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CORPS DE NOMBRES CUBIQUES CYCLIQUES
AYANT UNE CAPITULATION HARMONIEUSEMENT ÉQUILIBRÉE

by

Bill Allombert and Daniel C. Mayer

Abstract. — It is proved that c = 689 347 = 31 · 37 · 601 is the smallest conductor of a cyclic cubic
number field K whose maximal unramified pro-3-extension E = F∞

3 (K) possesses an automorphism
group G = Gal(E/K) of order 6561 with coinciding relation and generator rank d2(G) = d1(G) = 3 and
harmonically balanced transfer kernels κ(G) ∈ S13. The result depends on computations done under the
assumption of the GRH.

Résumé. — Nous établissons que c = 689 347 = 31 · 37 · 601 est le plus petit conducteur d’un corps
cubique cyclique K dont la pro-3-extension maximale non-ramifiée E = F∞

3 (K) admet un groupe
d’automorphismes G = Gal(E/K) d’ordre 6561, avec égalité du rang des relations et des générateurs
d2(G) = d1(G) = 3, et des noyaux de transfert harmonieusement équilibrés κ(G) ∈ S13. Le résultat
dépend de calculs fait sous l’hypothèse de Riemann généralisée.

1. Introduction

Let p be a prime number. Finite p-groups G with balanced presentation, that is, with relation
rank d2(G) equal to the generator rank d1(G),

(1) d2(G) = dimFp H2(G,Fp) = dimFp H1(G,Fp) = d1(G),

have attracted the vigilance and interest of researchers since the beginning. Issai Schur dubbed
such groups closed, but today it is more usual to call them Schur groups.
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22 Capitulation harmonieusement équilibrée

In 1964, one year before his famous joint paper with Golod on infinite class field towers,
Shafarevich [42] established an application of closed groups of the greatest importance and
with fundamental impact on class field theory. Let K be an algebraic number field with p-class
rank ϱ = rankp Cl(K), signature (r1, r2), and torsion free Dirichlet unit rank r = r1+r2−1. Let
θ ∈ {0, 1} be an indicator for the existence of a primitive p-th root of unity ζ = exp(2π

√
−1/p)

in K. Then the relation rank d2(G) of the Galois group G = Gal(F∞
p (K)/K) of the maximal

unramified pro-p-extension F∞
p (K) of K is bounded

(2) ϱ ≤ d2(G) ≤ ϱ + r + θ,

according to Shafarevich [27, Thm. 5.1, p. 28]. In particular, imaginary quadratic fields
k = Q(

√
d) with negative discriminant d < 0, which have the simplest possible signature

(0, 1) (except (1, 0) for the rational number field Q) require a Schur σ-group [4] (with balanced
presentation and a generator- and relator-inverting automorphism σ) Gal(F∞

p (k)/k) for all
p-class towers with an odd prime p ≥ 3. Shafarevich himself immediately drew some conclu-
sions [42, pp. 91–92] about the few non-abelian 3-class towers for d = −4027 and d = −3299
which were known at this early stage, due to Scholz and Taussky [40]. Unfortunately, his in-
terpretations of these 3-class towers for 3-class groups with abelian type invariants (3, 3) and
(9, 3) were incorrect (his claimed groups were only Schur but not Schur σ), and his important
theorem on the bounds for d2(G) remained largely unnoticed for about thirty years.
In 1975, several events happened precipitately. On the one hand, Andozhskii and Tsvetkov [1,
2] found the first closed finite 3-groups G with elementary tricyclic commutator quotient
G/G′ ≃ (3, 3, 3). But on the other hand, Koch and Venkov [21] proved that, for odd primes
p ≥ 3, an imaginary quadratic number field k = Q(

√
d) with p-class group Clp(k) of p-

rank ϱ ≥ 3 possesses an unbounded p-class field tower. In particular, for Cl3(k) ≃ (3, 3, 3)
the Galois group Gal(F ∞

3 (k)/k) of the 3-class tower must be an infinite Schur σ-group and
cannot be one of the Andozhskii–Tsvetkov groups (briefly AT-groups), which are finite and
do not possess a σ-automorphism.
This is exactly the point where our present article sets in. After preparatory Sections 2, 3, 4,
5 with algebraic and arithmetic foundations, we investigate AT-groups G more closely in Sec-
tion 6.1. We determine their order #G = 38 = 6561 and position in the descendant tree [28],
and we discover with surprise that all of them possess harmonically balanced capitulation
(HBC), that is, their transfer kernels κ(G) = (ker(Vj))13

j=1 are cyclic of order 3 and form a
permutation in the symmetric group S13 of degree thirteen.
Then we try to realize AT-groups G as automorphism groups G ≃ Gal(F∞

3 (K)/K) of maximal
unramified pro-3-extensions of suitable algebraic number fields K, necessarily different from
imaginary quadratic fields, by the result of Koch and Venkov. Since real quadratic fields of
type (3, 3, 3) are firstly very sparse and secondly also require a σ-group with generator- and
relator-inverting automorphism (though with looser bounds d1(G) ≤ d2(G) ≤ d1(G) + 1,
due to the signature (2, 0)), they disqualify for the realization of AT-groups. In Section 6.2,
we employ the next simplest number fields with signature (3, 0) and unit rank r = 2, but
still absolutely Galois over Q, that is, the cyclic cubic fields K, which quite frequently have
elementary tricyclic 3-class groups Cl3(K) ≃ (3, 3, 3), provided their conductor c is divisible
by three or four primes, whence they arise as quartets (K1, . . . , K4) or octets (K1, . . . , K8)
sharing a common discriminant d = c2. This is known from earlier works by G. Gras, 1973
[18], who determined the 3-class rank in dependence on Graphs which describe cubic residue
Publications mathématiques de Besançon – 2025
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conditions between the prime divisors of c, and by M. Ayadi, 1995, 2001 [7, 8], who introduced
a classification of quartets into Categories.
Indeed, we find a rather sparse sequence of conductors c = q1q2q3, exclusively with Graph 2
of Category I, q2 ← q1 → q3, in the sense of G. Gras and Ayadi, for which precisely one
component K := K1 has Cl3(K) ≃ (3, 3, 3) and HBC, whereas the other three components
K2, K3, K4 of the quartet have elementary bicyclic Cl3(Ki) ≃ (3, 3) and κ(Ki) = (1243),
called capitulation type G.16 [3, §6.2, Thm. 11]. It is published as sequence A359310 in the
On-line Encyclopedia of Integer Sequences (OEIS).
A drawback of cyclic cubic fields K is the broad spread for the relation rank d2(G) of the
3-class tower group G = Gal(F∞

3 (K)/K),

(3) 3 = ϱ = d1(G) ≤ d2(G) ≤ ϱ + r + θ = 3 + 2 + 0 = 5,

which enables the occurrence of numerous smaller groups G of order #G = 36 = 729 with
d2(G) = 5 as parents of AT-groups, or of order #G = 37 = 2187 with d2(G) = 4 as siblings
of AT-groups, instead of the desired minimal relation rank d2(G) = 3. We had to wait for
the 25-th term c = 689 347 of the OEIS sequence A359310 [43] until a proper AT-group
occurred, which we only found after several months of computations running on multiple
high-end computing node.

2. Group theoretic foundations

The original motivation for the present paper was the question whether there exist finite
3-groups with three generators G = ⟨x, y, z⟩ and the following cohomological property.

Definition 2.1. — Let p be an odd prime number. A finite p-group G is called closed, or
a Schur group, if its relation rank d2(G) = dimFp H2(G,Fp) coincides with its generator rank
d1(G) = dimFp H1(G,Fp). A closed p-group is also said to possess a balanced presentation.

The relation rank d2(G) is essential for the clarification whether G can occur as the Galois
group Gal(F∞

p (K)/K) of the maximal unramified pro-p-extension of an algebraic number
field K.
With respect to the action of automorphisms, further kinds of p-groups are distiguished.

Definition 2.2. — For an odd prime p, a finite p-group G is called a σ-group, if it admits
an automorphism σ ∈ Aut(G) which acts as inversion x 7→ xσ = x−1 on the first and second
cohomology group, H1(G,Fp) and H2(G,Fp). A closed σ-group is called Schur σ-group.

A σ-group is also said to possess a generator- and relator-inverting (briefly, a GI- and
RI-)automorphism. The action on H1(G,Fp) is essentially equivalent with the action on the
commutator quotient G/G′. A similar concept is expressed in terms of the action of an entire
subgroup of the automorphism group.

Definition 2.3. — Let Φ(G) be the Frattini subgroup, that is, the meet of all maximal
subgroups of G, of a finite group G, then G is said to possess an operation by some finite
group S if S is a subgroup of the automorphism group Aut(G/Φ(G)) of the Frattini quotient.

The operation is important to decide whether a given p-group is admissible as Galois group
Gal(Fn

p (K)/K) of some stage Fn
p (K) in the Hilbert p-class field tower of a number field K.

Publications mathématiques de Besançon – 2025



24 Capitulation harmonieusement équilibrée

Since the intention of the present paper is the arithmetic realization of Andozhskii–Tsvetkov
groups G as Galois groups G ≃ Gal(F∞

3 (K)/K) of maximal unramified pro-3-extensions
of suitable number fields K, some collections of invariants are required which enable the
unambiguous identification, and can be translated from group theory to number theory, and
vice versa.
Let G be a finite 3-group with an elementary tricyclic commutator quotient G/G′ ≃ (Z/3Z)×
(Z/3Z)× (Z/3Z). This quotient is also called the abelianization Gab of G and the elementary
tricyclic 3-group is abreviated by (3, 3, 3). Then, G has 13 maximal subgroups H1, . . . , H13
with Artin transfer homomorphisms (Verlagerungen) Vi : G/G′ → Hi/H ′

i, defined in [28,
Def. 3.3, p. 69].

Definition 2.4. — The family of abelian quotient invariants (AQI) α(G) = (Hi/H ′
i)13

i=1
is called the transfer target type (TTT), the family of transfer kernels κ(G) = (ker(Vi))13

i=1
is called the transfer kernel type (TKT) of the group G. Both combined form the Artin
pattern AP(G) = (α(G),κ(G)) of G. The rank distribution of G is the family ρ(G) =
(rank3(Hi/H ′

i))13
i=1, where rank3(X) = dimF3(X/X3), for any finite 3-group X. Summarized:

(4) α(G) = (Hi/H ′
i)1≤i≤13, κ(G) = (ker(Vi))1≤i≤13, ρ(G) = (rank3(Hi/H ′

i))1≤i≤13.

