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HODGE STRATIFICATION IN LOW RAMIFICATION

by

Stéphane Bijakowski

Abstract. — We define and study the Hodge stratification for the special fiber of Shimura varieties
defined with the Pappas–Rapoport condition, in the case of low ramification index (e ≤ 3). For e ≤ 2,
the Hodge polygon induces a strong stratification. For e = 3, one needs to introduce several polygons.
They describe the isomorphism class of the sheaf of differentials with extra structure, and induce a strong
stratification on the variety.

Résumé. — Nous définissons et étudions la stratification de Hodge pour la fibre spéciale des variétés
de Shimura définies avec la condition de Pappas–Rapoport, dans le cas d’un faible indice de ramification
(e ≤ 3). Pour e ≤ 2, le polygone de Hodge induit une stratification forte. Pour e = 3, plusieurs polygones
ont besoin d’être introduits. Ils décrivent la classe d’isomorphisme du faisceau des différentielles avec
structure additionnelle, et induisent une stratification forte sur la variété.

Introduction

Let p be an odd prime, and let us consider the special fiber X of the modular curve with
maximal level at p. Considering the structure of the universal elliptic curve at p, one is led to
consider two possibilities: either it is ordinary at p, or supersingular. Indeed, if E is an elliptic
curve over Fp, then E[p](Fp) has either p points or 1 point. The former case happens when the
elliptic curve is ordinary at p; in that case the associated p-divisible group is split at p. The
map induced by the Verschiebung V : ωE → ω

(p)
E , called the Hasse invariant, is then non-zero.

When these equivalent conditions are not satisfied, the elliptic curve is called supersingular.
This gives a stratification on the variety X, with the ordinary locus, and supersingular points.
For more general PEL Shimura varieties (in characteristic p), for example Siegel or Hilbert–
Siegel varieties, one can define different stratifications. Assume that the prime p is unramified
in the datum, and consider the special fiber of such a variety. One can then look at the p-rank
of the abelian scheme, which gives a stratification indexed by an integer. A finer stratification
is given by the isomorphism class of the p-torsion of the abelian scheme, the Ekedahl–Oort
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6 Hodge stratification in low ramification

stratification (see [6]). Another possibility is to consider the associated p-divisible group, up
to isogeny, which gives the Newton stratification (see [10] for example).
The geometry of these varieties have been extensively studied in the unramified case. However,
few results are known when the prime p ramifies. One is led to consider integral models of
Shimura varieties defined by Pappas and Rapoport ([7, 8]), which are smooth ([4]). In [3],
several polygons are defined: the Newton polygon, the Hodge polygon, and the PR polygon
(which is constant on the variety). Contrary to the unramified case, the Hodge polygon can
vary on the variety, and one can try to use this polygon to define a stratification.
Let us consider the Hilbert–Siegel variety X0 associated to a totally real field F0 (we also
consider unitary Shimura varieties), defined with the Pappas–Rapoport models, and X its
special fiber (which is smooth by [4]). Assume for simplicity that p is totally ramified in F0,
with degree e and uniformizer π. If ω denotes the sheaf of differentials of the universal abelian
scheme, one has a filtration

0 ⊆ ω1 ⊆ · · · ⊆ ωe = ω

If k is a field in characteristic p and x ∈ X(k), the Hodge polygon at x describes the structure
of ω as a k[T ]/T e-module (with T acting by π). More precisely, one has an isomorphism (as
k[T ]-modules)

ωx ≃
h⊕

i=1
k[T ]/T ai

for some integers h, a1, . . . , ah. The Hodge polygon has then by definition slopes a1/e, . . . , ah/e.
In general, the Hodge polygon does not induce a strong stratification.

Theorem. — If e ≤ 2, the Hodge polygon induces a strong stratification on the variety.
Assume that e = 3; the isomorphism class of ω over a point in X is described by the three
polygons Hdg(ω), Hdg(ω2), Hdg(ω/ω1). Moreover, these three polygons define a strong strati-
fication on X.

If M is a k[T ]/T i-module (for a field k and integer i), then Hdg(M) is the polygon describing
its structure as a k[T ]/T i-module. By a strong stratification, we mean that the closure of a
stratum is equal to a union of other strata.
We also give an explicit description of the possible values of the three polygons.
Note that one can make a link with Spaltenstein varieties ([9]): in these varieties, one fix the
structure of ω, and consider the different possibilities for the filtration. The result presented
here is then more general, since we allow the structure of ω to vary.
Let us now talk about the difficulties when e ≥ 4. First of all, it is not true in general that
the isomorphism class of the filtration (ωi) gives a finite number of strata. Indeed, one can
consider the case where the multiplication by πk is an isomorphism between ω2(k+1)/ω2k

and ω2. The space ω2k+1 is then determined by a subspace inside ω2. But classifying a large
number of subspaces inside a fixed vector space may give an infinite number of possibilities.
One can also look at the appendix of [1] for an example of an infinite number of isomorphism
classes.
One could try to generalize the above theorem, considering in the general case all the polygons
Hdg(ωi/ωj). The issue is that these polygons only give information about the dimension of
spaces of the form π−kωj ∩ ωi. When e ≥ 4, the space ω4 ∩ π−1ω2 ∩ π−2ω0 is not of this form
(where ω0 = {0} by convention), and its dimension cannot be deduced from the previous
polygons.
Publications mathématiques de Besançon – 2025



Stéphane Bijakowski 7

Let us now talk about the organization of the article. In the first section, we introduce the set
of polygons that we will consider. In Section 2, we show how these polygons can be applied to
the study of k[T ]/T e-modules, and we specialize to the case e = 3 in Section 3. In Section 4,
we prove the result concerning the stratification of Shimura varieties.

1. Polygons

1.1. Definition. — Let h ≥ 1 be an integer. Les N ≥ 1, and d1, . . . , dN be integers between
0 and h.

Definition 1.1. — We define the polygon P (d1, . . . , dN ) by the formula

P (d1, . . . , dN )(x) = 1
N

N∑
i=1

max(0, x + di − h)

for all real x between 0 et h.

This polygon is convex, its breakpoints have x-coordinates in Z. The polygon P (d1, . . . , dN )
is independent of the ordering of the order of the integers di, i.e. P (d1, . . . , dN ) =
P (dσ(1), . . . , dσ(N)) for every permutation σ.
They are useful to describe a certain type of polygons.

