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MINIMAL IDEMPOTENCY, PARTIAL IDEMPOTENCY, SEARCH
HEURISTICS AND CONSTRUCTIVE ALGORITHMS FOR

IDEMPOTENT INTEGERS

by

Barry S. Fagin

Abstract. — Previous work established the set of square-free integers n with at least one factorization
n = p̄q̄ for which p̄ and q̄ produce valid RSA keys, whether they are prime or composite. These integers
are exactly those with the property λ(n = p̄q̄) | (p̄−1)(q̄ −1), where λ is the Carmichael totient function.
We refer to these integers as idempotent, because ∀ a ∈ Zn, ak(p̄−1)(q̄−1)+1 ≡n a for any positive integer
k. This set includes the semiprimes and the Carmichael numbers, but is not limited to them. Numbers
in this last category have not been previously analyzed in the literature.
We discuss the structure of idempotent integers here, and present heuristics to assist in finding them. We
introduce the notions of partial idempotency and minimal idempotency, give appropriate definitions for
them, and present preliminary results.

Résumé. — Un travail antérieur décrit l’ensemble des entiers n sans facteur carré admettant au moins
une factorisation n = p̄q̄ pour laquelle p̄ et q̄ produisent des clés RSA valides, qu’ils soient premiers ou
non. Ces entiers sont exactement ceux jouissant de la propriété que λ(n = p̄q̄) | (p̄ − 1)(q̄ − 1), où λ est la
fonction de Carmichael. Nous appelons ces entiers idempotents, parce que ∀ a ∈ Zn, ak(p̄−1)(q̄−1)+1 ≡n a
pour tout entier positif k. Cet ensemble inclut les nombres semi-premiers et les nombres de Carmichael,
mais n’est pas seulement composé de ceux-ci. Les nombres de cette dernière catégorie n’ont pas encore
été analysés dans la littérature.
Dans cet article nous discutons la structure des entiers idempotents et présentons des heuristiques pour
aider à les trouver. Nous introduisons les notions de partiellement idempotent et d’idempotence minimale,
en donnons des définitions appropriées et présentons des résultats préliminaires.

1. Background and definitions

In [3], we introduced the notion of idempotent integers, the set of square-free integers n with at
least one factorization n = p̄q̄ such that λ(n) | (p̄−1)(q̄−1), where λ is the Carmichael totient
function. We refer to these integers as idempotent because ∀ a ∈ Zn, ak(p̄−1)(q̄−1)+1 ≡n a for
any positive integer k. We showed that these integers are exactly those for which p̄ and q̄
generate valid keys in the 2-prime RSA protocol [13], regardless of whether they are prime
or composite. This set was initially known to include the semiprimes [13], and later the
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Carmichael numbers [9]. [3] showed it is not limited to them, and gave the definition for the
complete set.
While only the semiprimes have useful cryptographic properties [11], idempotent integers
deserve study in their own right as they lie at the border of hard problems in number theory
and computer science. In particular, we propose that for every composite square-free integer p̄
there exists a composite square-free integer q̄¢ such that n = p̄q̄¢ is idempotent. This suggests
there exist infinitely many “ordinary” (p, q) pairs (composite and non-Carmichael) that can
be used to generate correct keys using the RSA 2-prime protocol.
Let n = p1p2. . . pm be a square-free integer, with i < j ⇐⇒ pi < pj . Let ai = pi − 1. We
will call ai the predecessor of pi and pi the successor of ai. It is a known property of λ that
λ(n) = lcm(a1, a2,. . . , am), where lcm denotes the least common multiple. We will write λ
instead of λ(n) when the meaning is clear. We write p̄ as shorthand for ∏

pi.
A factorization of n is a 2-partition of the set of pi’s into products p̄ and q̄. An idempotent
factorization is a 2-partition of n = p̄q̄ for which λ | (p̄− 1)(q̄− 1). We will refer to an integer
n that admits an idempotent factorization as being idempotent itself when the meaning is
clear.
All semiprimes (products of two primes) are trivially idempotent. We do not consider them
further here.
Any square-free integer n,with m factors, has

(m
1

)
= m factorizations of the form p̄ = pi, q̄ =

pj ̸=i,
(m

2
)

factorizations of the form p̄ = pipj , q̄ = pk ̸=i,j , and so forth. Each partition corre-
sponds to a single equation in n, p̄ and q̄ that represents a possible idempotent factorization.
We refer to these as single-factor partitions/equations/factorizations, double-factor, etc. We
call idempotent single-factor partitions semi-composite factorizations of n. All other factor-
izations are fully composite.
The first eight square-free n with three or more factors and fully composite idempotent
factorizations are shown in Table 1 [3].