Frequently, the Artin pattern, or even only a part of it (α alone or κ alone), is able to
identify a unique finite 3-group. Unfortunately, this is not the case for Andozhskii–Tsvetkov
groups, where a database query yields a batch of a dozen possible groups with several distinct
orders. Therefore, a set of more subtle invariants is necessary to reduce the number of hits.
The drawback is the requirement to compute class groups for multiple fields of degree 27,
requiring the use of HPC-class computer systems.
The following definition restricts to the special situation investigated in the present paper,
namely rank distributions ρ(G) ∈ {(31, 212), (34, 29), (37, 26)}.

Definition 2.5. — For each 1 ≤ i ≤ 13, let Hi,1, . . . , Hi,ni be the maximal subgroups
of the maximal subgroup Hi of G. Here, ni = 13 if rank3(Hi/H ′

i) = 3, and ni = 4 if
rank3(Hi/H ′

i) = 2. The components of the family
(5) α2(G) = ((Hi,j/H ′

i,j)1≤j≤ni)1≤i≤13

are called abelian quotient invariants of second order (AQI2) of G.

Usually, the components of α(G) and α2(G) are written in logarithmic form (with respect to
the basis 3), for instance, (22) =̂ (9, 9) and (211) =̂ (9, 3, 3).
Throughout the sequel, each finite group of small prime power or composite order is char-
acterized with its unique designation by the pair ⟨order, identifier⟩ in angle brackets, taken
from the SmallGroups database [11, 12], for instance ⟨27, 5⟩ in the following section.

3. The elementary abelian 3-group of rank three

This group ⟨27, 5⟩ can be viewed as a vector space O of dimension dimF3(O) = 3 over the
finite field F3 with three elements. The vector space O possesses 13 = 32 +3+1 lines, that is,
subgroups Li of index (O : Li) = 32, and 13 planes, that is, subgroups Pi of index (O : Pi) = 3,
where 1 ≤ i ≤ 13. Let x, y, z be fixed generators of O = ⟨x, y, z⟩, then the generators of the
lines Li = ⟨gi⟩ will be arranged in the way shown in Table 1.
Publications mathématiques de Besançon – 2025
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Identifiers for the planes Pi = ⟨hi, ki⟩ are introduced as shown in Table 2. The elements hi, ki

can be viewed as generators of a transversal of the line Li = ⟨gi⟩, i.e., a system of coset
representatives for Li in O. Each set Si contains the subscripts j of generators gj contained
in Pi.
In Table 3, it is also useful to list the bundles Bi, of four planes each, containing an assigned
line Li, where we simply denote Li = ⟨gi⟩ by its subscript i, for the sake of brevity.

Table 1. Generators of thirteen lines Li in O

i 1 2 3 4 5 6 7 8 9 10 11 12 13
gi x y z xy yz zx xy2 yz2 zx2 x2yz xy2z xyz2 xyz

Table 2. Identifiers and generators of thirteen planes Pi in O

i 1 2 3 4 5 6
hi y z x z x y

ki z x y xy2 yz2 zx2

Si 2, 3, 5, 8 1, 3, 6, 9 1, 2, 4, 7 3, 7, 11, 10 1, 8, 11, 12 2, 9, 10, 12
i 7 8 9 10 11 | 12 13
hi z x y xy yz | xy2 zx

ki xy yz zx yz zx | yz2 xy

Si 3, 4, 12, 13 1, 5, 10, 13 2, 6, 11, 13 4, 5, 9, 11 5, 6, 7, 12 | 7, 8, 9, 13 4, 6, 8, 10

Table 3. Thirteen bundles Bi of planes in the space O

i 1 2 3 | 4 5
Bi P2, P3, P5, P8 P1, P3, P6, P9 P1, P2, P4, P7 | P3, P7, P10, P13 P1, P8, P10, P11

i 6 | 7 8 9 | 10
Bi P2, P9, P11, P13 | P3, P4, P11, P12 P1, P5, P12, P13 P2, P6, P10, P12 | P4, P6, P8, P13

i 11 12 13
Bi P4, P5, P9, P10 P5, P6, P7, P11 P7, P8, P9, P12

Remark 3.1. — For any finite 3-group G with G/G′ ≃ (3, 3, 3) elementary tricyclic, our
implementation of the Artin transfer homomorphisms Vi : G/G′ → Hi/H ′

i from G to its 13
maximal subgroups H1, . . . , H13 uses the interpretation of the commutator quotient G/G′ as
vector space O of dimension 3 over F3, of the 13 planes Pi = ⟨hi, ki⟩ as quotients Hi/G′, of the
13 lines Li = ⟨gi⟩ as mutual transversals in pairs (Pi, Li), the outer transfer mapping gi ·G′ 7→
g3

i ·H ′
i, and the inner transfer mappings hi ·G′ 7→ (hi ·g−1

i )3 ·g3
i ·H ′

i, ki ·G′ 7→ (ki ·g−1
i )3 ·g3

i ·H ′
i.

This mapping law requires the artificial definition P13 = ⟨zx, xy⟩, P12 = ⟨xy2, yz2⟩, although
a more natural definition would be P12 = ⟨zx, xy⟩, in view of P10 = ⟨xy, yz⟩, P11 = ⟨yz, zx⟩.
The unnnatural definition is mandatory for the following reason in Lemma 3.2.

Lemma 3.2. — The permutation automorphism x 7→ y 7→ z 7→ x has two fixed points, line
L13 = ⟨xyz⟩ and plane P12 = ⟨xy2, yz2⟩, which do not form a pair of mutual transversals.
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26 Capitulation harmonieusement équilibrée

Proof. — The permutation automorphism x 7→ y 7→ z 7→ x in form of a 3-cycle generates five
orbits among each, the 13 lines L1, . . . , L13, and the 13 planes P1, . . . , P13. Four orbits consist
of three elements. Those with subscripts {1, 2, 3}, {4, 5, 6}, {7, 8, 9} form pairs of mutual
transversals, in a natural way. However, a single orbit consists of a fixed point: the fixed line
is L13 = ⟨g13⟩ with g13 = xyz, the fixed plane is P12 = ⟨h12, k12⟩ with h12 = xy2, k12 = yz2.
These fixed points do not form a pair of mutual transversals, since

h12 · k2
12 = xy2 · (yz2)2 = xy2 · y2z = xyz = g13 (exponents modulo 3).

Whereas the lines L10 7→ L11 7→ L12 7→ L10 permute in the natural manner, the planes
P10 7→ P11 7→ P13 7→ P10 permute irregularly. □

4. Number theoretic foundations

As outlined in Section 2, the collections of invariants required for the unambiguous identifica-
tion of Galois groups must now be translated from group theory to number theory by means
of the Artin reciprocity law [5, 6], which is explained thoroughly by Miyake [35].
Let K be an algebraic number field with elementary tricyclic 3-class group Cl3(K) =
Syl3Cl(K) ≃ (3, 3, 3). (Since the class group Cl(K) = IK/PK is the quotient of the com-
mutative group IK of fractional ideals of the maximal order OK of K by the subgroup PK

of principal ideals, it is abelian and has a unique Sylow 3-subgroup.) Then, K has 13 = 33−1
3−1

unramified abelian extensions Ei/K of relative degree [Ei : K] = 3 with transfers (class
extension homomorphisms) Ti : Cl3(K)→ Cl3(Ei), aPK 7→ (aOEi)PEi .

Definition 4.1. — The family of abelian type invariants (ATI) of the 3-class groups α(K) =
(Cl3(Ei))13

i=1 is called the transfer target type (TTT), and the family of the transfer ker-
nels (capitulation kernels) κ(K) = (ker(Ti))13

i=1 is called the transfer kernel type (TKT) or
capitulation type of the field K. The pair AP(K) = (α(K),κ(K)) is called the Artin pat-
tern of K. The rank distribution of K is the family ρ(K) = (rank3(Cl3(Ei)))13

i=1, where
rank3(X) = dimF3(X/X3), for any finite 3-group X. Summarized:

(6) α(K) = (Cl3(Ei))1≤i≤13, κ(K) = (ker(Ti))1≤i≤13, ρ(K) = (rank3(Cl3(Ei)))1≤i≤13.

The capitulation is called harmonically balanced (HBC) if each transfer kernel is a line
ker(Ti) = Lπ(i) in the space O = Cl3(K), and π ∈ S13 is a permutation in the symmet-
ric group of degree 13.

If G = Gal(F2
3(K)/K) denotes the second 3-class group of K [24], then the translation of

invariants between group theory and number theory is performed by α(G) = α(K) and
κ(G) = κ(K), according to [25, §2.3, pp. 476–478] and Miyake [35].

Definition 4.2. — For each 1 ≤ i ≤ 13, let Ei,1, . . . , Ei,ni be the unramified cyclic cubic
relative extensions of the extension Ei of K. Here, ni = 13 if rank3(Cl3(Ei)) = 3, and ni = 4
if rank3(Cl3(Ei)) = 2. The components of the family

(7) α2(K) = ((Cl3(Ei,j))1≤j≤ni)1≤i≤13

are called abelian type invariants of second order (ATI2) of K.
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Again, the Artin reciprocity law makes sure that α2(G) = α2(K) for G = Gal(F2
3(K)/K).

Usually, the components of α(K) and α2(K) are written in logarithmic form (with respect
to the basis 3), for instance, (22) =̂ (9, 9) and (211) =̂ (9, 3, 3).

5. Quartets of cyclic cubic fields

The following details supplement our main results on cyclic cubic fields K with HBC in
Section 6.2. In Section 6.5 they will be mandatory for the correct selection of representatives
Ri in isomorphism classes among the unramified cyclic cubic relative extensions Ej/K, 1 ≤
j ≤ 13, and among the unramified nonic but not necessarily Galois extensions Ej,ℓ/K, 1 ≤
j ≤ 13, 1 ≤ ℓ ≤ nj , nj ∈ {4, 13, 40}, of absolute degree 27, for a 3-class rank ϱj ∈ {2, 3, 4} of
Ej , respectively.

Theorem 5.1. — Let K be a cyclic cubic number field with conductor c = q1q2q3 divisible
by exactly three distinct prime(power)s, qi ≡ +1 (mod 3), or qi = 32. Then

1. K is member of a quartet (K1, . . . , K4) of four cyclic cubic fields sharing the common
conductor c and the common discriminant d = c2.

2. The absolute genus field K∗ = (K/Q)∗ of K is unramified over K and abelian over
Q. More precisely, its Galois group Gal(K∗/Q) ≃ (Z/3Z)3 is elementary tricyclic. Its
absolute degree is [K∗ : Q] = 27 and the relative degree is [K∗ : K] = 9.

