p-adic arc). — Let N > 0 be an integer. A p-adic arc of radius p~ is a
ball 8 —i—pNZf,, where 6 € Szl,. It will be denoted by ©, = @p(ﬂ,p_N).

Note that it is sufficient that 6 € S}D in order to have ©, C S}j!

A Haar measure p, is defined on Q, (see, e.g. [5]) by assigning to a ball of radius p~ N the
volume p~ V. We let ,u]% = ftp X pp denote the resulting Haar measure on szw which then
assigns to a ball of radius p~" the volume p~2". Being a Haar measure on QI%, ,u% is invariant
under the group SL2(Q,) of p-adic 2 by 2 matrices with determinant one. We note that unlike
the real case, in the p-adic plane the unit circle has positive Haar measure. Indeed, it contains

the subset Z,; x Zy, which has measure

MP(Z;) 'Np(Zp) = Mp(Zp _pr) ) Mp(Zp> = (1 - ;) l=1- 11)
Hence, it is possible to restrict ,u,g to S}D. This measure is the analog of the Lebesgue measure
on the real unit circle, in the sense that it is invariant under the group of norm preserving
linear transformations of Qg. Indeed, it is known (e.g. [15, Corollary 3.3]) that the group
SLa(Zp) is the stabilizer of the norm ||-|[, on Q2, so in particular it preserves and acts
transitively on S}J.

1.2. S-arithmetic lattices. — The field Q, does not contain a lattice; but, inside the ring
F:=R x Qy,
the subring Z[%] of polynomials in % with integer coefficients embeds diagonally as a co-
compact lattice. It is an integral domain, and as such it plays the role of the integral lattice
inside F. According to the Borel Harish—-Chandra Theorem [4], the diagonal embedding of the
subgroup SLo (Z[II;]), which by abuse of notation we denote by SLo (Z[%]), is a lattice inside
SLQ(F) = SL2 (R) X SLQ(QP)
Both these lattices, Z[%} < F and SLs (Z[%]) < SLo(TF), are a special case of S-arithmetic
lattices [26]. To familiarize the reader with the S-arithmetic framework, we include a proof
that these two discrete subgroups are indeed lattices, by establishing the existence of finite-
volume fundamental domains. Here a fundamental domain means a full set of representatives.
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Antonin Guilloux and Tal Horesh 89

Fact 1.5. — Let Dy, denote a fundamental domain for SLa (Z) in SLa (R). Then
1. [3,3) x Zy is a fundamental domain for Z[%] in .
2. Do x SLa(Z,) is a fundamental domain for SLy (Z[%]) in SLa(TF).

Proof. —
1. — Given (z,a) € R x Qp, with a = Zfiy(a) a;p', write

{a} = i aip' € Z[ﬂ

i=v(a)
Then clearly o — {a} = 37°, a;p’ € Z,,, and so
(‘T’a) - ({a} ) {a}) € R x Zp'
Now let m € Z be an integer such that x — {a} —m € [%, %) Since Z C Zj, then

11
(z,a) — {a} +m,{a} +m) € {2, 2) X ZLp.
For uniqueness, assume (z, ) and (y, 3) are both in [3,3) x Z,, with f € Z[%J] such that

(@, 0) + (f, f) = (v, B)-
Then f = 3 — a € Z, must be an integer since Z[ | NZ, = Z, and the real coordinate forces

1
p
that f =0.

2. — For the second part, let g = (goo, gp) € SLa (R) x SL2(Q,); we show that there exists a
unique (v,7) € SLa(Z[2]) such that

P
(9oo> p) - (7,7) € Do x SLa(Zp).
It is a consequence of row reduction that any g, € SL2(Q)) can be written (non-uniquely) as
9p = kpp

with k, € SLa(Z,) and 7, € SL2(Z[+]). Then (goo, gp) = (goo, kpyp) meaning that

1
P
(950:90) (557 ) = (92075 B -
Write
SL2 (R) > 900’7;1 = Too Voo

where o € Do and Yoo € SLy (Z). Then

(950, 90) (15195575 19" ) = (oo, kp1) € Do x SLa(Zy),
which establishes existence. For uniqueness of (v, 7) = (v, 175, 7, '), assume that (goo, gp)-
(7,7) = (p, Too) and (goo, gp) - (V1) = (:Ego,:vg), where both (2, xp) and (x%,m%) lie in
Do X SLa(Zp). Then

(oo 2p) - (7719,77) = (2, 2},) € Do x SLa(Z)
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90 p-adic Directions of Primitive Vectors

where v~/ € SLy (Z[%]) From the p-adic component of the equation we have that v~ 14/ €

SLy(Zy). Then v~ 14 € SLy (Z[%]) N SLa(Z,) = SLy (Z). On the other hand, from the real

component of the equation, we have that 4~/ cannot lie in SLs (Z), unless v~ 14/ = id. We

conclude that v =~/ O

2. From primitive vectors to lattice points in the group SLj (R) x SL3 (Q,)

It is well known that there exists a connection between primitive vectors in Z2, and integral
matrices inside SLo (R); the goal of this section is to establish an analogous connection in the
setting of R x @), hence reducing the proof of Theorem A to counting lattice points in the
group SLj (R) x SL2(Qp). To exhibit such a connection, we first extend the notion of primitive
vectors (subsection 2.1), then find suitable coordinates on SLy(F) through a Bruhat-Iwasawa
decomposition (Definition 2.6). Proposition 2.7 states the precise connection.

