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DENOMINATORS OF IGUSA CLASS POLYNOMIALS

by

Kristin Lauter and Bianca Viray

Abstract. — In [22], the authors proved an explicit formula for the arithmetic intersection
number (CM(K).G1) on the Siegel moduli space of abelian surfaces, under some assumptions
on the quartic CM field K. These intersection numbers allow one to compute the denominators
of Igusa class polynomials, which has important applications to the construction of genus 2
curves for use in cryptography. One of the main tools in the proof was a previous result of the
authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper
combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection
formula. We focus on providing a stream-lined account of the proof such that the algorithm for
implementation is clear, and we give applications and examples of the formula in corner cases.

Résumé. — Dénominateurs des polynômes des classes d’Igusa.
Cet article donne une démonstration directe de la formule explicite du nombre d’intersection
(CM(K).G1) sur l’espace des modules de Siegel pour un corps K à multiplication complexe
quartique. Cette formule permet de calculer, d’une manière effective, les dénominateurs des
polynômes des classes d’Igusa ce qui est utile pour construire des courbes de genre 2 pour la
cryptographie. Cette formule a été démontrée dans l’article [22], avec une forte dépendance,
dans la démonstration, d’une formule donnée dans [21] qui généralise la formule de Gross et
Zagier. Notre présentation ici est plus transparente et plus adaptée pour écrire un algorithme
pour la calculer. Nous donnons aussi des exemples et des applications.

1. Introduction

Igusa defined a collection of invariants for genus 2 curves and proved expressions for them in
terms of quotients of Siegel modular forms. For genus 2 curves with complex multiplication
(CM) by a primitive quartic CM field K, these invariants lie in the Hilbert class field of the
reflex field of K, and their minimal polynomials, Igusa class polynomials, have coefficients
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Key words and phrases. — Gross-Zagier’s formula, intersection number, complex multiplication, Igusa
class polynomials.
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6 Denominators of Igusa class polynomials

which are rational, not necessarily integral as is the case for Hilbert class polynomials related
to invariants of elliptic curves.
Ignoring cancellation with numerators, the primes which appear in the denominators of Igusa
class polynomials are those which appear in (CM(K).G1), the arithmetic intersection on the
Siegel moduli space of the divisor of the Siegel modular form χ10 with the CM points of K.
In [10], it was proved that these primes are those p for which there is a solution to an
Embedding Problem, that is, there exists an embedding of OK into M2(Bp,∞) with certain
properties. Studying this embedding problem, [10] gave a bound on the primes which can
appear, and [11] gave a bound on the powers to which they can appear.
At the same time, Bruinier and Yang, using methods from Arakelov intersection theory, gave
a conjectural exact formula for the factorization of the denominators under certain conditions
on the ramification in the primitive quartic CM fieldK [1]. They assume that the discriminant
of K is p2q, where p and q are both primes congruent to 1 (mod 4). In [33, 34], Yang gave
a detailed treatment of the Embedding Problem and used it, along with other techniques, to
prove the conjectured intersection formula assuming the ring integers of K is generated by
one element over the ring of integers of the real quadratic subfield. Yang’s proof uses results
of Gross-Keating, and then computes local densities by evaluating certain local integrals over
the quaternions.
In practice, very few primitive quartic CM fields have ramification of such restricted form.
In [16], the authors studied all 13 quartic cyclic CM fields in van Wamelen’s tables of CM
genus 2 curves defined over Q, compared denominators with the number of solutions to the
Embedding Problem and Bruinier and Yang’s formula, and found that the assumptions on
the ramification of K are necessary for the Bruinier-Yang formula to hold. For applications to
the computation of genus 2 curves for cryptography, it is important to have a precise formula
for the denominators of Igusa class polynomials which holds for general primitive quartic CM
fields.
An arithmetic intersection formula for (CM(K).G1) was proved in [22], extending the con-
jecture of Bruinier and Yang to general primitive quartic CM fields K with almost no as-
sumptions on K. Furthermore, for all primitive quartic CM fields K, the formula proved
in [22] gives an upper bound on prime powers in the denominator which is very accurate
for the purpose of efficiently computing Igusa class polynomials. This solves the problem of
estimating or clearing denominators of Igusa class polynomials from a practical point of view,
for any primitive quartic CM field K, and gives strong motivation for an effective algorithm
for computing the formula in practice.
One of the main tools in [22] is earlier work of the two authors that generalizes the singular
moduli formula of Gross and Zagier [15]. As [22] cites only the results of [21], the algorithmic
nature of the proof of the formula for (CM(K).G1) may not be readily apparent.
The present paper combines the results of [21, 22] and presents a direct proof of the main
arithmetic intersection formula. The proof is more explicit than what is given in those two
papers, but relies on the same building blocks. Here we revisit those ideas, and include all
details necessary for implementing an algorithm to compute the formula. The main new
content is in Section 5, where the direct proof is presented. We focus on providing a stream-
lined account of the proof such that the algorithm for implementation is clear, and we give
applications and examples of the formula in corner cases in Sections 8, 9.
The statement of the theorem and an outline of the proof is given in Section 2, and a
summary pulling all the steps of the proof together is given in Section 7. The strategy of
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K. Lauter and B. Viray 7

our proof is as follows: to study and characterize solutions to the Embedding Problem, we
first fix the embedding of the real quadratic subfield, as Yang did in [33, 34]. Then through a
series of calculations explained in Section 2 it becomes possible to see that solutions can be
parameterized by pairs of endomorphisms of a supersingular elliptic curve E, x, u ∈ End(E)
with a fixed norm and trace. This in turn is related to the counting problem studied by
Gross and Zagier [15] in their formula for the factorization of differences of singular moduli:
counting simultaneous embeddings of maximal orders from two distinct imaginary quadratic
fields, Q(

√
d1) and Q(

√
d2), into a maximal order in the quaternion algebra Bp,∞.

To solve this problem Gross and Zagier gave an explicit description of all maximal orders in
Bp,∞ with an optimal embedding of the maximal order in Q(

√
−p), for p prime. In follow-up

work, Dorman [5] extended their description to work for maximal orders in Bp,∞ with an
optimal embedding of a maximal order in an imaginary quadratic field that is unramified at
2. To solve the Embedding Problem, explicit descriptions of maximal orders in the quater-
nion algebra with an optimal embedding of arbitrary quadratic orders are needed. The fact
that the quadratic orders which arise may have even discriminant makes the genus theory
required for our formula considerably more difficult. The explicit descriptions of maximal
orders in the quaternion algebra were given in [21], where a broad generalization of Gross
and Zagier’s theorem on singular moduli was proved as a consequence. In Section 4 we repeat
the definitions and statements about the maximal orders in Bp,∞ with an optimal embedding
of a non-maximal quadratic order without proof, since the notation is needed for the proof
of the main theorem.
A solution to the embedding problem is actually given by a pair of supersingular elliptic curves
E1 and E2 modulo p, an embedding of the ring of integers of the real quadratic subfield of K
into End(E1 × E2), along with a pair of endomorphisms x ∈ End(E1) and z ∈ End(E2) and
an isogeny y between them satisfying certain properties. In order to convert pairs of solutions
x, u ∈ End(E1) into an actual solution to the Embedding Problem, there is another counting
problem to be solved, namely counting ideals with certain properties in a quaternion algebra.
The counting formula which solves this problem is stated in Theorem 6.1.1, and was proved
in [22].
Finally, in §8, we explain how this intersection number gives a sharp bound for the denomi-
nators of Igusa class polynomials, and we give several concrete examples in Section 9. These
examples illustrate various complexities that arise in the formulae for corner cases.

2. Main Theorem

Let K be a primitive quartic CM field, let F denote its real quadratic subfield, and let D
denote the discriminant of OF . We assume that OK is generated over OF by one element,
say η, so OK = OF [η]. If this assumption does not hold, then Theorem 2.3 in [22] gives
an upper bound on the intersection number. Let D̃ denote NF/Q

(
DiscK/F (OK)

)
and let

α0, α1, β0, β1 ∈ Z be such that

TrK/F (η) = α0 + α1
D +

√
D

2 , NK/F (η) = β0 + β1
D +

√
D

2 .
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8 Denominators of Igusa class polynomials

For any positive integer δ such that D − 4δ = �, we define

cK(δ) := δ

(
α2

0 + α0α1D + α2
1
D2 −D

4 − 4β0 − 2β1D

)
,

and let a := 1
2

(
D −

√
D − 4δ

)
, where we take the non-negative square root. Then for any

integer n such that 2D | (n+ cK(δ)), we define

du(n) = (α1δ)2 + 4(n+ cK(δ))δ
2D ,

tx = α0 + aα1,

dx(n) = (α0 + aα1)2 − 4
(
β0 + aβ1 + (n+ cK(δ))

2D

)
,

txu∨(n) = β1δ + (D − 2a)(n+ cK(δ))
2D

s′(n) = txα1δ − 2txu∨(n),
tw(n) = α0 + (D − a)α1,

nw(n) = β0 + (D − a)β1 + (n+ cK(δ))
2D .