3. K∗ contains 13 cyclic cubic subfields, three kq1 , kq2 , kq3 with prime(power) conductors,
six (in three doublets) kq1q2 , k̃q1q2 , kq1q3 , k̃q1q3 , kq2q3 , k̃q2q3 with conductors divisible by two
prime(power)s, and the four members K1, . . . , K4 of the abovementioned quartet with
conductor c.

4. The composita L := kq1q2kq1q3kq2q3 and L̃ := k̃q1q2 k̃q1q3 k̃q2q3 satisfy the following skew
balance of degrees: [L : Q] · [L̃ : Q] = 243, with

(8) [L : Q] = 9⇐⇒ [L̃ : Q] = 27,

or vice versa.

Proof. — See [7, §4.1, p. 40, Proof of Prop. 4.6, p. 49, Prop. 4.1, p. 40]. □

Definition 5.2. — The selection of cyclic cubic subfields kq1q2 , kq1q3 , kq2q3 with conductors
q1q2, q1q3, q2q3 within the absolute genus field K∗ of an assigned cyclic cubic field K with
conductor c = q1q2q3 is called normalized, if the absolute degree of their compositum L =
kq1q2kq1q3kq2q3 is [L : Q] = 9. In this article, we always assume this normalization.

The following theorem corresponds to [3, §4.3, Thm. 8, Eqn. (22)–(24)].
Publications mathématiques de Besançon – 2025



28 Capitulation harmonieusement équilibrée

Theorem 5.3. — Under the assumptions of Theorem 5.1 and the mandatory normalization
of kq1q2 , kq1q3 , kq2q3 according to Definition 5.2, the remaining 13 bicyclic bicubic subfields Bj,
1 ≤ j ≤ 13, of the absolute genus field K∗ of K are given as composita by

(9)

4 single capitulation targets B1 := kq1q2kq1q3 = K1kq1q2kq1q3kq2q3 ,

B2 := k̃q1q3 k̃q2q3 = K2kq1q2 k̃q1q3 k̃q2q3 ,

B3 := k̃q1q2 k̃q1q3 = K3k̃q1q2 k̃q1q3kq2q3 ,

B4 := k̃q1q2 k̃q2q3 = K4k̃q1q2kq1q3 k̃q2q3 ,

(10)

6 double capitulation targets B5 := kq1 k̃q2q3 = K1K3kq1 k̃q2q3 ,

B6 := kq2 k̃q1q3 = K1K4kq2 k̃q1q3 ,

B7 := kq3 k̃q1q2 = K1K2kq3 k̃q1q2 ,

B8 := kq1kq2q3 = K2K4kq1kq2q3 ,

B9 := kq2kq1q3 = K2K3kq2kq1q3 ,

B10 := kq3kq1q2 = K3K4kq3kq1q2 ,

(11)
and 3 sub genus fields B11 := kq1q2 k̃q1q2 = kq1kq2kq1q2 k̃q1q2 ,

B12 := kq1q3 k̃q1q3 = kq1kq3kq1q3 k̃q1q3 ,

B13 := kq2q3 k̃q2q3 = kq2kq3kq2q3 k̃q2q3 .

The shape with two components suffices for the construction, but the shape with four compo-
nents ostensively illuminates all cyclic cubic subfields of each bicyclic bicubic field Bj.

Proof. — See Ayadi’s Thesis [7, Lem. 4.1, p. 42, and Fig. 10, p. 41]. □

The following corollary corresponds to [3, §4.3, Cor. 2].

Corollary 5.4. — For each member of the quartet (K1, . . . , K4) of cyclic cubic fields with
conductor c = q1q2q3, the rank ϱi of the 3-class group Cl3(Ki) is bounded by 2 ≤ ϱi ≤ 4, and
four unramified cyclic cubic relative extensions of Ki are given in the following way:

(12)

(B1, B5, B6, B7) for K1,

(B2, B7, B8, B9) for K2,

(B3, B5, B9, B10) for K3,

(B4, B6, B8, B10) for K4.

If the rank of the 3-class group Cl3(Ki) of Ki is ϱi = 2, then the set of unramified extensions
given in Equation (12) is complete and consists entirely of absolutely abelian extensions.

Proof. — This is an immediate consequence of the constitution of the Bj in Theorem 5.3. □

The following theorem is a special case of [3, §6.2, Prop. 6, Tbl. 6, and Thm. 11].

Theorem 5.5. — Let K be a cyclic cubic number field with conductor c = q1q2q3 divisible
by precisely three distinct prime(power)s, qi ≡ +1 (mod 3), or qi = 32, such that only two
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cubic residue symbols
(

q1
q2

)
3

= 1 and
(

q1
q3

)
3

= 1 are trivial, that is, K belongs to Graph 2 of
Category I, q2 ← q1 → q3, in the sense of G. Gras and Ayadi. Then:

1. The 3-class group Cl3(K) has either rank ϱ = 3, for a single component, or it is ele-
mentary bicyclic Cl3(K) ≃ (Z/3Z)2, with ϱ = 2, for three components of the quartet
(K1, . . . , K4). The former is K1 if q2 splits in kq1q3 and q3 splits in kq1q2.

2. If ϱ = 2, then q1 is the unique minimal norm of a non-trivial primitive ambiguous prin-
cipal ideal of K, called Parry invariant of K by Ayadi [39, pp. 499–501].

3. If q2 splits in kq1q3, q3 splits in kq1q2, and K1 possesses an elementary tricyclic 3-class
group Cl3(K1) ≃ (Z/3Z)3 with HBC, then the Parry invariant of K1 is also q1 and
the remaining three fields K2, K3, K4 with ϱ = 2 share the common capitulation type
κ(Kµ) ∼ (1243) with two fixed points 1, 2 and a transposition (43), called type G.16,
and their second 3-class group Gal(F2

3(Kµ)/Kµ) is either ⟨729, 52⟩ or one among the six
groups ⟨2187, i⟩ with 294 ≤ i ≤ 299. Their 3-class field tower has either two or three
stages, in the latter case with automorphism group ⟨6561, j⟩, 2039 ≤ j ≤ 2044.

Proof. — Denote by G := Gal(K/Q) = ⟨σ⟩ the cyclic Galois group of K. Among the prime
ideals of K, let P = Pσ divide q1, Q = Qσ divide q2, and R = Rσ divide q3. If the rank
ϱ of the 3-class group Cl3(K) is ϱ = 2, then Cl3(K) ≃ (Z/3Z)2 [7, Prop. 4.3, p. 43]. If
ϱ = 2, then P generates the group PG

K/PQ of primitive ambiguous principal ideals of K [7,
Rem. 4.2, p. 50], whereas Q and R are not principal [7, Rem. 4.8, p. 65], and their ideal
classes [Q] = Q · PK and [R] = R · PK generate Cl3(K) = ⟨[Q], [R]⟩. If q2 splits in kq1q3 and
q3 splits in kq1q2 , then K1 is the field with ϱ = 3 [7, Prop. 4.4, pp. 43–44], and K2, K3, K4 have
elementary bicyclic 3-class groups. According to [7, Tbl., p. 66], the kernels of the transfers
Tµν : Cl3(Kµ)→ Cl3(Bν) from Kµ, 2 ≤ µ ≤ 4, to its four unramified cyclic cubic extensions
Bν , given in Corollary 5.4, are as follows:

(13)
ker(T22) = ⟨[QR2]⟩, ker(T27) = ⟨[R]⟩, ker(T28) = ⟨[QR]⟩, ker(T29) = ⟨[Q]⟩;
ker(T33) = ⟨[QR]⟩, ker(T35) = ⟨[QR2]⟩, ker(T39) = ⟨[Q]⟩, ker(T3,10) = ⟨[R]⟩;
ker(T44) = ⟨[QR2]⟩, ker(T46) = ⟨[Q]⟩, ker(T48) = ⟨[QR]⟩, ker(T4,10) = ⟨[R]⟩.

For each row 2 ≤ µ ≤ 4, the transfer kernels form a permutation of the four cyclic subgroups
of order 3 of Cl3(Kµ) = ⟨[Q], [R]⟩, more precisely, each row has two fixed points, where
the norm class group NBν/Kµ

(Cl3(Bν)) coincides with the transfer kernel ker(Tµν), and a
transposition, where the norm class group and the transfer kernel are twisted. This charac-
terizes type G.16 unambiguously [25, Tbl. 6, p. 492], and the Galois group Gal(F 2

3 (Kµ)/Kµ)
of the maximal metabelian unramified 3-extension, for 2 ≤ µ ≤ 4, is either the metabelian
3-group M = ⟨729, 52⟩ or one among its six immediate descendants D = ⟨2187, i⟩ with
294 ≤ i ≤ 299, all with coclass cc = 2 and relation rank d2 = 3 < 5, as required for
ϱ = 2 by Formula (2). These metabelian groups are contained in the SmallGroups data-
base [12]. The abelian type invariants of second order admit the distinction between M with
α2(M) = [(22; 211, 211, 211, 211), (21; 211, 21, 21, 21)3] and its immediate descendants D with
α2(D) = [(22; 221, 211, 211, 211), (21; 221, 21, 21, 21)3], but unfortunately not between each D
and its unique terminal non-metabelian immediate descendant D−#1; 1, which has identical
ATI2. For these groups with soluble length sl = 3, the identifier ⟨6561, j⟩, 2039 ≤ j ≤ 2044,
must be taken from the supplementary package [22]. □
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Anticipating several informations in Section 6.1 and in Table 6 of Section 6.5, we are able to
refine item (3) of Theorem 5.5 with respect to the second 3-class group Gal(F 2

3 (Kµ)/Kµ) for
2 ≤ µ ≤ 4.

Corollary 5.6. — Let (K1, . . . , K4) be a quartet of cyclic cubic fields with conductor c =
q1q2q3 belonging to Graph 2 of Category I, q2 ← q1 → q3. Suppose K1 is the unique component
with 3-class rank ϱ3(K1) = 3, and the other three components have elementary bicyclic 3-class
groups Cl3(Kµ) ≃ (3, 3), for 2 ≤ µ ≤ 4. If K1 possesses an elementary tricyclic 3-class group
Cl3(K1) ≃ (3, 3, 3) and HBC, then the second 3-class group Gal(F 2

3 (Kµ)/Kµ) for 2 ≤ µ ≤ 4
is determined in dependence on the 3-genus field K∗:

(14)

Gal(F 2
3 (Kµ)/Kµ) ≃ ⟨729, 52⟩
⇐⇒ Cl3(K∗) ≃ (9, 3, 3)
⇐⇒ ord(Gal(F 2

3 (K1)/K1)) = 729,

Gal(F 2
3 (Kµ)/Kµ) ≃ ⟨2187, i⟩ with 294 ≤ i ≤ 299
⇐⇒ Cl3(K∗) ≃ (9, 9, 3)
⇐⇒ ord(Gal(F 2

3 (K1)/K1)) ∈ {2187, 6561}.