2.1. Primitive vectors over Z[%]. — We aim to formulate a connection between primi-

tive vectors in Z[%]Q and matrices inside SLg (Z[%]) First, let us extend the definition of a
primitive vector from Z to a general integral domain:

Definition 2.1. — Let O be an integral domain. A vector v = (a, b) € O? is called primitive
if the prime ideals (a) and (b) satisfy that (a) + (b) = O. In other words, if there exists a
solution (x,7) € O? to the O-diophantine equation

axr + by = 1.

We refer to this equation as the gcd equation of v, and denote the set of primitive elements
in ©? by 0?

prim*

Clearly, the set of primitive Z[%]Q (vectors contains the set of primitive Z?) vectors, but is
not equal to it; e.g. the vector (p,0) is primitive in Z[%]Q but not in Z2. However, these sets
are very much related to each other: every element in Z[%] irim is a multiplication by a power
of p of an element in Zgrim.

Lemma 2.2. — The primitive vectors in Z[%}Q are {p*v:a € Z, v € L}

For the proof, we observe that every element f of Z[%] can be written as f = z% where
m,n € Z and m is coprime to p. If deg(f) = 0 (as a polynomial in %), then f is an integer

and this fact is clear. Otherwise, let n > 0 and write

Qnp an—1 a1
f:ﬁ e
where ag, ..., a, are integers that are (except maybe ag) coprime to p, and a, # 0. Then

(p + ap_1p+ -+ alpn_l + app”
pn
and the denominator is coprime to p when n > 0.
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Proof of Lemma 2.2. — Let (a,b) € Z[%]irim

are co-prime to p and «, 8 € Z. We claim that ged(a’,d’) = 1. To see this, substitute a and b
into the ged equation ax+by = 1 (x, y variables in Z [;ﬂ) to obtain a/p®z+b'p’y = 1. Multiply
both sides by a non-negative power of p to obtain an equation in integers: a’z’ + b’y = p™
where 2/,y’ € Z. It then follows that ged (a’,b) is a power of p, but since both ', are
co-prime to p, then ged (a/, ") = 1. Without loss of generality, assume 8 > «. Then (a,b) =
P (a’, b’pB*a> = p®* where v = (a', b/pr*a) € 7? O

prim*

and write a = a’'p® and b = b'p® where ¢/, b/ € Z

To formulate the connection between primitive Z[%}vaectors to matrices in SLa(Z[1]), we

P
introduce the Bruhat-Iwasawa decomposition of SLa(IF).

2.2. Iwasawa decomposition of SLy (R). — Let us first recall the KX AN decomposition
of SLg (R). Here SLy (R) = Ko AowNo where Ko, = SO (R) is maximal compact, As =
{(8‘ a91 )} is the diagonal subgroup and No = {({ ¥)} is the subgroup of upper unipotent
matrices. Then, for (§ ) € SLa (R),

(a c)_ 1 (a —b) Va? + b2 0 1 agth
b d ,/a2+bz b a 0 \/QQIW O 1 '

€K ero ENoo

By letting v := (a,b)" and w := (¢, d)", we obtain

(el 0 (1t
(2) (v w)—(v UJ‘)< 0 HU’_1> <0 ||1||>,

€K

€A ENoo
where
vi=v/ v
is the unit vector pointing in the direction of v,
vt = (=b,a)

is the vector pointing in the orthogonal direction to v, and (-, -) is the standard dot product
in R2.

We note that any pair of the three subgroups K., Ao and N intersect trivially, and
therefore the decomposition SLy (R) = Ko AxNs induces coordinates on SLg (R): every

element g € SLy (R) has a unique presentation as g = kan. In addition, a Haar measure on
SLa (R) can be decomposed in the Iwasawa coordinates as

dpaic. (K)dpa (a)dpin. (n)

dpspyr) (9) = dpspy ) (kan) =

with o € R being the first diagonal coefficient of a, and where: py_ is the Haar measure

on N, corresponding to the Lebesgue measure on R under the isomorphism (%) < z;

pk.. is the Haar measure on K, corresponding to the Lebesgue measure on S! under the

cosf sinf

%0 s 9) < 0; and pa,, is a Haar measure on A, corresponding to the

isomorphism (

8‘@91) “ o
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92 p-adic Directions of Primitive Vectors

With these isomorphisms in mind, and recalling that the Haar measure on (R, - ) is %O‘, we

have

cos@ sinf\ faa O 1 z dfdadzx
(3) dMSLg(R)(Q) = dMSLQ(R) ((_ sin 6 0089> (0 a_1> (0 1)) = —z

where dy stands for integration w.r.t. the Lebesgue measure on R.