Our main theorem gives a counting formula for an arithmetic intersection number, which is
defined as a weighted sum of lengths of local rings at points in the intersection as follows:

(2.1) (CM(K).G1)`
log ` =

∑
P∈(CM(K)∩G1)(F`)

1
# Aut(P ) · length ÕG1∩CM(K),P

where ÕG1∩CM(K),P is the local ring of G1 ∩ CM(K) at P .
Our counting formula is stated in terms of the quantitiesM(δ, n, f) and I(δ, n, f). The precise
definition of M(δ, n, f) is given in Definition 5.4.1: it is a weighted ideal count of certain
invertible ideals of norm N in the imaginary quadratic order of discriminant d, where N and
d are determined by (δ, n, f), and the sum is weighted by multiplicity and a factor which
determines the genus class.
The definition of I(δ, n, f) is given in Theorem 6.1.1, and it counts the number of left integral
ideals of a maximal order in a quaternion algebra with special properties defined by (δ, n, f).
Let

B (δ, n, f) = I(δ, n, f)M(δ, n, f).

Theorem 2.0.1. — Let ` be a prime different from 2. If ` - δ for any positive integer δ of
the form D−�

4 , then

(CM(K).G1)`
log ` =

∑
δ∈Z>0
δ=D−�

4

Cδ
∑
n∈Z

δ2D̃−n2
4D ∈`Z>0

2D|(n+cK(δ))

ε(n)
∑

f∈Z>0
δ2D̃−n2

4Df2 ∈`Z>0

B (δ, n, f) ,
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K. Lauter and B. Viray 9

otherwise,
(CM(K).G1)`

log ` ≤ 2
∑
δ∈Z>0
δ=D−�

4

Cδ
∑
n∈Z

δ2D̃−n2
4D ∈`Z>0

2D|(n+cK(δ))

ε(n)
∑

f∈Z>0
δ2D̃−n2

4Df2 ∈`Z>0

B (δ, n, f) ,

where Cδ =
{

1
2 if 4δ = D

1 otherwise,
ε(n) =

{
0 if v`(du(n)) > 1 and v`(dx(n)) > 1
1 otherwise.

Remark 2.0.2. — If OK is not generated by a single element over OF , then the proof instead
gives an upper bound. For any integral element η ∈ K \ F , let D̃η := NF/Q(DiscK/F (η)) and
let

cη(δ) := δ

(
α2

0 + α0α1D + α2
1
D2 −D

4 − 4β0 − 2β1D

)
,

where αi and βi are defined in terms of η as above. Then

(CM(K).G1)`
log ` ≤

∑
δ∈Z>0
δ=D−�

4

2Cδ · min
η∈OK\OF

gcd([OK :OF [η]],`δ)=1


∑
n∈Z

δ2D̃η−n2

4D ∈`Z>0
2D|(n+cη(δ))

ε(n)
∑

f∈Z>0
δ2D̃η−n2

4Df2 ∈`Z>0

B (δ, n, f)


,

where the factor of 2 can be removed if ` - δ.

Proof of Main Theorem. —G1 parametrizes products of elliptic curves with the product
polarization, so a point P ∈ (G1 ∩ CM(K)) (F`) corresponds to an isomorphism class of a
pair of elliptic curves E1, E2, and an embedding ι : OK ↪→ End(E1 × E2). In addition, the
embedding must be such that the action of complex conjugation agrees with the Rosati
involution induced by the product polarization, i.e.,

if ι(α) =
(
g1,1 g1,2
g2,1 g2,2

)
where gi,j ∈ Hom(Ej , Ei), then ι(α) =

(
g∨1,1 g∨2,1
g∨1,2 g∨2,2

)
,

where g∨ denotes the dual isogeny of g (see [10, p. 462]).
Two tuples (E1, E2, ι : OK ↪→ End(E1 × E2)) and (E′1, E′2, ι′ : OK ↪→ End(E′1 × E′2)) are
isomorphic if there exists an isomorphism ψ : E1 × E2

∼→ E′1 × E′2 such that

ψ ◦ ι(α) = ι′(α) ◦ ψ ∀α ∈ OK , and ψ ◦ g∨ ◦ ψ−1 =
(
ψ ◦ g ◦ ψ−1

)∨
∀g ∈ End(E1 × E2).

We study the isomorphism classes by first fixing elliptic curves in each isomorphism class and
then ranging over isomorphism classes of embeddings. When Ei = E′i, then the tuples are
isomorphic if there exists a ψ ∈ Aut(E1 × E2) such that ψ ◦ ι(α) = ι′(α) ◦ ψ for all α ∈ OK
and ψψ∨ = 1; this last condition is equivalent to the condition on the Rosati involution that
is described at the beginning of the paragraph.
Given two elliptic curves E1, E2 over F`, the deformation space of E1, E2 isW[[t1, t2]], whereW
denotes the Witt ring of F`. Let E1,E2 be the universal curves over this space and let IE1,E2,ι ⊂
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10 Denominators of Igusa class polynomials

W[[t1, t2]] denote the minimal ideal such that there exists an ι̃ : OK ↪→ EndW[[t1,t2]]/IE1,E2,ι

that agrees with ι after reducing modulo the maximal ideal of W[[t1, t2]]. Then we have

length ÕG1∩CM(K),P = length W[[t1, t2]]/IE1,E2,ι,

for any point P ↔ (E1, E2, ι) ∈ (G1 ∩ CM(K)) (F`).
Thus, (2.1) can be rewritten as

(2.2) (CM(K).G1)`
log ` =

∑
iso. classes E1,E2

ι : OK ↪→End(E1×E2)
as above

1
# Aut(E1, E2, ι)

· length W[[t1, t2]]
IE1,E2,ι

,

where Aut(E1, E2, ι) := {σ ∈ Aut(E1 × E2) : σι(α)σ∨ = ι(α) ∀α ∈ OK and σσ∨ = 1}. The
condition that σσ∨ = 1 ensures that σ preserves the product polarization.
Since OK = OF [η], giving an embedding ι ↪→ End(E1 × E2) is equivalent to giving two
elements Λ1,Λ2 ∈ End(E1 × E2) such that

Λ1Λ2 = Λ2Λ1,

Λ2 + Λ∨2 = α0 + α1Λ1,

Λ2Λ∨2 = β0 + β1Λ1, and

Λ2
1 −DΛ1 + D2 −D

4 = 0.

The equivalence is obtained by letting Λ1 = ι
(
D+
√
D

2

)
,Λ2 = ι(η). This equivalence is a

more precise reformulation of the Embedding Problem than the version used in [10, p. 463],
where the elements from OK being embedded were of a simpler form and were not necessarily
generators of OK . By representing elements in End(E1 × E2) as 2 × 2 matrices (gi,j) where
gi,j ∈ End(Ej , Ei) and expanding the above relations, we see that

Λ1 =
(
a b
b∨ D − a

)
, Λ2 =

(
x y

α1b
∨ − y∨ z

)
,

where a ∈ Z, b, y ∈ Hom(E2, E1), x ∈ End(E1), and z ∈ End(E2) satisfy

δ := N(b) = D − (D − 2a)2

4 ,(2.3)

Tr(x) = α0 + aα1,(2.4)
Tr(z) = α0 + (D − a)α1,(2.5)

Tr(yb∨) = Tr(y∨b) = N(b)α1,(2.6)
N(x) + N(y) = β0 + aβ1,(2.7)
N(z) + N(y) = β0 + (D − a)β1,(2.8)

β1b = α1xb− xy + yz∨,(2.9)
bz = xb+ (D − 2a)y.(2.10)

After possibly conjugating Λ1,Λ2 by
(

0 1
1 0

)
and interchanging E1, E2, we may assume that

2a ≤ D. Then a is uniquely determined by δ. Thus for a fixed δ, the embedding ι is determined
by a tuple (x, y, b, z) satisfying the above relations.
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K. Lauter and B. Viray 11

Motivated by the definition of isomorphism of triples (E1, E2, ι) given above, we say that
such two tuples (x, y, b, z), (x′, y′, b′, z′) are isomorphic if

xφ1 = φ1x
′, bφ2 = φ1b

′, yφ2 = φ1y
′, zφ2 = φ2z

′, for some φi ∈ Aut(Ei).
In particular,

Aut(x, y, b, z) := {φi ∈ Aut(Ei) : xφ1 = φ1x, bφ2 = φ1b, yφ2 = φ1y, zφ2 = φ2z} .