Proof. — The assumption of HBC for K1 enforces one of the groups in Section 6.1, which all
possess the Artin pattern in Table 4, for the second 3-class group Gal(F 2

3 (K1)/K1).
According to Corollary 5.4, B1, B5, B6, B7 are the 4 absolutely bicyclic bicubic fields among
the 13 unramified cubic relative extensions of K1.
Table 6 shows that, independently of the scenarios with distinct rank distribution, always
Cl3(B1) ≃ (9, 3, 3) and Cl3(Bj) ≃ (9, 9) for j ∈ {5, 6, 7}.
According to Ayadi [7, Table, p. 66], Cl3(Bj) ≃ (9, 3) for j ∈ {2, 3, 4, 8, 9, 10}.
Again, Corollary 5.4 lists the unramified cubic relative extensions of Kµ for 2 ≤ µ ≤ 4, namely
(B2, B7, B8, B9) for K2, (B3, B5, B9, B10) for K3, (B4, B6, B8, B10) for K4. This determines
the first component of the Artin pattern α(Kµ) = (21, 21, 21, 22) for 2 ≤ µ ≤ 4, which
enforces a group Gal(F 2

3 (Kµ)/Kµ) of coclass 2.
Item (3) of Theorem 5.5 supplements the second component of the Artin pattern κ(Kµ) =
(1243), which unambiguously leads to either Gal(F 2

3 (Kµ)/Kµ) ≃M = ⟨729, 52⟩ or
Gal(F 2

3 (Kµ)/Kµ) ≃ D = ⟨2187, i⟩ with 294 ≤ i ≤ 299.
The decision is possible by means of AQI, respectively ATI, of second order. For the groups
Gal(F 2

3 (Kµ)/Kµ), the patterns α2(M) and α2(D) were given at the end of the proof of
Theorem 5.5. Only one element (211), repectively (221), occurs in all four components of the
AQI2. This must be the 3-class group Cl3(K∗) ∈ {(9, 3, 3), (9, 9, 3)} of the 3-genus field K∗.
Finally, Table 5 shows that only (211) occurs in the second order invariants of the candidate
groups of order 729 for Gal(F 2

3 (K1)/K1), whereas (221) is element of four second order
invariants of all candidate groups of order 2187 and 6561.
This proves the assertion of Corollary 5.6. □

6. Closed Andozhskii–Tsvetkov groups

According to Koch and Venkov [21], Schur σ-groups S are known to be mandatory for realiza-
tions S ≃ Gal(F∞

p (k)/k) by p-class field towers of imaginary quadratic fields k, with an odd
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prime p. They possess a balanced presentation d1(S) = d2(S) with coinciding generator rank
d1(S) = dimFp H1(S,Fp) and relation rank d2(S) = dimFp H2(S,Fp), and an automorphism
σ ∈ Aut(S) acting as inversion x 7→ x−1 on the commutator quotient S/[S, S]. Schoof [41] has
proved the supplementary requirement that σ must induce the inversion on both, H1(S,Fp)
and H2(S,Fp). However, in the older literature, for instance Shafarevich [42, §6, pp. 88–91],
there also appear Schur groups with balanced presentation, but without a generator- and
relator-inverting σ-automorphism, and they are called closed, according to the original termi-
nology by Schur. In the present article, we are interested in finite closed 3-groups G discovered
by Andozhskii and Tsvetkov (briefly AT groups) [1, 2]. These authors only announce the or-
der #G = 38 = 6561 of the smallest closed groups with three generators, without giving any
presentations or other details.
Therefore, our first task is to find the algebraic invariants of AT-groups and their position in
the descendant tree of finite 3-groups G with commutator quotient G/G′ ≃ (Z/3Z)3.
In Section 6.1, we identify the 17 closed AT groups as the smallest 3-groups of type (3, 3, 3)
with balanced presentation. Their order is either 38 = 6561 or 39 = 19683. We start by
proving their existence and determining their number (Theorem 6.1). Then we compute their
invariants (Corollaries 6.2 and 6.5). In Section 6.2, we show that three or four of them can
be realized as Galois groups of the 3-class tower of cyclic cubic fields.

6.1. Identification of closed Andozhskii–Tsvetkov groups. — A database query for
groups G in the SmallGroups library [11, 12], by the search criteria G/G′ ≃ (3, 3, 3) and
d2(G) = d1(G), yields a void result set, since the order of 3-groups is limited by 37 = 2187.
The same query in the extension data3to8 [22] of the SmallGroups database with all 3-groups
of order 38 = 6561 produces 14 hits. This justifies the following theorem.

Theorem 6.1. — Among the finite 3-groups G with commutator quotient G/G′ ≃ (3, 3, 3),
there exist precisely 14 metabelian closed groups S of order #S = 38 with identifiers
(15) S ≃ ⟨6561, 217700 + i⟩ where 1 ≤ i ≤ 6 or 10 ≤ i ≤ 17,

and 3 non-metabelian closed groups S of order #S = 39 = 19683 with identifiers
(16) S ≃ ⟨6561, 217700 + i⟩ −#1; 1 where i ∈ {7, 8, 9}.
They possess a trivial Schur multiplier M(S) = H2(S,Q/Z) = 0 and a balanced presentation
d1(S) = d2(S) with coinciding generator rank d1(S) = dimFp H1(S,Fp) and relation rank
d2(S) = dimFp H2(S,Fp). The class is Cl(S) = 3 for soluble length sl(S) = 2 and Cl(S) = 4
for sl(S) = 3. They possess harmonically balanced transfer kernels κ(S) ∈ S13, but no σ-
automophism (i.e., they are Schur groups but not Schur σ-groups). There do not exist any
closed groups G with G/G′ ≃ (3, 3, 3) and order #G ≤ 37.

Proof. — By a search in the SmallGroups database [12] with supplementary package [22],
extended to order 39 by the p-group generation algorithm [20, 36, 37], the finite closed
Andozhskii–Tsvetkov 3-groups S are identified. There are no hits of order #S ≤ 37, 14
hits of order #S = 38, and only three hits of order #S = 39. The non-metabelian groups are
characterized by their relative identifiers defined in the ANUPQ package [17]. See Figure 1
and the HBC in Table 4. □

The discovery that all AT-groups in Theorem 6.1 have a harmonically balanced capitulation
(HBC) suggests to ask whether there exist other finite 3-groups G with elementary tricyclic
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commutator quotient and HBC. A database query in the SmallGroups library [12], with search
criteria G/G′ ≃ (3, 3, 3), #G ≤ 36, and the much looser condition that all 13 transfer kernels
are cyclic of order 3, produces no hits with #G ≤ 35 = 243, but 6 hits with #G = 36 = 729
which astonishingly even have HBC. It turns out that the AT-groups in Theorem 6.1 are
descendants of 5 among these 6 groups, with the following relative ANUPQ identifiers [17]:
⟨6561, 217700 + i⟩ = ⟨729, 133⟩ −#2; i, i ∈ {1, 2, 3};
⟨6561, 217700 + i⟩ = ⟨729, 134⟩ −#2; (i− 3), i ∈ {4, 5, 6};
⟨6561, 217700 + i⟩ = ⟨729, 135⟩ −#2; (i− 6), i ∈ {7, 8, 9};
⟨6561, 217700 + i⟩ = ⟨729, 136⟩ −#2; (i− 9), i ∈ {10, 11, 12}; and
⟨6561, 217700 + i⟩ = ⟨729, 137⟩ −#2; (i− 12), i ∈ {13, 14, 15, 16, 17}.
The group ⟨729, 132⟩ has also HBC but does not possess any closed descendants.

Corollary 6.2. — Each of the 17 closed AT-groups S = ⟨6561, 217700 + i⟩, 1 ≤ i ≤ 17,
i ̸∈ {7, 8, 9}, and S = ⟨6561, 217700 + i⟩ − #1; 1, i ∈ {7, 8, 9}, in Theorem 6.1 shares a
common Artin pattern (κ, α) with its ancestor A ≃ ⟨729, 130 + j⟩, 3 ≤ j ≤ 7, as given in
Table 4, where

(17) j =



3 for 1 ≤ i ≤ 3,

4 for 4 ≤ i ≤ 6,

5 for 7 ≤ i ≤ 9,

6 for 10 ≤ i ≤ 12,

7 for 13 ≤ i ≤ 17.

There do not exist any groups G with G/G′ ≃ (3, 3, 3), HBC, and order #G ≤ 35.

Proof. — According to the theorem on the antitony of the Artin pattern [28, §§5.1–5.4,
pp. 78–87], it suffices to calculate the stable transfer kernels of the five ancestors A of the
17 closed groups in Theorem 6.1. They are of order #A = 36 and have much simpler power-
commutator-presentations A = ⟨x, y, z | x3 = Rx, y3 = Ry, z3 = Rz⟩, in terms of relator
words Rx, Ry, Rz containing main commutators u = [y, x], v = [z, x], w = [z, y], as given
in Table 4. Additional to the defining database query, the transfer kernel type (TKT) is
harmonically balanced, that is, a permutation in the symmetric group S13 of degree 13. □

Table 4 has a layout with double rows. It shows invariants of the six groups A = ⟨729, id⟩,
132 ≤ id ≤ 137, in Corollary 6.2. The first row contains the identifier id, the transfer kernel
type (TKT) κ(A), according to Tables 1 and 2, the numbers N1, N2, N3 of immediate descen-
dants with step sizes s ∈ {1, 2, 3}, and the operator group on the Frattini quotient A/Φ(A).
The second row contains the nuclear rank ν(A), the relation rank µ(A) = d2(A), the transfer
target type (TTT) α(A), the rank distribution ρ(A), and the relator words Rx, Ry, Rz in the
pc-presentation given in the proof of Corollary 6.2.

