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PRISMATIC F -CRYSTALS AND E-CRYSTALLINE GALOIS
REPRESENTATIONS

by

Dat Pham

Abstract. — Let K be a complete discretely valued field of mixed characteristic (0, p) with perfect
residue field, and let E be a finite extension of Qp contained in K. We show that the category of prismatic
F -crystals on OK (relative to E in a suitable sense) is equivalent to the category of OE-lattices in E-
crystalline GK-representations introduced by Kisin–Ren, extending a previous result of Bhatt–Scholze in
the case E = Qp. As a key ingredient in the proof, by adapting a lemma of Du–Liu we prove a general
full faithfulness result for certain vector bundles on the prismatic site, which simplifies and refines the
key descent step in the approach of Bhatt–Scholze without invoking the Beilinson fibre sequence.

Résumé. — Soit K/Qp un corps complet à valeurs discrètes avec corps résiduel parfait, et soit E une
extension finie de Qp contenue dans K. Nous montrons que la catégorie des F -cristaux prismatiques sur
OK (relativement à E dans un sens approprié) est équivalente à la catégorie des OE-réseaux dans les
GK-représentations E-cristallines introduite par Kisin–Ren, étendant un résultat précédent de Bhatt–
Scholze dans le cas E = Qp. Comme ingrédient clé de la preuve, en adaptant un lemme de Du–Liu, nous
prouvons un résultat général de pleine fidélité pour certains fibrés vectoriels sur le site prismatique, ce
qui simplifie et raffine une étape clé dans l’approche de Bhatt–Scholze sans invoquer la séquence de fibres
de Beilinson.

1. Introduction

Let K/Qp be a completed discrete valued extension with perfect residue field k of characteris-
tic p > 0, fixed completed algebraic closure C, and absolute Galois group GK . An important
aspect of integral p-adic Hodge theory is the study of lattices in crystalline (or more gen-
erally, semistable) GK-representations. There have been various (partial) classifications of
such lattices, including Fontaine–Laffaille’s theory [20], Breuil’s theory of strongly divisible
S-lattices [9], and Kisin’s theory of Breuil–Kisin modules [26]. In [8], Bhatt and Scholze give
a site-theoretic description of such lattices, which has the nice feature that it can recover
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60 Prismatic F -crystals and E-crystalline Galois representations

many of the previous classifications by “evaluating” suitably. To recall their result, let (OK)∆
denote the absolute prismatic site of OK ; this comes equipped with a structure sheaf O∆, a
“Frobenius” φ : O∆ → O∆, and an ideal sheaf I∆ ⊆ O∆.

Definition 1.1. — A prismatic F -crystal on OK is a crystal of vector bundles on
the ringed site ((OK)∆,O∆) equipped with an isomorphism (φ∗E)[1/I∆] ≃ E [1/I∆];
denote by Vectφ((OK)∆,O∆) the resulting category. Similarly, we obtain the category
Vectφ((OK)∆,O∆[1/I∆]∧p ) of so-called Laurent F -crystals.

In the statement below, RepZp
(GK) denotes the category of finite free Zp-modules T equipped

with a continuous GK-action, and Repcris
Zp

(GK) denotes the subcategory spanned by those T

for which T [1/p] is crystalline.

Theorem 1.2 ([8]1). — There is a commutative diagram

Vectφ((OK)∆,O∆) Repcris
Zp

(GK)

Vectφ((OK)∆,O∆[1/I∆]∧p ) RepZp
(GK).

≃

≃

Here the vertical embeddings are given by the obvious maps; the horizontal equivalences are
induced by evaluating on the Fontaine’s prism Ainf ,the so-called étale realization functor.

Motivated by our studies of the stacks of Lubin–Tate (φ, Γ)-modules in [31], it is natural to ask
if there is a variant of Theorem 1.2 for coefficient rings other than Zp. More specifically, let E
be a finite extension of Qp with residue field Fq and a fixed uniformizer π; we are interested in
crystalline representations of GK on finite dimensional E-vector spaces (or rather, GK-stable
OE-lattices in such).

Hypothesis 1.3. — We assume throughout that there is an embedding τ0 : E ↪→ K, which
we will fix once and for all.

Definition 1.4 ([27]). — An E-linear representation V of GK is called E-crystalline if it
is crystalline (as a Qp-representation), and the C-semilinear representation

⊕
τ ̸=τ0 V ⊗E,τ C

is trivial2.

A natural source of such representations comes from the rational Tate modules of π-divisible
OE-modules over OK (see Lemma 4.22). Moreover, just as in the case E = Qp, E-crystalline
representations can be classified using weakly admissible filtered φq-modules over K. In fact,
the above notion is indeed a natural extension of the usual notion in the sense that there
is a natural period ring Bcris,E with the property that an E-linear representation V is E-
crystalline if and only if V ⊗E Bcris,E is trivial as a Bcris,E-semilinear representation (cf.
Theorem 2.3).
Using the theory of Lubin–Tate (φ, Γ)-modules, Kisin–Ren give a classification of the category
of Galois stable lattices in E-crystalline representations of GK (under a condition on the

1The bottom horizontal equivalence was obtained independently by Z. Wu [33].
2This is not quite the original definition in [27], but can be easily seen to be equivalent to it (see Lemma 2.2
below).
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ramification of K) [27, Theorem (0.1)], generalizing the earlier classification in terms of Wach
modules by Wach, Colmez and Berger (cf. [3]).
In another direction, in [30] Marks defines a variant of the (absolute) prismatic site (OK)∆,OE

of OK “relative to OE”, using the notion of OE-prisms3, a mild generalization of prisms: they
are roughly OE-algebras A equipped with a lift φq : A→ A of the q-power Frobenius modulo
π together with a Cartier divisor I of Spec(A) satisfying π ∈ (I, φq(I)). It is shown in [30]
that the étale realization functor again defines an equivalence

T : Vectφq ((OK)∆,OE
,O∆[1/I∆]∧p ) ≃ RepOE

(GK).

In this paper, we push this analogy further by showing the following extension of Theorem 1.2.

Theorem 1.5 (Theorem 4.6). — The étale realization functor ind uces an equivalence
T : Vectφq ((OK)∆,OE

,O∆) ≃ Repcris
OE

(GK),

where the target denotes the category of Galois stable OE-lattices in E-crystalline represen-
tations of GK .

As will be explained in Section 4.5 below, by evaluating at a suitable prism in (OK)∆,
Theorem 1.5 encodes the main equivalence from Kisin–Ren’s work [27].
Finally, by combining Theorem 1.5 with a key result from [1] (generalized to the “OE-context”
in [22]), we deduce the following classification of π-divisible OE-modules over OK .

Theorem 1.6 (Theorem 4.23). — There is a natural equivalence between the category
of π-divisible OE-modules over OK and the category of minuscule Breuil–Kisin modules
over SE.

1.1. Sketch of the proof of Theorem 1.5. — As alluded to above, an important obser-
vation is that the condition of being E-crystalline can be characterized in a manner similar
to the usual notion for E = Qp. Namely, there is a natural period ring Bcris,E with the prop-
erty that an E-linear representation V is E-crystalline if and only if V ⊗E Bcris,E is trivial
as a Bcris,E-representation; see Theorem 2.3. Once this is justified, that the étale realization
functor is well-defined and fully faithful can be proved in exactly the same way as in [8]. For
essential surjectivity, we again follow largely the proof in [8]; the main difference here is that
instead of invoking the Beilinson fibre sequence from [2] for the key descent step, we are able
to prove the following more general result by adapting a key lemma from [15].

Proposition 1.7 (Theorem 4.14). — Let (A, (d)) be a transversal OE-prism. Then the
base change

Vectφq (A)[1/π] −→ Vectφq (A⟨d/π⟩[1/π])
is fully faithful; here the source denotes the isogeny category of Vectφq (A).

We regard Proposition 1.7 as a result of independent interest. For instance, as mentioned
above, by specializing to the prism A = ∆OC⊗̂OK

OC
, this recovers (and refines) Proposi-

tion 6.10 in [8]. Furthermore, by specializing to a Breuil–Kisin prism (S, I), this recovers the
embedding

Vect(φ,N)(S)[1/p] ↪−→ Vect(φ,N)(O)

3These are called E-typical prisms in [30].
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62 Prismatic F -crystals and E-crystalline Galois representations

from [26, Lemma 1.3.13] without using Kedlaya’s results on slope filtrations; here O denotes
the ring of functions on the rigid open unit disk over K0.
The proof of Proposition 1.7 proceeds by first reducing to the case of finite free modules. In
this case, by working with matrices for the φq-actions, we reduce to showing that if

dhY = Bφq(Y )C

with h ≥ 0, Y ∈ Md(A⟨d/π⟩) and B, C ∈ Md(A), then Y ∈ Md(A[1/π]). Here the idea (due
to Du–Liu) is to approximate d-adically Y by matrices in Md(A). This is possible thanks to
the following variant of [15, Lemma 2.2.10] on the contracting effect of the Frobenius on the
d-adic filtration on A⟨d/π⟩.

Lemma 1.8 (Lemma 4.11). — Let (A, (d)) be a transversal OE-prism. Then given any
h ≥ 0,

φq(dmA⟨d/π⟩) ⊆ A + dm+hA⟨d/π⟩
for all m≫ 0 (depending only on h).

We now detail the organization of the chapter. In Section 2, we recall the definition of E-
crystalline representations from [27], and then in the appendix, following [19, Chapitre 10],
we interpret it in terms of vector bundles on the Fargues–Fontaine curve (Proposition A.13).
In particular, we show that the category of E-crystalline representations of GK is equivalent
to the category of weakly admissible filtered φq-modules over K, and moreover that being
E-crystalline is equivalent to being Bcris,E-admissible for a natural period ring Bcris,E . In
Section 3, we adapt some constructions from [26] to the present context. Next, in Section 4, we
review briefly the notion of OE-prisms and define the étale realization functor in Theorem 1.2.
Full faithfulness is then addressed in Subsection 4.3. Subsection 4.4 begins with some further
ring-theoretic properties of transversal prisms, culminating with the proof of Proposition 4.14,
which is then used in the proof of essential surjectivity. Finally, in the last two subsections,
we briefly discuss an application of Theorem 1.5 to the theory of π-divisible OE-modules over
OK as well as its relation with Kisin–Ren’s classification in [27].