If 4δ 6= D, then (x, y, b, z) is isomorphic to (x′, y′, b′, z′) if and only if the corresponding
embeddings are isomorphic and # Aut(x, y, b, z) = # Aut(E1, E2, ι).
If 4δ = D, then the situation is more complicated. If E1 6= E2, then (x, y, b, z) and (z, y∨, b∨, x)
correspond to the same embedding, although we do not say that they are isomorphic as tuples.
If E1 = E2, then for each tuple (x, y, b, z) we have two possibilities. Either there exists an
(x′, y′, b′, z′) that is not isomorphic to (x, y, b, z) but corresponds to an isomorphic embedding,
or 2# Aut(x, y, b, z) = # Aut(E1, E2, ι), where ι is the corresponding embedding. In either
case, we see that the number of isomorphism classes of tuples (x, y, b, z) weighted by 1

# Aut is
double the number of embeddings also weighted by 1

# Aut . This discussion shows that (2.2)
can be rewritten in terms of tuples (x, y, b, z), namely

(2.11) (CM(K).G1)`
log ` =

∑
δ∈Z>0
δ=D−�

4

Cδ
∑
E1

∑
E2

∑
x,y,b,z

up to iso. as above

1
# Aut(x, y, b, z) length

W[[t1, t2]]
Ix,y,b,z

,

where Cδ = 1
2 if 4δ = D and 1 otherwise, and where Ix,y,b,z ⊆W[[t1, t2]] is the minimal ideal

such that there exists
x̃ ∈ EndW[[t1,t2]]/Ix,y,b,z(E1), ỹ, b̃ ∈ HomW[[t1,t2]]/Ix,y,b,z(E2,E1), z̃ ∈ EndW[[t1,t2]]/Ix,y,b,z(E2)

that reduce to x, y, b, z respectively, modulo the maximal ideal of W[[t1, t2]].
Fix δ, E1, E2, and assume that there exists a tuple (x, y, b, z) as above. Then, there exists
x, u := yb∨ ∈ End(E1) satisfying

Tr(x) = α0 + aα1,(2.12)
Tr(u) = δα1,(2.13)

δN(x) + N(u) = δ (β0 + β1a) ,(2.14)
(D − 2a) N (u) + δTr

(
xu∨

)
= β1δ

2,(2.15)

where a ∈ Z is such that a ≤ D/2 and (D − 2a)2 = D − 4δ. This is easy to check using the
relations (2.4)–(2.10) on (x, y, b, z).
We will complete the proof of the theorem in two steps in sections 5 and 6, respectively,

1. Calculate the number of (E1, x, u) satisfying (2.12)–(2.15)(§5), and

2. For a fixed (E1, x, u) determine the number of (E2, y, b, z) such that u = yb∨ and
(x, y, b, z), satisfy (2.4)–(2.10) (§6).

As it is not necessarily obvious how the arguments in sections 2 through 6 come together, we
summarize the argument in §7.
In the next two sections we present the necessary background to continue with these steps of
the proof. These notation and statements are taken from [21] and the proofs are omitted.
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12 Denominators of Igusa class polynomials

3. Background: quadratic imaginary orders

This section is taken from Section 5 of [21].
Let O be an order in a quadratic imaginary field, and let d be the discriminant of O. Let
a be an ideal in O. If O is not maximal, then we can not necessarily write a uniquely as a
product of primes. However, we can always write a uniquely as a product of primary ideals
where no two ideals in the factorization are supported at the same prime. Precisely, for any
prime p, define ap := O ∩ aOp. Then a =

⋂
p ap, and since for any two distinct primes p, q, ap

and aq are co-maximal, we have that

a =
∏
p

ap.

(See [24, Prop 12.3] for more details.) If there is a unique prime p ⊆ O lying over p, then we
will often write ap instead of ap.
We will often be concerned with the special case where a = D :=

√
dO. If p|d is odd, then for

a, b ∈ O, the difference a− b ∈ Dp if and only if Tr(a) ≡ Tr(b) (mod pvp(d)). If p = 2|d, then
a−b ∈ D2 if and only if a0 ≡ b0 (mod 2v2(d)−1) and a1 ≡ b1 (mod 2), where a = a0 +a1

d+
√
d

2
and b = b0 + b1

d+
√
d

2 .

3.1. The Picard group. —The Picard group of O, denoted Pic(O), is the group of invert-
ible fractional ideals modulo fractional principal ideals. It is isomorphic to the form class group
C(d), the group of classes of primitive positive definite forms of discriminant d [4, §7]. We
will use this isomorphism to determine whether there exists an ideal in 2 Pic(O) of a certain
norm. For more information on genus theory, i.e., the study of Pic(O)/2 Pic(O), see [4].
Let p1, . . . , pj be the distinct odd primes dividing d. Define

k =


j if d ≡ 1 (mod 4) or d ≡ 4 (mod 16),
j + 1 if d ≡ 8, 12 (mod 16) or d ≡ 16 (mod 32),
j + 2 if d ≡ 0 (mod 32).

For i = 1, . . . , j, we define χpi(a) :=
(
a
pi

)
for a coprime to pi. For a odd, we also define

χ−4(a) := (−1)
a−1

2 , χ8(a) := (−1)
a2−1

8 . Then we define Ψ: (Z/dZ)× → {±1}k as follows.

Ψ =



(χp1 , . . . , χpj ) if d ≡ 1 (mod 4) or d ≡ 4 (mod 16),
(χp1 , . . . , χpj , χ−4) if d ≡ 12 (mod 16) or d ≡ 16 (mod 32),
(χp1 , . . . , χpj , χ8) if d ≡ 8 (mod 32),
(χp1 , . . . , χpj , χ−4χ8) if d ≡ 24 (mod 32),
(χp1 , . . . , χpj , χ−4, χ8) if d ≡ 0 (mod 32).

For a prime p that divides d, but does not divide the conductor f of O, we define

Ψp =


χpi if p = pi,

χ−4 if p = 2 and d ≡ 12 (mod 16),
χ8 if p = 2 and d ≡ 8 (mod 32),
χ−4 · χ8 if p = 2 and d ≡ 24 (mod 32).
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Let Ψ̂p be the projection of Ψ on the components that are complementary to the one that
appears in Ψp.
If p - f , then for n relatively prime to d one may check that Ψp = (d, n)p where (d, n)p
denotes the Hilbert symbol at p. We may use this equality to extend Ψ to (Z/fZ)×, by
defining Ψp(n) := (d, n)p.
This map Ψ can be used to test when an ideal a is a square in the Picard group.

Theorem 3.1.1 ([4],§§3&7). — For any positive integer m prime to the conductor f of
Od, there exists an invertible ideal a such that N(a) = m and [a] ∈ 2 Pic(Od) if and only if
m ∈ ker Ψ.

From this theorem, we can easily obtain the following corollary.

Corollary 3.1.2. — Let ` be a prime that divides d, but does not divide the conductor f .
Let a be an invertible integral ideal that is prime to the conductor. Then [a] ∈ 2 Pic(O) if and
only if N(a) ∈ ker Ψ̂`.

Unfortunately, the map Ψ cannot be extended to all integers while still retaining the properties
described in Theorem 3.1.1 and Corollary 3.1.2. This is because it is possible to have two
invertible ideals a, b ⊆ Od with the same norm, such that ab−1 6∈ 2 Pic(Od). This can only
occur when the ideals are not prime to f .
Let a be an integral invertible ideal that is supported at a single prime p that divides the
conductor, i.e. aq = 〈1〉 for all q - p. Let α ∈ O be a generator for aOp such that gcd(N(α), f)
is supported only at p. Then a ∼ ã in Pic(O), where

ã := Op ∩
⋂
q-p

(αOq) ,

and N(ã) is coprime to the conductor. Thus, the genus of a is equal to Ψ(N(ã)). Since ev-
ery ideal can be factored uniquely into comaximal primary ideals, this gives a method of
computing the genus class of any ideal.