Remark 6.3. — Whereas rank distribution ρ = (37, 26) occurs only for ⟨729, 133⟩, and
ρ = (31, 212) only for ⟨729, 136⟩, the distribution ρ = (34, 29) is more frequent and occurs for
the remaining four groups. Although each group in Table 4 has immediate descendants of
(at least) two step sizes, the tree terminates with metabelian groups of order 37 = 2187 and
38 = 6561 below ⟨729, 130+j⟩ with j ∈ {3, 4, 6, 7}. For ⟨729, 135⟩, the tree terminates with the
non-metabelian groups of order 39 = 19683 in Theorem 6.1. The descendant tree of ⟨729, 132⟩
with three step sizes is infinite, due to periodic trifurcations. None of the descendants D is
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Table 4. TKT κ, TTT α, ranks ρ, and operation of groups A = ⟨729, id⟩

id κ (above) Ni Operation
ν, µ α (below) ρ Rx, Ry, Rz

132 1 2 3 7 8 6 4 5 9 13 10 11 12 3, 6, 4 ⟨24, 12⟩
3, 6 22 22 22 211 211 22 211 211 22 22 22 22 22 34, 29 w, v, u

133 9 2 3 10 8 1 12 5 6 4 11 7 13 4, 3 ⟨6, 2⟩
2, 5 22 22 22 211 211 22 211 211 211 211 22 211 22 37, 26 uw, v, u

134 1 8 3 11 5 6 12 2 9 4 7 10 13 2, 3 ⟨4, 1⟩
2, 5 22 22 22 211 22 22 211 22 22 211 211 22 22 34, 29 w, uv, u

135 9 8 3 7 5 1 13 2 6 12 10 11 4 2, 3 ⟨3, 1⟩
2, 5 22 22 22 211 22 22 211 22 211 22 22 22 211 34, 29 uw, uv, u

136 11 8 3 12 5 10 1 2 7 6 13 4 9 4, 3 ⟨6, 2⟩
2, 5 22 22 22 22 22 211 22 22 22 22 22 22 22 31, 212 vw, uv, u

137 13 8 3 7 2 12 9 5 4 1 10 11 6 3, 5 ⟨24, 3⟩
2, 5 22 22 22 211 22 211 22 211 22 22 22 22 211 34, 29 uvw, uv2, u

closed, since the minimal relation rank is d2(D) = 4 > 3 = d1(D). Further, the derived length
dl(D) increases unboundedly. (It is 3 for order 310, 4 for order 322, and 5 for order 346.)

Definition 6.4. — The transfer kernel (capitulation kernel) ker(Vi) of an Artin transfer
homomorphism Vi : G/G′ → Hi/H ′

i [28] from a 3-group G with G/G′ ≃ (3, 3, 3) to one of its
13 maximal subgroups Hi, 1 ≤ i ≤ 13, is called of Taussky type A, if the meet ker(Vi)∩Hi > 1
is non-trivial, and of Taussky type B, if ker(Vi) ∩Hi = 1 is trivial [44].

Corollary 6.5. — Artin patterns (α(A),κ(A)) of the six groups A = ⟨729, id⟩, 132 ≤ id ≤
137, share the common property that the Taussky type of the transfer kernels κ(A)i = ker(Vi)
is determined uniquely by the AQI Hi/H ′

i of the corresponding maximal subgroups Hi:

(18)
α(A)i = Hi/H ′

i ≃ (211)⇐⇒ κ(A)i ∩Hi > 1, Taussky type A,

α(A)i = Hi/H ′
i ≃ (22)⇐⇒ κ(A)i ∩Hi = 1, Taussky type B,

for all 1 ≤ i ≤ 13. Here, the abelian quotient invariants are written in logarithmic form.

Proof. — For all 1 ≤ i, j ≤ 13, this law follows by comparing the 1-dimensional transfer
kernels (lines) Lπ(i) = ker(Vi) with π ∈ S13 in Table 4 to the 2-dimensional subspaces (planes)
Pj = Hj of the space O = A/A′ ≃ (3, 3, 3) and the sets Si in Table 2. Here, ker(Vi) ∩Hi > 1
is equivalent to Lπ(i) < Pi, because all transfer kernels are cyclic of order 3. Exemplarily,
for the group A = ⟨729, 136⟩ with (accumulated) rank distribution ρ(A) = (31, 212), the
transfer kernel ker(V6) = L10 is contained in P6, since 10 ∈ S6 = {2, 9, 10, 12}. In contrast,
ker(V7) = L1 has trivial intersection with P7, since 1 ̸∈ S7 = {3, 4, 12, 13}. So the Taussky
type of ker(V6), respectively ker(V7), is A, respectively B, corresponding to the transfer target
H6/H ′

6 ≃ (211), respectively H7/H ′
7 ≃ (22). □

In order to draw the descendant tree with root ⟨27, 5⟩ ≃ (3, 3, 3) containing all closed AT-
groups in Theorem 6.1, we must supplement the siblings G of order #G = 37 = 2187 of
the metabelian AT-groups S = ⟨6561, 217700 + i⟩, 1 ≤ i ≤ 17, i ̸∈ {7, 8, 9}, and of the
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non-metabelian AT-groups S = ⟨6561, 217700 + i⟩ −#1; 1, i ∈ {7, 8, 9}, which are immediate
descendants of step size s = 1 of the ancestors A = ⟨729, 130+ j⟩, 3 ≤ j ≤ 7, in Corollary 6.2.

Corollary 6.6. — The siblings of the closed AT-groups are given by G ≃
⟨2187, 4660 + k⟩ = ⟨729, 133⟩ −#1; k, 1 ≤ k ≤ 4,
⟨2187, 4660 + k⟩ = ⟨729, 134⟩ −#1; (k − 4), 5 ≤ k ≤ 6,
⟨2187, 4660 + k⟩ = ⟨729, 135⟩ −#1; (k − 6), 7 ≤ k ≤ 8,
⟨2187, 4660 + k⟩ = ⟨729, 136⟩ −#1; (k − 8), 9 ≤ k ≤ 12,
⟨2187, 4660 + k⟩ = ⟨729, 137⟩ −#1; (k − 12), 13 ≤ k ≤ 15.
All of them are terminal metabelian groups with relation rank d2(G) = 4 and HBC. Each of
them shares a common Artin pattern (α,κ) with its ancestor, as given in Table 4.

Proof. — According to the antitony principle, the cyclic transfer kernels κ(G) of order 3
cannot shrink further, and, correspondingly, the transfer targets α(G) cannot expand. □

The position of AT-groups in the descendant tree of 3-groups G with elementary tricyclic
commutator quotient G/[G, G] ≃ (3, 3, 3) is illuminated in Figure 1. This is a rooted tree
diagram showing a graph G = (V, E) with groups as vertices D ∈ V and quotient relations
π(D) = D/γc(D) by the last non-trivial lower central (with c denoting the nilpotency class)
as directed edges (π : D → π(D)) ∈ E between immediate descendants D and parents
π(D). On the left hand side there is a scale with increasing orders 3e. Thus the identifiers
of the groups can be abbreviated by the ⟨identifier⟩ in angle brackets, instead of the pair
⟨order, identifier⟩, taken from the SmallGroups database [12]. Metabelian groups are shown
as circles, non-metabelian groups as squares. The symbol ∗n indicates a batch of n siblings,
drawn with a single vertex (to save space). Relative identifiers [17] are #s; n.
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Figure 1. Tree of 3-groups G with G/G′ ≃ (3, 3, 3)
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Remark 6.7. — Incidentally, we point out that related but not closed 3-groups (see j = 2
in Table 4) are realized by numerous 3-class field towers over totally complex S3-fields K,
which are unramified extensions of imaginary quadratic fields k = Q(

√
d) with 3-class group

Cl3(k) ≃ (3, 3), capitulation type H.4, κ(k) ∼ (4111), and three abelian type invariants of
rank 3 in α(k) ∼ (111, 111, 111, 21). The latter 3-class towers are confined, since F3

3(k) =
F3

3(K) = F4
3(k) [32, Thm. 6.1, p. 678]. The group ⟨729, 145⟩ does not possess HBC, since its

TKT contains 3 distinct planes Pi, meeting in three distinct lines Lj , and 10 times the full
vectorspace O.

6.2. Realization of groups with HBC by algebraic number fields. — Decisive for the
kind of algebraic number fields K which are able to realize the AT-groups S in Theorem 6.1
and their ancestors A in the Corollaries 6.2 and 6.5 as Galois groups Gal(F∞

3 (K)/K) of max-
imal unramified pro-3-extensions (that is, 3-class field towers) is the operation on the Frattini
quotient, listed for the ancestors A in Table 4. Since ⟨4, 1⟩ ≃ Z/4Z, the group ⟨729, 134⟩
requires cyclic quartic fields, and cannot be realized by cyclic cubic fields. In contrast, all the
other operator groups admit cyclic cubic fields: ⟨729, 135⟩ with operation by ⟨3, 1⟩ ≃ Z/3Z,
and ⟨729, 133⟩, ⟨729, 136⟩ both with operator group ⟨6, 2⟩ ≃ Z/6Z ≃ (Z/2Z)× (Z/3Z), which
also enables cyclic sextic fields. The exceptional group ⟨729, 132⟩ without closed descendants
and with operation by ⟨24, 12⟩ ≃ S4, the symmetric group of degree 4, also admits S3-fields,
cyclic quartic fields, bicyclic biquadratic fields, and dihedral fields of degree 8, because S4
contains ⟨12, 3⟩ ≃ A4, the alternating group of degree 4, ⟨6, 1⟩ ≃ S3, the symmetric group of
degree 3, ⟨4, 1⟩, ⟨4, 2⟩ ≃ (Z/2Z)× (Z/2Z), and ⟨8, 3⟩ ≃ D8, the dihedral group of order 8. Fi-
nally, ⟨729, 137⟩ with operator group ⟨24, 3⟩ ≃ SL(2, 3), the special linear group of dimension
2 over F3, enables cyclic sextic fields, quaternion fields of degree 8, and cyclic quartic fields,
since SL(2, 3) contains ⟨6, 2⟩, ⟨8, 4⟩ ≃ Q8, the quaternion group of order 8, and ⟨4, 1⟩.

6.3. Second order invariants of candidate groups with HBC. — In Table 5, we
present all possible candidates for metabelian 3-groups G with HBC, characterized uniquely
by their absolute identifier ⟨3lo, id⟩ in the SmallGroups database [12, 22] with order 3lo,
logarithmic order 6 ≤ lo ≤ 8 and numerical identifier id.
Crucial invariants of these groups are the nuclear rank ν, the p-multiplicator rank µ = d2,
which coincides with the relation rank, and the number of descendants Ns and of capable
descendants Cs for all possible step sizes 1 ≤ s ≤ ν. The most important invariant, however,
indispensable for the unambiguous identification (κ and α are insufficient), and demanding
extreme computational challenge for the number theoretic verification, is the Artin pattern
of second order [33],

(19) α2 := [Hj/H ′
j ; (Hj,ℓ/H ′

j,ℓ)
nj

ℓ=1]13
j=1,

consisting of logarithmic abelian quotient invariants (AQI) of all maximal subgroups Hj ,
1 ≤ j ≤ 13, and second maximal subgroups Hj,ℓ, 1 ≤ j ≤ 13, with 1 ≤ ℓ ≤ 4, nj = 4, when
Hj/H ′

j ≃ (22) =̂ (9, 9), and 1 ≤ ℓ ≤ 13, nj = 13, when Hj/H ′
j ≃ (211) =̂ (9, 3, 3).