Table 1. The first 8 integers with fully composite idempotent factorizations

n factorization partition n = p̄q̄ λ
210 2·3·5·7 10·21 12
462 2·3·7·11 21·22 30
570 2·3·5·19 10·57 36
1155 3·5·7·11 21·55 60
1302 2·3·7·31 6·217 60
1330 2·5·7·19 10·133 36
1365 3·5·7·13 15·91 12
1785 3·5·7·17 21·85 48

The smallest integer with two fully composite idempotent partitions is 2730, when factored
into 10·273 and 21·130. The complete list of all n < 227 with fully composite idempotent
factorizations is available at [7].

2. Cumulative statistics on factorizations

Cumulative statistics for idempotent factorizations for n < 230 are shown below. Rsf indicates
the ratio of numbers with idempotent factorizations to the total number of candidates n, those
Publications mathématiques de Besançon – 2024
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square-free numbers with strictly more than two factors. RN indicates the ratio to all n in the
indicated interval. The first entry in Rcpu is the computation time on the author’s computer
for the indicated interval. Remaining entries are the ratio of computation time of the current
interval to the previous interval. For example, in Table 2, it took 2.7 seconds to check all
integers up to 215, 2.7*11.3 = about 30 seconds to check all integers up to 218, 30*10.6 =
about five minutes to check up to 221, and so forth. An entry of the form i : j in row with
#factors = F indicates there are j integers < 230 with F prime factors and i idempotent
factorizations.
All answers are rounded to the indicated number of decimals. We ignore order when counting
factorizations. These results were obtained on a HP 640 G4 notebook running Windows 10
Enterprise with a 7th generation Intel ®Core ™i5-7200U CPU@2.5 GHz and 8G of memory.
The code was written in Python 3.7 using Robert Campbell’s numbthy.py library, augmented
with additional code and library routines by the author.

Table 2. Proportion of integers with idempotent factorizations

max n 212 215 218 221 224 227 230

Rsf .61 .37 .28 .21 .17 .13 .11
RN .09 .09 .08 .07 .06 .05 .04
Rcpu - 2.7s 11.3 10.6 13.3 9.8 10.4

Table 3. Factor distribution of idempotent factorizations < 230, < 8 factorizations

# factors 0 1 2 3 4 5 6 7
3 184510285 34215577 0 15189 0 0 0 0
4 132479584 11347214 4448 15678 28 235 0 315
5 50515758 1733232 6530 13743 93 599 1 441
6 10004651 242377 6143 6906 167 586 12 302
7 931270 35473 2994 1597 124 286 22 102
8 29211 2956 477 158 39 43 5 6
9 99 28 7 2 1 0 1 1

Table 4. Factor distribution of idempotent factorizations < 230,≥ 8 factorizations

# factors
5 8:2 9:6 11:18 15:2
6 8:3 9:10 11:31 15:20
7 8:3 9:5 10:1 11:24 15:3 31:1
8 8:1 9:2 11:4

3. Constructing idempotent products for a given p̄

Instead of fixing n and determining whether or not it admits idempotent factorizations, we
may instead fix p̄ and search for a q̄ that forms an idempotent product. The following function

Publications mathématiques de Besançon – 2024
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Table 5. Proportion of integers with semi-composite idempotent factorizations

max n 212 215 218 221 224 227 230

Rsf .49 .36 .27 .21 .16 .13 .11
RN .010 .09 .08 .07 .06 .05 .04
Rcpu .19s 9.9 11.9 13.3 9 9.6 10.3

Table 6. Distribution of semi-composite idempotent factorizations < 230

# factors 0 1 2 3 4 5
3 184510285 34215577 0 15189 0 0
4 132498612 11331335 16992 248 315 0
5 50583104 1676008 10740 550 21 2
6 10083389 175380 2276 149 14 0
7 963273 8502 123 6 0 1
8 32776 126 0 0 0 0
9 139 0 0 0 0 0

Table 7. Proportion of integers with fully-composite idempotent factorizations

max n 212 215 218 221 224 227 230

Rsf .0183 .0149 .0088 .0050 .0025 .0013 .0006
RN .0037 .0038 .0026 .0016 .0009 .0005 .0002
Rcpu - 1.5s 11.9 10.0 9.5 10.5 10.7