Definition 1.2. — Let N ≥ 1 be an integer; let us define PN to be the set of convex
polygons between 0 and h, whose breakpoints have integral x-coordinates and whose slopes
are in 1

N Z ∩ [0, 1].

The set PN is finite, since there is a finite number of possibilities for the slopes of the polygon.
Note that if P ∈ PN , then P (h) ≤ h.

Proposition 1.3. — Let N ≥ 1. The polygons P (d1, . . . , dN ) are in PN .
Let P ∈ PN ; there exist a unique collection of integers d1, . . . , dN (up to a permutation) such
that P = P (d1, . . . , dN ).

Proof. — Let us consider the polygon P (d1, . . . , dN ). One can assume that the integers are
ordered in such a way that d1 ≥ · · · ≥ dN . The slopes of this polygon are obviously in
1
N Z ∩ [0, 1]. It has slope 0 with multiplicity h − d1, 1/N with multiplicity d1 − d2, and slope
i/N with multiplicity di − di+1, for every 1 ≤ i ≤ N (dN+1 = 0 by convention).
Now let P ∈ PN . It has slope i/N with multiplicity ai, for every 0 ≤ i ≤ N . One must have
a0 + · · ·+aN = h. One thus sees that there exists a unique collection of integers d1 ≥ · · · ≥ dN

such that P = P (d1, . . . , dN ) given by the formula

di = h − (a0 + · · · + ai−1)

for 1 ≤ i ≤ N . □

Remark 1.4. — If N, k are integers, there is a natural inclusion PN ⊆ PkN . If P is the
polygon P (d1, . . . , dN ), this operation consists in writing each integer di with multiplicity k
(i.e. P = P (d1, . . . , d1, d2, . . . , d2, . . . , dN , . . . , dN )).

This description allows us to define the following operation.
Publications mathématiques de Besançon – 2025



8 Hodge stratification in low ramification

Definition 1.5. — Let N1, N2 be two integers. To P1 ∈ PN1 and P2 ∈ PN2 , one can attach
the polygon P1 ⋆ P2 ∈ PN1+N2 by the following formula

P1 ⋆ P2(x) = 1
N1 + N2

(N1P1(x) + N2P2(x))

Note that if P1 = P (d1, . . . , dN1) and P2 = P (d′
1, . . . , d′

N2
), then

P1 ⋆ P2 := P (d1, . . . , dN1 , d′
1, . . . , d′

N2)
If P1 and P2 are two polygons, we say that P1 lies above P2, and write P1 ≥ P2, if P1(x) ≥
P2(x) for all real 0 ≤ x ≤ h.

Proposition 1.6. — Let d1 ≥ · · · ≥ dN and d′
1 ≥ · · · ≥ d′

N . Then P (d1, . . . , dN ) ≥
P (d′

1, . . . , d′
N ) if and only if

d′
1 + · · · + d′

i ≤ d1 + · · · + di

for all 1 ≤ i ≤ N .

Proof. — Let P1 = P (d1, . . . , dN ), P2 = P (d′
1, . . . , d′

N ), and assume that P1 ≥ P2. Let
1 ≤ i ≤ N be an integer. Then NP1(h − di) = d1 + · · · + di−1 − (i − 1)di. Moreover

NP2(h − di) =
N∑

j=1
max(0, d′

j − di) ≥
i∑

j=1
(d′

j − di) = d′
1 + · · · + d′

i − idi

The condition P1(h − di) ≥ P2(h − di) thus implies that d1 + · · · + di ≥ d′
1 + · · · + d′

i.
Conversely assume that d′

1 + · · · + d′
i ≤ d1 + · · · + di for all 1 ≤ i ≤ N . Since the polygons

are both convex, and the breakpoints of P2 have x-coordinates h − d′
i, it is enough to prove

that P1(h − d′
i) ≥ P2(h − d′

i) for 1 ≤ i ≤ N + 1 (with d′
N+1 = 0). Let 1 ≤ i ≤ N + 1; one has

NP2(h − d′
i) = d′

1 + · · · + d′
i−1 − (i − 1)d′

i. Then

NP1(h − d′
i) =

N∑
j=1

max(0, dj − d′
i) ≥

i∑
j=1

(dj − d′
i) = (d1 + · · · + di) − id′

i ≥ (d′
1 + · · · + d′

i) − id′
i

which yields the result. □

2. PR datum

Let k be a field, e ≥ 1 an integer, and M be a finite vector space over k with a k[T ]/T e-action
compatible with the vector space structure over M . Let h ≥ 1 be a fixed integer, and assume
that M is generated by at most h elements as a k[T ]/T e-module. One can then write

M ≃
h⊕

i=1
k[T ]/T ai

for some integers a1, . . . , ah between 0 and e.

Definition 2.1. — We define the Hodge polygon Hdg(M) of M as the polygon with slopes
a1
e , . . . , ah

e . More precisely, if a1 ≤ · · · ≤ ah, then

Hdg(M)(k) = a1 + · · · + ak

e
for 1 ≤ k ≤ h.
Publications mathématiques de Besançon – 2025



Stéphane Bijakowski 9

One can look at [3, §1] for more details about the Hodge polygon.
For any integer j ≥ 0, we write M [T j ] := {x ∈ M, T jx = 0}. The previous polygon belongs
to Pe. Let δi := dimk M [T i]/M [T i−1] for 1 ≤ i ≤ e. Since the multiplication by T induces an
injection from M [T i+1]/M [T i] to M [T i]/M [T i−1], one has the inequalities δ1 ≥ δ2 ≥ · · · ≥ δe.

Proposition 2.2. — One has Hdg(M) = P (δ1, . . . , δe).

Proof. — From the definition of the Hodge polygon, one finds that the quantity δi − δi+1 is
equal to the number of integers aj equal to i. The polygon Hdg(M) has thus slope i/e with
multiplicity δi − δi+1, and is equal to P (δ1, . . . , δe). □

Definition 2.3. — Let µ = (d1, . . . , de) be a collection of integers between 0 and h. A PR
datum of type µ for M is a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Me = M

such that

– Mi is a vector subspace of M .

– T · Mi ⊆ Mi−1 for 1 ≤ i ≤ e.