The group ⟨729, 132⟩ is forbidden for cyclic cubic fields, because of its relation rank 6. The
group ⟨729, 134⟩ and all its descendants are forbidden for cyclic cubic fields, because they
have a wrong action by ⟨4, 1⟩, which is only allowed for cyclic quartic fields. Among the
groups of order 36 = 729, two with identifiers id ∈ {135, 137} cannot be distinguished by
second order invariants α2. Similarly for groups of order 37 = 2187, two with identifiers
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Table 5. Second order invariants and propagation of 3-groups with HBC

lo id α(2) ν µ (Ns/Cs)ν
s=1

6 136 [(212); (212)4(21)9]1[(22); (212)4]12 2 5 (4/0;3/0)
6 132 [(212); (212)4(21)9]4[(22); (212)4]9 3 6 (3/0;6/1;4/4)
6 134 [(212); (212)4(21)9]4[(22); (212)4]9 2 5 (2/0;3/0)
6 135 [(212); (212)4(21)9]4[(22); (212)4]9 2 5 (2/0;3/3)
6 137 [(212); (212)4(21)9]4[(22); (212)4]9 2 5 (3/0;5/0)
6 133 [(212); (212)4(21)9]7[(22); (212)4]6 2 5 (4/0;3/0)
7 4669 [(212); (212)4(21)9]1[(22); (312)(212)3]4[(22); (212)4]8 0 4 —
7 4670 [(212); (221)(212)12]1[(22); (221)(212)3]3[(22); (212)4]9 0 4 —
7 4671 [(212); (221)(212)3(22)9]1[(22); (221)(212)3]3[(22); (212)4]9 0 4 —
7 4672 [(212); (221)(212)3(22)9]1[(22); (221)(212)3]3[(22); (212)4]9 0 4 —
7 4673 [(212); (212)4(21)9]3[(212); (221)(212)3(22)9]1[(22); (221)(212)3]3[(22); (212)4]6 0 4 —
7 4674 [(212); (212)4(21)9]3[(212); (221)(212)12]1[(22); (221)(212)3]3[(22); (212)4]6 0 4 —
7 4675 [(212); (212)4(21)9]3[(212); (221)(212)3(22)9]1[(22); (221)(212)3]3[(22); (212)4]6 0 4 —
7 4661 [(212); (212)4(21)9]6[(212); (221)(212)12]1[(22); (221)(212)3]3[(22); (212)4]3 0 4 —
7 4662 [(212); (212)4(21)9]6[(212); (221)(212)3(22)9]1[(22); (221)(212)3]3[(22); (212)4]3 0 4 —
7 4663 [(212); (212)4(21)9]6[(212); (221)(212)3(22)9]1[(22); (221)(212)3]3[(22); (212)4]3 0 4 —
7 4664 [(212); (212)4(21)9]5[(212); (312)(212)3(31)9]2[(22); (312)(212)3]2[(22); (212)4]4 0 4 —
8 217710 [(212); (221)(212)12]1[(22); (312)3(221)]1[(22); (221)(212)3]2[(22); (312)(212)3]9 0 3 —
8 217711 [(212); (221)(212)3(22)9]1[(22); (312)3(221)]1[(22); (221)(212)3]2[(22); (312)(212)3]9 0 3 —
8 217712 [(212); (221)(212)3(22)9]1[(22); (312)3(221)]1[(22); (221)(212)3]2[(22); (312)(212)3]9 0 3 —
8 217713 [(212); (221)(212)3(22)9]4[(22); (221)(212)3]8[(22); (212)4]1 0 3 —
8 217714 [(212); (221)(212)3(22)9]2[(212); (221)(212)12]2[(22); (221)(212)3]8[(22); (212)4]1 0 3 —
8 217715 [(212); (221)(212)3(22)9]3[(212); (221)(212)12]1[(22); (221)(212)3]8[(22); (212)4]1 0 3 —
8 217716 [(212); (221)(212)3(22)9]1[(212); (221)(212)12]3[(22); (221)(212)3]8[(22); (212)4]1 0 3 —
8 217717 [(212); (221)(212)3(22)9]4[(22); (221)(212)3]8[(22); (212)4]1 0 3 —
8 217701 [(212); (312)(212)3(31)9]6[(212); (221)(212)12]1 0 3 —

[(22); (221)(212)3]2[(22); (312)(212)3]3[(22); (312)(221)3]1

8 217702 [(212); (312)(212)3(31)9]6[(212); (221)(212)3(22)9]1 0 3 —
[(22); (221)(212)3]2[(22); (312)(212)3]3[(22); (312)(221)3]1

8 217703 [(212); (312)(212)3(31)9]6[(212); (221)(212)3(22)9]1 0 3 —
[(22); (221)(212)3]2[(22); (312)(212)3]3[(22); (312)(221)3]1

id ∈ {4662, 4663} and two with identifiers id ∈ {4673, 4675} cannot be separated by α2.
Similarly for groups of order 38 = 6561, two with identifiers id ∈ {217702, 217703} and two
with identifiers id ∈ {217713, 217717} cannot be separated by α2.
So far, three or four AT-groups of order 38 = 6561 have been realized as 3-class tower groups
of cyclic cubic fields. Either ⟨6561, 217702⟩ or ⟨6561, 217703⟩ by the conductor c = 1 406 551,
either ⟨6561, 217713⟩ or ⟨6561, 217717⟩ by the conductors c = 689 347 and c = 869 611, and
⟨6561, 217710⟩ unambiguously by c = 753 787 and c = 796 779.

6.4. Realization as 3-class field tower groups. — Since the groups in Theorem 6.1
are non-σ groups, they cannot be realized by any quadratic field, neither imaginary nor
real. Therefore, we investigated the possible Galois actions (Table 4) on the five ancestors
A = SmallGroup(729, 130 + j). It turned out that the unique non-metabelian case j = 5 can
only be realized by cyclic cubic fields, j = 4 by cyclic quartic fields, and j ∈ {3, 6, 7} by
cyclic cubic or sextic fields. We show that certain metabelian descendants S for j ∈ {3, 6, 7}
can actually be realized as Galois groups Gal(F∞

3 (K)/K) ≃ S of maximal unramified pro-3-
extensions of cyclic cubic fields K with 53 conductors c in the OEIS sequence A359310 [43],
from 59 031 to 1 406 551, i.e., with 3-class group Cl3(K) ≃ (3, 3, 3) and HBC.

Theorem 6.8. — If a number field K/Q with 3-class group Cl3(K) ≃ (3, 3, 3) possesses the
Artin pattern (κ(K), α(K)) with κ(K) ∼ (9, 2, 3, 10, 8, 1, 12, 5, 6, 4, 11, 7, 13) as harmonically
balanced capitulation type and α(K) ∼ ((22)3, (211)2, 22, (211)4, 22, 211, 22) as abelian type
invariants, i.e., ρ = (37, 26), then K/Q must be cyclic cubic or sextic, and has a metabelian
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3-class field tower with automorphism group Gal(F∞
3 (K)/K) ≃

(20) ⟨6561, 217700 + i⟩, 1 ≤ i ≤ 3, or ⟨2187, 4660 + k⟩, 1 ≤ k ≤ 4, or ⟨729, 133⟩.

Theorem 6.9. — If a number field K/Q with 3-class group Cl3(K) ≃ (3, 3, 3) possesses
the Artin pattern (κ(K), α(K)) with harmonically balanced capitulation type κ(K) ∼
(11, 8, 3, 12, 5, 10, 1, 2, 7, 6, 13, 4, 9) and abelian type invariants α(K) ∼ ((22)5, 211, (22)7), i.e.,
ρ = (31, 212), then K/Q must be cyclic cubic or sextic, and has a metabelian 3-class field tower
with automorphism group Gal(F∞

3 (K)/K) ≃

(21) ⟨6561, 217700 + i⟩, 10 ≤ i ≤ 12, or ⟨2187, 4669 + k⟩, 0 ≤ k ≤ 3, or ⟨729, 136⟩.

Proof. — Theorems 6.8 and 6.9 are immediate consequences of the Tables 4 and 5. □

Conjecture 6.10. — If a number field K/Q with 3-class group Cl3(K) ≃ (3, 3, 3) pos-
sesses the Artin pattern (κ(K), α(K)) with κ(K) ∼ (13, 8, 3, 7, 2, 12, 9, 5, 4, 1, 10, 11, 6) as
harmonically balanced capitulation type and α(K) ∼ ((22)3, 211, 22, 211, 22, 211, (22)4, 211)
as abelian type invariants, i.e., ρ = (34, 29), then K/Q must be cyclic cubic or sextic, and
has a metabelian 3-class field tower with automorphism group Gal(F∞

3 (K)/K) ≃

(22) ⟨6561, 217700 + i⟩, 13 ≤ i ≤ 15, or ⟨2187, 4673 + k⟩, 0 ≤ k ≤ 2, or ⟨729, 137⟩.

For this situation, the Tables 4 and 5 admit descendants of ⟨36, 132⟩ and ⟨36, 135⟩ as addi-
tional candidates. But, so far, experience provides evidence that no such realizations occur.
Therefore we conjecture that this tendency will continue.

6.5. Galois structure of unramified cubic and nonic extensions. — The fundamen-
tal facts, on which the Galois structure of the lattice of intermediate fields Q < F < F1

3(K)
of the Hilbert 3-class field F1

3(K) of a cyclic cubic number field K with 3-class group
Cl3(K) ≃ (3, 3, 3) and conductor c = q1q2q3 with precisely three prime (power) divisors
qi ≡ +1 (mod 3), or qi = 32, is based, can be summarized as follows (see Figure 2):

– The absolute 3-genus field K∗ = (K/Q)∗ of K is the maximal unramified 3-extension of
K which is abelian over the rational field Q. In the situation with conductor c = q1q2q3,
its absolute Galois group is Gal(K∗/Q) ≃ (3, 3, 3), whence it also called the elementary
3-extension of K, and possesses 13 cyclic cubic subfields K1, . . . , K13, one of them K, and
13 bicyclic bicubic subfields B1, . . . , B13. The former consist of three singlets with partial
conductors q1, q2, q3, three doublets with partial conductors q1q2, q1q3, q2q3, and a quartet
with complete conductor c = q1q2q3. The exact constitution of the latter was analyzed by
Ayadi [7]: Three of them are sub-genus fields B11 = k∗

q1q2 , B12 = k∗
q1q3 , B13 = k∗

q2q3 with
conductors q1q2, q1q3, q2q3. Among the remaining ten, four contain K, namely, in Ayadi’s
notation [7, Lem. 4.1, p. 42],
B1 = Kkq1q2kq1q3kq2q3 , B5 = KK3kq1 k̃q2q3 , B6 = KK4kq2 k̃q1q3 , B7 = KK2kq3 k̃q1q2 .