2.3. Bruhat decomposition of SLj(Q,). — Proceeding to the p-adic case, the group
SL2(Qp) can also be written as K, A,N,, but these are not coordinates. Indeed, set

K, := {(Z fl) ca,b,¢,d € Zp, ad — bc = 1} = SLy(Zy)

T (I
won (b 9) o)

Since K, and N, intersect non-trivially, the Iwasawa decomposition on SL(Q)) is not unique.
To remedy this, we use the Bruhat decomposition instead. Let

u 0 "
e ({2 0 uez;)

be the centralizer of 4, in K, D, := { (‘8‘ agl ) o€ @p} be the diagonal subgroup (satisfying
D, = My,A,), and

({2 )eacal

be the lower unipotent subgroup. Each two of the subgroups N, M;, A, and N, intersect
trivially, which means that they induce coordinates — the Bruhat coordinates — on the
subset
N, MyA,N, C SL2(Qp).

This set is not the whole of SL2(Qj), but its complement in SLa(Q)) is of Haar measure zero.
We choose the following Haar measures on the above subgroups. The natural isomorphisms
between N, and N, to Qp equip N, and N, with Haar measures that correspond to the
Haar measure ji;, on Qy:

duv, (5 1) =il duy (3 7) = diple.

Similarly, the natural isomorphism between A, to Z induces A, with the Haar measure on Z
that is the counting measure:
KA, = Z Aa,

acAy

where A, is the Dirac measure supported on a € A,,. Finally, D,, is naturally isomorphic with
the multiplicative group Q; of the field Q,, from which it inherits the Haar measure:

a 0 dpp (@)
d:qu (0 Oé_1> = dMQ; (Oé) = ‘g‘p :
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Since the measure on Q[f restricts to the measure on Z;f, and the latter is isomorphic to M,
in the same way that Q. is isomorphic to D, we obtain a Haar measure on M,

u 0 dpip (u)
dpeng, (0 u1) = dpgx (u) = |5| = dup(u).
p

A Haar measure on SLy(Q)) can be expressed in the Bruhat coordinates as follows.

Lemma 2.3. — The Haar measure on G, = SL2(Q,) w.r.t. the Bruhat coordinates is
1 0\ /u O p~t 0\ /1 B o
o= (1 (¢ )05 86 )= amrniongs
Proof. — Let P, denote the subgroup of lower triangular matrices in SLy(Qj), meaning that

Py = N, D, = N, MpA,. By [12, Lemma 11.31], since G, is unimodular, a Haar measure
KG, = HSLy(Q,) 1S given by ug, = MIL;— X uﬁp, where ,u]LD, is a left Haar measure on P, and
p p
uﬁp is a right Haar measure on N, which is simply pp,. It is left to compute a left Haar

measure on P. Note that P, can be introduced in two ways as N, D), = DpN,", but the
expression for the Haar measure will correspond to the choice of coordinates. It is easy to
show that up, x p Ny is a left Haar measure on P, = D, N,;'; to obtain this left Haar measure

in the coordinates N, D, we will perform a change of variables:

(P 1P A (PR 2 ()
I 316 D ([ el (1 3)
o L | P I (P E2 % ()

g) by f(hg) for any
(“Dp % “Np‘)'

Now, since D, = M,A, where M, and A, commute and are abehan, we have that up, =
par, X fa,. We conclude that a left Haar measure on G, is given in the Bruhat coordinates as

Since the integral on the left-hand side is invariant under replacmg f
h € P, then so is the integral on the right-hand side. Hence wk P |a

na, = laly (- x pag, x pa, x pu, ) - O

Remark 2.4. — Under this choice of Haar measure, the (compact and open) subgroup
SLy(Zy) has mass 1 — -. Indeed, we have

SLa2(Zyp) =~ N, (Zp) x My x Nyp(Zyp) =~ Zy X Ly X L

and therefore
y 1 1
Ha, (SLa(Zyp)) = pp(Zyp) pp (Zp ) pp(Zp) =1 {1~ ;? 1=1- 5
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94 p-adic Directions of Primitive Vectors

2.4. The Bruhat-Iwasawa coordinates. — While the Bruhat decomposition of SL2(Q))
provides uniqueness, the Iwasawa decomposition provides an arithmetic interpretation of the
different components, as suggested in (2) for the SLa(R) case. Luckily, these two decomposi-
tions coincide on a “large” subset of SL2(Q)), on which we are going to focus from now on.
Consider g = (§ g) € SL2(Qy); assuming that a # 0 we have that

o= (0620

——
EN,

a:uﬂa|;1 1 0 Ug 0 \a|;1 0 1 5
- Lyj\o ')\ 0 af,)\0 1)
—_——

eN, €My €A, €Np

€D, eN,

Indeed, the set of g € SL2(Q,) with a # 0 is exactly N, M, A,N,. If we assume further that
lal,, > [b],,, then b ¢ 7, and therefore the N, component lies also in Kp; letting

a c

G =SLa@)* = {(§ §) €1a(@y): lal, > 0], }.

in which necessarily a # 0, we conclude that the Bruhat decomposition of G;‘ , which is
unique, coincides with the Iwasawa decomposition. This is due to the fact that the N, M,
component in the Bruhat decomposition coincides with the K, component in the Iwasawa
decomposition. Denoting this component by

.__ Jlower triangular | __ u 0 . x
Qp = {matricesinKp} - {(m u—l) tm e Zp,u S Zp} < Kp

(note that it indeed lies in G}f), we have that G} = QpA,N,, and these are coordinates
on Gf.