Acknowledgements. — I would like to thank my advisors Bao Le Hung and Stefano Morra
for their continuous support during the preparation of this paper. I would also like to thank
Tong Liu for making me aware of the paper [10]. Finally, I am grateful to the referee for their
helpful suggestions which help improve the readability of the paper.

2. E-crystalline Galois representations

2.1. Definitions. — Recall again that we have fixed throughout an embedding τ0 : E ↪→ K;
a general embedding E ↪→ C will be typically denoted by τ . Let V be an E-linear represen-
tation of GK which is crystalline (in the usual sense, i.e., as a Qp-linear representation).
Then

DdR(V ) := (V ⊗Qp BdR)GK

is naturally a finite free E ⊗Qp K-module equipped with a (finite, separated, exhausted)
filtration by E ⊗Qp K-submodules (whose associated graded pieces are finite projective, but
Publications mathématiques de Besançon – 2025
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not necessarily of constant rank, or equivalently, free). In particular, there is a decomposition

DdR(V ) =
∏
m

DdR(V )m(1)

where m runs over the (finite) set of maximal ideals in E ⊗Qp K.
The following definition was given by Kisin–Ren [27].

Definition 2.1. — V is called E-crystalline if (it is crystalline and) the induced filtration
on DdR(V )m is trivial for all m ̸= m0, where m0 denotes the maximal ideal corresponding to
the multiplication map K ⊗Qp E→→K defined by the embedding τ0.

Lemma 2.2. — Let V be a crystalline E-linear representation of GK . Then V is E-
crystalline if and only if

⊕
τ ̸=τ0 V ⊗E,τ C is trivial as a C-semilinear representation of GK

4.

Here the action of g ∈ GK on
⊕

τ ̸=τ0 V ⊗E,τ C is given by the maps 1 ⊗ g : V ⊗E,τ C →
V ⊗E,gτ C. (Note that the diagonal action of GK on V ⊗E,τ C is not well-defined in general:
the map τ : E ↪→ C is not GK-equivariant unless τ(E) ⊆ K.)

Proof. — Recall that the filtration on DdR(V ) satisfies gri DdR(V ) ≃ (V ⊗Qp C(i))GK for each
i. Thus using the decomposition V ⊗Qp C =

∏
τ V ⊗E,τ C, one can check that gri DdR(V )m = 0

for all i ̸= 0 and m ̸= m0 if and only if the C-semilinear representation W :=
⊕

τ ̸=τ0 V ⊗E,τ C

satisfies (W ⊗C C(i))GK = 0 for all i ̸= 0. As W is Hodge–Tate (being a quotient of the
Hodge–Tate representation V ⊗Qp C), this amounts precisely to saying that W is trivial. □

2.2. Relation with filtered isocrystals. — For our purpose of proving Theorem 1.5, the
following equivalent characterizations of the category of E-crystalline Galois representations
will be fundamental. Before stating the result, we introduce the crysalline period ring in our
context.

Notation. — Let Bcris,E denote Fontaine’s crystalline period ring defined using E and
τ0 : E ↪→ K ⊆ C. More precisely, let Ainf,E := WOE

(O♭
C) (defined using the embedding τ0),

and let Acris,E be the π-completed OE-PD envelope of Ainf,E with respect to the kernel of
the Fontaine’s map θE : Ainf,E →→OC , i.e. Acris,E is the π-adic completion of the subring

Ainf,E [ξqn
/π1+q+...+qn−1

, n ≥ 1] ⊆ Ainf,E [1/π],

where ξ is one (or, any) generator of ker(θE). We then let B+
cris,E := Acris,E [1/π] and Bcris,E :=

B+
cris,E [1/tE ]5. These will play the roles of the usual crystalline period rings in the story over

Qp. (As the notation suggests tE is the analogue of the usual element t = log([ϵ]) (the “2πi
of Fontaine”) in our “OE-context”; see Appendix A for more details.)

Theorem 2.3 (Remark A.15, Theorem A.19). —

(1) Let V ∈ RepE(GK). Then V is E-crystalline if and only if V ⊗E Bcris,E is trivial as a
Bcris,E-semilinear representation of GK .

4This latter condition is called “E-analytic” in many references (see e.g. [5]); we have decided to use the
original term “E-crystalline” of Kisin–Ren to avoid potential confusion.
5In [27], Bcris,E denotes the ring Bcris ⊗E0 E; these are in general different rings.
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64 Prismatic F -crystals and E-crystalline Galois representations

(2) The functor

Dcris,E : V 7−→ (V ⊗E Bcris,E)GK

defines an equivalence from the category of E-crystalline representations of GK onto the
category of weakly admissible filtered φq-modules.

(We refer the reader to Appendix A for the notion of (weakly admissible) filtered φq-modules,
which is simply a straightforward extension of the usual notion.)
Our proof of Theorem 2.3 rests on the realization of the relevant objects as certain vector
bundles on the Fargues–Fontaine curve (associated to E and the embedding τ0). Since this
will require a digression on the Fargues–Fontaine curve which has little do to with the rest
of the chapter, we defer the proof to Appendix A.

Remark 2.4. — The above equivalence between E-crystalline representations of GK and
weakly admissible filtered φq-modules is presumably standard, although we cannot find a
reference which explicitly states it. We can deduce it more directly (as an abstract equivalence)
by combining the usual equivalence for E = Qp with a standard passage from φ-modules to
φq-modules (cf. [27, Section 3.3]). Here we prefer the more geometric perspective via the
Fargues–Fontaine curve as it gives an explicit recipe for the equivalence as above, and also
makes the analogy with the usual case E = Qp more transparent6.

3. Theory of Breuil–Kisin modules

In this section, we adapt some constructions from [26] to the “OE-context”. We note that
in [10], Cais and Liu have extended a large part of the theory in [26] to accommodate more
general coefficient rings and lifts of Frobenius. In particular, we do not claim originality in
this part. However, in our present context (corresponding to the Frobenius lift f(u) = uq)
much of the discussion in [10] simplifies, and we can present the material largely in parallel
with [26].

3.1. Preliminaries. — We fix once and for all a uniformizer πK ∈ K. Let E(u) ∈WOE
(k)[u]

be the Eisenstein polynomial of πK over K0,E . Let SE := WOE
(k)[[u]] and note φq : SE →

SE the ring map that extends the Frobenius in WOE
(k) and sends u to uq. The map

θ̃ : SE →→OK , u 7→ πK is surjective with kernel I = (E(u)).
Let ∆ := Spa(SE)−{π = 0} be the adic generic fiber of Spa(SE) over K0,E ; this is the adic
open unit disk over K0,E . Let O be the ring of functions on X. As ∆ is an increasing union
of the rational opens Un := {|φn

q (E(u))| ≤ |π| ≠ 0} = {|ueqn | ≤ |π| ≠ 0} for n ≥ 0, we have

O = lim←−
n

SE

〈
φn

q (E(u))
π

〉
[1/π](2)

=
⋂

n≥0
K0,E

〈
ueqn

π

〉
inside K0,E [[u]].(3)

6It also seems to suggest the idea that in order to treat all E-linear crystalline (i.e. not necessarily E-crystalline)
representations of GK , one should consider modifications of vector bundles on the Fargues–Fontaine curve XE

at finitely many points (rather than just one point as in the case E = Qp).
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Recall that by the work of Lazard [28] that each K0,E⟨ueqn
/π⟩ is a PID and O is a Bézout

domain. In particular, finite projective modules over O are free (see e.g. [23, Proposition 2.5]).
Moreover, base change defines an equivalence

Vect(O) ≃ lim
n

Vect(SE⟨ueqn
/π⟩[1/π]).

Denote again by φq : O → O the map induced by φq on SE . For n ≥ 0, let xn ∈ ∆ be the
unique point where φn

q (E(u)) vanishes, i.e. xn : SE → SE/φn
q (E(u))[1/π] =: Kn. Let Ŝn

denote the complete local ring of ∆ at xn; this is a complete DVR with uniformizer φn
q (E(u)),

residue field Kn, and fraction field Fr(Ŝn) = Ŝn[1/φn
q (E(u))].

As E(u)/E(0) ∈ SE [1/π] has constant term 1, the infinite product

λ :=
∏
n≥0

φn
q (E(u)/E(0)).

is well-defined as an element in O. By design, λ has a simple root at each xn.

Definition 3.1. — A φ-module (of finite height) over SE is a finite free SE-module M
equipped with an isomorphism

(φ∗
qM)[1/E(u)] ≃M[1/E(u)].

We denote by Vectφ(S) the category of φ-modules over S. In analogy with the case E = Qp,
we will often refer to objects in Vectφ(S) as Breuil–Kisin modules over SE .
Similarly, we let Vectφ(O) denote the category of φ-modules over O, i.e. finite free O-modules
M equipped with an isomorphism (φ∗

qM)[1/E(u)] ≃M[1/E(u)].

Lemma 3.2 (Analytic continuation of φ-modules to the open unit disk). — Base
change defines an equivalence of categories

Vectφq (O) ≃ Vectφq (SE⟨E(u)/π⟩[1/π]).

Proof. — This is an application of the Frobenius pullback trick. More precisely, as explained
in [8, Remark 6.6], by using the contracting property of φq, any object in Vectφq⟨E(u)/π⟩[1/π]
extends uniquely to an object in Vectφq⟨φn

q (E(u))/π⟩[1/π] for any n ≥ 1. It now suffices to
show that base change gives an equivalence

Vectφ(O) ≃ lim
n

Vectφ(SE⟨φn
q (E(u))/π⟩[1/π]).

This follows formally from the analogous equivalence at the level of vector bundles, and the
equality

O
[ 1

E(u)

]
=
⋂

n≥0

(
SE

〈
φn

q (E(u))
π

〉[ 1
π

] [ 1
E(u)

])
.7 □

7This follows e.g. from the equality (2) and Lemma 4.10 below.
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66 Prismatic F -crystals and E-crystalline Galois representations

3.2. Filtered isocrystals and φ-modules on the open unit disk. — In this section,
we explain the construction of a natural fully faithful functor

MFφq (K) ↪−→ Vectφq (O).
In fact, inspired by [21] and [25], we can do slightly better, namely we will construct a
commutative diagram

MFφ(K) Vectφq (O)

HPφq (K),
≃

where HPφq (K) denotes the category of φq-modules with Hodge–Pink structure over K,
whose definition is recalled next.