– The dimension of Mi/Mi−1 is equal to di for 1 ≤ i ≤ e.

The terminology comes from the definition by Pappas and Rapoport of the special fiber of
Shimura varieties (see [7]).

Remark 2.4. — The dimension of the k-vector space M is then equal to dimk M = a1 +
· · · + ah = d1 + · · · + de. Since the elements a1, . . . , ah are less or equal than e, one gets the
inequality dimk M

e ≤ h.

Proposition 2.5. — Let µ = (d1, . . . , de) be a collection of integers between 0 and h, σ a
permutation and µ′ = (dσ(1), . . . , dσ(e)). Then there exists a PR datum of type µ for M if and
only if there exists a PR datum of type µ′ for M .

Proof. — It is enough to prove the result when σ is a transposition exchanging two consec-
utive integers, say i and i + 1. Assume that M0 ⊆ · · · ⊆ Me is a PR datum of type µ for M .
Let N := Mi+1/Mi−1, and N0 := Mi/Mi−1. Then N is a vector space of dimension di + di+1,
with an action of k[T ]/T 2. The vector subspace N0 has dimension di, and one has

T · N ⊆ N0 ⊆ N [T ]
Let r be the dimension of T · N ; the dimension of N [T ] is then di + di+1 − r, and one finds
that r ≤ min(di, di+1). This means that it is possible to find a vector space N1 of dimension
di+1 such that

T · N ⊆ N1 ⊆ N [T ]
The space N1 gives a PR datum of type µ′ for M . □

Theorem 2.6. — Let µ = (d1, . . . , de) be a collection of integers between 0 and h. There
exists a PR datum of type µ for M if and only if

Hdg(M) ≥ P (d1, . . . , de)
Publications mathématiques de Besançon – 2025



10 Hodge stratification in low ramification

Proof. — From the previous proposition, one can assume that d1 ≥ · · · ≥ de. Assume that
there exists a PR datum of type µ written M0 ⊆ · · · ⊆ Me. Since Mi ⊆ M [T i], one must have
d1 + · · · + di ≤ δ1 + · · · + δi, hence the result.
Now assume that Hdg(M) ≥ P (d1, . . . , de). Let us write Hdg(M) = P (δ1, . . . , δe) with
δ1 ≥ · · · ≥ δe. We see in particular that dimk M [T i] = δ1 + · · · + δi and dimk T iM =
δi+1 + · · · + δe. The fact that Hdg(M) ≥ P (d1, . . . , de) implies the inequalities

d1 + · · · + di ≤ δ1 + · · · + δi δe + · · · + δe−i ≤ de + · · · + de−i

The second inequality follows from the relation d1 + · · · + de = δ1 + · · · + δe.
We construt the PR datum of type µ in the following way. We define M1 of dimension d1
inside M [T ] such that the dimension of M1 ∩ T jM is maximal. Note that this is possible
since the dimension of M [T ] is equal to δ1 ≥ d1. One then obtains that the dimension of
T jM ∩ M1 is equal to αj

1 := min(δj+1, d1). Since δe ≤ de ≤ d1, one has αe−1
1 = δe, and M1

contains T e−1M .
One then considers the vector space T −1M1; it has dimension

δ1 + α2
1 = min(δ1 + δ2, δ1 + d1)

One defines M2 as a vector space containing M1 inside T −1M1. This is allowed, since M2
must have dimension d1 + d2, and that d1 + d2 ≤ min(δ1 + δ2, δ1 + d1) (since d2 ≤ d1 ≤ δ1,
one has indeed d1 + d2 ≤ d1 + δ1). One constructs M2 in such a way that the dimension of
M2 ∩ T jM is maximal. Since the dimension of T jM ∩ T −1M1 is equal to αj+1

1 + δj+1, the
dimension of M2 ∩ T jM is equal to

αj
2 := min(d2 + αj

1, αj+1
1 + δj+1) = min(d1 + d2, δj+1 + d2, d1 + δj+1, δj+2 + δj+1)

= min(d1 + d2, δj+1 + d2, δj+2 + δj+1)

Note that αe−2
2 = min(d1 + d2, d2 + δe−1, δe + δe−1) = δe + δe−1. Indeed, one has δe ≤ de ≤ d2,

and δe + δe−1 ≤ de + de−1 ≤ d1 + d2. This means that T e−2M ⊂ M2.
One then constructs the vector spaces M1 ⊆ · · · ⊆ Me = M such that Mi ⊆ T −1Mi−1, and
the dimension of T j ∩ Mi is equal to

αj
i := min(d1 + · · · + di, δj+1 + d2 + · · · + di, . . . , δj+1 + · · · + δj+i)

Indeed, assume the spaces M1, . . . , Mi satisfy the required property. One constructs Mi+1
inside T −1Mi, such that the dimension of Mi+1 ∩ T jM is maximal. Note that the dimension
of T −1Mi is equal to

δ1 + α1
i = min(δ1 + d1 + · · · + di, δ1 + δ2 + d2 + · · · + di, . . . , δ1 + δ2 + · · · + δi+1)

and this quantity is greater or equal than d1 + · · · + di+1. The dimension of Mi+1 ∩ T jM is
then equal to

min(αj
i + di+1, αj+1

i + δj+1) = αj
i+1

This gives the result by induction on i. Note that the dimension of Mi ∩ T e−iM is equal to
αe−i

i = min(d1 + · · · + di, δe−i+1 + d2 + · · · + di, . . . , δe−i+1 + · · · + δe) = δe−i+1 + · · · + δe

which proves that T e−iM ⊆ Mi. In particular, one sees that TM ⊆ Me−1, and the filtration
M1 ⊆ · · · ⊆ Me = M is indeed a PR datum of type µ. □

Remark 2.7. — The above result gives a simpler proof of [3, Thm. 1.3.1], not using exterior
algebras.
Publications mathématiques de Besançon – 2025



Stéphane Bijakowski 11

Proposition 2.8. — Let M be a k[T ]/T e − module and 1 ≤ i ≤ e. Assume that there exists
a filtration

0 ⊆ N ⊆ M

such that T iN = 0, T e−iM ⊆ N . Then Hdg(M) ≥ Hdg(N) ⋆ Hdg(M/N).