Moving forward to the arithmetic interpretation of these coordinates, it is clear that the first
columns of the elements in G}‘f lie in the p-adic “right half plane”:

Q= {(a,b) €Q}: fal, = bl } -
Accordingly, the right half of the p-adic unit sphere is denoted
SZI,’Jr = S;OQZQ)JF = {(u,a) tu€Zy,a€ Zp},

and the Z[%]f vectors in Q2T are denoted by Z[%}Q”L.

Fact 2.5. — The half-sphere S}fr is homeomorphic to Qp and to Z; X Zy. Its Haar measure
H2 (Sh) equals (2 ip(Zy) = 1L = g, (SLa(Z,)).

To conclude, we have that for (§ §) € Gff (i.e. v = (a,b)' € Q2F),

a c\o=ualal,’ (w0 \(lal;t 0\ /1 ¢
b d - bug ugt 0 Jal,/\O 1)’
N —

€Qp €A E€Np
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which means that the p-adic analog to (2) is the following. For g = (v w) € G/}, it holds that

s o flelt 01 y(‘;j))
(5) (U w)_u< 0 ||/U’p> (0 y(l) )

€Qyp
€A, eN,
where v = (2(0), y(v))", w = (£(w), y(w))", and
U=l v

is the unit vector pointing in the p-adic direction of v (the projection of v to the p-adic unit
sphere). (Note that the fact that © is a p-adic unit vector is completely analogous to the fact

that u, = [a[, a is a unit in Z,).

Definition 2.6. — The Iwasawa—Bruhat decomposition of
SLQ (IF)JF = SL2 (R) X SL2 (@p)+

is

SLo(F)t = Koo AswNoo X QpAyNy = (Koo X Qp) (Ao X Ap)(Now X Np).

=Q =A

=N

2.5. Correspondence between primitive vectors in Z [1%] ? and matrices in SL, (Z[%] ).

We now define natural subsets in the Bruhat-Iwasawa components.

— For D C F, we consider

ND:{(G) ?)((1) ‘f)) eNoopr:(a,a)eD};

—for R>1,t1 <ty €Z, let

AR,tl,tQ—{(<0 a—1)7<0 pt>>€AooXAp.t1§t§t2 )

— for a real arc © C S! and a p-adic arc ©, C S]l,, let

Qo., = {((ﬁ ﬂi),(ﬁ *)) €Ky xQ:

The following proposition establishes a 1-to-1 correspondence between vectors in Z[

and certain matrices in SLo (Z[%])

ie0cs!

~ 1
VEB,CS,

2

112
plprim

Proposition 2.7. — Let D C F be a fundamental domain for the lattice Z[=] in F.

1
p

1. There is a bijection v <> v, p between primitive Z[%]Q’Jr—vectors and SLy (Z[}%])Jr matrices

2. ForDCF, R>1,t, <ty €Z and arcs © C S', 0, C Szl), the bijection v <+ 7, p restricts

to being between
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(a) primitive Z[%]Q’ ~vectors of real norm ||v|| < R, p-adic norm p" < [lv|, < p* and

directions (0,0) € © x ©, C S! x S}
(b) SLo (Z[}%])Jr matrices in Qoxeo, AR, Np

1
P
1
P

Proof of Proposition 2.7. — If a,b € Z[] are such that v = (a,b) is primitive, then there
exist (infinitely many) solutions (x,y) to the ged equation of v over Z[+], az + by = 1. If

(x0,Yo) is such a solution, then the set of all solutions is
1
{(:L‘O,yo) +m(=b,a):me Z[p]} :

A choice of m € Z[%} sets a unique solution to this equation. The ged equation of v can also
be written in the form
(% )

which is equivalent to setting
vt = (b, —a)"

w=(z,y)"

and requiring that
1
[vl w} € SL»y (Z {] )
p
The possibilities for the second column w are all the solutions to the ged equation of v; the

matrices obtained from the different possibilities are
{lor worme]imezl]}
v wo + mu } m EZL|—
p
where wgy = (o, yo)t is some solution. This set of matrices is an orbit for the group {[é z [lzla]]} =
N, N SLy (Z[%]) acting by right multiplication:
1 m 1
il . hl
{{v wo} {0 1].m€Z[p}}.

According to (2) and (5), when viewing this set of matrices (via the diagonal embedding) in

el

in F, there exists a unique m for which

SLa(IF), it equals

(w.0)
{(kooaoo [1 pr +m
0 1
dia,
Hi

Since D is a fundamental domain for Z %
+ m) lies in D. This m = m (D) determines a unique solution w, p which in

1
Jkpa
”lo 1

(w,0) y(w)
(St +m. 285
turn determines a unique matrix

o= wns] esta(z[2])
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This establishes a one to one correspondence v <+ 7y, p between Z[%]Q primitive vectors and
matrices in SLg (Z[%]) N QANp, and proves part 1 of the proposition. As for part 2: the fact
that (0,70) € © x O, if and only if the Q~component of v, lies in Qg,e, follows from (2) and
the definition of Qe,e,, and the fact that |lv]| < R and p"* < [jv]|, < p* if and only if the

A-component of v, lies in Ag, ¢, follows from (5) and the definition of Agy, ¢,. ]

3. Counting lattice points inside well-rounded sets

Proposition 2.7 gives a reformulation of Theorem A in the form of counting matrices of the
lattice SLo (Z[%]) inside the S-arithmetic group SLo(F), S = {oo,p}. The next step on the
way to prove Theorem A is to solve this lattice point counting problem. This is the topic of
this section. The method we will apply was established in [17], and it relies on ergodic theory.
The corpus of work on equidistribution and counting lattice points by dynamical methods is
rather vast; for a short survey on the applied techniques in the case of lattices in real algebraic
Lie groups, we refer to [17, p. 7]. As for the techniques in (as well as an introduction to) the
S-arithmetic setting, we refer to the survey [18].