Table 8. Factor distribution of fully composite idempotent factorizations
< 230, < 8 factorizations

# factors 0 1 2 3 4 5 6 7
4 143809069 37868 250 315
5 52184272 79032 5960 645 471 20 5 18
6 10172969 78072 8464 939 432 237 33 12
7 938127 29014 3634 615 272 140 60 9
8 29269 2902 507 126 55 25 11 11
9 99 28 7 2 1 0 1 1

will be useful:
D(x) = λ(x)

gcd(λ(x), x− 1)
D(x) is the product of all the factors of λ(x) that are not in x − 1, and is therefore the
smallest number containing them all. We have 1 ≤ D(x) ≤ λ(x). D(x) = 1 ⇐⇒ x is prime
or a Carmichael number, D(x) = λ(x) ⇐⇒ gcd(λ(x), x− 1)) = 1.
We need the following theorem:

Theorem 3.1. — Let p̄, q̄ be square-free and coprime. There exist integers kp, kq ≥ 1 s.t. p̄ =
kpD(q̄) + 1, q̄ = kqD(p̄) + 1 ⇐⇒ n = p̄q̄ is an idempotent factorization.
Publications mathématiques de Besançon – 2024
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Table 9. Factor distribution of fully composite idempotent factorizations
< 230,≥ 8 factorizations

# factors
5 10:2
6 8:25 9:5 11:13 12:6 13:1
7 8:7 9:14 10:9 12:3 26:1
8 8:1 9:1 10:2 11:2 12:3 26:1

Proof. —

=⇒ . — Assume p̄, q̄ are square-free and coprime, p̄ = kpD(q̄) + 1, q̄ = kqD(p̄) + 1 for some
positive integers kp, kq. Consider λ(p̄q̄). Since both p̄ and q̄ are square-free and coprime, we
have

λ(p̄q̄) = lcm(λ(p̄), λ(q̄)) = L

Without loss of generality, assume L contains all the factors of λ(p̄) and a subset (possibly
improper) of all the factors of λ(q̄). Consider first the prime factors of λ(p̄). Every one is either
contained in p̄−1 or D(p̄). If it is contained in p̄−1, it will be contained in (p̄−1)(q̄−1). If it
is contained in D(p̄), it will be contained in kqD(p̄) = q̄−1, and therefore it will be contained
in (p̄ − 1)(q̄ − 1). Similar reasoning applies to the (possibly improper) subset of the factors
of λ(q̄): They are either contained in q̄− 1, or in D(q̄) and therefore in kpD(q̄) = p̄− 1. Thus
all the factors of L are contained in (p̄ − 1)(q̄ − 1), and therefore n = p̄q̄ is an idempotent
factorization.
⇐= . — Assume p̄, q̄ are square-free and coprime, n = p̄q̄ an idempotent factorization.
We have

λ(p̄q̄)|(p̄− 1)(q̄ − 1)→ lcm(λ(p̄), λ(q̄)) | (p̄− 1)(q̄ − 1)
Again without loss of generality, assume L contains all the factors of λ(p̄) and a subset
(possibly improper) of all the factors of λ(q̄). Consider the set of prime factors of λ(p̄) /∈ (p̄−1).
Because p̄q̄ is idempotent, every such factor must be contained in q̄−1. So q̄−1 ≡mi 0 for every
prime factor mi of λ(p̄) /∈ (p̄ − 1). By the construction of D(p̄) and the Chinese Remainder
Theorem, q̄− 1 ≡D(p̄) 0→ q̄ ≡D(p̄) 1→ q̄ = kqD(p̄) + 1 for some kq ≥ 1. Similar results apply
for the (possibly improper) subset of the factors of λ(q̄) /∈ (q̄ − 1). □

The definition of D(x) and the theorem above yield the following lemma:

Lemma 3.2. — Let p̄ be square-free. Let q, q̄c, q̄ be square-free and coprime to p̄.

a. If p̄ is a prime or a Carmichael number, it is idempotent with and only with q prime,
or q̄c a Carmichael number, or q̄¢ a composite non-Carmichael number with p̄ ≡D(q̄) 1.
Since D(6) = 2, all primes and Carmichael numbers p̄ ≥ 5 are idempotent with q̄ = 6.

b. Otherwise p̄ is idempotent with and only with q ≡D(p̄) 1 and either q prime, or q = q̄c a
Carmichael number, or q̄¢ a composite non-Carmichael number such that p̄ ≡D(q̄) 1.