Definition 3.3. — A φq-module with Hodge–Pink structure (or simply a Hodge–Pink
isocrystal) over K is a triple (D, φq, Λ) where (D, φq) is a φq-module over K0,E , and Λ
is a Ŝ0-lattice in D ⊗K0,E

Fr(Ŝ0).

The two categories MFφq (K) and HPφq (K) are related in the following way. First, given
a filtration Fil• DK , we get an associated Hodge–Pink structure using the lattice Λ :=
Fil0(DK ⊗K Fr(Ŝ0)). Conversely, given a Hodge–Pink lattice Λ, one gets a filtration on DK

by first restricting the E(u)-adic filtration {E(u)iΛ}i∈Z on D⊗K0,E
Fr(Ŝ0) to the tautological

lattice D̂0 := D⊗K0,E
Ŝ0, and then a filtration on DK by pushing forward along the natural

map
θ̃ : D ⊗K0,E

Ŝ0 −→−→D ⊗K0,E
K = DK .

Lemma 3.4. — The resulting functors

MFφq (K) HPφq (K).
P

F

satisfy F ◦ P ≃ id. In particular, P is fully faithful.

Proof. — Given a filtered isocrystal (D, φ, Fil• DK), we need to show that θ̃(D̂0∩E(u)iΛ) =
Fili DK for each i ∈ Z, where Λ := Fil0(DK ⊗K Fr(Ŝ0)). By shifting, we may assume i = 0.
This desired equality then follows e.g. by choosing a splitting of the given filtration:

DK =
⊕
j∈Z

V j , Fili DK =
⊕
j≥i

V j .

The second statement follows formally from the first and the fact that F is faithful (as it
does nothing on the underlying isocrystals). □

3.2.1. Constructions. — Thus, combining with Lemma 3.2, it remains to construct mutually
inverse equivalences

HPφq (K) Vectφq (SE⟨I/π⟩[1/π]).
M

D

For M, we will follow the presentation of [8, Construction 6.5], which uses Beauville–Laszlo
glueing; one can check that this agrees with Kisin’s rather more concrete construction in [26]
(when E = Qp); see Remark 3.6. The idea is to defineM(D) as a modification of the constant
φq-module M′ := D ⊗K0,E

SE⟨I/π⟩[1/π] at the Cartier divisor {I = 0} (where I := (E(u)))
Publications mathématiques de Besançon – 2025
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using the given Hodge–Pink lattice Λ. More precisely, the underlying module of M(D) is
obtained by applying Beauville–Laszlo glueing to the vector bundles

– M′[1/I] ∈ Vect(SE⟨I/π⟩[1/π][1/I])

– Λ ∈ Vect(SI⟨I/π⟩[1/π]∧I )

along the obvious isomorphism; here we implicitly identify Ŝ0 with SE⟨I/π⟩[1/π]∧I via the
natural map (see Lemma 4.10(3) for a more general statement). The φq-structure on M(D)
is then defined as the composition

(φ∗
qM(D))[1/I] ≃ (φ∗

qM′)[1/I]
φM′
≃ M′[1/I] ≃M(D)[1/I];

here for the first identification, we use that φq(I) is a unit in SE⟨I/π⟩[1/π].
Next, we define the functor D. Given M ∈ Vectφq (SE⟨I/π⟩[1/π]), set D(M) :=
M⊗SE⟨I/π⟩[1/π] K0,E , equipped with the natural (diagonal) φq-action; here SE⟨I/π⟩→→K0,E

is the natural (φq-equivariant) map u 7→ 0. This gives the isocrystal structure on D(M);
it remains to define the Hodge–Pink lattice. First, the standard Frobenius trick shows that
there is a unique φ-equivariant map

ξ : D(M)⊗K0,E
SE⟨I/π⟩[1/π][1/I] −→M[1/I]

lifting the identity modulo u. See [26, Lemma 1.2.6] or [21, Lemma 3.5]. In particular, ξ
realizes M as a modification of D(M) ⊗K0,E

SE⟨I/π⟩[1/π] at the divisor {I = 0}, and
hence M∧

I gives rise to the desired lattice inside M∧
I [1/I] ≃ D ⊗K0,E

Fr(Ŝ0). While this
already finishes the construction of the functor M 7→ D(M), we note that the associated
filtration on D(M)K can be maded slightly more explicit as follows. Indeed, as φ(I) is a
unit in SE⟨I/π⟩[1/π] (as was already mentioned), φ∗

qξ is an isomorphism, fitting in following
commutative square

φ∗
qD(M)⊗K0,E

SE⟨I/π⟩[1/π] φ∗
qM

D(M)⊗K0,E
SE⟨I/π⟩[1/π][1/I] M[1/I].

φD(M)

φ∗
qξ

≃

φM

ξ

≃

In particular, we see that D(M) ⊗K0,E
Ŝ0 ≃ φ∗

qD(M) ⊗K0,E
Ŝ0 ≃ (φ∗

qM)∧
I . The filtration

on D(M)K = D(M)⊗K0,E
K is simply the image of the filtration Fil•(φ∗

qM) := φ−1
M(I•M)

on φ∗
qM. This agrees with the filtration constructed in [26, Section 1.2.7] (when E = Qp).

Theorem 3.5. — The functors

HPφq (K) Vectφq (SE⟨I/π⟩[1/π]).
M( · )

D( · )

are mutually inverse equivalences of categories.

Proof. — This follows readily from the construction of the functors. Here we will only ex-
plain the proof that M ◦ D ≃ id; that D ◦ M ≃ id can be proved similarly. Fix M ∈
Vectφ(SE⟨I/π⟩[1/π]). AsM∧

I = ΛD(M) by construction of D(M), we see thatM(D(M)) ≃
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M on underlying modules. To compare the φ-structures, recall that by construction ofM( · ),
φM(D(M)) is the unique map φ∗

qM(D(M))→M(D(M))[1/I] making the diagram

φ∗
qD(M)⊗K0,E

SE⟨I/π⟩[1/π] φ∗
qM(D(M))

D(M)⊗K0,E
SE⟨I/π⟩[1/π][1/I] M(D(M))[1/I].

φD(M)

≃

φM(D(M))

ξ

≃

commute, but φM is also such a map (by φ-equivariance of ξ, as we explained above), so
they coincide, as wanted. □

Remark 3.6 (Comparison with [26]). — In this remark, we briefly check that the compo-
sitionsM◦P and F ◦D agree with the ones from [26] (in case E = Qp), up to composing with
the natural equivalence from Lemma 3.2. Denote the latters byM′ and D′. That D′ ≃ F ◦D
is already explained in the paragraph above Theorem 3.5. We now show that M′ ≃ M ◦ P .
Fix D := (D, φ, Fil• DK) ∈ MFφq (K). Note firstly that the ring Ŝn from [26, Section 1.1.1]
is not our Ŝn, rather it is φ−n

W (Ŝn), where φW : O → O is the automorphism given by
Frobenius on W (k) (and u 7→ u). Using this observation, it is easy to rewrite the definition
of M′(D) in [26, Section 1.2] as

(4) M′(D) := {x ∈ D ⊗K0 O[1/λ] | ιn(x) ∈ Fil0(DK ⊗K Fr(Ŝn)) for all n ≥ 0},

where ιn is the natural map D⊗K0 O[1/λ]→ D⊗K0 Fr(Ŝn) (which indeed makes sense as λ
has a simple root at each xn). ThenM′(D) ⊆ D⊗K0 [1/λ] is a finite free sub-O-module with
M′(D)[1/λ] = D⊗K0O[1/λ]; moreover the isomorphism φD : φ∗D⊗K0O[1/λ] ≃ D⊗K0O[1/λ]
restricts to an isomorphism (φ∗M′(D))[1/E(u)] ≃M′(D)[1/E(u)], makingM′(D) an object
in Vectφ(O). See [26, Lemma 1.2.2]. In particular, by base change along the natural map
O[1/λ] → SE⟨I/p⟩[1/p][1/I] (which makes sense as φn(I) is invertible in SE⟨I/p⟩[1/p] for
all n ≥ 1), we obtain

(M′(D)⊗O SE⟨I/p⟩[1/p])[1/I] ≃ D ⊗K0 SE⟨I/p⟩[1/p][1/I].

Moreover, the description (4) also shows thatM′(D)∧
I identifies with Fil0(DK⊗K Fr(Ŝ0)) =:

ΛF (D) (e.g. by applying φn
W to [26, Lemma 1.2.1(2)]). This shows that

M′(D)⊗O SE⟨I/p⟩[1/p] ≃M(F (D)) in Vectφ(O),

as claimed.

3.3. Slopes and weak admissibility. — Similarly to [25] and [26], in this subsection we
relate, following Berger’s oberservation [4], weakly admissbility of Hodge–Pink isocrystals,
and the “pure of slope 0” condition for φ-modules on the open unit disk. As many of the
arguments are identical to those in [26], we often sketch only the proofs.
Recall firstly the notion of weak admissibility for Hodge–Pink isocrystals. Let D := (D, φ, Λ) ∈
HPφq (K). The Newton number tN of D is defined exactly as before (i.e. using the underlying
isocrystal). For defining the Hodge number, again by passing to the determinant, we may
assume D is 1-dimensional; in this case we set tH(D) := h, where h is the unique integer such
that Λ = (E(u))−h(D⊗K0,E

Ŝ0) (so tH(D) only depends on the Hodge–Pink structure of D).
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Definition 3.7. — A Hodge–Pink φq-module D = (D, φq, Λ) is called weakly admissibile
if tH(D) = tN (D) and tH(D′) ≤ tN (D′) for all subojects D′ ⊆ D in HPφq (K)8.

Lemma 3.8. — The (fully faithful) functor

MFφq (K) HPφq (K)P

preserves weak admissibility. More precisely, an object D ∈ MFφq (K) is weakly admissible if
and only if its image P (D) is.