3.1. Well-roundedness and counting lattice points. — Proposition 2.7 allows us to

2,4+

translate the question on the number of primitive Z[+]™ " —vectors of real norm |lv| < R,

1
P
p-adic norm pft < [v], < p' and directions (0,0) € © x 6, C S* x S, into the problem of
counting SLo (Z[%])Jr matrices in Qexe, AR, i, Np, where D C F is a fundamental domain

for Z[+]. From now on we fix the fundamental domain from Fact 1.5,

1
p
11
D = (—2’ 2:| X Zp.

We now describe a method to approach this counting problem.

Notation 3.1. — In what follows, G will denote the product [],cq Gy (K,) where K is a
number field, K, is the localization of K over a place v, G, is a simple algebraic group defined
over K and S is a finite set of places that contains co.

Definition 3.2. — Let G be as in Notation 3.1, ;1 a Borel measure on G, and {O_} . a
family of identity neighborhoods in G.

1. For a measurable subset B C G, we define

Bt (¢) := O.BO, = U uBw,

u,ve0,

B~ (e) := ﬂ uBuw.

u,ve0,

2. The set B is Lipschitz well-rounded (LWR) with (positive) parameters (C, ¢y) if for every
0<e<e

(6) (B (e) < (14Ce) n(B ().

3. A family {Br}p.g C G of measurable domains is Lipschitz well-rounded with positive
parameters (C, Ry, €g) if for every 0 < € < ¢p and R > Ry, the set Br is LWR with (C, €).
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Remark 3.3. — Indeed the definition of LWR depends on the choice of a family {O,}..,
of identity neighborhoods; however, we disregard this fact since we will only work with a
specific family, cf. Definition 3.6.

The notion of well-roundedness of a family is by now standard (see e.g. [13]), but it is less
common to define a well-rounded set; however, this notion will be useful for us, as the sets
under our consideration will project to a well-rounded family in the real component, but to
a well-rounded set in the p-adic one.

Theorem 3.4 ([17, Theorems 1.9, 4.5, and Remark 1.10]). — Let G as in Notation 3.1
and with Haar measure p, and let I' < G be a lattice. Assume that {Br} C G is a family of
finite-measure domains which satisfy p (Br) — oo as T — oo. If the family {Bgr} is Lipschitz
well-rounded, then there exists a parameter T (I') € (O, M) such that for R large
enough and every § > 0:

_ ”(BR)‘ . 1—7(I)+6
#(BrnT) (G/T) Gf?’a const - (BRr)

as T — oo, where u (G/T") is the measure of a fundamental domain of T in G.

Remark 3.5 (The error exponent). — The parameter 7 (I') depends on estimates on the
rate of decay of matrix coefficients of automorphic representations of G. For G = SLg (R) x
SL2(Qp), any bound toward the generalized Ramanujan conjecture, from Gelbart-Jacquet [14]
to Kim-Sarnak [22], implies that these coefficients are L™ for some 2 < ¢ < 4 (see e.g. [6]).
These bounds give 7, = 7(SLo (Z[%])) = m = 5, and only the full Ramanujan

conjecture would give a better exponent, namely 7, = 2(1+d171m(G)) = ﬁ. This exponent is
obtained by a combination of Theorems 1.9, 4.5 and Definition 3.1 in [17].

According to Theorem 3.4, the goal of counting lattice points inside Qexe, AR, Np will
be achieved by establishing that these sets are Lipschitz well-rounded w.r.t. a certain choice
of identity neighborhoods in SLa (R) x SL2(Qp). The LWR of these sets reduces to the LWR
of their projections to both the real and to the p-adic components; the LWR of the real
component is known (see more details in the proof of Theorem A below), and so it remains
to verify the LWR of the projection to the p-adic part. To this end, we will consider the
following identity neighborhoods inside SLa(Q)):

Definition 3.6. — For any subgroup H), of G, = SLy(Q,) and a positive integer N we set
O, x =ker {G,(Z,) = Gy (Z,/p"Z,) }
= (I +p™ Mats(2,)) N Gy(Z,) C K,

and
Oy =0, x NH, C K, H,.

Let us now state explicitly the LWR, property for the p-adic factor. We note that the LWR
property is rather strong here, since the Lipschitz constant equals zero. The following propo-
sition concerns a family of sets inside SL2(Q)), and it should be understood that the nota-
tions for the Bruhat-Iwasawa subsets are the p-adic parts of the Bruhat-Iwasawa subsets of
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SLa(R) x SL2(Qp) that were defined in Section 2.5; e.g., (Ap),, ,, is the p-adic part of Agy, ¢,
(Qp)ep is the p-adic part of Qe,e,, etc.