4. Parametrizing endomorphism rings of supersingular elliptic curves

This section is taken from Section 6 of [21] with proofs omitted.
Let ` be a fixed prime and let O be a quadratic imaginary order of discriminant d such
that ` - f := cond(d). We assume that ` is not split in O. Let W be the ring of integers
in Qunr

` (
√
d), and write π for the uniformizer. By the theory of complex multiplication [19,

§10.3], the isomorphism classes of elliptic curves that have CM by O are in bijection with
Pic(O), and every elliptic curve E with CM by O has a model defined over W. Moreover,
by [25, Cor. 1], we may assume that E has good reduction.
Fix a presentation B`,∞ of the quaternion algebra ramified at ` and∞, and fix an embedding
L := Frac(O) ↪→ B`,∞. The goal of this section is to define, for every [a] ∈ Pic(O), a maximal
order R(a) ⊂ B`,∞ such that

1. R(a) ∩ L = O,

2. R(a), together with the optimal embedding O ↪→ R(a) is isomorphic to the embedding
End(E(a)) ↪→ End(E(a) mod π), where E(a) is the elliptic curve with CM by O that
corresponds to a, and
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14 Denominators of Igusa class polynomials

3. b−1R(a)b = R(ab).

Our construction of these maximal orders R(a) generalizes the work of Gross-Zagier [15] and
Dorman [5], where they defined maximal orders with these properties under the assumption
that −d is prime [15] or d is squarefree [5]. We give the statements and definitions for arbitrary
discriminants d and include the ramified case; for proofs we refer you to [21, §6].
Note that Goren and the first author have given a different generalization of Dorman’s
work [12] to higher dimensions, which works for CM fields K, characterizing superspecial
orders in a quaternion algebra over the totally real field K+ with an optimal embedding of
OK+ . That work also corrects the proofs of [5], but in a slightly different way than we do
here, and does not handle the ramified case or non-maximal orders.
4.0.1. Outline. — In §4.1, we give an explicit presentation of B`,∞ that we will use throughout.
The construction of the maximal orders R(a) depends on whether ` is inert (§4.2) or ramified
(§4.3) in O.

4.1. Representations of quaternion algebra. —Given a fixed embedding ι : L ↪→ B`,∞,
the quaternion algebra B`,∞ can be written uniquely as ι(L)⊕ ι(L)j, where j ∈ B`,∞ is such
that jι(α)j−1 = ι(α), for all α ∈ L. Thus j2 defines a unique element in Q×/N(L×). From
now on, we will represent B`,∞ as a sub-algebra of M2(L) as follows.

(4.1) B`,∞ =
{

[α : β] :=
(
α β
j2β α

)
: α, β ∈ L

}
.

Under this representation, ι : L ↪→ B`,∞, ι(α) = [α, 0].
If ` is unramified in O then we may assume that j2 = −`q, where q is a prime such that
−`q ∈ ker Ψ and q - d. If ` is ramified, then we may assume that j2 = −q where −q ∈ ker Ψ̂`,
−q 6∈ ker Ψ` and q - d. (The functions Ψ, Ψ̂` and Ψ` were defined in Section 3 above.) In both
cases, these conditions imply that q is split in O.

4.2. The inert case. — Let a ⊆ O be an integral invertible ideal such that gcd(f,N(a)) = 1.
Let q be a prime ideal of O lying over q. For any λ ∈ O such that

1. λq−1aa−1 ⊆ O, and

2. N(λ) ≡ −`q (mod d),

we define
R(a, λ) :=

{
[α, β] : α ∈ D−1, β ∈ q−1`n−1D−1aa−1, α− λβ ∈ O

}
.

From this definition, it is clear that if λ′ satisfies (1) and (2) and λ ≡ λ′ (mod D), then
R(a, λ) = R(a, λ′). We claim that, for any a and λ, R(a, λ) is a maximal order.

Remark 4.2.1. — Although Dorman [5] does not include condition (1) in his definition,
it is, in fact, necessary. Without this assumption R(a, λ) is not closed under multiplication,
even if d is squarefree. This was already remarked on in [12].

Remark 4.2.2. — Write λ = λ0+λ1
d+
√
d

2 . If d is odd, then the congruence class of λ mod D
is determined by λ0 mod d. In addition, the condition that N(λ) ≡ −`q (mod d) is equivalent
to the condition that λ2

0 ≡ −`q (mod d). Therefore, if d is odd, then we may think of λ as an
integer, instead of as an element of O. This was the point of view taken in [15, 5].
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Lemma 4.2.3. — R(a, λ) is an order with discriminant `2, and so it is maximal.
Proof. — [21, Section 6] �

Given an ideal a, we will now construct a λ = λa satisfying conditions (1) and (2). Since we
want our orders R(a) := R(a, λa) to satisfy

R(a)b = bR(ab)
the relationship between λa and λab will be quite important. In fact, the relation

R(O)a = aR(a)
shows that R(a) is determined from R(O) and so λa mod D is determined by λO mod D.

4.2.1. Defining λa. — For all regular ramified primes p, fix two elements λ(p), λ̃(p) ∈ O with
norm congruent to −`q mod pv(d) such that λ(p) 6≡ λ̃(p) (mod Dp). For all irregular ramified
primes p, fix λ(p) ∈ O such that N(λ(p)) ≡ −`q (mod pv(d)).
For any prime ideal p of O that is prime to D, let M(p) denote a fixed integer that is
divisible by N(p) and congruent to 1 (mod d). For any product of regular ramified primes
bd :=

∏
p regular

p|D
pep , we write λbd for any element in O such that

λbd mod Dp ≡
{
λ(p) if ep ≡ 0 (mod 2)
λ̃(p) if ep ≡ 1 (mod 2)

for all regular primes p and λb ≡ λ(p) (mod Dp) for all irregular primes. These conditions
imply that λbd is well-defined modulo D.
Let a be an invertible integral ideal O such that gcd(N(a), f) = 1. Then we may factor a
as a′ad, where a′ is prime to the discriminant and ad is supported only on regular ramified
primes. We define λa :=

(∏
p|a′M(p)vp(a′)

)
M(q)λad . Note that it follows from this definition

that λa is well-defined modulo D and, importantly, that λa satisfies λaq−1aa−1 ⊂ O and
N(λa) ≡ −`q mod d.

Lemma 4.2.4. — Let a, b be two invertible ideals in O that are prime to the conductor.
Assume that a and ab are both integral. Then

R(a, λa)b = bR(ab, λab).
Proof. — [21, Section 6] �

4.3. The ramified case. — Let a ⊆ O be an integral invertible ideal such that gcd(f,N(a)) =
1. Let q be a prime ideal of O lying over q. For any λ ∈ O such that

1. λq−1aa−1 ⊆ O, and

2. N(λ) ≡ −q (mod d/`),

we define
R(a, λ) :=

{
[α, β] : α ∈ lD−1, β ∈ q−1lD−1aa−1, α− λβ ∈ O

}
.

From this definition, it is clear that if λ′ satisfies (1) and (2) and λ ≡ λ′ (mod Dl−1), then
R(a, λ) = R(a, λ′). We claim that, for any a and λ, R(a, λ) is a maximal order.

Lemma 4.3.1. — R(a, λ) is an order of discriminant `2, and so it is maximal.
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16 Denominators of Igusa class polynomials

Proof. — This proof is exactly the same as in the inert case after replacing q with q/` ( [21,
Section 6]). �

4.3.1. Defining λa. — For all regular ramified primes p, fix two elements λ(p), λ̃(p) ∈ O with
norm congruent to −q mod pv(d/`) such that λ(p) 6≡ λ̃(p) (mod Dp). If p = ` and ` 6= 2, then
in addition we assume that λ`,0 = −λ`,1. For all irregular ramified primes p, fix λ(p) ∈ O such
that N(λ(p)) ≡ −q (mod pv(d/`)).
For any prime ideal p of O that is coprime to D, let M(p) denote a fixed integer that is
divisible by N(p) and congruent to 1 (mod d). For any product of regular ramified primes
bd :=

∏
p regular

p|D
pep , we write λbd for any element in O such that

λbd mod Dp ≡
{
λ(p) if ep ≡ 0 (mod 2)
λ̃(p) if ep ≡ 1 (mod 2)

for all regular primes p and λb ≡ λ(p) (mod Dp) for all irregular primes. These conditions
imply that λbd is well-defined modulo D.
Let a be an invertible integral ideal O such that (N(a), f) = 1. Then we may factor a as a′ad,
where a′ is coprime to the discriminant and ad is supported only on regular ramified primes.
We define λa :=

(∏
p|a′M(p)vp(a′)

)
M(q)λad . Note that λa is well-defined modulo D and that

λa satisfies λaq−1aa−1 ⊂ O and N(λa) ≡ −q mod d/`.

Remark 4.3.2. — Since λa ≡ λal (mod Dl−1) for any integral invertible ideal a, the cor-
responding orders R(a), R(al) are equal. This is not surprising, since E(a) ∼= E(al) modulo
π.