In the above proposition N and M/N are respectively k[T ]/T i and k[T ]/T e−i-modules.

Proof. — Let δ1 ≥ · · · ≥ δi be the elements such that Hdg(N) = P (δ1, . . . , δi). Similarly, let
δi+1 ≥ · · · ≥ δe be the elements such that Hdg(N) = P (δi+1, . . . , δe). The module N thus
satisfies a PR datum of type (δ1, . . . , δi). The module M/N thus satisfies a PR datum of
type (δi+1, . . . , δe). The module M thus satisfies a PR datum of type (δ1, . . . , δe). Hence the
result. □

3. Case e = 3

Let k be a field, and let us fix an integer h ≥ 1 as in the previous section. Let d1 ≥ d2 ≥ d3
be integers between 0 and h, and let µ = (d1, d2, d3).

Definition 3.1. — Define X be the set of isomorphism classes of k[T ]/T 3-modules M ,
generated by at most h elements, with a PR datum of type µ.

More precisely, a k[T ]/T 3-module M with a PR datum M1 ⊆ M2 ⊆ M is isomorphic to the
module M ′ with PR datum M ′

1 ⊆ M ′
2 ⊆ M ′ if there is an isomorphism of k[T ]/T 3-modules

f : M → M ′ such that M ′
i = f(Mi) for i ∈ {1, 2}.

Definition 3.2. — Let Y be the set consisting of tuples of polygons (Q1, Q2, Q3) such that

– Q1 ∈ P3, and Q2, Q3 ∈ P2

– Q1(h) = d1+d2+d3
3 , Q2(h) = d1+d2

2 and Q3(h) = d2+d3
2

– Q1 ≥ Q2 ⋆ P (d3) and Q1 ≥ Q3 ⋆ P (d1).

– Q2 ≥ P (d1, d2) and Q3 ≥ P (d2, d3)

Proposition 3.3. — There exists a map ϕ : X → Y defined by
ϕ(0 ⊆ M1 ⊆ M2 ⊆ M3 = M) = (Hdg(M), Hdg(M2), Hdg(M/M1))

Proof. — One has to check that the polygons (Hdg(M), Hdg(M2), Hdg(M/M1)) satisfy the
required conditions. The first and second properties are obviously satisfied. The third one
follows from Proposition 2.8. Indeed, since one has TM ⊆ M2, and TM2 ⊆ M1, one has

T 2M ⊆ M1 T 2M2 = {0}
The last condition follows from Theorem 2.6.
Lastly, it is clear that the element ϕ(0 ⊆ M1 ⊆ M2 ⊆ M3 = M) depends only on the
isomorphism class in X. □

Definition 3.4. — Define Y adm as the subset of Y consisting of the points (Q1, Q2, Q3)
satisfying

δ1 + max(d2, δ2) ≤ α1 + β1
with Q1 = P (δ1, δ2, δ3), Q2 = P (α1, α2), Q3 = P (β1, β2) (δ1 ≥ δ2 ≥ δ3, α1 ≥ α2, β1 ≥ β2).

Publications mathématiques de Besançon – 2025



12 Hodge stratification in low ramification

In the case e = 3, the Hodge polygons allow us to give a complete description of the set X.
Indeed, one has the following theorem in this case.

Theorem 3.5. — The map ϕ induces a bijection between X and Y adm.

Proof. — Let us prove the injectivity. We keep the notation from the previous definition. We
then have

M ≃ (k[T ]/T 3)δ3 ⊕ (k[T ]/T 2)δ2−δ3 ⊕ (k[T ]/T )δ1−δ2

This gives the structure of M up to isomorphism. Define the free k[T ]/T 3-module H :=
(k[T ]/T 3)δ1 , with basis e1, . . . , eδ1 . Then M is isomorphic to the submodule of H generated by

e1, . . . , eδ3 , T eδ3+1, . . . , T eδ2 , T 2eδ2+1, . . . , T 2eδ1

and we will identify M with this module. One has the inclusions

T 2M ⊆ TM2 ⊆ TM ∩ M1 ⊆ M1 ⊆ M [T ]

The dimensions of these spaces are δ3, α2, d1 + β1 − δ1, d1, δ1. One can then up to a change
of basis, assume that M1 has basis

T 2e1, . . . , T 2ed1+β1−δ1 , T 2eδ2+1, . . . , T 2eδ2+δ1−β1

the space TM2 having T 2e1, . . . , T 2eα2 as basis.
Up to a change of basis, one can moreover assume that M2 has basis over k given by

Te1, . . . , T eα2 , T 2e1, . . . , T 2eα1

This proves that given an element y ∈ Y , if there exists a module M mapping to y, it is
uniquely determined up to an isomorphism, hence the injectivity of ϕ.
Let us now prove the image of ϕ is exactly Y adm.
Let δ1 ≥ δ2 ≥ δ3, with δ1 + δ2 + δ3 = d1 + d2 + d3, P (δ1, δ2, δ3) ≥ P (d1, d2, d3) and define the
module M as before. We will see what are the possible structures of PR datum that one can
impose on M .
First of all, one must have T 2M ⊆ M1 ⊆ M [T ]. Note that one has indeed δ3 ≤ d1 ≤ δ1. Then
one gets the condition

max(δ3, d1 + δ2 − δ1) ≤ dim(M1 ∩ TM) ≤ min(d1, δ2)

For this, we use the formula max(dim B1, dim A1 + dim A2 − dim B2) ≤ dim(A1 ∩ A2) ≤
min(dim A1, dim A2), if A1, A2 are vector spaces with B1 ⊆ Ai ⊆ B2.
If Hdg(M/M1) = (β1, β2), then dim(M1 ∩ TM) = β1 + d1 − δ1. The inequality P (δ1, δ2, δ3) ≥
P (β1, β2, d1) implies automatically the inequality dim(M1 ∩ TM) ≤ min(d1, δ2). The other
inequality gives the conditions β2 ≤ δ2 ≤ β1.
Now assume that M1 is constructed. One must construct M2 with the conditions