This gives a simple algorithm for finding an idempotent q̄ for a given a square-free p̄:
The above procedure may be iterated to produce sequences of n that admit either semi-
composite or fully composite idempotent factorizations, by starting with p̄ square-free, finding
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12 Algorithms for idempotent integers

Algorithm 1: Finding an idempotent q̄, given a square-free integer p̄
Input: A square-free integer p̄
Output: The first possible idempotent q̄

1 Calculate D(p̄)
2 k ← 1
3 q̄ ← kD(p̄) + 1
4 Calculate D(q̄)
5 while not (q̄ is prime or q̄ is a Carmichael number or p̄ ≡ 1 (mod D(q̄)) do
6 k ← k + 1
7 q̄ ← kD(p̄) + 1
8 Calculate D(q̄)
9 return q̄

a suitable q̄, calculating n = p̄q̄, setting p̄ = n and then repeating. This may be used to
construct an idempotent n with a specific number of factors.
For any prime p, there are an infinite number of Carmichael numbers coprime to it, so there
are an infinite number of semi-composite factorizations. Similarly, for any Carmichael number,
there is at least one Carmichael number coprime to it, so there are an infinite number of fully
composite factorizations. Strong impostors (introduced in [2], list available online at [8]) s
have D(s) = 2 which implies p ≡D(s) 1 for any odd prime p, and there are an infinite number
of strong impostors, so there are an infinite number of semi-composite factorizations that do
not involve Carmichael numbers.

3.1. Non-Carmichael fully composite idempotent factorizations. — We see from
the above lemma that Carmichael numbers are the composite numbers that most easily
form idempotent factorizations with other composite numbers. A Carmichael number C is
idempotent with any coprime prime p, any coprime Carmichael number, and any composite
square-free coprime number q̄ such that C ≡D(q̄) 1.
For those square-free p̄ for which the smallest q̄ that forms an idempotent product is a
Carmichael number q̄c, we might ask if there is a p̄q̄-idempotent product with q̄ = q̄¢ where
q̄¢ is not a Carmichael number. We call an idempotent factorization n = p̄q̄ pure if p̄ and q̄
are composite and non-Carmichael numbers. We might ask if for any composite square-free
p̄ there exists a q̄¢ for which p̄q̄¢ is a pure idempotent factorization.
If p̄− 1 is prime, the required q̄¢ must be very special indeed. It must be square-free, coprime
to p̄, and of the form kD(p̄) + 1 as previously noted. (Note if p̄ − 1 is prime, D(p̄) = λ(p̄),
its maximum value). Additionally, λ(q̄¢) must have exactly one prime factor not contained in
q̄¢ − 1, and that factor must be p̄− 1.
Despite these constraints, we conjecture that such a q̄¢ can always be found, and we have
verified this conjecture for all p̄ < 215 [6]. The upper limit is smaller than previous calcula-
tions because excluding Carmichael numbers can significantly increase the search time. For
p̄ = 7214, D(p̄) = λ(p̄) = 3606, and almost 500 billion candidates of the form kD(p̄) + 1
must be examined until the required non-Carmichael q̄¢ = 1772915178061 is found (k =
491657010, q̄¢− 1 = 22 · 32 · 5 · 13 · 292 · 601 · 1499, λ(q̄¢) = 489474180 = 22 · 32 · 5 · 13 · 29 · 7213).
Publications mathématiques de Besançon – 2024
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3.2. Cumulative statistics. — The table below shows D(p̄), the smallest number q, clos-
est number q, smallest composite q̄, smallest Carmichael number q̄c, and the smallest non-
Carmichael q̄¢ that form idempotent products for the first 18 square-free p̄ (recall that
semiprime idempotent factorizations are excluded). We show up to p̄ = 30 to emphasize
how much larger the required q̄¢ can be when p̄ − 1 is prime. We will say more about this
below.

Table 10. Idempotent factorizations with p̄ fixed

p̄ D q closest q q̄ q̄c q̄¢
2 1 561 561 561 561 -
3 1 91 91 91 1105 91
5 1 6 6 6 561 6
6 2 5 5 217 1105 217
7 1 6 6 6 561 6
10 4 13 13 21 561 21
11 1 6 15 6 1105 6
13 1 6 14 6 561 6
14 6 13 13 265 1105 265
15 2 7 13 91 1729 91
17 1 6 15 6 1729 6
19 1 6 21 6 561 6
21 3 10 19 10 1105 10
22 10 21 21 21 2821 21
23 1 6 15 6 561 6
26 12 37 37 217 6601 217
29 1 6 30 6 561 6
30 4 13 29 1729 1729 4537

Cumulative statistics for the smallest number q, composite q̄, Carmichael q̄c and non-Carmichael
q̄¢ are shown in the tables below. maxk indicates the largest k value needed to form the re-
quired idempotent product for a composite p̄, @p̄ the corresponding p̄ value where it occurs.
max(q/p̄) and similar entries indicate the largest ratio of the appropriate q value to a com-
posite p̄ on the indicated interval, and again @p̄ the corresponding p̄ value where it occurs.
Rc is the fraction of q̄ values that are Carmichael numbers. Rc16 is the fraction of q̄ values
that are the first 16 Carmichael numbers.