– The Hilbert 3-class field F1
3(K) of K is the maximal abelian unramified 3-extension of K.

By Artin’s reciprocity law [5], its relative Galois group Gal(F1
3(K)/K) is isomorphic to

the 3-class group Cl3(K) ≃ (3, 3, 3) of K. Among the 13 cyclic cubic relative extensions
K < E1, . . . , E13 < F1

3(K), only four are abelian, namely the bicyclic bicubic fields
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Figure 2. Lattice of subfields

B1, B5, B6, B7 with absolute Galois group ⟨9, 2⟩. The remaining nine extensions are non-
Galois with Galois group Gal(Ēi/Q) ≃ ⟨27, 3⟩, i ∈ {1, 2, 3} of the splitting field Ēi/Ei,
arranged in three triplets,

(23) (E1, E′
1, E′′

1 ), (E2, E′
2, E′′

2 ), (E3, E′
3, E′′

3 ),

of three conjugate isomorphic fields each.

Three possible scenarios for the rank distribution ρ and abelian quotient invariants of the
first order α are summarized in Table 6, a number theoretic refinement of Table 4.
Now we turn to the correct selection of representatives Ri in isomorphism classes among the
unramified cyclic cubic relative extensions Ej/K, 1 ≤ j ≤ 13, and among the unramified
nonic but not necessarily Galois extensions Ej,ℓ/K, 1 ≤ j ≤ 13, 1 ≤ ℓ ≤ nj , nj ∈ {4, 13}, of
absolute degree 27, for a 3-class rank ϱj ∈ {2, 3} of Ej , respectively.
An unsophisticated way to determine the Artin pattern α2 of second order of a cyclic cubic
field K would be to construct the entire collection of the following extensions Ej,ℓ.
Recall that we have three possible scenarios, according to Table 4:
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Table 6. Three scenarios for the rank distribution

Scenario ρ α Extensions
B1 B5, B6, B7 E1, E′

1, E′′
1 E2, E′

2, E′′
2 E3, E′

3, E′′
3

(1) 31, 212 (211)1, (22)12 211 22, 22, 22 22, 22, 22 22, 22, 22 22, 22, 22
B1 E1, E′

1, E′′
1 B5, B6, B7 E2, E′

2, E′′
2 E3, E′

3, E′′
3

(2) 34, 29 (211)4, (22)9 211 211, 211, 211 22, 22, 22 22, 22, 22 22, 22, 22
B1 E1, E′

1, E′′
1 E2, E′

2, E′′
2 B5, B6, B7 E3, E′

3, E′′
3

(3) 37, 26 (211)7, (22)6 211 211, 211, 211 211, 211, 211 22, 22, 22 22, 22, 22

1. the rank distribution 31, 212, equivalently the Taussky types A1, B12, with 1 ·13 + 12 ·4 =
13 + 48 = 61 unramified nonic but not necessarily Galois extensions Ej,ℓ/K;

2. the rank distribution 34, 29, equivalently the Taussky types A4, B9, with 4 · 13 + 9 · 4 =
52 + 36 = 88 unramified nonic but not necessarily Galois extensions Ej,ℓ/K;

3. the rank distribution 37, 26, equivalently the Taussky types A7, B6, with 7 · 13 + 6 · 4 =
91 + 24 = 115 unramified nonic but not necessarily Galois extensions Ej,ℓ/K.

We avoid the computation of 61, respectively 88, respectively 115, extensions Ej,ℓ and their
3-class groups Cl3(Ej,ℓ) by using isomorphisms to representatives Ri ≃ Ej,ℓ.
Firstly, we only need seven extensions (Table 7), the four abelian B1, B5, B6, B7 and three
non-Galois Ej , one of each triplet of three isomorphic fields, in the first layer of unramified
cyclic cubic relative extensions E1, . . . , E13 of K, which are of absolute degree 9. Their 3-class
groups [Cl3(Ej)]13

j=1 constitute the Artin pattern α(K) = α1(K) of first order of K.
(In the column #, the symbol n/m denotes n conjugacy classes with m members each.)

Table 7. Isomorphisms and representatives among extensions of degree 9

Sc. ρ # Rep. Abelian # Rep. Non-Galois Census
(1) 31, 212 1 1 B1 212, ⟨9, 2⟩ Rep. 1 + 3 + 3 = 7

12 3 B5, B6, B7 22, ⟨9, 2⟩ 3/3 E1, E2, E3 22, ⟨27, 3⟩ Tot. 1 + 3 + 9 = 13
(2) 34, 29 4 1 B1 212, ⟨9, 2⟩ 1/3 E1 212, ⟨27, 3⟩ Rep. 1 + 1 + 3 + 2 = 7

9 3 B5, B6, B7 22, ⟨9, 2⟩ 2/3 E2, E3 22, ⟨27, 3⟩ Tot. 1 + 3 + 3 + 6 = 13
(3) 37, 26 7 1 B1 212, ⟨9, 2⟩ 2/3 E1, E2 212, ⟨27, 3⟩ Rep. 1 + 2 + 3 + 1 = 7

6 3 B5, B6, B7 22, ⟨9, 2⟩ 1/3 E3 22, ⟨27, 3⟩ Tot. 1 + 6 + 3 + 3 = 13

Secondly, among the fields of absolute degree 27 in the second layer, we can restrict our class
group computations to

1. eight for the first scenario with rank distribution (31, 212),

2. eleven for the second scenario with rank distribution (34, 29), and

3. fourteen for the third scenario with rank distribution (37, 26) (Table 8).

For each scenario, only the 3-genus field K∗ =: R1 is abelian with absolute Galois group
⟨27, 5⟩, the other fields may be Galois with group ⟨27, 3⟩ or non-Galois with various groups
of the splitting field: ⟨729, 411⟩ for ρ = (34, 29) or ρ = (37, 26), and ⟨81, 12⟩, ⟨243, 58⟩ for
all scenarios. Their 3-class groups [(Cl3(Ej,ℓ))

nj

ℓ=1]13
j=1 constitute the Artin pattern α2(K) of

second order of K.
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Table 8. Isomorphisms and representatives among extensions of degree 27

Sc. ρ # Rep. Abelian # Rep. Galois # Rep. Non-Galois
(1) 31, 212 1 1 R1 ⟨27, 5⟩ 3 R2, R3, R4 ⟨27, 3⟩ 1/9 R8 ⟨243, 58⟩

3 3 R1 ⟨27, 5⟩ 3/3 R5, R6, R7 ⟨81, 12⟩
9 9 R2, R3, R4 ⟨27, 3⟩ 9/3 R5, R6, R7 ⟨81, 12⟩

Subtotal 4 12 45 Total 4 + 12 + 45 = 61
(2) 34, 29 1 1 R1 ⟨27, 5⟩ 3 R2, R3, R4 ⟨27, 3⟩ 1/9 R8 ⟨243, 58⟩

3 3 R2 ⟨27, 3⟩ 3/3 R5, R6, R7 ⟨81, 12⟩
3/9 R9, R10, R11 ⟨729, 411⟩

3 3 R1 ⟨27, 5⟩ 3/3 R5, R6, R7 ⟨81, 12⟩
6 6 R3, R4 ⟨27, 3⟩ 6/3 R5, R6, R7 ⟨81, 12⟩

Subtotal 4 12 72 Total 4 + 12 + 72 = 88
(3) 37, 26 1 1 R1 ⟨27, 5⟩ 3 R2, R3, R4 ⟨27, 3⟩ 1/9 R8 ⟨243, 58⟩

3 3 R2 ⟨27, 3⟩ 3/3 R5, R6, R7 ⟨81, 12⟩
3/9 R9, R10, R11 ⟨729, 411⟩

3 3 R3 ⟨27, 3⟩ 3/3 R5, R6, R7 ⟨81, 12⟩
3/9 R12, R13, R14 ⟨729, 411⟩

3 3 R1 ⟨27, 5⟩ 3/3 R5, R6, R7 ⟨81, 12⟩
3 3 R4 ⟨27, 3⟩ 3/3 R5, R6, R7 ⟨81, 12⟩

Subtotal 4 12 99 Total 4 + 12 + 99 = 115

7. Computations

The computations were performed using the PARI/GP [38] computer algebra system. The
two most important steps are the computations of class groups and unit groups (performed by
the GP function bnfinit) and the computations of class fields (performed by the GP function
bnrclassfield). A call to bnrclassfield for a field uses Kummer theory and requires calls
to bnfinit for both the field and its extension by the third roots of unity (in our case). So
the actual computation consists of these steps, starting from a suitable cyclic cubic field:

1. compute the class group and unit group of the cubic field

2. compute the class group and unit group of the cubic field extended with the 3-root of
unity

3. compute class fields of degree 9

4. for each class field,
(a) compute its class group and unit group
(b) compute the class group and unit group of the field extended with the 3-root of unity
(c) compute class fields of degree 27
(d) compute the class groups of each class fields.

As a result, for each cyclic cubic field, we need to call bnfinit on one field of degree 3, one
field of degree 6, 7 fields of degree 9, 7 fields of degree 18, and either 8, 11 or 14 non-isomorphic
fields of degree 27.
The function bnfinit is an implementation of Buchmann subexponential algorithm for class
groups and unit groups [13] by Cohen–Diaz–Olivier [15], [14]. It is based on searching relations
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between ideals in a set of prime ideals that generates the class group, and is correct under
the assumption of the Riemann hypothesis for all Hecke L-functions attached to non-trivial
characters of the ideal class group [10].
This computation was done with a specially-tuned, parallel version of this function. The set of
primes is chosen by applying Grenié–Molteni [19] improvement to Belabas–Diaz–Friedman [9]
criterion to find a small set of primes generating the class group (under GRH). It proceeds by
searching in parallel for smooth elements in the ideals obtained by applying LLL-reduction
to the ideals p6q for all pairs of ideals (p, q) in the set, and looking for small vectors for
the T2 quadratic form (the sum of the square of the absolute value of the conjugates). The
tuning parameters decide how far the program will search in each such ideal. It was regu-
larly increased to account for the increase in the fields discriminant over the course of the
computation. While the units are not required for the fields of degree 27, we still used the
compact units representation of units because precision increases would be parallelised and
were less expensive than with the logarithmic embedding representation. The program was
run on several 128-core CPU with 1TB of RAM over the course of several months, using the
internal POSIX threads parallel engine of PARI/GP.
Independently of the GRH assumption, any computer calculation can be incorrect due to
hardware or software errors. To alleviate this, we checked the internal coherency of the data
and their agreement with the theory, which was always perfect. Further we rechecked the
computations leading to groups of order 6561, using different computers and different tuning
parameters, including increasing the set of primes. Due to this, even if the Riemann hypothesis
does not hold for some of the relevant L-functions, the result would likely still be correct.