TM + M1 ⊆ M2 ⊆ T −1M1

These vector spaces have dimension δ1 + δ2 + δ3 − β1, d1 + d2 and β1 + d1 respectively. The
relation P (β1, β2) ≥ P (d2, d3) implies that the integers are in increasing order. The condition
for the dimension of M2 ∩ (TM + M [T ]) is then

max(δ1+δ2+δ3−β1, d1+d2+δ1+δ3−β1−d1) ≤ dim(M2∩(TM+M [T ])) ≤ min(d1+d2, δ1+δ3)
Publications mathématiques de Besançon – 2025
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Note that dim(M2 ∩ (TM + M [T ])) must be equal to dim(M2 ∩ M [T ]) + δ3. If Hdg(M2) =
P (α1, α2) (with α1 ≥ α2), then dim(M2 ∩ M [T ]) = α1. The conditions are then

max(δ1 + δ2 − β1, d2 + δ1 − β1) ≤ α1 ≤ min(d1 + d2 − δ3, δ1)

The inequality α1 ≤ min(d1 + d2 − δ3, δ1) is automatically satisfied if one has P (δ1, δ2, δ3) ≥
P (α1, α2, d3) and α1 +α2 = d1 +d2. The other inequality gives the condition in the definition
of Y adm.
To finish the proof, one only checks that the condition β2 ≤ δ2 ≤ β1 is implied by the
definition of Y adm. Indeed, the inequality δ1 + δ2 ≤ α1 + β1, combined with the relation
α1 ≤ δ1 implies that δ2 ≤ β1.
Now, one uses the relation β1 + β2 = d2 + d3, to get β2 ≤ d2 + d3 − δ2. But the inequality
P (δ1, δ2, δ3) ≥ P (d1, d2, d3) implies that d2 + d3 ≤ δ2 + δ3 ≤ 2δ2, hence the result. □

4. Hodge stratification

4.1. Unitary Case. — Let F0 be a totally real field, and F/F0 be a CM extension. Let Σ
be the set of embeddings of F0 into Qp; for each σ ∈ Σ, let aσ, bσ be two integers such that
the quantity h := aσ + bσ does not depend on σ. Let k0 be a finite field of characteristic p
containing all the residue fields of F at places above p.

Definition 4.1. — Let X be the PR variety over k0 associated to F/F0, with signature
(aσ, bσ), with maximal compact level structure at p.

We refer to [4, §2] for the precise definition of X, and especially the notion of maximal level
structure at p (see [4, Prop. 2.23]). Let us explain the main point of this variety. One has an
universal abelian scheme A over X, endowed with an action of OF (the ring of integers of F ),
a polarization (with some compatibility with the action of OF ). Let us now describe the PR
datum. One has a sheaf ω0 := ωA on X; it is locally free of rank h[F0 : Q] and has an action
of OF . One has a decomposition Σ =

∐
π|p Σπ, where π runs through the places of F0 over

p, and Σπ is the subset of embeddings above π. The sheaf ω0 decomposes as ω0 =
⊕

π|p ωπ.
One then distinguish several cases.
Let π be a prime of F0 above p and assume that π splits as π+π− in F . Then the sheaf

ωπ decomposes as ω+
π ⊕ ω−

π . The sheaf ω+
π is locally free of rank

∑
σ∈Σπ

aσ. Let F0,π be the
completion of F0 at π, e the ramification index and f the residual degree. Let F ur

0,π be the
maximal unramified extension inside F0,π, and let Σur

π be the set of embeddings of F ur
0,π. One

has the decomposition
ω+

π =
⊕

σ∈Σur
π

ω+
π,σ

Let us fix an embedding σ ∈ Σur
π , and let us consider the sheaf ω := ω+

π,σ. It is locally free of
rank

∑
aτ , where the sum runs through the embeddings τ of F0,π extending σ. Let us fix an

ordering σ1, . . . , σe on the set of elements of Σπ extending σ. The PR datum thus consists in
a filtration

0 ⊆ ω1 ⊆ · · · ⊆ ωe = ω

where each graded part ωi/ωi−1 is locally free of rank ai and the ring of integers of F0,π acts
on it by σi.
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14 Hodge stratification in low ramification

Now let π be a place above p in F0, and assume that π is inert in F . Let F0,π be the
completion of F0 at π, e the ramification index and f the residual degree. Let F ur

0,π be the
maximal unramified extension inside F0,π, and let Σur

π be the set of embeddings of F ur
0,π.

Let Fπ be the completion of F at π and F ur
π be the maximal unramified extension inside

Fpi. The sheaf ωπ decomposes as
∑

σ∈Σur
π

ωπ,σ. The sheaf ωπ,σ is locally free of rank eh, and
decomposes as ωπ,σ,1 ⊕ ωπ,σ,2, according to the action of the ring of integers of F ur

π . Let us
write ω := ωπ,σ,1, it is locally free of rank

∑
aτ , where the sum runs through the embeddings

τ of F0,π extending σ. Similarly as in the previous case, one has a PR datum for this sheaf.
The case where the prime π ramifies in F0 can be dealt in a slightly more involved matter.
Since we will not consider this case, we do not give any more details.

Hypothesis 4.2. — We considers a prime π of F0 which does not ramify in F . We also
suppose that the ramification index of π is 3.

Let us fix an embedding σ ∈ Σur
π . One has thus a sheaf ω locally free over OX of rank

a1 + a2 + a3, with a PR filtration
ω1 ⊆ ω2 ⊆ ω

with ω1 locally free of rank a1,ω2/ω1 locally free of rank a2, and ω/ω2 is locally free of rank
a3.
Let E be the σ part of the De Rham cohomology of the universal abelian scheme A. It is
locally free of rank h over OX [T ]/T e, and by the Hodge filtration it has ω locally, as an
OX -module, a direct factor.
The quantities, h and a1, a2, a3 allow us to define the sets Y and Y adm as in the previous
section.

Definition 4.3. — Let k be a field in characteristic p, which is an extension of k0 and
x ∈ X(k). The above datum defines a unique element Hdg(x) ∈ Y adm by the formula

Hdg(x) = (Hdg(ω), Hdg(ω2), Hdg(ω/ω1))

The Hodge stratification (attached to σ) is then

X =
∐

y∈Y adm

Xy

where Xy consists of all the points x of X with Hdg(x) = y. Let us define an order on Y .

Definition 4.4. — Let y = (Q1, Q2, Q3) and y′ = (Q′
1, Q′

2, Q′
3) be elements of Y . One says

that y ≥ y′ if Qi ≥ Q′
i for all i ∈ {1, 2, 3}.