Lemma 4.3.3. — Let a, b be two invertible ideals in O that are coprime to the conductor.
We assume that a and ab are integral. Then

R(a, λa)b = bR(ab, λab).
Proof. — [21, Section 6] �

4.4. Elliptic curves with complex multiplication. —

Theorem 4.4.1. — Let R be a maximal order of B`,∞ such that R ∩ L = O, where the
intersection takes place using the embedding of B`,∞ ⊂ M2(L) given in (4.1). Then there
is an integral invertible ideal a ⊆ O coprime to the conductor such that R is conjugate to
R(a, λa) by an element of L×.
Proof. — [21, Section 6]

�

Fix an element [τ (0)] of discriminant d, and let E = E(τ0) be an elliptic curve over W with
j(E) = j(τ (0)) and good reduction at π. Then we have an optimal embedding of O ∼= End(E)
into EndW/π(E), a maximal order in B`,∞. Thus, by Theorem 4.4.1, there is an element
[a0] ∈ Pic(O) such that the pair

(End(E mod l), ι : O = End(E) ↪→ End(E mod l))
is conjugate to R(a0) with the diagonal embedding O ↪→ R(a0). Now let σ ∈ Gal(H/L) and
consider the pair

(End(Eσ mod l), ι : O ↪→ End(Eσ mod l)) .
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By class field theory, Gal(H/L) ∼= Pic(O); let a = aσ be an invertible ideal that corresponds
to σ; note that a is unique as an element of Pic(O). We assume that a is integral and coprime
to the conductor. Since Hom(Eσ, E) is isomorphic to a as a left End(E)-module, we have
End(Eσ mod l) = aEnd(E)a−1[2, Chap. XIII]. Thus, by Lemmas 4.2.4 and 4.3.3, the pair
corresponding to Eσ is conjugate to R(a0a).
We define

Rn(a) :=
{

[α, β] : α ∈ D−1, β ∈ q−1`n−1D−1aa−1, α− λaβ ∈ O
}
, if ` - d

Rn(a) :=
{

[α, β] : α ∈ D−1, β ∈ q−1lnD−1aa−1, α− λaβ ∈ O
}
, if `|d

One can easily check that R1(a) = R(a), that
⋂
nRn(a) = O and that

(4.2) Rn(a) =
{
O + `n−1R1(a) if ` - d,
O + ln−1R1(a), if `|d

Then by [13, Prop. 3.3], EndW/πn(Eσ) ∼= Rn(a0a) .

5. Calculating the number of (E, x, u)

Proposition 5.1. — Let E be an elliptic curve over F` and assume that there exists x, u ∈
End(E) satisfying (2.12)–(2.15). Then E must be supersingular and there exists an n ∈ Z
such that

(5.1) δ2D̃ − n2

4D ∈ `Z>0, and n+ cδ(K) ≡ 0 (mod 2D),

where cK(δ) := δ
(
α2

0 + α0α1D + α2
1
D2−D

4 − 4β0 − 2β1D
)
.

Proof. — [22, Prop 3.1] �

Proposition 5.1 shows that the tuples (E, x, u) satisfying (2.12)–(2.15) can be partitioned
by integers n satisfying (5.1). By the proof of Proposition 5.1, fixing such an n implies that
N(u) = nu(n),N(x) = nx(n), and Tr(xu∨) = txu∨(n) where

nu(n) := −δ(n+ cKδ)
2D , nx(n) := β0 + aβ1 −

nu(n)
δ

, & txu∨(n) := β1δ − (D − 2a)nu(n)
δ

.

The trace of x and u are already determined by δ, so we define

du(n) := (α1δ)2 − 4nu(n) and dx(n) := (α0 + aα1)2 − 4nx(n).

For the rest of the section, we assume that n is a fixed integer satisfying (5.1). We define

E(n) :=
{

[(E, x, u)] : Tr(x) = α0 + aα1,Tr(u) = α1δ,
N(u) = nu(n),N(x) = nx(n),Tr(xu∨) = txu∨(n)

}
,

where [(E, x, u)] denotes the isomorphism class of (E, x, u).
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18 Denominators of Igusa class polynomials

5.1. Counting pairs of endomorphisms for a fixed n. — Fix a prime `.
Let tx, tu, txu∨ , nx, nu be integers such that either dx := t2x − 4nx or du := t2u − 4nu is a
quadratic discriminant fundamental at ` and such that dxdu − (txtu − 2txu∨)2 is nonzero. In
the rest of this section we will count triples (E, x, u) where E is a supersingular elliptic curve
over F` and x, u ∈ End(E) satisfy Tr(x) = tx,Tr(u) = tu,Tr(xu∨) = txu∨ ,N(x) = nx, and
N(u) = nu.
The formula for the number of such triples and the proof become significantly more technical
if txtu−2txu∨ has a common factor prime to ` with either the conductor of dx or the conductor
of du. For the sake of exposition, we will first give the formula and proof in a less technical
case (§5.1.1), and then we will consider the general case (§5.1.2).
5.1.1. A simpler case. — Let tx, tu, txu∨ , nx, nu, dx, du be as above. We also assume that

GCD(txtx − 2txu∨ , cond(du))

is a power of `, where 1 = `0 is considered to be a power of `. Let v := v`(cond(du)).

Theorem 5.1.1. — The number of triples (E, x, u) where E/F` is a supersingular elliptic
curve, and x, u are endomorphisms satisfying

deg(x) = nx,deg(u) = nu,Tr(x) = tx,Tr(u) = tu,Tr(xu∨) = txu∨

is equal to

Ad

(
dxdu − (txtu − 2txu∨)2

4`1+2v

)
ρd,`

(
dxdu − (txtu − 2txu∨)2

4`1+2v

)
,

where d = du/`
2v, Ad(N) := # {b ⊂ Od : N(b) = N, b invertible}, and

ρd,`(N) :=
{

0 if Ψd(N) 6= Ψd(−`)
2#{p:p|(N,d),p 6=`} otherwise.

Proof. — Since E is a supersingular elliptic curve, End(E) is a maximal order in the quater-
nion algebra B`,∞. Since End(E) contains u, Q[u]∩End(E) is an order in Q(

√
du) of discrim-

inant d = du/f
2 for some integer f . In addition, d must be fundamental at ` [29, Chap. 2,

Lemma 1.5], so `v must divide f .
Fix such a d. Then, by Theorem 4.4.1, End(E) ∼= R(a), u 7→

[
tu+f

√
d

2 , 0
]
, where a is an

invertible ideal in Od. By [13], if ` is inert in Od, then a is well-defined as an element in
Pic(Od), and if ` is ramified then there are two choices for a ∈ Pic(Od).
Now we have to count the number of elements [α, β] in R(a) such that Tr([α, β]) = tx,
N([α, β]) = nx, and Tr([α, β] · [ tu+

√
du

2 , 0]) = txu∨ ; such [α, β] will correspond to the endomor-
phism x. The trace conditions imply that α = (txtu−2txu∨ )+txf

√
d

2f
√
d

. Since α must be contained
in D−1, we must have txtu−2txu∨

f ∈ Z. Using our assumption on the GCD of d and txtu−2txu∨ ,
we must have that f = `v.
So we have reduced to counting pairs (β, [a]) where cβ :=

[
(txtu−2txu∨ )+txf

√
d

2f
√
d

, β

]
∈ R(a),

N(cβ) = nx and a ⊆ Od, an invertible ideal, under the assumption that

N := dxdu − (txtu − 2txu∨)2

4`2v+1 = dxdu − (txtu − 2txu∨)2

4f2`
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is prime to the conductor of d. Since each pair (β, [a]) will correspond to a distinct (E, x, u)
if ` is inert, and, if ` is ramified, then exactly two pairs (β, [a]) will correspond to the same
(E, x, u). This combined with the following proposition shows that the number of triples
(E, x, u) is A(N)ρd,`(N) as desired. �

Proposition 5.2. — Let tx, tu, txu∨ , nx, nu ∈ Z be as defined at the beginning of the section.
Let v = v`(cond(t2u − 4nu)), set f = `v, d = du/f

2 and set N := dxdu−(txtu−2txu∨ )2

4f2` . Assume
that N is prime to the conductor of d. Then there is an e · ρd,`(N)-to-1 map

{(β, [a]) : cβ ∈ R(a),N(cβ) = nx, a ⊆ Od invertible} → {b ⊆ Od : N(b) = N, b invertible} ,
(β, a) 7→ βqDaa−1 if ` is inert in Od,
(β, a) 7→ βl−1qDaa−1 if ` is ramified in Od

where cβ :=
[

(txtu−2txu∨ )+txf
√
d

2f
√
d

, β

]
, and q is as defined in §4, and e is the ramification index

of ` in Od.