Table 11. Smallest number q

max n 215 218 221 224 227

maxk 60 98 130 196 258
@p̄ 20337 204297 736069 6083833 28547269
max(q/p̄) 15 27.5 37.5 45.0 67.5
@p̄ 13558 199246 1773094 10934194 66708946
Rc .0035 .0029 .0022 .0015 .0009
Rcpu 3s 13 12.3 12.5 11.1
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Table 12. Smallest composite number q̄

max n 210 211 212 213 214 215

maxk 102120 108360 2014320 12149568 55691880 217999188
@p̄ 998 1362 2270 7122 14754 24474
max(q̄/p̄) 50957.7 50957.7 401089.3 2023222.1 9278205.3 36324290.6
@p̄ 998 998 2270 7122 14754 24474
Rc .1814 .1841 .1835 .1811 .1803 .1815
Rcpu 19.2s 3 12.2 7.3 10 5.6

Table 13. Smallest Carmichael q̄c

smallest q̄c

max n 212 215 218 221

Rc16 .55 .29 .13 .05
max Cn C2253 C22323 C353833 C1399648
@p̄ 2374 31366 258838 2058046
Rcpu 2.2s 2.9 9.2 67

Table 14. Smallest non-Carmichael q̄¢

max n 28 29 210 211 212 213

maxk 114774 655200 1752744 15593760 63901950 648165996
@p̄ 230 354 642 1790 2082 5870
max(q̄¢/p̄) 21956.8 107349.2 725767.0 725767.0 12500690.8 245760351.8
@p̄ 230 354 734 734 3734 7214
Rcpu 12.6s 4.8 10 12.5 10 22.0

3.3. Using heuristics with relaxed constraints. — All the minimal q and q̄ values
discussed so far were obtained using brute force: Trying all possible values of kD + 1 starting
with k = 1 until a q̄ is found that meets the requirements. If instead of finding the smallest q̄
that meets constraints, we simply wish to find any satisfying q̄, other techniques can produce
faster results. As mentioned previously, for example, computing D and then searching through
a table of Carmichael numbers [12] to find one of the form kD+1 can find a composite q̄ faster
than brute force examination of all composite q̄ = kD + 1 for sufficiently large p̄. Similarly,
we can limit the search to q or q̄ values of the form kD(p̄) + 1, which will by construction be
coprime to p̄.
Empirically, the most difficult p̄ to find corresponding q̄¢ all have p̄ − 1 prime (note the
disproportionately larger values for p̄ = 6, 14, 30 in Table 10 above). Satisfying q̄¢ for larger p̄
with prime predecessors can often be found faster by restricting the search space of possible
q̄¢ = kD +1 to those for which λ(q̄¢) will be guaranteed to have the required p̄−1 as a factor.
This is done by exploiting a known property of the lambda function: If q̄ contains a prime
factor of the form p′

j = jp′ + 1 with j ≥ 1, then λ(q̄) contains p′ as a factor.
This suggests the following heuristic. Let p′ = p̄− 1, let p′

j = jp′ + 1. To find the desired q̄¢,
loop through successive values of j up to some limit maxj , and for each prime p′

j check only
those q̄¢ = kD + 1 ≡ 0 mod p′

j up to some limit maxk.
Publications mathématiques de Besançon – 2024
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Because kD+1 is an arithmetic progression, once the first k0 is found with kD+1 ≡ 0 mod p′
j ,

the remaining k are all of the form k0, k0 + p′
j , k0 + 2p′

j . . . up to maxk. This algorithm can
find a satisfying non-Carmichael q̄ much faster than brute force, depending on the specific
values of j and k for a given p̄. Table 15 shows the most troublesome p̄ for which q̄¢ was found
using this technique.
The above heuristic works well at finding a suitable λ(q̄¢). However, we know of no way to
determine the p′