Proposition 3.7. — Consider the family By, 1, = (Qp)ep (Ap)s, 1, (Np)a+pwzp of subsets in
SLQ(QP) with:

1. ©, C S}J a fixed p-adic arc;
2. Y el
3. t1 and to two real parameters satisfying t1 < to.

Then the family {Bi, 15}, 4, <4, for an arbitrary to € R is Lipschitz well-rounded, with Lips-
chitz constant zero. B

The proof of Proposition 3.7 is quite technical, we postpone it to the end of the paper; see
Section 5. Note that in the following proof of Theorem A, we will only need the very special
case where t1 = to = 0. In this case the family is indeed reduced to a single set!

We now have all the tools to prove Theorem A.

Proof of Theorem A. — We first note that according to Lemma 2.2,

72 —ZH NS

prim P prim p

It then follows from Proposition 2.7 that there is a bijection between the sets

U,v) €O X O, 1
{v € Lim ( H)U’ <R P } <o {V € SLQ(Z[};}) N (Q@xepAR,o,oN[_;,;]xzp)}'

The sets Qoxo,AR,0 ON[_1

272

p-adic factor (Qp) g o, (Ap)go (Np ) 7, the family of projections to real component is LWR by [19,

«z,, are a product of a real factor (Ku)g (Aso) g (N)[ 11 and a
2

Theorem 1.1], and the projection to the p-adic part is LWR according to Proposition 3.7.
Since a product of LWR sets is LWR [21, Corollary 4.3 and Remark 4.4], it follows that

the family {QGXGPAR’O’ON[—%é]XZp}R>O is LWR. In the notations of Theorem 3.4, let 7, =

T (SL2 (Z[%])) = m, see Remark 3.5. By Theorem 3.4,

# {’Y € SLy <Z [;D N (Q@x@pAR,o,oN[_;é]XZJ}
 HSLy() <Q®><9 ArooN 1 11,7 )
- [SLa (F) (SLQ )/ SLa(Z [ ))

]
s (Koodo (Aoo)p (Neo) 3 3])  bstac,) (@u)e, (Ar)oo (o))
T st (SL2 (R) /5L, (2)) HSLa(0y) (SL2(Zy))

1-1p+0
+0 (u (Q@xepAR,o,oN[_%é]xzp) ’ ) ;
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where the last equality was deduced using Fact 1.5. The main term is a product of two factors,
one real and one p-adic. The real factor equals
Leb(©)R?
n2/3
by (3). We turn to compute the p-adic factor. By Lemma 2.3 and Fact 2.5,

L@y (Kp)o, (Ap)oo (Np)z ) = 12 (6)) - 1+ py(Zy) = 12 (85)
Furthermore, as noted in Fact 2.5, we have pgy,,(q,) (SL2(Zp)) = 1— %. Then we may conclude:

2 (Uw)eOXxO,, _ 3 p 2 2 2(1—7,+9)

() # {v € Zns G R0 = 5 ST b () B 0 (R,
Applying (7) to © x ©, = St x S};*, we have that the total number of primitive vectors up
no norm R is asymptotic to

3 p 1y,,2 (ql+) p2

ﬁpf]_Leb(S )/,LP(SP )R y
and upon dividing (7) by the above and applying symmetry considerations to pass from S};*
to S}), we obtain the desired limit. O

As an evidence for the asymptotics in (7), notice that when taking © = S! and 0, = S}D*,

and recalling that Leb(S') = 27 and ,u% (S};“‘) =1- % (Fact 2.5), we have that

2 . (17,1)) € Sl X Sl’+, . ) . . 6 9
4 {v € B PSR = # {v e B 10l SR} = TR+ o(R),

which coincides with the well known asymptotics for the primitive circle problem.

4. Equidistribution of Iwasawa components in the S-arithmetic case

We have used a special case of Proposition 3.7 to prove Theorem A. The full proposition
(together with Theorem 3.4) implies a stronger equidistribution result: the equidistribution
of both @ and N components of the Bruhat-Iwasawa decomposition for an S-arithmetic
lattice, in product of SLo’s. Let us begin by introducing this set up.

So far we have only dealt with the group SLg (R) x SL2(Q,), meaning the case of one infinite
place, and one finite place. But in fact, we can allow any finite number of finite or infinite
places, and consider the group

G = (SLz2 (R))"™ x ] (SL2(@p))™,
pESf
where Sy is a finite set of primes. The notion of arithmetic lattice, which generalizes
SLy (Z[%]) < SLy (R) x SL2(Q,), is described e.g. in [26, Section 5.4]. As noted in [17, Re-
mark 4.6], the ergodic method of Gorodnik and Nevo applies to these lattices. The analogous
sets to Qoxe, ARt 1 Nvoxv, C SLao(F) inside G are the following. For 1 < i < ng, let
©,; C S! be arcs on the unit circle, ¥; C R intervals, and R; > 1 positive real numbers. Set
E: (R17"'7R’I’Loo)7
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and consider

B = [T (Ko, (As)p, (Neo)w, % T (@), (At (o) s,
i=1 PeSy

where for every p € Sy:
1. ©, C S; is a fixed p-adic arc,
2. Yp €L,

3. t] and t} are two real parameters that satisfy ¢] < ¢§ and are bounded from below, namely
there exist ) € R such that t§ <t} <.