Proof. — First, F and P both preserve the Newton numbers tN as they do nothing on
the underlying isocrystals. They also preserve the Hodge numbers: for this we may reduce
to the rank 1 case, where the result follows by a direct computation. It follows that an
object D ∈ MFφq (K) (resp. D′ ∈ HPφq (K)) is weakly admissible if P (D) (resp. F (D′)) is so.
Moreover, as F ◦P ≃ id, it then follows that P (D) is weakly admissible whenever D is so. □

Remark 3.9. — It is however not true that F preserves weakly admissible objects. The
following example is taken from [21]. Consider the object D = (D, φ, Λ) ∈ HPφq (K) with
D = K0e1 ⊕K0e2, φ(ei) = ei, and Hodge–Pink lattice

Λ := E(u)−1Ŝ0e1 ⊕ Ŝ0e2.

One can check directly that (D, φ, Λ) is weakly admissible. On the other hand, the associated
filtered isocrystal is given by

Fil0 DK = DK , Fil1 DK = Ke1, Fil2 DK = 0,

which is not weakly admissible as the submodule D′ := K0e1 has tN (D′, φ) = 0 but
tH(Fil• D′

K) = 1. In particular, we see that F and P are not equivalences of categories
(though they are on rank 1 objects).

3.3.1. Kedlaya’s slope filtration. — Let
R := lim−→

r 7→1−
O(r,1)

be the Robba ring over K0,E ; here O(r,1) denotes the ring of rigid analytic functions on the
open annulus {r < |u| < 1}. By work of Lazard, R is a Bézout domain containing O as a
subring. Again, there is a natural Frobenius map φq : R → R extending φq on O. Inside R,
there is the subring Rb formed of functions which are bounded. This is a Henselian discrete
valued field with uniformizer π, and ring of integers

Rint =
{∑

n∈Z
anun ∈ R

∣∣∣∣∣ un ∈WOE
(k) for all n ∈ Z

}
,

cf. [18, Section 7.2]. In particular, the p-adic completion of Rint identifies with SE [1/E(u)]∧p =:
OE . Clearly, both Rb and Rint are φq-stable inside R.
We denote by Vectφq (R) the category of φ-modules over R, i.e. finite free R-modules M
equipped with an isomorphism φ∗

qM ≃ M. A φ-module M is called étale or pure of slope
0 if it contains a φq-stable Rint-lattice N for which the map φ∗

qN → N is an isomorphism.

8The Hodge–Pink lattice on a subobject D′ ⊆ D is by definition given by ΛD′ := ΛD ∩(D′ ⊗K0,E Fr(Ŝ0)) (just
as a subobject in MFφq (K) is endowed with the subspace fitration). However, the notion of weak admissibility
does not change if we weaken this into the weaker condition that ΛD′ ⊆ ΛD.
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By twisting suitably with a rank 1 module, one can then define the subcategory Vectφq ,s(R)
of objects pure of slope s for any s ∈ Q; see [24, Definition 1.6.1]. Similarly, we denote by
Vectφq ,s(Rb) the subcategory of φq-modules over Rb which are pure of slope s in the sense of
Dieudonné–Manin theory (recall that Rb is a discrete valued field). Finally, a φq-module M
over O is called pure of slope 0 if M⊗O R is.

Theorem 3.10. —

(1) Base change defines an equivalence of categories

Vectφq ,s(Rb) ≃ Vectφq ,s(R).

(2) For any M∈ Vectφq (R), there exists a unique filtration
0 =M0 ⊂M1 ⊂ . . . ⊂Mr =M,

in Vectφq (R), called the slope filtration, such that the quotient Mi/Mi−1 is (finite free
and) pure of slope si ∈ Q and s1 < s2 < . . . < sr.

Proof. — See [24, Theorem 1.6.5] and [24, Theorem 1.7.1]. □

Proposition 3.11. — Let M∈ Vectφq (O). Then the slope filtration on M⊗O R descends
uniquely to a filtration on M by (saturated 9) subobjects in Vectφq (O).

Proof. — The arguments in [25, Section 4.2] carry over to our setting. □

Remark 3.12. — Note that, unlike the proof of [26, Proposition 1.3.7], which relies crucially
on a monodromy operator, the proof of [25] is intrinsic in the world of φ-modules.

We can now translate the weak admissibility condition for Hodge–Pink isocrystals across the
equivalence of categories in Theorem 3.5.

Theorem 3.13. — Let D := (D, φq, Λ) ∈ HPφq (K). Then D is weakly admissible if and
only if M(D) is pure of slope 0.

Here in the statement we implicitly identify M(D) with the corresponding φq-module over
O (Lemma 3.2).

Proof. — Assume first that D has rank 1. In this case

M(D) = D ⊗K0,E
λ−tH(D)O;

see e.g. Remark 3.6. Pick a basis e ∈ D and write φD(e) = αe for some α ∈ K0. Then

φq(e⊗ λ−tH(D)) = (E(u)/E(0))tH(D)α(e⊗ λ−tH(D));

as E(u) is a unit in Rint, we see that M(D) has slope tN (D) − tH(D). This proves the
theorem for rank 1 objects. The general case then follows by the same argument as in [26,
Theorem 1.3.8], using the equivalence in Theorem 3.5 and Proposition 3.11 in place of [26,
Proposition 1.3.7]. □

It will be convenient to state the following lemma separately.

9A submodule N ⊆ M is called saturated if it is a direct summand of M.
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Lemma 3.14. — Base change defines an equivalence of categories
Vect(SE) ≃ Vect(SE [1/p])×Vect(E) Vect(OE),

where OE := SE [1/E(u)]∧p and E := OE [1/p]. Moreover, this induces an equivalence10

Vectφq (SE) ≃ Vectφq (SE [1/p])×Vectφq (E) Vectφq (OE).

Proof. — It suffices to show the first assertion, which follows from Beauville–Laszlo glueing,
and the well-known fact that restricting gives an equivalence

Vect(Spec(SE)) ≃ Vect(Spec(SE)− {m})
(note that SE is a 2-dimensional regular local ring). □

Proposition 3.15. — Base change defines an equivalence
Vectφq (SE)[1/p] ≃ Vectφq ,0(O),

where the source denotes the isogeny category of Vectφq (SE).

Proof. — See the proof of [26, Lemma 1.3.13]. □

Corollary 3.16. — There is a natural fully faithful functor

MFφq ,w.a(K) Vectφq (SE)[1/p].M( · )

Proof. — This follows by combining Lemma 3.8, Theorem 3.13, and Proposition 3.15. □

Proposition 3.17. — The base change functor
Vectφq (SE) −→ Vectφq (SE [1/E(u)]∧p )

is fully faithful.

Proof. — With the previous results in place, the proof is similar to that of [26, Proposi-
tion 2.1.12]. Namely, as in [26], it suffices to show that if h : M1 →M2 is a map in Vectφq (SE)
such that h[1/E(u)]∧p is an isomorphism, then h is an isomorphism. We may assume M1 and
M2 are free of rank 1. By Lemma 3.14, it suffices to show that h[1/p] is an isomorphism. This
follows by using the embedding Vectφq (SE)[1/p] ↪→ HPφq ,w.a.(K), and the fact that a map
of weakly admissible objects in HPφq (K) which is an isomrphism on underlying modules (e.g.
a nonzero map between rank 1 objects) is necessarily an isomorphism. □

4. Prismatic F -crystals and E-crystalline Galois representations

4.1. Preliminaries on OE-prisms. — We keep the notation as before. In particular, we
fix throughout a uniformizer π of E, and an embedding τ0 : E ↪→ K ⊆ C.

Definition 4.1 ([30, Definition 3.1]). — Let X be a π-adic formal scheme over Spf OE . The
(absolute) prismatic site (X)∆,OE

is by definition the site with whose objects are bounded
OE-prisms (A, I) with a map Spec(A/I) → X of π-adic OE-formal schemes, with coverings
given by maps of prisms whose underlying ring map is (π, I)-adically completely faithfully
flat.
10Using a result of Kedlaya [6, Lemma 4.6], one sees by the same argument that the lemma also holds for the
perfectoid variant Ainf,E := WOE (O♭

C) of SE .
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For the precise definition of OE-prisms, we refer the reader to [30] (see also [22]). As we will
work entirely with OE-prisms in what follows, we will typically drop OE from the notation.
We mention here some examples of OE-prisms that are most relevant for our purpose.

Example 4.2. —

(1) (Breuil–Kisin prisms) Choose a uniformizer πK ∈ K. As SE := WOE
(k)[[u]], endowed

with the δE-structure given by δE(u) = 0 (or equivalently, φq(u) = uq). Let E(u) ∈
WOE

(k)[u] be the Eisenstein polynomial of πK over K0,E ; here K0,E := K0⊗E0 E denotes
the maximal unramified extension of τ0 : E ⊆ K. As the map θ̃ : SE →→OK , u 7→ πK is
surjective with kernel I = (E(u)), the pair (SE , I) gives an object in (OK)∆,OE

, which
we will refer to as the Breuil–Kisin prism associated to the chosen uniformizer πK .

(2) (The Ainf,E-prism) Recall that C denotes a fixed completed algebraic closure of K. Set
Ainf,E := WOE

(O♭
C), equipped with the natural Frobenius φq. As usual, the Fontaine’s

theta map θE : Ainf,E → OC is surjective with kernel generated by a nonzero-divisor ξ.
The twisted map θ̃E := θE ◦φ−1

q is thus also surjective with kernel (ξ̃) where ξ̃ := φq(ξ).
In particular, the pair (Ainf,E , (ξ̃)) defines an object in (OK)∆,OE

, and is the OE-prism
corresponding to the perfectoid OE-algebra OC , i.e. Ainf,E = ∆OC

. For later use, we give
here an explicit choice of ξ. Let v = (v0, v1, . . .) ∈ TG be a generator of the Tate module
of the Lubin–Tate group G of E associated to some Frobenius polynomial Q ∈ OE [T ]
for π. As vq

n+1 ≡ vn mod π for all n, we obtain an element

v := (v0 mod π, v1 mod π, . . .) ∈ lim←−
x 7→xq

OC/π = OC♭ .