j that will produce the k associated with the smallest satisfying λ(q̄¢). We
can only try the k values associated with a given p′

j until a satisfying q̄ is found or until a
pre-specified limit is exceeded. Thus this technique does not guarantee that the λ(q̄¢) it finds,
if it finds one at all, will be the smallest. A brute force examination of all kD + 1 from k = 1
remains the only algorithm known to the author that guarantees discovery of the smallest
idempotent non-Carmichael λ(q̄¢) for a given p̄.
Table 14 required over 300 hours of CPU time and is worth a closer look (recall each Rcpu entry
must be multiplied by all entries to its left to obtain the total CPU time in seconds). Figure 1
shows the amount of time required to compute the smallest idempotent non-Carmichael q̄¢
at intervals of 100. We see that the time for each interval varies widely, due to the existence
of certain p̄ for which the required k that yields non-Carmichael q̄¢ = kD + 1 is unusually
large.

Table 15. p̄ < 215 with q̄¢ = kD + 1, k ≥ 108, found with heuristic

p̄ q̄¢ D=λ(p̄) k
12378 47,363,331,572,281 2062 22,969,607,940
16190 25,323,514,587,001 3236 7,825,560,750
18230 105,036,969,940,001 3644 28,824,635,000
19478 40,617,829,334,017 9738 4,171,064,832
20442 7,290,062,243,101 3406 2,140,358,850
21122 120,882,182,886,001 5162 23,417,703,000
21738 10,376,471,976,571 3622 2,864,845,935
22398 13,587,398,312,041 3732 3,640,781,970
23082 12,415,474,130,401 3846 3,228,152,400
23174 353,912,754,896,521 11586 30,546,586,820
23538 15,418,820,683,729 3922 3,931,366,824
26022 13,619,438,243,281 4336 3,141,014,355
27282 50,255,219,357,281 4546 11,054,821,680
27998 197,483,339,983,441 13998 14,107,968,280
28790 19,315,677,464,137 5756 3,355,746,606
29130 4,153,082,916,601 1940 2,140,764,390
30518 31,896,923,275,945 15258 2,090,504,868
30594 554,147,100,501,913 5098 108,698,921,244
31034 20,970,363,294,721 7598 2,759,984,640
31190 211,342,409,502,841 6236 33,890,700,690
32030 40,877,987,645,089 6404 6,383,196,072
32234 19,001,029,407,361 7910 2,402,152,896
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16 Algorithms for idempotent integers

Figure 1. CPU minutes to compute all q̄¢ on an interval

4. Partial idempotency

Idempotent factorizations n = p̄q̄ have the property that (p̄, q̄) behave like primes in the
RSA protocol, in that messages will be encrypted and decrypted correctly for any (e, d) s.t.
ed ≡(p̄−1)(q̄−1) 1. Factorizations that are not idempotent, however, may still exhibit idempo-
tency for certain (e, d). In particular, if in addition to ed ≡(p̄−1)(q̄−1) 1 we have ed ≡λ(n) 1,
then by similar reasoning in the proof of Section 2, we have aed ≡n a ∀ a ∈ Zn.
Rather than consider idempotency an all-or-nothing quantity, we may regard the idempotency
of a factorization n = p̄q̄ as a number between 0 and 1. Let ϕ′(p̄, q̄) = (p̄ − 1)(q̄ − 1) denote
the pseudototient function, used when p and/or q are not necessarily prime. We define a
factorization’s idempotency ratio as the number of valid (e, d) pairs that are inverses mod
ϕ′(p̄, q̄) and mod λ(p̄q̄), divided by the number of valid (e, d) pairs that are inverses mod
ϕ′(p̄, q̄).
Let ϕ′(p̄, q̄) = (p̄ − 1)(q̄ − 1). Using Iverson brackets [10], we define the idempotency ratio
R(p̄, q̄) of a factorization n = p̄q̄ as

R(p̄, q̄) =
∑n−1

e=0 [gcd(e, ϕ′(p̄, q̄)) = 1][ed ≡λ(p̄,q̄) 1]where d = e−1 mod ϕ′(p̄, q̄)∑n−1
e=0 [gcd(e, ϕ′(p̄, q̄)) = 1]