Proof. — First we show that the map is well-defined if ` is inert in Od. By the definition of
R(a), β ∈ q−1D−1aa−1 so βqDaa−1 is integral. Since N(cβ) = nx, we have

N(βqDaa−1) = −N(β)qd = −d
`

(
nx −N

(
(txtu − 2txu∨) + txf

√
d

2f
√
d

))

= −d
`

(
nx −

(txtu − 2txu∨)2 − t2xf2d

−4f2d

)

= 1
4`f2

(
f2d(t2x − 4nx)− (txtu − 2txu∨)2

)
= N.

Since a and q are invertible and D is principal, βqDaa−1 is invertible. A similar computation
shows that the map is well-defined in the ramified case.
Assume that N is coprime to the conductor of d. We first consider the case where Ψd,p(N) 6=
Ψd,p(−`) for some p 6= `. First we assume that ` is inert in Od. Since q was chosen such that
Ψd,p(−`q) = 1 for all p 6= `, Ψd,p(N) 6= Ψd,p(q) for some prime p. Thus, by Theorem 3.1.1,
there is no ideal b ⊆ Od such that [bq−1] ∈ 2 Pic(Od) and N(b) = N so the domain must be
empty. Now assume that ` is ramified. In this case q was chosen such that Ψd,p(−q) = 1 for all
p 6= ` so there is some p 6= ` such that Ψd,p(N) 6= Ψd,p(`q). Therefore, again by Theorem 3.1.1,
there is no ideal b ⊆ Od such that [blq−1] ∈ 2 Pic(Od) and N(b) = N so again the domain
must be empty.
Now assume that Ψd,p(N) = Ψd,p(−`) for all p 6= `. Then by our assumptions on q, Ψ̂`(N) =
Ψ̂`(q) if ` is inert, or such that Ψ̂`(N) = Ψ̂`(`q) if ` is ramified. Fix an integral invertible
ideal b in the codomain. By [21, Cor. 5.2], if ` is inert, b = γaqaa

−1 for some invertible
ideal a and γa ∈ Q(

√
d)× (γa is uniquely determined by a). Similarly, if ` is ramified then

b = γal
−1qaa−1 for some invertible ideal a and γa ∈ Q(

√
d)× (again γa is uniquely determined

by a). Note that for every c ∈ Pic(O)[2], b can also be written as γacqac(ac)−1 if ` is inert,
and as γacl−1qac(ac)−1 if ` is ramified, where γac = γaεc2/N(c) and c2 =

(
εc2
)
.

Let βac := γac/
√
d so that b = βacqDac(ac)−1 in the inert case, and b = βacl

−1qDac(ac)−1 in
the ramified case. One can easily check that N(cβac) = nx and that βac ∈ q−1D−1ac(ac)−1
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in the inert case, and βac ∈ q−1lD−1ac(ac)−1 in the ramified case. Since N is an integer,
txtu − 2txu∨ ≡ 0 (mod f), so (txtu−2txu∨ )+txf

√
d

2f
√
d

∈ D−1. In the case ` is ramified, one can

show that (txtu−2txu∨ )+txf
√
d

2f
√
d

∈ lD−1. Therefore (βac, ac) is in the pre-image of b if and only if

(txtu − 2txu∨) + txf
√
d

2f
√
d

− λacβac ∈ O,

or equivalently,

(5.2) txtu − 2txu∨
2f + tx

2
√
d− λacγac ∈ D.

Fix c1, . . . , c2µ−1 representatives for Pic(O)[2], that are prime to the discriminant. To calculate
the size of the pre-image of b, we need to determine for which ci (5.2) holds. Since ci is prime
to the discriminant, we may rewrite λaciγaci = (M(ci)εc2

i
/N(ci))λaγa, where M(ci) is as in

subsection 4.3.1. Applying [21, Lemmas 7.5 and 7.6] with a := txtu−2txu∨
2f + tx

2
√
d and b := λaγa

completes the proof. �

5.1.2. The general case. —Now we would like to consider the case where N and cond(du)
share common factors different from `.

Theorem 5.1.2. — The number of triples (E, x, u) where E/F` is a supersingular elliptic
curve, and x, u are endomorphisms satisfying

deg(x) = nx,deg(u) = nu,Tr(x) = tx,Tr(u) = tu,Tr(xu∨) = txu∨

is equal to ∑
f∈Z

d:=du/f2∈Z
fundamental at `

Ãd

(
dxdu − (txtu − 2txu∨)2

4f2`

)
ρ̃d,`

(
txtu − 2txu∨

2f , tx

)
,

where

r :=
{
q if ` inert in Od,
l−1q otherwise

ρ̃
(2)
d (s, t) :=


2 if d ≡ 12 mod 16, s ≡ t mod 2

or if 8 | d, v2(s) ≥ v2(d)− 2
1 otherwise

 ·
{

2 if 32 | d, 4 | (s− 2t)
1 otherwise

}

ρ̃d,`(s, t) :=
{
ρ̃

(2)
d (s, t) · 2#{p:vp(s)≥vp(d),p 6=2,`} for ` 6= 2

2#{p:vp(s)≥vp(d),p 6=2,`} for ` = 2,
and

Ãd(N) := #{b ⊂ Od : N(b) = N, b invertible , b ∼ r mod 2 Pic(Od)
∃a ⊂ Od prime to d, ε ∈ Od
such that 〈γ〉 = br−1aa−1,N(ε) ≡ 1 (mod d), and

εM(q)M(a)γ ≡ txtu − 2txu∨
2f + tx

2
√
d (mod

√
d)}}.

Publications mathématiques de Besançon – 2014/2



K. Lauter and B. Viray 21

Moreover, there is an algorithm to compute Ãd(N) and Ãd(N) is always bounded above
by Ad(N). In addition, if N and the conductor of d, cond(d), share no common factors,
Ãd(N)ρ̃d,`(N) = Ad(N)ρd,`(N).

Proof. — We will follow the proof of Theorem 5.1.1. Until the invocation of Proposition 5.2,
the only place the GCD assumption is used is in concluding that f = `v. In the general case,
we are only able to conclude that `v|f |GCD(txtu − 2txu∨ , cond(du)). So to count the tuples
(E, x, u), we will sum over f as above, and try to follow the proof Proposition 5.2.
It is still a necessary condition that Ψd,p(N) = Ψd,p(−`) for every prime p|d, p - (cond(d), N)
(Ψd,p(N) is undefined if p|(cond(d), N)). However, as mentioned in §3, this is no longer
sufficient. Thus instead of considering all ideals of norm N , as we do in the case where N is
prime to the conductor, we must only consider ideals of norm N in a fixed genus.
The rest of the proof can be applied in this more general case, until we cite [21, Lemma 7.5
and 7.6]. Lemma 7.6 of [21] no longer guarantees the existence of an ideal c such that (5.2)
holds. However, once the existence of such an ideal c is known, Lemmas 7.5 and 7.6 in [21]
still give the exact number of ideal classes c for which (5.2) holds. Thus the proof of the
formula is complete.
The proof of Proposition 5.2 gives an algorithm to compute Ãd(N), and it is clear from
the definition that Ãd(N) ≤ Ad(N). The statement about equality follows from the above
discussion. �

5.2. Multiplicity of pairs of endomorphisms. —

Proposition 5.3. — Let E be a supersingular elliptic curve over F`, and let x, u ∈ End(E)
be elements such that at least one of Disc(x),Disc(u) is fundamental at ` and that the two
orders Q(x) ∩ End(E), Q(u) ∩ End(E) have different discriminants. Then

length (WF` [[t]]/Ix,u) = µDisc(x),Disc(u)(N) :=
{
v` (N) + 1 if ` | d
1
2 (v` (N) + 2) otherwise,

where N := 1
4`
(
Disc(x) Disc(u)− (Tr(x) Tr(u)− 2 Tr(xu∨))2), and d ∈ {Disc(x),Disc(u)} is

chosen so that it is a discriminant fundamental at `.

Proof. — [22, Theorem 3.3] �

In fact, it is always the case that if E 6= ∅ then at least one of du(n), dx(n) is the discriminant
of a quadratic imaginary order that is maximal at `.

Lemma 5.2.1. — Let E be a supersingular elliptic curve over F` and let x, u ∈ End(E) be
endomorphisms satisfying (2.12)–(2.15). Then the indices

[Q(x) ∩ End(E) : Z[x]] and [Q(u) ∩ End(E) : Z[u]]

are relatively prime. In particular, at least one of Z[x], Z[u] is a quadratic imaginary order
maximal at `.