Proposition 4.5. — Xy is a locally closed subscheme of X, for every y ∈ Y adm.

Proof. — The Hodge polygon goes up by specialization (see [5]). This proves that for every
y0 ∈ Y adm

X≤y0 :=
∐

y≤y0

Xy

is open. Moreover, the complement of Xy0 in it is equal to⋃
y≤y0,y ̸=y0

X≤y

which is also open. This proves that Xy0 is closed in X≤y0 . □
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Theorem 4.6. — Let y ∈ Y adm. Then

Xy =
∐

y′≥y

Xy′

Proof. — The Hodge polygon goes up by specialization (see [5]). This proves the inclusion

Xy ⊆
∐

y′≥y

Xy′

Now, let y′ ≥ y and x ∈ Xy′(k). We want to prove that there exists a deformation of x which
is in Xy.
Let us write y′ = (Q′

1, Q′
2, Q′

3), with Q′
1 = P (δ′

1, δ′
2, δ′

3), Q′
2 = P (α′

1, α′
2), Q′

3 = P (β′
1, β′

2)
(δ′

1 ≥ δ′
2 ≥ δ′

3, α′
1 ≥ α′

2, β′
1 ≥ β′

2), and similarly y = (Q1, Q2, Q3). By Serre-Tate and
Grothendieck–Messing (see [2]), it is enough to lift the Hodge filtration. Let R = k[[X]], and
let ER := E ⊗ R. One will lift ω to a direct summand ωR ⊆ ER such that ωR ⊗R k((X)) will
be endowed with a PR datum of type y.
One lifts successively the filtration 0 ⊆ ω1 ⊆ ω2 ⊆ ω. First, one lifts ω1 to ω1,R a free
R-module of rank d1 inside ER[T ]. Then one considers the filtration

ω1,R ⊆ ER[T ] ⊆ T −1ω1,R

One lifts ω2,R inside T −1ω1,R, such that it contains ω1,R, and the intersection with ER[T ]
has dimension α1 in generic fiber. This is possible since the intersection of E [T ] and ω2 has
dimension α′

1 ≥ α1. Let Fk((X)) := Ek((X))[T ] + (ω2,R ⊗R k((X))), and Gk((X)) := Ek((X))[T 2] ∩
(T −1(ω2,R ⊗R k((X)))). These are k((X)) vector spaces of dimension h + α2 and h + α1
respectively. Let F := Fk((X)) ∩ ER, and G := Gk((X)) ∩ ER. We will assume that the lift of ω2
is done in such a way that the intersection of ω with the reduction of F and G have maximal
dimension. These dimensions can be made equal to

min(δ′
1 + α2, β′

1 + d1) min(δ′
1 + δ′

2, α1 + β′
1)

respectively. One then considers the filtration

ω2,R ⊆ F ⊆ T −1ω1,R ⊆ G ⊆ T −1ω2,R

One lifts ω to ωR inside T −1ω2,R and containing ω2,R such that the intersection with F ,
T −1ω1,R, G have dimension δ1 +α2, β1 +d2, δ1 +δ2 respectively in generic fiber. This is indeed
possible since one has

δ1 + α2 ≤ min(δ′
1 + α2, β′

1 + d1)
β1 + d2 ≤ β′

1 + d1

δ1 + δ2 ≤ min(δ′
1 + δ′

2, α1 + β′
1)

To achieve this, one uses the following lemma. □

Lemma 4.7. — Let R = k[[X]], and consider M a free R module of rank h. Assume that
one has direct summands

0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Ml = M

such that Mi is free of rank hi. Let Mi := Mi ⊗R k, and let L be a vector subspace of M , and
let di := dim L ∩ Mi. One has automatically 0 ≤ di+1 − di ≤ hi+1 − hi.
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16 Hodge stratification in low ramification

Let d′
1, . . . d′

l be integers, with d′
l = dl, 0 ≤ d′

i+1 − d′
i ≤ hi+1 − hi, and d′

i ≤ di for 1 ≤ i ≤ l − 1.
Then there exists a lift L ⊆ M of L, which is a direct summand, such that the intersection
of L with Mi has dimension d′

i in generic fiber.

Proof. — One constructs a basis f1, . . . , fdl
for the lift L inductively.

The space L ∩ M1 has dimension d′
1, let e1, . . . , ed1 be a family of M1 such that its reduction

is a basis for L ∩ M1. We set fi = ei for 1 ≤ i ≤ d′
1, and fi = ei + Xvi−d′

1
for d′

1 + 1 ≤ i ≤ d1,
where the elements v1, . . . , vd′

1−d1 are vectors yet to be determined.
Next, one distinguish two cases. First assume that d′

2 − d′
1 ≤ d2 − d1. Let ed1+1, . . . , ed2 be

a family of M2, such that the reduction is a basis for L ∩ M2/L ∩ M1. We set fi = ei for
d1 + 1 ≤ i ≤ d1 + d′

2 − d′
1, and fi = ei + Xwi+d′

1−d1−d′
2

for d1 + d′
2 − d′

1 + 1 ≤ i ≤ d2, where the
vectors wi are yet to be determined. In total, there are thus d2 −d′

2 vectors to be determined.
There is then d2 − d′

2 vectors to determine in total.
Now assume that d′

2 − d′
1 > d2 − d1. We set fi = ei for d1 + 1 ≤ i ≤ d2. One also complete

the family ed1+1, . . . , ed2 into ed1+1, . . . , ed1+h2−h1 , which is a basis for M2/M1. One then sets
vi = ed2+i for 1 ≤ i ≤ (d′

2 − d′
1) − (d2 − d1). This is possible since d′

2 − d′
1 ≤ h2 − h1. After

that step, there is only d2 − d′
2 vectors to determine.

One repeats this process. Since dl = d′
l, at the end there is no more vectors to determine, and

this is how one constructs the lift L. □

Remark 4.8. — The previous strategy allows us to compute the dimension of each stratum.
If for example p is totally ramified in F0, then each stratum Xy is smooth of dimension

d1(h − d1) + (α1 − d1)(h − α1) + α2(h − d2) + (δ1 − α1)(h − δ1)
+ (α1 + β1 − d2 − δ1)(h − β1) + (β2 − δ3)(h + δ3 − α2 − d3) + δ3(h − d3)

if y = (Q1, Q2, Q3) with Q1 = P (δ1, δ2, δ3), Q2 = P (α1, α2), Q3 = P (β1, β2) (δ1 ≥ δ2 ≥ δ3,
α1 ≥ α2, β1 ≥ β2).