Idempotent factorizations n = p̄q̄ as defined previously have R(p̄, q̄) = 1, since λ(p̄q̄) |
ϕ′(p̄, q̄) → (ed mod ϕ′(p̄, q̄) ≡ 1 ⇐⇒ ed ≡λ(p̄q̄) 1), making the numerator and denomi-
nator equal. We define the idempotency ratio of an integer n as the sum of the idempotency
ratios of all its factorizations divided by the number of its factorizations.
The idempotency ratios for the factorizations of the first four square-free n with > 2 factors
are shown in Table 16.
Good approximations exist for the denominator in the definition of R above. The formula for
the number of integers on an interval coprime to some n is known [1], but it is cumbersome
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Table 16. Idempotency ratios

n p̄ q̄ R
30 2 15 0.538
30 3 10 0.5
30 5 6 1
42 2 21 0.235
42 6 7 1
42 3 14 0.263
66 3 22 0.211
66 6 11 1
66 2 33 0.212
70 5 14 0.094
70 2 35 0.121
70 7 10 0.522

and needlessly complex for our purposes. Let Φ′ = ϕ′(p̄, q̄). There are ϕ(Φ′) integers between
0 and Φ′ coprime to Φ′, where ϕ(x) is Euler’s totient function. Call this quantity Φ. We may
write n as QΦ′ + r, where Q = ⌊n/Φ′⌋ and r is the remainder of integers in the sum when
divided by Φ′. We have n ≡ r mod Φ′, so on the assumption the totatives are proportionally
distributed throughout the integers in r, the denominator may be approximated by

denom = Φ ·Q + (Φ/Φ′) · (n mod Φ′)
Computer calculations indicate this assumption to be greater than 99% accurate even for
small n = p̄q̄, with accuracy increasing with n.
Simplifying the numerator is more difficult, as we will see shortly.

4.1. DI and the idempotency ratio. — The more factors λ(p̄q̄) and ϕ′(p̄, q̄) have in
common, the higher R(p̄, q̄) should be. We define DI(p̄, q̄) as

DI(p̄, q̄) = λ(p̄q̄)/ gcd(ϕ′(p̄, q̄), λ(p̄q̄))
DI(p̄, q̄) = 1, its minimal value, when and only when p̄q̄ is a fully idempotent factorization.
p̄ and q̄ cannot both be even, otherwise n would not be square free. Thus ϕ′(p̄, q̄) is always
even. Since λ(p̄q̄) is always even, their smallest gcd is 2, and therefore the largest value of DI

is λ(p̄q̄)/2.

4.2. Finding (e, d) pairs that lend idempotency. — Calculating idempotency ratios
involves finding all (e, d) from the “bottom up”: Examining all e relatively prime to ϕ′(p̄, q̄)
from 0 to n = p̄q̄−1, finding the corresponding inverse d, and determining if ed ≡λ(p̄q̄) 1. This
method can be used to construct an (e, d) pair that lends idempotency to a given factorization
n = p̄q̄: iterate through all valid (e, d) pairs until one with the desired property is found.
Alternatively, (e, d) pairs can be discovered from the “top down”. From number theory, we
have

x ≡m1 a, x ≡m2 a ⇐⇒ x ≡lcm(m1,m2) a.

Letting a = 1, m1 = ϕ′(p̄, q̄), m2 = λ(p̄q̄), we see the desired (e, d) pair has the property
ed ≡ 1 mod L where L = lcm(ϕ′(p̄, q̄), λ(p̄q̄)). Thus given n = p̄q̄, we may find a desired (e, d)
pair in the following way:
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18 Algorithms for idempotent integers

For a given (p̄, q̄), calculate L = lcm(ϕ′(p̄, q̄), λ(p̄q̄)). For k = 1, 2, . . ., calculate kL + 1 until a
value is found that can be factored into two numbers coprime to ϕ′(p̄, q̄). These two numbers
by construction will be an (e, d) pair that lends idempotency to n = p̄q̄. However, as we will
see in the next section, while the trivial case of (e, d) = (1, 1) will always lend idempotency,
there are cases where a nontrivial solution does not exist.

4.3. Existence conditions and minimally idempotent factorizations of n. — As
shown above, the (e, d) pairs that lend idempotency to a factorization of n = p̄q̄ are exactly
those for which ed ≡L 1, where L = lcm(ϕ′(p̄, q̄), λ(p̄q̄)). The desired (e, d) are then exactly
those solutions to the 2-variable system of nonlinear modular equations ed ≡m1 1, ed ≡m2
1. . . ed ≡mj 1, where m1, m2. . . mj are the prime power factors of L.
Determining whether or not such systems have solutions and calculating their exact number
are known NP-hard problems. Thus simple, efficient calculations of idempotency ratios are
likely to prove elusive.
The trivial pair (e, d) = (1, 1) lends idempotency to any factorization of n, so by the previous
definition the idempotency ratio of any factorization is never zero. We might inquire, however,
if factorizations exist for which the resulting nonlinear system of modular equations has no
non-trivial solution. In fact, the answer is yes. We refer to these factorizations as minimally
idempotent.
The first sixteen minimally idempotent factorizations are shown in Table 17.