Let p denote a Haar measure on G.

Theorem 4.1. — LetT' < G be an S-arithmetic lattice, and ||-|| any norm on R™>. Then, for
_ 1 . . '
T= 3> m)) the following asymptotic formula holds for every § > 0 as ||R|| — oo:

{(8) o) < gk o () )

p(G/T)
6 N /1,227 (@p) (Zfétl’ p2t) (1 _ ppr) Np
= H (Lebgl(@i) Lebg (W) - RZQ) ‘ H | 7
™ A Pess - '

The implied constant depends on ©, U, and 1, O, th, th for every p.

. . . _ 1
The exponent 7, as discussed in Remark 3.5, would be improved to 7 = T3 (S )

with the full Ramanujan conjecture.

Remark 4.2. — If t) grows to infinity, then the O-constant does not depend on it.

Proof. — We first note that the family {Bgv} is LWR, since it is a product of the projections
(K)o, (Aso) g, (N)}, to the real components, which are LWR according to [19, Theorem 1.1],
and the projections (Qp)@p (Ap) 4 (Np)a,, t+pvrz, tO the finite components, which are LWR
according to Proposition 3.7. Now the result follows from Theorem 3.4, combined with the
fact that the MSXI?;(OR) X 1, #sL,(@,)-volume of Bgv is the expression appearing in the main
term, according to 3 and to Lemma 2.3. g

Remark 4.3. — We note that when considering the more general S-arithmetic setting as

in Theorem 4.1, we obtain a generalization of Theorem A to joint equidistribution of several

p-adic directions of primitive vectors. For this, one should apply Theorem 4.1 to the lattice
1

[ = SLs (Z[{1}es,]).
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Remark 4.4. — 1. Theorem 4.1 is in fact an equidistribution result, since it is completely
standard to pass from a counting formulation to an equidistribution formulation; see, for
example, the proof of Theorem A.

2. Equisitribution of Iwasawa components, and especially of the N-component, has been
considered in a number of papers, e.g. [16, 19, 25, 27, 29]. All of the above in rank one
real Lie groups; in higher rank, we mention [20]. We are unaware of equidistribution
results of the Iwasawa components of lattice elements in the S-arithmetic setting.

3. For more equidistribution and counting results in the S-arithmetic or adelic settings, we
refer to [3, 6, 9, 17].

5. Proof of Well-roundedness in SL; (Q))

The goal of this final subsection is to prove Proposition 3.7, i.e. the well-roundedness of
the sets (Qp)ep (Ap)y, 4, (Np)aerpr in SLy(Qp). The main step is a measurement of how
the Bruhat components are modified by a small left or right perturbation. To state this
proposition, we need an additional notation: for any g € SL2(Q,), we denote by || Adg ||op the
operator norm of Ad, acting on Mato(Q)). Note that this operator norm takes values in p”,
as the max norm on Qg.

Proposition 5.1 (Effective Bruhat-Iwasawa decomposition). — Let ¢ = gan €
SLI (Qp) with a = [p;t;)t}. Let c(a,n) = [[Adn,, max(p~t,1) € p%. The function c is
bounded when n is restricted to a bounded set and t is bounded from below Moreover, we have
(’)ecpqanOEGp € q(’)gi’n)_ea(’)f(]gm).en

when € € p~N is small enough.
The proof of Proposition 5.1 requires the following three Lemmas:
Lemma 5.2. — For g € SLy(Qy),

90,59~ S Ojaq,

llopp™

where HAdgHop € p” is the operator norm of conjugation by g.
Proof. — Indeed,
90, ~g Cyg (12 +pN Matg(Zp)) g1
= (L +g-p" Mata(2,) - ")
C (T2 + [ Adg o, ™ Mata(Z,)) = Oagyy o

It is clear that ||Adg”op is a power of p, since, as an operator norm, it is the maximum of
norms of (p-adic) vectors. O

Lemma 5.8. — For every ky € Kp, ||Adg,|| =1.

op
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Proof. — We know that K, - Szl, = Szl,, and that this action preserves the p-adic norm. For
T € Maty(Qp), we need to show that HAdkp (T)H = ||T||, where the norm on Maty(Q,) is the

operator norm. Indeed

HAdkP (T)‘ = sup

z€S]

Ady, (T) a:H = sup

p €S}

E1Tk, - = Tyl = ||T].
p L Hhp pr Séls%” yll, = 17|

Then Adyg, is norm preserving, and therefore has operator norm 1. O

Lemma 5.4. — For any N > 1,

G Q N,
Op,pN - Opr(’)pr,

N, M
offN =050

Proof. — We note that when N > 1

0% 1+pVa 0 bez
= —1 .
v pNb (1+pNa) GOE D0
N, _ (1 PNZ,
o ={lo "1}

1+pNa 0

M

Or = -11: Loy p .
p—N {( 0 (1+pNa) ) Q€ p}

The inclusions D in the statement of the lemma are trivial. For the opposite direction, observe
that
N
0% 5 1+pVa  pNe _ L+pTa 0 . (1 pNz>
pN pNd 14+ pVb Ny (1 +me) 0 1

r=a, y=d, z=

and

for
_c
1+pNa>

-1
as (1 + pN x) =1- % and the determinant of the left-hand matrix is 1. Similarly,