The main result of this paper is made under the assumption that e = 3 (Hypothesis 4.2). Let
us say a few words about the case e = 2, which is much simpler (note that the case e = 1 is
void since the Hodge polygon is constant in this case). If e = 2, the PR datum consists in a
filtration 0 ⊆ ω1 ⊆ ω, and there is only one polygon to consider (the one associated to ω). It
is of the form P (r, a1 + a2 − r), with a1+a2

2 ≤ r ≤ min(h, a1 + a2). The Hodge stratification
is then indexed by the integer r (which is equal to the dimension of the π-torsion of ω). The
order on the polygons is simply the usual order on the integers.

Theorem 4.9. — In the case e = 2, the Hodge stratification induces a strong stratification
on X.

Proof. — We use the same strategy and notations as in the proof of Theorem 4.6. Let x be a
point of X with Hodge polygon P (r′, a1 +a2 −r′) and let r be an integer with a1+a2

2 ≤ r ≤ r′.
We want to construct a deformation of x with Hodge polygon P (r, a1 + a2 − r) in generic
fiber.
After lifting the module ω1 to ω1,R, one considers the modules ω1,R ⊆ ER[T ] ⊆ T −1ω1,R. One
should lift the module ω to ωR inside T −1ω1,R, with the condition that the intersection of ωR

and ER[T ] has dimension r in generic fiber. This can be achieved thanks to Lemma 4.7. □
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4.2. Hilbert–Siegel variety. — In this section, F denotes a totally real field, and g ≥ 1
an integer. We set h = 2g in this section. We denote by X the special fiber of the Hilbert–
Siegel variety attached to F with PR condition (see [4, §2.4]). It is a scheme over Fp. Let us
fix a prime π above p in F , such that the ramification index is 3. Let us fix an unramified
embedding σ. We consider the sheaf ωσ on X. It is locally free of rank 3g, and has an action
of Fp[T ]/T 3. It has a PR datum

ω1 ⊆ ω2 ⊆ ωσ

such that each graded part is locally free of rank g. One also considers the σ part of de Rham
cohomology E of the abelian scheme A, which is locally free of rank 6g. It is also equipped
with a pairing induced by the polarization, and ω ⊆ E is totally isotropic for this pairing.
The PR datum is compatible with the pairing in the sense that

ω⊥
1 = T −2ω1 ω⊥

2 = T −1ω2

these equalities taking place in E .

Definition 4.10. — We define the subset Y pol ⊆ Y adm as the subset consisting of the
points (Q1, Q2, Q3) ∈ Y adm, with

Q1 = P (r, g, 2g − r)
for some integer g ≤ r ≤ 2g.

If x is a point of X, the the PR datum will land in Y pol. This is because the polarization
induces an isomorphism ω ≃ (E/ω)∨.

Definition 4.11. — Let k be a field in characteristic p, and x ∈ X(k). The above datum
defines a unique element Hdg(x) ∈ Y pol.

The Hodge stratification (attached to σ) is then

X =
∐

y∈Y pol

Xy

where Xy consists of all the points of X with Hdg(x) = y. Xy is a locally closed subscheme
of X, from the same argument as in the previous section.

Theorem 4.12. — Let y ∈ Y pol. Then

Xy =
∐

y′≥y

Xy′

Proof. — Since the Hodge polygon goes up by specialization, one has the inclusion

Xy ⊆
∐

y′≥y

Xy′

Now, let y′ ≥ y and x ∈ Xy′(k). We want to prove that there exist a deformation of x which
is in Xy.
Let us write y′ = (Q′

1, Q′
2, Q′

3), with Q′
1 = P (δ′

1, g, 2g − δ′
1), Q′

2 = P (α′
1, α′

2), Q′
3 = P (β′

1, β′
2)

(2g ≥ δ′
1 ≥ g, α′

1 ≥ α′
2, β′

1 ≥ β′
2), and similarly y = (Q1, Q2, Q3). By Serre–Tate and

Grothendieck–Messing, it is enough to lift the Hodge filtration. Let R = k[[X]], and let
ER := E ⊗ R. One will lift ω to direct summand ωR ⊆ ER, totally isotropic, such that
ωR ⊗R k((X)) will be endowed with a PR datum of type y.
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18 Hodge stratification in low ramification

One lifts successively the filtration 0 ⊆ ω1 ⊆ ω2 ⊆ ω. First, one lifts ω1 to ω1,R a free R-
module of rank g inside ER[T ], totally isotropic for the induced pairing. Then one considers
the filtration

ω1,R ⊆ ER[T ] ⊆ T −1ω1,R

One lifts ω2,R inside T −1ω1,R, such that it contains ω1,R, and the intersection with ER[T ]
has dimension α1 in generic fiber. One also requires that ω2,R/ω1,R is totally isotropic for
the induced pairing on T −1ω1,R/ω1,R. This is possible since the intersection of E [T ] and
ω2 has dimension α′

1 ≥ α1. Let Fk((X)) := Ek((X))[T ] + (ω2,R ⊗R k((X))), and Gk((X)) :=
Ek((X))[T 2] ∩ (T −1(ω2,R ⊗R k((X)))). These are k((X)) vector spaces of dimension 2g + α2
and 2g + α1 respectively, and they are the orthogonal of one another. Let F := Fk((X)) ∩ ER,
and G := Gk((X)) ∩ ER. We will assume that the lift of ω2 is done in such a way that the
intersection of ω with the reduction of F and G have maximal dimension. These dimensions
can be made equal to

min(δ′
1 + α2, β′

1 + g) min(δ′
1 + g, α1 + β′

1)

respectively. One then considers the filtration

ω2,R ⊆ F ⊆ T −1ω1,R ⊆ G ⊆ T −1ω2,R

One lifts ω to ωR inside T −1ω2,R and containing ω2,R such that the intersection with F ,
T −1ω1,R, G have dimension δ1 + α2, β1 + g, δ1 + g respectively in generic fiber. This is indeed
possible since one has