Proof. — [22, Lemma 3.4] �

Publications mathématiques de Besançon – 2014/2



22 Denominators of Igusa class polynomials

5.3. Automorphisms of triples (E, x, u). — Fix a supersingular elliptic curve E, and two
endomorphisms x, u such that the Z-algebra generated by x, u has rank 4. This is equivalent
to the assumption that dxdu is not a square. We define

Aut((E, x, u)) = {φ ∈ Aut(E) : φx = xφ, φu = uφ} .
Since x, u generate a rank 4 module, if φ commutes with x, u, then φ is in the center of
End(E)⊗ZQ. Since E is supersingular, End(E) is a maximal order in a quaternion algebra, so
the center of End(E)⊗ZQ is exactly Q. Therefore, for any (E, x, u) as above, Aut((E, x, u)) =
{±1} .

5.4. Summary. — Fix an odd prime `.
To count solutions x, u, to the embedding problem for a fixed δ, we will range over the
integers n which arise in Equation 5.1. Then for a fixed δ and n, the trace and norm of x
and u are expressed as above directly in terms of δ, n, and the generators for the quartic CM
field K.
Let tx, tu, txu∨ , nx, nu ∈ Z be such that dx := t2x − 4nx and du := t2u − 4nu are quadratic
imaginary discriminants, and at least one of dx, du is fundamental at `. Let f ∈ Z be such
that d := du/f

2 is still a quadratic imaginary discriminant.

Definition 5.4.1. — We define the quantity M(δ, n, f) as a weighted ideal count of certain
invertible ideals of norm N in the order of discriminant d, weighted by the multiplicity and
a factor which determines the genus class:

M(δ, n, f) := 1
2 Ãd(N)ρ̃d,`(s, tx)µdu,dx(Nf2)

where N = 1
4f2`

(
dxdu − (txtu − 2txu∨)2), and s = 1

f (txtu − 2txu∨).

Theorem 5.4.2. — Define
E = E(tx, tu, txu∨ , nx, nu, d)

:=

(E, x, u) :
E/F` supersingular elliptic curve ;x, u ∈ EndE such that
Tr(x) = tx,Tr(u) = tu,Tr(xu∨) = txu∨ ,N(x) = nx,N(u) = nu,
and such that the order Q(u) ∩ End(E) has discriminant d

 .
Then ∑

(E,x,u)∈E

1
# Aut(E, x, u) · length

W[[t]]
Ix,u

= M(δ, n, f).

Proof. — This is just a restated summary of the results in this section. �

6. Determining the pre-image of (E, x, u)

This section is taken from [22, Section 6] with proofs omitted.
Fix an (E, x, u) satisfying (2.12)–(2.15). Assume that there exists an elliptic curve E′, b, y ∈
Hom(E′, E), and z ∈ End(E′) such that u = yb∨, bz = xb + (D − 2a)y. Then there is a left
integral ideal I := Hom(E′, E) ◦ b∨ of R := End(E) which has the following properties:

1. N(I) = δ,

2. δ, u ∈ I, and
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3. w := x+ (D − 2a)uδ ∈ R(I), where R(I) denotes the right order of I.

In addition, Deuring’s correspondence between isogenies and ideals shows that a left ideal
satisfying the above three properties uniquely determines E′, b, y ∈ Hom(E′, E), and z ∈
End(E′), up to isomorphisms of E and E′.

6.1. Formula for counting ideals. —Using Deuring’s correspondence, we have:

Proposition 6.1. — For a fixed triple (E, x, u) satisfying (2.12)–(2.15),
#
{
(E′, y, b, z) : u = yb∨, (x, y, b, z) satisfying (2.4)− (2.10)

}
= #

{
I := Hom(E′, E) ◦ b∨ satisfying (1), (2), (3)

}
.

The following Theorem gives a formula for the number of left ideals satisfying properties (1),
(2), and (3).

Theorem 6.1.1. — Let E be a supersingular elliptic curve and assume there exists x, u ∈
End(E) satisfying (2.12)–(2.15). Let f ∈ Z>0 be such that Q(u) ∩ End(E) is an order of
discriminant d := Disc(u)

f2 . Then

I(δ, n, f) := #
{
(E′, y, b, z) : u = yb∨, (x, y, b, z) satisfying (2.4)− (2.10)

}

=
∏

p|δ,p6=`


vp(δ)∑
j=0

j≡vp(δ) mod 2

I
(p)
j−rp(tw, nw)

 ,
where

tw = α0 + (D − a)α1

nw = β0 + (D − a)β1 + (n+ cK(δ))
2D

rp = max
(
vp(δ)−

⌊1
2vp

(
GCD(t2w, nw, f2)

)⌋
, 0
)

IC(a1, a0) = I
(p)
C (a1, a0) =

{
#{t̃ mod pC : t̃2 − a1t̃+ a0 ≡ 0 (mod pC)} if C ≥ 0,
0 if C < 0.

7. Concluding the proof of Main Theorem

Now we resume our proof of Theorem 2.0.1. Recall that we had shown that
(CM(K).G1)`

log ` =
∑
δ∈Z>0
δ=D−�

4

Cδ
∑
E1

∑
E2

∑
x,y,b,z

up to iso.
as above

1
# Aut(x, y, b, z) length

W[[t1, t2]]
Ix,y,b,z

.

The arguments in [22, Lemma 3.10] show that # Aut(x, y, b, z) = 2 and [22, Proposition 3.11]
shows that the length of W[[t1,t2]]

Ix,y,b,z
is bounded above by 2

(
length W[[t1]]

Ix,u

)
, and if ` - δ, then

length W[[t1, t2]]
Ix,y,b,z

= length W[[t1]]
Ix,u

.
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Thus it follows that the intersection number can be rewritten as
(CM(K).G1)`

log ` =
∑
δ∈Z>0
δ=D−�

4

Cδ
∑
E1

∑
E2

∑
x,y,b,z

up to iso.
as above

1
# Aut(x, yb∨) · length

W[[t1]]
Ix,yb∨

,

as long as ` - δ for any δ, and that

(CM(K).G1)`
log ` ≤

∑
δ∈Z>0
δ=D−�

4

Cδ
∑
E1

∑
E2

∑
x,y,b,z

up to iso.
as above

1
# Aut(x, yb∨) · 2length

W[[t1]]
Ix,yb∨

,

for any δ. Using the results from §§5,6 we will rearrange the terms as follows

I` :=
∑
δ∈Z>0
δ=D−�

4

Cδ
∑
E1

∑
E2

∑
x,y,b,z

up to iso.
as above

1
# Aut(x, yb∨) · length

W[[t1]]
Ix,yb∨

=
∑
δ∈Z>0
δ=D−�

4

Cδ
∑

(E1,x,u)
up to iso.
as above

1
# Aut(x, u) length

W[[t1]]
Ix,u

·#
{
(E′, y, b, z) as above : u = yb∨

}

=
∑
δ∈Z>0
δ=D−�

4

Cδ
∑

n∈Z s.t.
δ2D̃−n2

4D ∈`Z>0
−n≡cK(δ) (mod 2D)

ε(n)
∑

f∈Z>0
δ2D̃−n2

4Df2 ∈`Z>0

∑
(E1,x,u)

Disc(u)=du(n)
Q(u)∩End(E)=Odu(n)/f2

1
# Aut(x, u) · length

W[[t1]]
Ix,u

·#
{
(E′, y, b, z) as above : u = yb∨

}
Recall from §6 that

#
{
(E′, y, b, z) as above : u = yb∨

}
=

∏
p|δ,p6=`


vp(δ)∑
j=0

j≡vp(δ) mod 2

I
(p)
j−rp(Tr(w),N(w))

 .
By the definition of w and Proposition 5.1, we see that all of the quantities on the right-hand
side can be defined in terms of δ, n and f . Thus I` can be rewritten as∑

δ∈Z>0
δ=D−�

4

Cδ
∑

n∈Z s.t.
δ2D̃−n2

4D ∈`Z>0
−n≡cK(δ) (mod 2D)

ε(n)
∑

f∈Z>0
δ2D̃−n2

4Df2 ∈`Z>0

I(δ, n, f)·


∑

(E1,x,u) Disc(u)=du(n)
Q(u)∩End(E)=Odu(n)/f2

1
# Aut(x, u) · length

W[[t1]]
Ix,u



Publications mathématiques de Besançon – 2014/2



K. Lauter and B. Viray 25

By Theorem 5.4.2, this is equal to∑
δ∈Z>0
δ=D−�

4

Cδ
∑

n∈Z s.t.
δ2D̃−n2

4D ∈`Z>0
−n≡cK(δ) (mod 2D)