(’)Q” 9 1+pVa 0 3 _(1 0) 1+pNa 0 »
p=N Vb (1—|—pNa) IRV AFRS! 0 (l—i-pNx)

_ _ b
T=a, 2= on,. ]

for

We now turn to prove Proposition 5.1.
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Proof of Proposition 5.1. — Let g = gan with ¢ € Q, a = (pot 0 ) € Ayandn = (}%) € N,.
We will use the fact that

1 ap

0 = nzpzt

¢
1 _(p 0 1 =z
= (526 D0 -6
—t
1/t 0Y /1 0 1
o=y )G D0 ) = (o V)=
where n, = (§%) € Np, nj, = < > €N, and a = (p_t Ot>
Step 1: Left perturbations. — Set ¢ = p~. Since [Adgll,, = 1 (Lemma 5.3), then by Lem-
mas 5.2 and 5.4 we have that,

Y
(’)Spqan =q (qilOeGPq) an C qOeran = qO?P(’)évpan.

(8)

According to (8),
—q(DQpa a 1(9Npcm— q(’)Q” a O 2t

Step 2: Right perturbations. — By letting C'(n) = [[Adyll,, € p”, we have according to
Lemma 5.2 that

qanOEGp =qa (nOEGpn_1> n C qaogfn)en

By Lemma 5.4 and to (8),

NZ; MP NP
€ 40 O (1) Oc()eOc(nye -

N,y 4 M, N,
=qa- chn)ea : aOC(pn)eOCfn)e n

N, M, N,
= qu—p”C(n)ea ’ OC(z;l)eOC’ZL)e S

Since A and M commute,

M,
=q0 *ZtC(n)so (pn)e ) aOC(n)en'

By letting C' (a) = max {p~%,1} we have

N, M. N,
€ 99¢()c(m)ePc(@cmye ~ Oc(n)en

and then by Lemma 5.4

Q N,
gqOCfa)C(n)eOC(a) (n)eao c(n)e™

Finally, by (8)

. Q

= 400" @ Oty @Otmy
Q N, N,

= 406(a)0 ()20 f%c() ()P

C q(’) a0 n.

C(a)’C(n)e~ C(a)*C(n)e
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Combining the effect of both left and right perturbations, we obtain that

OquanOfp € q(’)ﬁ(’; n),ea(’)i\(fz )€
where ¢ (a,n) = C (a)? C (n) is a power of p (since C (a) and C (n) are) that is bounded when
t is bounded from below and n is restricted to a bounded set. Require that e < ¢(a,n) " to
obtain that ¢ (a,n)e € p~N. O

We can now prove Proposition 3.7. The proof essentially relies on the ultrametric nature of
Qp: a small enough perturbation of a ball is the ball itself. The first claim (9) is the translation
of this phenomenon in our setting.

Proof of Proposition 3.7. — We first claim that for N > 0 large enough and ce < p~ we

have:

Np Np
( ) ce (Np)aerpr g (Np)aerpr a‘nd (Np)aerpr : OCE g (Np)aerpr
O (Qn)e, € (@p)o, and (Qp)e, - O C (Qp)e, -

The inclusions in the first row are a trivial computation. For the inclusions in the second
row, write ©, = 0, (u pk) where k > 0 and & € S}, Let N > 0 such that O, = O, and
assume that N > k. Observe that

0 1+pNZ, 0
@gpzopjgz{( pNpr e

) € Sé* where uy,up € Z) and £ > 0, then

ui
plus

. “ k2 . up + kap 0
(Qp)ep(f’apk) N {(v P77, O>} - { <p£uQ +p*Z, )"
ui+pFa 0 14+pN~ 0 Q
Take (péuﬁpkﬁ (ul—i—pka)l) € (QP)@p(ﬁ,pk) and < iy (1+pN’y)_1> € (’)p_pN (here «, 8,7 €
Zp). Now,

1+ pNy o u + pa o Nzk [ (w4 P42, 0
pNé (1+pN7) plus + p* B (m +p’“a) pluz +pVZ,

By letting & = (

= (Qp)ep(;,?pk) ’
k N
ul +pra 0 ) 14+ p™y 0 ) N>k U1+kap 0
— . — 6
plug + p*B (U1 +p’“a) pNé (1 +pN7) plug + p¥Z,
= (Qp)@p(iv),pk) .

Having proved the inclusions in (9), the statement of Proposition 3.7 follows: according to
Proposition 5.1, when g, = gan € G} lies in Qg+ Ay, 1, Ny puz,, then
P ’ P

0% qanOFr C qOLaONrn
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(where ¢ = ¢ (a,n)); but then according to (9), this is contained in Q@;Atl,thaerwzp- Thus

+e
(62@;F At1,t2 Na—f—prP) - Q@; At1,t2 Na—i—prp’

and the opposite inclusion is obvious. Similarly,
—€
Q@jAthtzNa—&-pr], C (ngAtl,hNa—i—p#’ZP)
and the opposite inclusion is obvious. Then
—€ +e
(Q@;AtthNa«rp’ﬂZp) = Q@;Atlvt2Na+p"¢’Zp = (Q@;AthtzNaerpr) s

meaning that the well-roundedness condition holds trivially. ([l
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