(The last identification is given by (an)n 7→ (a0, apf−1

1 , . . . , ap
1, a1, apf−1

2 , . . .).) Follow-
ing [19, Proposition 1.2.7], for a perfect Fq-algebra A, we denote by [ · ]Q (or [ · ]G) the
unique map A → WOE

(A) satisfying [x]Q ≡ x mod π and Q([x]Q) = φq([x]Q). When
E = Qp, π = p and Q(T ) = (1 + T )p − 1, [x]Q is nothing but [x + 1] − 1 and hence
[v]Q = [ϵ]− 1 is the usual element µ; accordingly, we will also write µ := [v]Q here. One
can then check that ξ := µ/φ−1

q (µ) is a generator of ker(θE).

Exactly as in [8, Example 2.6], one can show that both examples above give covers
of the final object in the topos Shv((OK)∆). Moreover, there is a map SE → ∆OC

in
(OK)∆,OE

, defined by u 7→ [π♭
K ], where π♭

K := (πK , π
1/q
K , . . .) ∈ O♭

C is a compatible
system of q-power roots of the fixed uniformizer πK .

(3) (The Acris,E-prism) Recall from Remark A.8 that Acris,E denotes the π-completed OE-
PD envelope of Ainf,E with respect to the kernel of θE , B+

cris,E := Acris,E [1/π], and
Bcris,E = B+

cris,E [1/tE ]. By [22, Proposition 2.6.5], the pair (Acris,E , (π)) identifies with
the prismatic envelope ∆OC

{ξ̃/π}, hence also defines an object in (OK)∆,OE
, which we

denote by ∆OC/π in analogy with the usual case11; of course there is a natural map
∆OC

→ ∆OC/π.
11While it is reasonable to define a notion of qrsp rings and their associated prisms in the “OE-context”, for
our purpose it suffices to see this as a purely suggestive notation.
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Remark 4.3 (WOE
(k)-algebra structure on objects in (OK)∆,OE

). — Fix an object
(A, I) ∈ (OK)∆,OE

with structure map OK → A/I. By standard deformation theory, the
composition WOE

(k) → OK → A/I lifts uniquely to an OE-algebra map WOE
(k) → A. In

what follows, we will always regard an object in (OK)∆,OE
as an WOE

(k)-algebra via this
map. (Note that for the prism ∆OC

= WOE
(O♭

C), this is not the “natural” structure (induced
by the canonical section k → O♭

C) but its φq-twist: the point is that we are taking into account
not only the underlying ring, but also the invertible ideal defining the prism structure.) By
uniqueness, morphisms in (OK)∆,OE

automatically respect this algebra structure.

Notation (Some period sheaves on the prismatic site). — We consider the following
period sheaves on X∆:

– The prismatic structure sheaf O∆ : (A, I) 7→ A; this comes equipped with an ideal sheaf
I∆ : (A, I) 7→ I and a “Frobenius” φq : O∆ → O∆.

– The étale structure sheaf O∆[1/I∆]∧π :

(A, I) 7−→ A[1/I]∧π .

– The rational localization O∆⟨I∆/π⟩:

(A, I) 7−→ A[I/π]∧π .

– The de Rham period sheaves:

B+
dR := (O∆[1/π])∧

I∆
and BdR := B+

dR[1/I∆].

It is easy to see that the Frobenius on O∆ extends naturally to the sheaves O∆[1/I∆]∧π and
O∆⟨I∆/π⟩. (Note again that in case X = Spf(OK), the value B+

dR(∆OC
) =: B+

dR is a φq-twist
of the ring denoted by the same notation in the appendix.)

Definition 4.4. — A prismatic F -crystal on X is a pair (E , φE) where E is a crystal of vector
bundles on the ringed site (X∆,O∆), and φE is an isomorphism (φ∗

qE)[1/I∆] ∼= E [1/I∆]. The
resulting category is denoted by Vectφq (X∆,O∆).
More generally, for a sheaf O′ of O∆-algebras equipped with a compatible Frobenius, we
define similarly the category Vectφq (X∆,O′) of F -crystals over O′ on X. Similarly, if (A, I)
is an OE-prism, we define in the same way the category Vectφq (A, I) (or simply Vectφq (A))
of F -crystals (or Breuil–Kisin modules) over A.

Remark 4.5. — As descent for vector bundles is effective for the flat topology, to give a
crystal of vector bundles on (X∆,O∆) is to give for each object (A, I) in X∆, a finite projective
A-module MA, and for each map (A, I) → (B, J) in X∆, an isomorphism MA ⊗A B

∼→ MB

compatible with compositions. In other words,

Vect(φq)(X∆,O∆) ≃ lim
(A,I)∈X∆

Vect(φq)(A, I).

A similar result holds for the sheaves O∆[1/I∆]∧π and O∆⟨I∆/π⟩[1/π] (for the first see [8,
Proposition 2.7]; for the second see the proof of [8, Corollary 7.17]).
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4.2. Formulation of the main theorem. — We now restrict ourselves to the case X =
Spf(OK), viewed as an OE-formal scheme using the fixed embedding τ0 : E ↪→ K.
Recall from [30] that there is a natural equivalence

T : Vectφq ((OK)∆,O∆[1/I∆]∧π ) ≃ RepOE
(GK)

E 7−→ (E(∆OC
))φq=1.

In particular, by extending scalars along O∆ → O∆[1/I∆]∧π , we obtain a functor

T : Vectφq (X∆,O∆) −→ RepOE
(GK),

which we again refer to as the étale realization functor. We can now state our main result.

Theorem 4.6. — The étale realization functor gives rise to an equivalence of categories

T : Vectφq (X∆,O∆) −→ Repcrys
OE

(GK)

where the target denotes the category of finite free OE-modules T equipped with a continuous
linear GK-action such that T [1/π] is E-crystalline.

Proof. — We first show that the étale realization T (E) of a prismatic F -crystal on OK is
indeed an object in the target; full faithfulness and essential surjectivity will be dealt sepa-
rately below. We will follow the proof of [8, Proposition 5.3]. First by the crystal structure
of E , we have a natural isomorphism

E(∆OC
)⊗∆OC

∆OC/π −→ E(∆OC/π).

Also, by Lemma 4.7 below, we have a natural identification

T (E)⊗OE
∆OC

[1/µ] = E(∆OC
)[1/µ]

Pick n≫ 0 so that the map φn
q : OK/π → OK/π factors through the natural reduction map

OK/π→→ k (where k denotes the residue field of K). In particular, we see that the natural
map k → OC/π is OK-linear when the target is now regarded as an OK-algebra via the map
φn

q : OK/π → OC/π. This lifts to a map WOE
(k)→ ∆′

OC/π in (OK)∆, where ∆′
OC

denotes the

object in (OK)∆ with underlying prism ∆OC/π but endowed with the map OK
φn

q−−→ OC/π →
∆OC/π/(π) (thus the Frobenius on ∆OC/π defines a map φn

q : ∆OC/π → ∆′
OC/π in (OK)∆).

Thus, by using the crystal and Frobenius structures of E , we obtain a natural isomorphism

E(WOE
(k))⊗WOE

(k) ∆OC/π[1/π] ≃ E(∆′
OC/π)[1/π]

≃ (φq)∗E(∆OC/π)[1/π]

≃ E(∆OC/π)[1/π].

Note also that as WOE
(k) is fixed by the GK-action on ∆′

OC/π under the map WOE
(k) →

∆′
OC/π, the crystal property of E again implies that GK acts trivially on E(WOE

(k)). Putting
things together, we obtain a GK-equivariant isomorphism

T (E)⊗OE
Bcris,E ≃ E(WOE

(k))⊗WOE
(k) Bcris,E ,

with GK acting trivially on E(WOE
(k)). By Theorem 2.3(1), this means that the GK-

representation T (E)[1/π] is E-crystalline, as desired. □
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Lemma 4.7. — Fix an object M ∈ Vectφq (∆OC
) with étale realization T := T (M). Then

T ⊗OE
Ainf,E

[ 1
µ

]
= M

[ 1
µ

]
(5)

as submodules of T ⊗OE
WOE

(C♭) = M ⊗Ainf,E
WOE

(C♭).

Proof. — The proof is similar to that of [6, Lemma 4.26]. In fact, we will only explain the
reduction to the case φ−1

M maps M into M ; the rest of the argument is identical to that in
[6]. For this, we need a suitable variant of the usual Tate twist. Let Ainf,E{1} ∈ Vectφq (∆OC

)
be the rank one object with a basis e, and φq(e) = 1

ξ̃
e. For an integer n, we set M{n} :=

M ⊗Ainf,E{1}⊗n. The étale realization of Ainf,E{1} is

{xe | x ∈WOE
(C♭), φq(x) = ξ̃x} = {xe | φq(x/µ) = x/µ} = OEµe.

In particular, we see that the module Ainf,E{n} satisfies 5 for any integer n. Now pick n≫ 0
so that φ−1

M (M) ⊆ 1
ξ̃n

M . Then φ−1
M (M{n}) ⊆ M{n}, and we can replace M by this M{n}

(as the functor M 7→ T (M) is tensor-compatible in M). □

4.3. Full faithfulness. — We now prove the full faithfulness of the étale realization function
in Theorem 4.6. With everything in place, we can follow the proof of the corresponding
statement in [8].

Proof of full faithfulness in Theorem 4.6. — Fix a Breuil–Kisin prism (SE , I) in (OK)∆,OE
;

this gives a cover of the final object in the associated topos. In particular, faithfulness of the
étale realization functor T on X reduces to the analogous statement over (SE , I), which in
turn follows from injectivity of the map SE → SE [1/I]∧π . The same argument also shows
that T is faithful over S

(1)
E

12, the self-coproduct of SE with itself in (OK)∆,OE
.