ε(n)
∑

f∈Z>0
δ2D̃−n2

4Df2 ∈`Z>0

I(δ, n, f)M(δ, n, f),

which completes the proof. �

8. Relationship to Igusa class polynomials

8.1. Igusa invariants and Igusa class polynomials. —One of the immediate appli-
cations of the arithmetic intersection formula we have proved is to improve algorithms for
computing Igusa class polynomials for generating genus 2 curves for use in cryptography.
Roots of Igusa class polynomials are Igusa invariants of genus 2 curves whose Jacobians have
CM by a primitive quartic CM field K. Igusa class polynomials can be hard to compute,
mostly because provably recovering the rational coefficients from approximations requires a
bound on the denominators. Recognizing algebraic numbers, either in Q or in a number field,
is harder than recognizing algebraic integers. Our formula can be used to clear denominators
in complex analytic approximations to the Igusa class polynomials, reducing the problem to
recognizing integer coefficients. Analogous techniques apply to improving the CRT approach
to computing class polynomials, where a multiple of the denominator is needed [7], and to
the p-adic approach [9].
Igusa invariants can be defined in terms of modular functions on the Siegel moduli space:

i1 = 2 · 35χ
5
12
χ6

10
, i2 = 2−3 · 33E4χ

3
12

χ4
10

, i3 = 2−5 · 3
(
E6χ

2
12

χ3
10

+ 22 · 3E4χ
3
12

χ4
10

)
,

where χ10 and χ12 are Siegel modular cusp forms of weights 10 and 12 which can be expressed
in terms of the Siegel-Eisenstein series Ew for w = 4, 6, 10, 12 (see [17],[18]).
Igusa class polynomials are the genus 2 analogue of Hilbert class polynomials, defined as
follows:

(8.1) H`(X) :=
∏
τ

(X − i`(τ)), ` = 1, 2, 3,

where the product is taken over all points τ on the Siegel moduli space such that the associated
principally polarized abelian variety has CM by OK . Igusa class polynomials have rational
coefficients [26, Satz 5.8] (as opposed to integral coefficients as in the case of Hilbert class
polynomials).
The denominators of Igusa class polynomials are related to arithmetic intersection numbers
on the Siegel moduli space of principally polarized abelian surfaces. It is a classical fact that
the zero locus of χ10 on the coarse moduli space of abelian surfaces consists of exactly those
abelian surfaces that decompose as a product of elliptic curves with the product polarization.
The arithmetic analogue of this statement was proved in [10, Cor 5.1.2], that if a prime p
divides the denominator of (f/χk10)(τ), for τ a CM point corresponding to a smooth curve
C and f a Siegel modular form of weight 10k with integral Fourier coefficients with GCD
1, then C has bad reduction modulo p. Computing the order of zeros of χ10 is equivalent to
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computing the arithmetic intersection number, div(χ10).CM(K), of the divisor of χ10 with
the cycle of CM points associated to K.
The practical impact of Theorem 2.0.1 is that any of the algorithms [26, 28, 30, 7, 9, 27, 23,
8, 3, 20] to compute minimal polynomials of invariants of genus 2 curves with CM by K can
be improved by multiplying by our formula to obtain polynomials with integral coefficients.
In all cases, our formula gives an integer multiple of the denominators: even if the restriction
that we placed on K is not satisfied, (OK = OF [η]), our formula still gives a bound on the
denominator because η still has to embed in the endomorphism ring of the product, even
if η does not generate all of OK . Our formula does not take into account any cancellation
between primes in the denominator and numerators of Igusa invariants, but in that case our
formula still gives a multiple of the denominator.

9. Examples

9.1. Example 1. —K = Q(
√
−119 + 28

√
17), ` = 7

In this example we will apply the theorems of this paper to predict the power to which the
prime ` = 7 appears in the denominator of the constant terms of the Igusa class polynomials
for K. Note that these class polynomials were computed in [11, Section 3.6.3] and so from
that calculation we know that (CM(K).G1)7 = 2.The class number of K is 2 and the field
discriminant is 72 · 173, so 7 is a ramified prime in K.
This particular example was chosen to illustrate the fact that there is some subtlety in the
formula in the case that N and the conductor of du share common factors other than `. At
the same time, this example also illustrates the need to compute the expression defined in
Theorem 6.1.1 for the number of solutions to the Embedding Problem defined by a pair of
endomorphisms x, u.
Writing OK = OF [η], we have TrK/F (η) = α0 + α1

D+
√
D

2 , and NK/F (η) = β0 + β1
D+
√
D

2 ,
where α0 = 1, α1 = 0, β0 = 149, β1 = −14, D = 17. The only possible δ values are 4, and 2.
For each δ, the only possible value for n where the prime ` = 7 occurs is n = 0.
We first consider δ = 4 and n = 0; then dx(n) = −91 and du(n) = −56 · 4.
When f = 1, i.e. when Z[u] is optimally embedded, we want to count ideals of norm N = 28.
There is 1 ideal of norm 28 of the correct genus, but this ideal does not satisfy the congruence
condition. Therefore there are no (x, u) with δ = 4, n = 0, and Z[u] optimally embedded.
When f = 2, i.e. when the maximal order containing u is optimally embedded, we want to
count ideals of norm 7. There is one ideal of norm 7 of the correct genus and it automatically
satisfies the congruence condition. So there is one (x, u) with δ = 4, n = 0, and the maximal
order containing u optimally embedded.
However, there is no left ideal corresponding to an isogeny b. We have p = 2, v(δ) = 2. The
number of ideals is the number of solutions modulo 2 to t2− t+ 9. This is empty, so there are
no left ideals with the desired properties, and thus no solutions to the Embedding Problem
(x, y, b, z) with δ = 4, n = 0, and Z[u] not optimally embedded.
Now consider δ = 2: then dx(n) = −175, du(n) = −56. Since du(n) is fundamental, we need
only consider when f = 1, i.e. when u is optimally embedded. In this case, we want to count
ideals of norm 7 of the correct genus; there is exactly 1 of these, so we get one (x, u) with
δ = 2, n = 0, and u optimally embedded. Now we need to calculate #(x, y, b, z). We have
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p = 2, c = 0, r = 1, and we want to count the number of solutions modulo 1 to t2 + t + 2,
which is, of course, 1.
This solution has multiplicity 2, so according to our main theorem, the intersection number
at the prime 7 has multiplicity 0 + 0 + 2, which agrees with the prediction coming from the
calculation of the Igusa class polynomials.

9.2. Example 2. —K = Q(
√
−13 + 3

√
13), ` = 23

This example focuses on a CM field K which does not satisfy the assumptions of the Bruinier-
Yang formula, i.e. when D and D̃ are not primes congruent to 1 mod 4; in this example,
D̃ = 2613. For this field, the Bruinier-Yang formula (as stated) underestimates the value of
(CM(K)G1)23 [16]. Indeed, by van Wamelen the value of (CM(K)G1)23 is 4, whereas the
value predicted by the Bruinier-Yang formula is 2.
Below we will see that two of the four solutions to the Embedding Problem arise from embed-
dings into maximal orders in the quaternion algebra in which non-maximal quadratic orders
are optimally embedded. This example demonstrates why it was necessary for us to extend
(in [21]) the work of Gross-Zagier and Dorman, which described only maximal quaternionic
orders with an optimal embedding of a maximal quadratic order.
For this K, the only possible value for δ is 3, and the possible values for n are n = 52,−52.
Consider δ = 3, n = −52: then dx(n) = −8 · 4, du(n) = −24 · 4.
When f = 1, i.e. when Z[u] is optimally embedded, we want to count ideals of norm 4. There
is one ideal of the correct genus multiplicity, and it satisfies the congruence condition, so we
get one (x, u). Since Z[u] is optimally embedded this implies that c = 0 and there is one
solution to the Embedding Problem (x, y, b, z).
When f = 2, i.e. when the maximal order containing u is optimally embedded, we want to
count ideals of norm 1. There is one ideal of the correct genus multiplicity and it automatically
satisfies the congruence condition, so there is one (x, u). Since f is prime to δ, this implies
c = 0 and there is one (x, y, b, z).
The case of δ = 3, n = 52, with dx(n) = −48, du(n) = −48, works exactly the same way.
Thus there are four solutions to the Embedding Problem, two of which arise from optimal
embeddings of non-maximal quadratic orders.
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