Table 17. Minimally idempotent factorizations

n p̄ q̄
154 2 77
470 2 235
658 2 329
710 2 355
782 2 391
994 2 497
1034 2 517
1222 2 611
1310 2 655
1474 2 737
1798 2 899
1833 3 611
1886 2 943
1974 14 141
2134 2 1067
2338 2 1169

Most minimally idempotent factorizations have maximal DI , but not all. Of the sixteen above,
only 1833=3·611 does not. Factorizations also exist with maximal DI that are not minimally
idempotent.
As shown by the entry for 1974 in the table above, fully composite minimally idempotent
factorizations also exist, although they are considerably rarer. The first sixteen are shown
below:
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Table 18. Fully composite minimally idempotent factorizations

n p̄ q̄
1974 14 141
3390 10 339
5170 55 94
5170 22 235
6834 6 1139
8130 15 542
8178 6 1363
10542 14 753
13746 6 2291
14514 118 123
16626 6 2771
16638 118 141
16638 6 2773
17358 22 789
18894 134 141
19722 38 519

5170 is the smallest integer with more than one minimally idempotent factorization, both of
which are fully composite.
All entries in this table have maximal DI . It is an open question whether this holds for
all fully composite minimally idempotent factorizations. To date, the author has found no
counterexamples.

4.4. Cumulative statistics. — Cumulative statistics for idempotency ratios and mini-
mally idempotent factorizations are shown below. IRavg is the average integer idempotency
ratio, IRmax the number of maximally idempotent integers, IRmax<1 the maximum idem-
potency ratio for an integer that is not maximally idempotent, @n is the n where it occurs.
IRmin>0 is the minimum idempotency ratio for an integer that is not minimally idempotent,
@n is the n where it occurs. MIPj is the number of integers with j minimally idempotent
factorizations. No integers where all factorizations are minimally idempotent are known.

Table 19. Idempotency ratio analysis

max n 210 211 212 213 214 215 216 217 218

IRavg .3085 .2697 .2398 .2116 .1868 .1651 .1466 .1307 .1171
IRmin>0 .0642 .0240 .0187 .0091 .0064 .0032 .0018 .0010 .0006
@n 782 1771 3619 4807 8463 16653 62968 119239 223579
Rcpu 1s 3 5.3 3.8 6 5.3 5.1 5.1 4.7

5. Conclusions and future work

We define the class of idempotent integers as those n which can be factored into p̄q̄ such that
λ(n) | (p̄ − 1)(q̄ − 1). This set includes the primes, semiprimes, and Carmichael numbers,
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Table 20. Minimally idempotent factorization analysis

max n 212 213 214 215 216 217 218

Rsf .0427 .0452 .0462 .0440 .0443 .0447 .0442
RN .0085 .0099 .0110 .0112 .0120 .0127 .0131
MIP2 0 2 2 3 3 7 12
Rcpu 28s 4.29 5 4.9 4.8 4.8 4.8

Table 21. Fully composite minimally idempotent factorization analysis

max n 212 213 214 215 216 217 218

n with FCMIP 2 6 9 24 56 137 308
Rsf .0150 .0169 .0105 .0116 .0116 .0125 .0125
RN .0005 .0007 .0005 .0007 .0009 .0010 .0012
FCMIP2 0 1 1 2 2 6 9
Rcpu 9s 5.1 3.9 6.3 5.6 5.4 4.8

but is not unique to them. Those members that are not included in the first three classes,
while lacking cryptographically useful properties, are worthy of study in their own right as
they lie at the boundaries of hard problems in computer science and number theory. We have
presented some examples above.
A combination of brute force and heuristics suggests there are infinitely many (p, q) pairs
of composite square-free non-Carmichael numbers which will produce correct keys in the 2-
prime RSA protocol. While such numbers have no cryptographic utility, the empirical results
were a surprise to the author.
Some integers have the property that all their factorizations are idempotent; all their factor-
izations have an idempotency ratio of 1. We refer to these numbers as maximally idempotent.
This is also class of numbers worth studying, one whose members have a unique structure
that also suggests challenges and open problems. This is work in progress [5], [4].
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