8. Historical remarks

In April 2002, the second author used the Voronoi algorithm [45], implemented in Delphi
(Object Pascal), and the Euler product method in order to compute the 15851 cyclic cubic
fields K with conductors cK/Q < 105 and their class numbers, which cover the range 1 ≤
hK ≤ 1953. Among the fields, 4785 occur as singlets, 7726 in doublets, 3132 in quartets, and
208 in octets. Twenty years later, in July 2022, the second author confirmed these results,
extended by the class group structures Cl(K) under the GRH. The cyclic cubic fields K
were constructed as ray class fields over the rational number field, using Fieker’s class field
theoretic routines [16] in MAGMA [23]. Additionally, he constructed the 13 unramified cyclic
cubic relative extensions Ej/K of absolute degree 9, whenever the 3-class group of K was
Cl3(K) ≃ (3, 3, 3), which was the primary goal for the reconstruction [34] in view of the
intended realization of Andozhskii–Tsvetkov (AT-)groups with HBC.
In January 2023, both authors started a computationally extremely challenging search for
cyclic cubic fields K with HBC and conductors 105 < c < 3 · 106. Since the 3-class tower
group Gal(F∞

3 (K)/K) can only be identified by AQI of second order (Table 5), the first
author constructed the unramified cyclic cubic relative extensions Ej,ℓ/Ej of absolute degree
27 and the class groups Cl(Ej,ℓ), 1 ≤ j ≤ 13, 1 ≤ ℓ ≤ nj , under the GRH, forming the Artin
pattern α2 of second order,
(24) α2(K) := [Cl(Ej); (Cl(Ej,ℓ))

nj

ℓ=1]13
j=1.

Here, 1 ≤ ℓ ≤ 4, nj = 4, when Cl3(Ej) ≃ (22) =̂ (9, 9), and 1 ≤ ℓ ≤ 13, nj = 13, when
Cl3(Ej) ≃ (212) =̂ (9, 3, 3). Since this was impossible even on bigger workstations, due to the
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required RAM storage and CPU time, the first author had to employ super computers with
128 cores and 1TB RAM, which enabled highly parallel processes with PARI/GP [38] under
the GRH. Prototypes with minimal conductors c in boldface font, realizing the vertex as
3-class field tower group, are visualized in surrounding ovals in Figure 3, which is similar to
Figure 1, but restricted to AT-groups and their ancestors and siblings.

9. Invariants of realizing cyclic cubic fields

In Table 9, we present all 37 conductors c < 106, and a few c > 106, of the OEIS sequence
A359310 [43].
The table gives the prime factors of c (admitting also the prime power 32 = 9) with graphs
q2 ← q1 → q3. They give rise to quartets of cyclic cubic number fields (K1, K2, K3, K4) with
3-class groups Cl3(K1) ≃ (3, 3, 3) and Cl3(Ki) ≃ (3, 3) for 2 ≤ i ≤ 4. The rank distribution
of the first order Artin pattern of K := K1 with respect to the 13 unramified cyclic cubic
extensions Ej/K is given by

(25) ρ(K) := ( rank3(Cl3(Ej)) )13
j=1,

denoted with symbolic exponents which indicate iteration. Finally, the unique or ambiguous
candidate for the metabelian 3-class tower group Gal(F∞

3 (K)/K) is given by its absolute
identifier in the SmallGroups database [11, 12, 22] (a vertical bar | means “or”).

10. Conclusion

Generally, our investigation of the 3-class field tower of cyclic cubic fields K with elementary
tricyclic 3-class group Cl3(K) ≃ (3, 3, 3) is a striking novelty [34]. Similar attempts with
imaginary quadratic fields of type (3, 3, 3), where all capitulation kernels are of order #L = 3
(lines), but not harmonically balanced, successfully yielded the Artin pattern AP = (α,κ)
by means of arithmetic computations [26, §7.2, Tbl. 2–4, pp. 308–311] but were doomed to
group theoretic failure, since the order of relevant groups is at least 331 and the complexity
of descendant trees became unmanageable [26, §7.4, p. 312], [27, §10, p. 54], [31, Thm. 8.2,
p. 174], [29, §8, pp. 98–99], [30, §2, Example, p. 6]. Therefore, we are delighted that cyclic
cubic fields of type (3, 3, 3) impose much less severe requirements on the second 3-class group
M = Gal(F2

3(K)/K), since capitulation kernels of order #P = 9 (planes) and even #O = 27
(full space) are admissible [34]. However, in the present work our attention is devoted to
cyclic cubic fields with harmonically balanced capitulation (HBC), where all transfer kernels
are of order #L = 3 (lines), but relevant groups set in at order 36 = 729 already (Table 4).
Our foremost target was the realization of closed Andozhskii–Tsvetkov groups (AT-groups) S
with coinciding generator- and relation-rank d2(S) = d1(S).
The main results concerning the realization of closed AT-groups S of order #S = 38 = 6561
Theorem 6.1, their ancestors A of order #A = 36 = 729 Corollary 6.2, and their siblings G of
order #G = 37 = 2187 Corollary 6.6 by Galois groups of maximal unramified pro-3-extensions
of cyclic cubic fields are illustrated in Figure 3, where prototypes of cyclic cubic number fields
K with minimal conductors c in boldface font are visualized in ovals surrounding the group
Gal(F∞

3 (K)/K) with HBC.
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Table 9. Conductors of cyclic cubic number fields with HBC

No. c q2 ← q1 → q3 ρ Gal(F∞
3 (K)/K) Thm./Cnj.

1 59 031 32 ← 937→ 7 (31, 212) ⟨2187, 4670⟩ 6.9
2 209 853 32 ← 3331→ 7 (37, 26) ⟨729, 133⟩ 6.8
3 247 437 32 ← 19→ 1447 (31, 212) ⟨729, 136⟩ 6.9
4 263 017 109← 19→ 127 (37, 26) ⟨729, 133⟩ 6.8
5 271 737 32 ← 109→ 277 (34, 29) ⟨729, 137⟩ 6.10
6 329 841 67← 32 → 547 (31, 212) ⟨729, 136⟩ 6.9
7 377 923 7← 13→ 4153 (31, 212) ⟨729, 136⟩ 6.9
8 407 851 37← 73→ 151 (37, 26) ⟨729, 133⟩ 6.8
9 412 909 7← 967→ 61 (31, 212) ⟨729, 136⟩ 6.9

10 415 597 7← 13→ 4567 (31, 212) ⟨2187, 4670⟩ 6.9
11 416 241 32 ← 6607→ 7 (31, 212) ⟨729, 136⟩ 6.9
12 416 727 32 ← 19→ 2437 (34, 29) ⟨2187, 4673|4675⟩ 6.10
13 462 573 103← 32 → 499 (37, 26) ⟨2187, 4662|4663⟩ 6.8
14 474 561 67← 32 → 787 (34, 29) ⟨729, 137⟩ 6.10
15 487 921 7← 43→ 1621 (34, 29) ⟨2187, 4673|4675⟩ 6.10
16 493 839 32 ← 37→ 1483 (31, 212) ⟨2187, 4670⟩ 6.9
17 547 353 61← 32 → 997 (34, 29) ⟨2187, 4673|4675⟩ 6.10
18 586 963 163← 13→ 277 (31, 212) ⟨729, 136⟩ 6.9
19 612 747 103← 32 → 661 (37, 26) ⟨729, 133⟩ 6.8
20 613 711 73← 7→ 1201 (34, 29) ⟨729, 137⟩ 6.10
21 615 663 67← 32 → 1021 (34, 29) ⟨729, 137⟩ 6.10
22 622 063 13← 109→ 439 (31, 212) ⟨2187, 4670⟩ 6.9
23 648 427 13← 31→ 1609 (34, 29) ⟨729, 137⟩ 6.10
24 651 829 37← 223→ 79 (34, 29) ⟨729, 137⟩ 6.10
25 689 347 37← 31→ 601 (34, 29) ⟨6561, 217713|217717⟩ 6.10
26 690 631 19← 163→ 223 (34, 29) ⟨729, 137⟩ 6.10
27 753 787 97← 19→ 409 (31, 212) ⟨6561, 217710⟩ 6.9
28 796 779 32 ← 397→ 223 (31, 212) ⟨6561, 217710⟩ 6.9
29 811 069 7← 1063→ 109 (31, 212) ⟨729, 136⟩ 6.9
30 818 217 32 ← 397→ 229 (31, 212) ⟨729, 136⟩ 6.9
31 869 611 19← 37→ 1237 (34, 29) ⟨6561, 217713|217717⟩ 6.10
32 914 263 7← 211→ 619 (37, 26) ⟨729, 133⟩ 6.8
33 915 439 19← 7→ 6883 (34, 29) ⟨2187, 4673|4675⟩ 6.10
34 922 167 32 ← 1297→ 79 (31, 212) ⟨729, 136⟩ 6.9
35 936 747 32 ← 14869→ 7 (37, 26) ⟨2187, 4662|4663⟩ 6.8
36 977 409 32 ← 487→ 223 (34, 29) ⟨729, 137⟩ 6.10
37 997 087 7← 13→ 10957 (34, 29) ⟨729, 137⟩ 6.10
40 1 083 607 7← 547→ 283 (37, 26) ⟨729, 133⟩ 6.8
43 1 181 971 19← 7→ 8887 (37, 26) ⟨729, 133⟩ 6.8
49 1 295 329 7← 211→ 877 (37, 26) ⟨729, 133⟩ 6.8
50 1 323 007 331← 7→ 571 (37, 26) ⟨729, 133⟩ 6.8
53 1 406 551 181← 19→ 409 (37, 26) ⟨6561, 217702|217703⟩ 6.8
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