Fullness of T now reduces formally to the analogous statement over SE , i.e. fullness of the
base change functor

Vectφq (SE) −→ Vectφq (SE [1/I]∧π ),
which is Proposition 3.17. (Indeed, given prismatic F -crystals M and N and a map g :
M[1/I]∧π → N [1/I]∧π in Vectφq (X∆,O∆[1/I∆]∧π ), we need to extend g to a map M →
N . First, by fullness over SE (i.e. Proposition 3.17), the map g(SE) extends (necessarily
uniquely) to a map f ′ : M(SE) → N (SE). The map f ′ induces two a priori distinct maps
a; b : M(S(1)

E ) → N (S(1)
E ) via extending along either structure map, and we need to show

that a = b (for then f ′ will lift to the desired map M→ N ). But by faithfulness over S
(1)
E ,

it suffices to show that a[1/I]∧π = b[1/I]∧π , which is true as both are equal to g(S(1)
E ).) □

The following lemma was used above.

Lemma 4.8. — Let (A, I) be a transversal OE-prism. The natural map A → A[1/I]∧π is
injective.

12By construction of S
(1)
E as a suitable prismatic envelope (namely S

(1)
E = WOE (k)[[u, v]]{(u − v)/

E(u)}∧
(π,E(u))), S

(1)
E is (π, I)-completely flat over SE (via either structure map), cf. [22, Proposition 2.6.6]. As

SE is transversal, the same holds for S
(1)
E (see e.g. [7, Lemma 4.7]). In fact, as SE is Noetherian, S(1)

E is even
classically flat over SE (see e.g. [16, Proposition 2.2.4]), but we will not need this.
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76 Prismatic F -crystals and E-crystalline Galois representations

Here, following the terminology in [1], an OE-prism (A, I) is called transversal if A/I is
π-torsion free; in this case A is itself π-torsion free.

Proof. — As the source is π-adically separated and the target is π-torsion free, it suffices
to show that the map is injective modulo π, which follows directly from transversality of
(A, I). □

Remark 4.9. — As in [8], instead of working with a Breuil–Kisin prism, one can also work
directly with the prism ∆OC

, and deduce the desired full faithfulness from (the easy direction
of) Fargues’ classification of F -crystals over Vectφq (∆OC

).

4.4. Essential surjectivity. — The goal of this subsection is to prove the essential surjec-
tivity part of Theorem 4.6. As explained in the introduction, the general strategy of our proof
follows that of [8, Section 6]; the main difference is that instead of using inputs from [2] to
prove the desired boundedness of descent data ([8, Proposition 6.10]), we adapt a key lemma
from [15], which will in fact allows us to prove a more general result (Proposition 4.14).
We first collect some further ring-theoretic properties on transversal prisms, which will be
used repeatedly in what follows.

Lemma 4.10. — Let (A, (d)) be a transversal OE-prism.

(1) The ring A⟨d/π⟩[1/π] is d-torsion free and d-adically separated.

(2) A∩dnA⟨d/π⟩[1/π] = dnA and A⟨d/π⟩∩dnA⟨d/π⟩[1/π] = (d/π)nA⟨d/π⟩ for each n ≥ 0.

(3) For each n ≥ 0, the natural map
A[1/π]∧d −→ A⟨φn

q (d)/π⟩[1/π]∧d
is an isomorphism. Moreover, the natural maps A → A⟨φn(d)/π⟩[1/π] → A⟨d/π⟩[1/π]
are injective.

As the proof shows, parts (1) and (2) in fact hold for any pair (A, d) such that: (i) (π, d) forms
a regular sequence, (ii) A is (classically) (π, d)-complete; moreover part (3) needs additionally
only the underlying δE-ring structure (rather than the full prism structure) of A.

Proof. —

(1). — Recall that A⟨d/π⟩ is by definition the π-adic completion of the A-subalgebra A[d/π]
of A[1/π] generated by d/π. We note in particular that it is π-torsion free. We claim that
the natural map A[x]/(πx − d) → A[d/π], x 7→ d/π is an isomorphism. As it is clearly an
isomorphism after inverting π, it suffices to show that the source is π-torsion free, which in
turn follows formally from the facts that A[x] is π-torsion free and that πx−d = −d is regular
on (A/π)[x]. Thus

A⟨d/π⟩ = A[x]/(πx− d)∧
p = A⟨x⟩/J,

where A⟨x⟩ := A[x]∧p and J := (πx− d) =
⋂

n≥0(πx− d, πn)A⟨x⟩ is the closure of (πx− d) in
A⟨x⟩ for the π-adic topology. We need to show that if f ∈ A⟨x⟩ satisfies df ∈ (πx− d, πn) for
all n ≫ 0, then the same holds for f . Write df = (πx − d)g + πnh for some g, h ∈ A⟨x⟩. As
d(f +g) = π(xg+πn−1h), we can write f +g = πk, xg+πn−1h = dk for some k ∈ A⟨x⟩. Now as
A⟨x⟩/(x, πn−1) = A[x]/(x, πn−1) = A/πn−1 is d-torsion free, k ∈ (x, πn−1), say k = xa+πn−1b
for some a, b ∈ A⟨x⟩. Then x(g−da) = πn−1(db−h) whence g−da = πn−1a′ for some a′ ∈ A⟨x⟩
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whence f = πk−g = π(xa+πn−1b)−(da+πn−1a′) = (πx−d)a+πn−1(πb−a′) ∈ (πx−d, πn−1),
as wanted.
For the last statement of (1), it suffices to show that

A⟨d/π⟩ ∩
⋂

n≥0
dnA⟨d/π⟩[1/π] = 0.

We first check that A⟨d/π⟩∩(d/π)nA⟨d/π⟩[1/π] = (d/π)nA⟨d/π⟩. As d (hence d/π) is regular
on A⟨d/π⟩ by (1), we may assume n = 1. We need to show that A⟨d/π⟩/(d/π) is π-torsion free.
We claim that A⟨d/π⟩/(d/π) ≃ A/d via the natural map. Indeed, the map A⟨x⟩→→A, x 7→ 0
maps (πx− d) into dA ⊆ A (as dA is closed for the π-topology on A: A/dA = coker(A ×d−−→ A)
is derived π-complete, hence classically π-complete as it is π-torsion free by our assumptions
on A). We thus get a surjection A⟨x⟩/((πx− d), x)→→A/d, x 7→ 0. But A/d = A⟨x⟩/(πx−d, x)
also surjects naturally onto A⟨x⟩/((πx− d), x) whence A/d = A⟨x⟩/((πx− d), x):

A/d A⟨x⟩/((πx− d), x) A/d.

Thus, A⟨d/π⟩/(d/π)=A/d is π-torsion free, as wanted. Note that the equality A⟨d/π⟩/(d/π)=
A/d also implies that A ∩ (d/π)A⟨d/π⟩ = dA. By induction (using that (π, d) is a regular
sequence), we see that in fact A ∩ (d/π)nA⟨d/π⟩ = dnA for all n ≥ 0.
We thus need to show that A⟨d/π⟩ is (d/π)-adically separated. Write x := d/π. Assume
f ∈

⋂
n≥0 xnA⟨x⟩. We can write f = a0 + a1x + . . . for a (not necessarily unique) sequence

(an) in A with an → 0 π-adically. In particular, a0 ∈ xA⟨x⟩ ∩ A = dA (by the preceding
paragraph), say a0 = da′

0 = πa′
0x. As x is regular in A⟨x⟩, we still have f/x = (πa′

0+a1)+. . . ∈⋂
n≥0(xn). Similarly we find that a1 + πa′

0 ∈ (x)∩A = dA, say a1 + πa′
0 = da′

1. Next, we have
0 = (πx− d)(a′

0 + a′
1x), so a0 + a1x = da′

0 + (da′
1− πa′

0)x = πa′
1x2. Again, as x is regular, we

deduce that a2 + πa′
1 ∈ dA say a2 + πa′

1 = da′
2. Repeating this argument, we can inductively

find a sequence (a′
n) in A such that an = da′

n − πa′
n−1 for all n ≥ 0. We claim that the

sequence (a′
n) also tends to 0 π-adically. Once this is done, a′

0 + a′
1x + . . . makes sense as an

element in A⟨x⟩ and we have f = a0 +a1x+ . . . = (d−πx)(a′
0 +a′

1x+ . . .) = 0, as wanted. We
will show by induction on n that a′

m ∈ πnA for all m≫ 0 (depending on n). So assume that
a′

m ∈ πnA for all m ≥ m0. Enlarging m0 if necessary, we may also assume that am ∈ πn+1A
for all m > m0 (as am → 0 π-adically by assumption). Then da′

m = am + πa′
m−1 ∈ πn+1A,

and so, as (π, d) is a regular sequence, a′
m ∈ πn+1A for all m > m0, as claimed.

(2). — This is contained in the proof of (1) above.

(3). — For the first statement, as the sources and target are both d-complete and d-torison
free (by part (1) as A⟨φn

q (d)/π⟩ = A⟨dqn
/π⟩), it suffices to show that the map

A[1/π]/dqn −→ A⟨dqn
/π⟩[1/π]/dqn

is an isomorphism, which in turn follows from the proof of (1). The second statement can be
proved similarly (i.e. by reducing modulo d (or dqn)). □

The following variant of [15, Lemma 2.2.10] records a simple effect of φq on the d-adic filtration
of A⟨d/π⟩.
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Lemma 4.11. — Let (A, (d)) be a transversal OE-prism. Then given any h ≥ 0,

φq(dmA⟨d/π⟩) ⊆ A + dm+hA⟨d/π⟩
for all m≫ 0 (depending only on h).

Proof. — We will show more generally that

φq(dmA⟨d/π⟩) ⊆ A + dq(m+1)

π
A⟨dq/π⟩ for all m ≥ 0.

This clearly implies the lemma. Write φq(d) = dq + πa for some a ∈ A. As φq(A⟨d/π⟩) ⊆
A⟨dq/π⟩, it suffices by the binomial theorem to show that

dq(m−k)πkA⟨dq/π⟩ ⊆ A + dq(m+1)

π
A⟨dq/π⟩ for any 0 ≤ k ≤ m.

This follows immediately from the inclusion A⟨dq/π⟩ ⊆ (1/πk)A + (dq/π)k+1A⟨dq/π⟩. □

Proposition 4.12. — Let (A, (d)) be a transversal OE-prism. Let h ≥ 0. Assume

dhY = Bφq(Y )C
with matrices Y ∈Md(A⟨d/π⟩[1/π]) and B, C ∈Md(A). Then Y ∈Md(A[1/π]).