δ1 + α2 ≤ min(δ′
1 + α2, β′

1 + g)
β1 + g ≤ β′

1 + g

δ1 + g ≤ min(δ′
1 + g, α1 + β′

1)

One also requires that ωR/ω2,R is totally isotropic for the induced pairing on T −1ω2,R/ω2,R.
All of this is achieved with the following lemma. □

Lemma 4.13. — Let R = k[[X]], and consider M a free R module of rank 2g with a perfect
pairing. Assume that one has direct summands

0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Ml = M

such that Mi is free of rank hi, with M⊥
i = Ml−i. Let Mi := Mi ⊗R k, and let L be a maximal

totally isotropic vector subspace of M , and let di := dim L ∩ Mi. One has automatically
0 ≤ di+1 − di ≤ hi+1 − hi, hl−i = 2g − hi and dl−i = g − hi + di, dl = g.
Let d′

1, . . . d′
l be integers, with d′

l = g, 0 ≤ d′
i+1 − d′

i ≤ hi+1 − hi, d′
l−i = g − hi + d′

i and d′
i ≤ di

for 1 ≤ i ≤ l − 1. Then there exist a lift L ⊆ M of L, which is a totally isotropic direct
summand, such that the intersection of L with Mi has dimension d′

i in generic fiber.

Proof. — This is a variant of the proof of Lemma 4.7 from the previous section. Let k be
the integer part of l/2. It is enough to consider the modules M1, . . . , Mk, which are moreover
totally isotropic. One then applies process described in the previous section. One constructs
a module L1 of rank d′

1, such that L1 is included in M1, and the reduction of L1 is in L. One
has tried to look for a lift of L ∩ M1, but there are d1 − d′

1 vectors yet to determine. One then
considers the module L⊥

1 , and will lift all the vectors inside this module. We then consider
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the vector space M2 ∩ L. One will look for a (partial) lift L2 of rank d′
2, which will be totally

isotropic. One then repeats this process to construct the lift L of L. □

Remark 4.14. — The previous strategy allows us to compute the dimension of each stra-
tum. If for example p is totally ramified in F , then each stratum Xy is smooth of dimension

g(g + 1)
2 + α2(g − α2) + α2(α2 + 1)

2 + (δ1 − α1)δ3 + (α1 + β1 − g − δ1)β2 + β2(β2 + 1)
2

if y = (Q1, Q2, Q3) with Q1 = P (δ1, g, 2g − δ1), Q2 = P (α1, α2), Q3 = P (β1, β2) (δ1 ≥ g,
α1 ≥ α2, β1 ≥ β2).

Finally, let us say a few words about the case e = 2. The PR datum consists in a filtration
0 ⊆ ω1 ⊆ ω, and there is only one polygon to consider (the one associated to ω). It is of the
form P (r, 2g − r), with g ≤ r ≤ 2g. The Hodge stratification is then indexed by the integer r
(which is equal to the dimension of the π-torsion of ω). The order on the polygons is simply
the usual order on the integers.

Theorem 4.15. — In the case e = 2, the Hodge stratification induces a strong stratification
on X.

Proof. — We use the same strategy and notations as in the proof of Theorem 4.12. Let x be
a point of X with Hodge polygon P (r′, 2g − r′) and let r be an integer with g ≤ r ≤ r′. We
want to construct a deformation of x with Hodge polygon P (r, 2g − r) in generic fiber.
After lifting the module ω1 to ω1,R (with an isotropy condition), one considers the modules
ω1,R ⊆ ER[T ] ⊆ T −1ω1,R. One should lift the module ω to ωR inside T −1ω1,R, which is
isotropic, and with the condition that the intersection of ωR and ER[T ] has dimension r in
generic fiber. This can be achieved thanks to Lemma 4.13. □

References
[1] F. Andreatta & E. Z. Goren, “Geometry of Hilbert modular varieties over totally ramified

primes”, Int. Math. Res. Not. 2003 (2003), no. 33, p. 1785-1835.
[2] P. Berthelot, L. Breen & W. Messing, Théorie de Dieudonné cristalline II, Lecture Notes

in Mathematics, vol. 930, Springer, 1982.
[3] S. Bijakowski & V. Hernandez, “Groupes p-divisibles avec condition de Pappas-Rapoport et

invariants de Hasse”, J. Éc. Polytech., Math. 4 (2017), p. 935-972.
[4] ——— , “On the geometry of the Pappas-Rapoport models for PEL Shimura varieties”, J. Inst.

Math. Jussieu 22 (2023), no. 5, p. 2403-2445.
[5] N. M. Katz, “Slope filtration of F -crystals”, in Groupes formels, représentations galoisiennes et

cohomologie des variétés de caractéristique positive. I, Astérisque, vol. 63, Société Mathématique
de France, 1979, p. 113-164.

[6] F. Oort, “A stratification of a moduli space of abelian varieties”, in Moduli of Abelian Varieties
(Texel Island, 1999), Progress in Mathematics, vol. 195, Birkhäuser, 2001, p. 345-416.

[7] G. Pappas & M. Rapoport, “Local models in the ramified case I. The EL-case”, J. Algebr.
Geom. 12 (2003), no. 1, p. 107-145.

[8] ——— , “Local models in the ramified case II. Splitting models”, Duke Math. J. 127 (2005),
no. 2, p. 193-250.

Publications mathématiques de Besançon – 2025



20 Hodge stratification in low ramification

[9] N. Spaltenstein, “The fixed point set of a unipotent transformation on the flag manifold”,
Nederl. Akad. Wet., Proc., Ser. A 79 (1976), p. 452-456.

[10] E. Viehmann & T. Wedhorn, “Ekedahl–Oort and Newton strata for Shimura varieties of PEL
type”, Math. Ann. 356 (2013), no. 4, p. 1493-1550.

Stéphane Bijakowski, Centre de mathématiques Laurent Schwartz (CMLS), CNRS,
École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
E-mail : stephane.bijakowski@polytechnique.edu

Publications mathématiques de Besançon – 2025

mailto:stephane.bijakowski@polytechnique.edu

	Introduction
	1. Polygons
	1.1. Definition

	2. PR datum
	3. Case e=3
	4. Hodge stratification
	4.1. Unitary Case
	4.2. Hilbert–Siegel variety

	References