Proof. — We will follow the proof of [15, Proposition 2.2.11]13. Replacing Y by πkY for some
k ≫ 0, we may assume that

Y = Ym0 + Y ′

for some Ym0 ∈ Md(A) and X ∈ Md(dm0R), where m0 satisfies φq(dmR) ⊆ A + dm+1+hR
for all m ≥ m0 (m exists by the previous lemma); here R := A⟨d/π⟩. We will show that
Y ∈ Md(A). The idea is to approximate Y in the d-adic topology on R by elements of
A. More precisely, we will construct inductively a sequence (Ym)m≥m0 in Md(A) with the
property that Ym+1 ≡ Ym mod dmA and Ym ≡ Y mod dmR for all m ≥ m0. As A and R
are both d-adically complete (note that R is π-adically complete with π|d), this implies that
Y ∈Md(A), as wanted.
Assume Ym has been constructed. Write Y = Ym + X with X ∈Md(dmR). By assumption,

dh(Ym + X) = Bφq(Ym)C + Bφq(X)C.

By our choice of m0 we can write Bφq(X)C = Z + dhX ′ for some Z ∈ Md(A) and X ′ ∈
Md(dm+1R). Then Bφq(Ym)C + Z − dhYm = dh(X −X ′) has entries in A∩ dh+mR = dh+mA

by Lemma 4.10(2), say dh+mX ′′ with X ′′ ∈ Md(A). Again, as d is regular on R, we obtain
X −X ′ = dmX ′′. Now set Ym+1 := Ym + dmX ′′. □

Remark 4.13. — Note that one cannot weaken the conditions on B, C into B, C ∈
Md(A[1/π]). For instance, the infinite product

λ :=
∏
n≥0

φn(E(u)/E(0)) ∈ O

13It is not clear to us if the various rings in [15] indeed agree with the more standard rings denoted by the
same notation; for instance, we do not know if the ring A

(2)
max there equals literally to A(2)⟨I/p⟩. Nevertheless,

it is relatively straightforward to adapt the arguments of [15] to the present setting. (In an updated version
of [15], this point is discussed in Remark 2.2.11.)
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satisfies λ = (E(u)/E(0))φ(λ) ∈ S[1/p] · φ(λ), but λ /∈ S[1/p]14.

Proposition 4.14. — Let (A, (d)) be a transversal OE-prism. Then the base change

Vectφq (A)[1/π] −→ Vectφq (A⟨d/π⟩[1/π])

is fully faithful; here the source denotes the isogeny category of Vectφq (A).

Proof. — Given objects Mi in Vectφq (A), we need to show that any φq-equivariant map

α : M1 ⊗A A⟨d/π⟩[1/π] −→M2 ⊗A A⟨d/π⟩[1/π]

extends to a map M1[1/π] → M2[1/π]. (By injectivity of A[1/π] → A⟨d/π⟩[1/π] (Lem-
ma 4.10(3)), such an extension is necessarily uniquely and φq-equivariant.) By Lemma 4.15
below Mi can be written as a φq-stable direct summand of some finite free φq-module over
A. We may thus reduce to the case M1 and M2 are both finite free.
Pick an A-basis e1, . . . , ed1 of M1, and let A1 ∈Md1(A[1/d]) be the matrix giving the action
of φM1 on this basis, i.e. φM1(e1, . . . , ed1) = (e1, . . . , ed1)A1; similarly let A2 ∈ Md2(A[1/d])
be the matrix giving the action of φM2 on some fixed basis of M2. As α is φ-equivariant, we
see that if Y ∈Md1d2(A⟨d/π⟩[1/π]) denotes the matrix of α relative to the chosen bases, then

Y A1 = A2φq(Y ).

We need to show that Y in fact has entries in A[1/π]. As A1 is invertible, we can write the
above equation as dhY = Bφq(Y )C for some h ≥ 0, and matrices B, C with entries in A.
Then by Proposition 4.12 below, Y has entries in A[1/π], as wanted. □

The following lemma was used above.

Lemma 4.15. — Let (A, (d)) be an OE-prism. Any object in Vectφq (A) can be realized as
a φq-stable direct summand of some finite free object.

Proof. — The proof is similar to that of [16, Lemma 4.3.1]. Fix M ∈ Vectφq (A). Pick an
A-module N so that F := M⊕N is finite free. Then (F⊕N)⊕M = F⊕ F is finite free, and
by fixing an isomorphism φF : φ∗

qF ≃ F, one can endow F ⊕ N with a φq-structure via the
composition

φ∗
q(F⊕N)[1/d]

φF≃ F[1/d]⊕ φ∗
qN[1/d] = M[1/d]⊕N[1/d]⊕ φ∗

qN[1/d]
φ−1
M≃ φ∗

qM[1/d]⊕N[1/d]⊕ φ∗
qN[1/d] = φ∗

qF⊕N[1/d]
φF≃ (F⊕N)[1/d]. □

Proof of essential surjectivity in Theorem 4.6. — Fix T ∈ Repcris
OE

(GK). Let D ∈ MFφq (K)
be the weakly admissible filtered φq-module over K corresponding to T [1/π] under the equiv-
alene in Theorem A.19. Fix a Breuil–Kisin prism (SE , I) in X∆. We note firstly that the
functor M : MFφq (K)→ Vectφq (SE⟨I/π⟩[1/π]) from Section 3.2 in fact lifts to a functor

M : MFφq (K) −→ Vectφq (X∆,O∆⟨I∆/π⟩[1/π])(6)

14For instance, take K = Qp and πK = −p. Then E(u) = u + p and the coefficient of u1+p+...+pn−1
in

λ =
∏

n≥0(1 + upn

/p) is 1/pn and of course one can make n arbitrarily large.
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by applying exactly the same construction for each object in X∆ (cf. [8, Construction 6.5]15).
Moreover, we have seen in Section 3.13 that the weak admissibility of D implies that M(D)
extends to an object M ∈ Vectφq (SE), which therefore comes equipped with a descent datum

α : M⊗SE ,p1 S
(1)
E ⟨I/π⟩[1/π] ≃M⊗SE ,p2 S

(1)
E ⟨I/π⟩[1/π]

by the last sentence. Proposition 4.14 then shows that α extends uniquely to a descent datum

α : M⊗SE ,p1 S
(1)
E [1/π] ≃M⊗SE ,p2 S

(1)
E [1/π];

in other words, M[1/π] lifts naturally to an object in Vectφq (X∆,O∆[1/π]). The rest of the
arguments in [8, Section 6.4] now carry over to our setting (applied to the object M′ :=
M⊗S ∆OC

∈ Vectφq (∆OC
)), finishing the proof16. □

4.5. Relation with Kisin–Ren’s theory [27]. — In this subsection, we show that The-
orem 4.6 encodes the classification of Galois stable lattices in E-crystalline representations
in [27] upon specializing to a suitable prism in (OK)∆, in the same way that it encodes the
theory of Breuil–Kisin theory in [26] by specializing to a Breuil–Kisin prism.
Let G be the Lubin–Tate formal OE-module over OE corresponding to a uniformizer π ∈ E.
Pick a coordinate X for G, i.e. an isomorphism G ≃ Spf(OE [[X]]). For a ∈ OE , denote by
[a] ∈ OE [[X]] the power series giving the action of a on G. Let K∞ ⊆ K be the subfield
generated by the π-power torsion points of G and write Γ := Gal(K∞/K). The Tate module
TpG is a free OE-module of rank one, and the action of GK on TpG is given by the Lubin–Tate
character χ : GK → O×

E .
Fix a generator v = (vn)n≥0 of TpG. As in [27], we will assume in what follows that K ⊆
K0,EK∞. Fix m ≥ 1 so that K ⊆ K0,L(vm). Let Q(u) := [πm](u)/[πm−1](u). As before,
write SE := WOE

(k)[[u]]; however we now equip SE with a φq-action and a Γ-action given
respectively by φq(u) := [π](u) and γ(u) = [χ(γ)](u) for γ ∈ Γ.
It is easy to check that the preceding φq-action makes the pair (SE , (Q(u))) into an OE-
prism. Moreover, as the map SE →→OK0,E(vm), u 7→ vm is surjective with kernel (Q(u)), our
assumption on m gives a map OK → SE/(Q(u)), making (SE , (Q(u)) into an Γ-equivariant
object of (OK)∆,OE

, which we will denote by S′
E to distinguish with the Breuil–Kisin prism

SE introduced earlier. Note also that mapping u 7→ φ
−(m−1)
q ([v]G) defines a GK-equivariant

map S′
E → ∆OC

in (OK)∆,OE
. In particular, S′

E again gives a cover of the final object in the
associated topos.

15Keep in mind that in defining the constant F -crystal D ⊗WOE
(k) O∆⟨I∆/π⟩[1/π], we use the canonical

WOE (k)-algebra structure on objects of (OK)∆,OE
; see Remark 4.3.

16We can also argue slightly differently as follows. Namely, we first check that T (M)[1/π] ≃ T [1/π]|GK∞ ,
whence by Lemma 3.14, we may pick M uniquely so that T (M) ≃ T |GK∞ ; here K∞ as usual denotes
the Kummer extension K(π1/q∞

K ) of K. But as M[1/π] lifts to an F -crystal on OK , its “étale realization”
T (M)[1/π] ∈ Vect(E) carries a GK-action (extending the natural GK∞ -action), which is in fact E-crystalline
by exactly the same argument as in the proof of Theorem 4.6. By full faithfulness of the restriction functor
Repcris

E (GK) → RepE(GK∞ ), we deduce that T (M)[1/π] ≃ T [1/π] GK-equivariantly. Thus, we have arranged
so that M ⊗ ∆OC [1/I]∧π is stable under the GK-action on M ⊗ ∆OC [1/I]∧π [1/π] (coming from the descent
datum α). Now we can simply follow the arguments in the fourth paragraph of [8, Section 6.4] to conclude
(the difference is that we do not need to run another modification as in [8]: the resulting prismatic F -crystal
has étale realization T on the nose).
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Definition 4.16. — Let Vectφq ,Γ(S′
E) denote the category of M ∈ Vectφq (S′

E) equipped
with a semilinear action of Γ which commutes with φq, and such that Γ acts trivially on
M/uM. Inside this, we have a full subcategory Vectφq ,Γ,an(S′

E) consisting of objects for which
the Γ-action is analytic in a suitable sense; see [27, Section (2.1.3)] and [27, Section (2.4.3)].

Proposition 4.17. — Consider the functor
DS′

E
: Repcris

OE
(GK) −→ Vectφq ,Γ(S′

E)

defined by composing the inverse of the equivalence in Theorem 4.6 with the evaluation at
(S′

E , (Q(u))) ∈ (OK)∆,OE
. Then DS′

E
is fully faithful with essential image Vectφq ,Γ,an(S′

E).

Proof. — We first check that DS′
E

is well-defined, i.e. given any object E ∈Vectφq ((OK)∆,O∆),
the value E(S′

E) is naturally an object in Vectφq ,Γ(S′
E). As S′

E is a Γ-equivariant object in
(OK)∆,OE

, M := E(S′
E) carries a natural Γ-action. Now the map S′

E → ∆OC
induces by

reducing modulo u a GK-equivariant map
(WOE

(k), (π)) −→ (WOE
(k), (π))

in (OK)∆,OE
; as WOE

(k) is fixed by the natural GK-action on WOE
(k), the crystal property

of E again implies that Γ acts trivially on E(WOE
(k)) ≃M/uM, as wanted.

Next, we show that DS′
E

lands in the subcategory of analytic objects; by the very defini-
tion of the latter ([27, Section (2.4.3)]), it suffices to prove the analogous statement for the
composition

Repcris
OE

(GK)[1/π]
DS′

E
[1/π]

−−−−−−→ Vectφq ,Γ(S′
E)[1/π] −→ Vectφq ,Γ(S′

E⟨I/π⟩[1/π]) ≃ Vectφq ,Γ(O′),

where O′ again denotes the ring of functions on the rigid open unit disk over K0,E , but
now equipped with the Frobenius u 7→ [π](u). By unwinding definitions, this coincides (upon
identifying Repcris

E (GK) ≃ MFφq ,w.a(K)) with the functor

M′( · ) : MFφq ,w.a.(K) −→ Vectφq ,Γ(O′)
from [27, Section (2.2)] (cf. Remark 3.6); in particular, we know from [27, Lemma (2.2.1)]
that it indeed factors through the subcategory of analytic objects.
Consider now the composition

Repcris
OE

(GK)
DS′

E−→ Vectφq ,Γ,an(S′
E) T−→ RepOE

(GK),

where T again denotes the étale realization functor M 7→ (M ⊗S′
E

W (C♭))φq=1. Unwinding
again the construction of DS′

E
, we see that this is nothing but the forgetful functor. Moreover,

by [27, Corollary (3.3.8)], T defines an equivalence onto the subcategory Repcris
OE

(GK). It
follows that DS′

E
is also an equivalence, as wanted. □

4.6. Relation with π-divisible OE-modules over OK . — In this subsection, we com-
bine Theorem 4.6 with a key result on minuscule prismatic F -crystals from [1] to deduce a
classification result for π-divisible OE-modules over OK (Theorem 4.23).

Definition 4.18 (Minuscule Breuil–Kisin modules). — Let (A, I) be an OE-prism.
An object M ∈ Vectφq (A, I) is called minuscule (or effective of height 1) if φM is induced
by a map φ∗

qM → M with cokernel killed by I. An object E ∈ Vectφq (X∆,O∆) is called
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minusucle if for all (A, I) ∈ X∆, the value E(A) is minuscule. Following [1], we denote the
resulting categories by BKmin(A, I) and DM(X), respectively.

Proposition 4.19 ([1], [22]). — Fix a Breuil–Kisin prism (SE , I) ∈ (OK)∆,OE
. Then

evaluation at SE defines an equivalence

DM(OK) ≃ BKmin(SE).

Proof. — This is proved in [1, Theorem 5.12] in case E = Qp (and for a more general class
of rings in place of OK). The case of general E is then proved in [22, Proposition 7.1.1]. □

Theorem 4.20 (Fontaine, Kisin, Raynaud, Tate). — Sending a p-divisible group to its
p-adic Tate module defines an equivalence

BT(OK) ≃ Repcris,{0,1}
Zp

(GK)
G 7−→ Tp(G);

here the source denotes the category of p-divisible groups over OK , and the target denotes the
category of lattices in crystalline GK-representations with Hodge–Tate weights in {0, 1}.

Proof. — This is well-known; see e.g. [29, Theorem 2.2.1]. □

Definition 4.21 (cf. [17]). — Let R be an OE-algebra. A π-divisible OE-module over R
is a p-divisible group G over R together with an action OE → End(G), which is strict in the
sense that the induced action of OE on Lie(G) agrees with the action through the structure
map OE → R.

Lemma 4.22. — Let G be a p-divisible group over OK . Then an action OE → End(G)
makes G into a π-divisible OE-module over OK if and only if the E-representation Vp(G) is
E-crystalline in the sense of Definition 2.1.

Proof. — This follows from the Hodge–Tate decomposition for G:

Vp(G)⊗Qp C ≃ (Lie(G∨)∨ ⊗OK
C)⊕ (Lie(G)⊗OK

C(1)).(7)

More precisely, as E⊗Qp C ≃
∏

τ :E↪→C C, an (E⊗Qp C)-module V always decomposes uniquely
as V =

⊕
τ Vτ . Concretely, Vτ ⊆ V is the C-subspace on which E acts via τ : E ↪→ C; in

particular, E acts on V via τ0 if and only
⊕

τ ̸=τ0 Vτ = 0. Now as (7) is functorial in G, it
must respect the E-action on both sides. In particular,⊕

τ ̸=τ0

(Vp(G)⊗E,τ C) ≃
⊕
τ ̸=τ0

(Lie(G∨)∨ ⊗OK
C)τ ⊕

⊕
τ ̸=τ0

(Lie(G)⊗OK
C(1))τ .
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We now have
the action OE −→ End(G) is strict
⇐⇒ OE acts on Lie(G) via τ0 : E ↪−→ K

⇐⇒ E acts on Lie(G)⊗OK
C(1)

via τ0 : E ↪−→ K ⊆ C (Lie(G) ↪−→ Lie(G)⊗OK
C as Lie(G) is OK-free)

⇐⇒
⊕
τ ̸=τ0

(Lie(G)⊗OK
C(1))τ = 0

⇐⇒
⊕
τ ̸=τ0

(Lie(G)⊗OK
C(1))τ is trivial as a C-rep. (as it is a subrep. of some C(1)⊕n)

⇐⇒
⊕
τ ̸=τ0

(Vp(G)⊗E,τ C) is trivial as a C-rep. (as Lie(G∨)∨ ⊗OK
C is already trivial)

⇐⇒ the E-rep. Vp(G) is E-crystalline,

as desired. □

Combining Theorem 4.6, Proposition 4.19, Theorem 4.20, and Lemma 4.22, we obtain the
following classification of π-divisible OE-modules over OK (including the case p = 2).

Theorem 4.23 (cf. [11, Theorem 1.1], [10, Theorem 1.0.3]). — There is a natural equiva-
lence between the category of π-divisible OE-modules over OK and the category of minuscule
Breuil–Kisin modules over SE.

Remark 4.24. — In [10], the authors have obtained (by a different approach) a similar
equivalence even for a large class of Frobenius lifts. In their result, the relevant category of
p-divisible groups over OK is formed by those which come equipped with an action of OE

for which the rational Tate module is an E-crystalline representation. However, as far as we
understand, the fact that this is in fact identified with the category of π-divisible OE-modules
over OK (Lemma 4.22) was not observed by them.

Appendix A. E-crystalline representations and filtered isocrystals

In this appendix, we prove Theorem 2.3, thereby giving equivalent characterizations for the
category of E-crystalline Galois representations. We will follow closely [19, Chapitre 10],
which treats the case E = Qp.

A.1. Recap on the Fargues–Fontaine curve. — Let XE be the Fargues–Fontaine curve
associated to E and the perfectoid Fq-algebra F := C♭, where the Fq-algebra structure
on F is defined using the fixed inclusion τ0 : E ↪→ K ⊆ C. As GK acts naturally on C
(hence on F = C♭), we obtain an induced E-linear action of GK on XE . Recall that we also
have a canonical identification XE = XQp ⊗Qp E (cf. [19, Théorème 6.5.2(2)]). Under this
identification, g ∈ GK acts on XE as g ⊗ idE .
Let π : XE → XQp be the projection; this is a GK-equivariant finite étale covering of
degree [E : Qp]. Let ∞ ∈ |XQp | be the distinguished closed point corresponding to the
tautological untilt Qp ↪→ C of F . Recall that∞ is fixed by GK , and in fact the unique closed
point of XQp whose GK-orbit is finite (see [19, Proposition 10.1.1]). For each τ : E ↪→ C,
let ∞τ be the closed point in XE corresponding to the (Frobenius isomorphism class of
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the) untilt τ : E ↪→ C. Concretely, ∞τ is given by the (image of the) closed immersion
Spec(C) (∞,τ)−−−→ XQp ⊗Qp E = XE .

Lemma A.1. — The assignment τ 7→ ∞τ defines a GK-equivariant bijection

HomQp(E, C) ≃ π−1(∞).

Proof. — From the previous description of∞τ , we see easily that the map is GK-equivariant.
As π is finite étale of degree [E : Qp] and∞ ∈ XQp is a closed point with algebraically closed
residue field (namely C), π−1(∞) ⊆ |XE | is a finite set of [E : Qp] closed points. In particular,
it suffices to show that the map is surjective. Indeed, a point x ∈ π−1(∞) necessarily has
residue field k(x) = C, and it is clear from the construction that x =∞τ , where τ : E ↪→ C
is given by the composition Spec(k(x)) ↪→ XE → Spec(E). □

In particular, we see that the point ∞τ0 (given by the fixed embedding τ0) is fixed by GK .
Recall that we have a canonical identification ̂(OXQp

)
∞

∼→ B+
dR, where B+

dR is the usual
Fontaine’s period ring constructed using C. Also, the inclusion K ↪→ C lifts uniquely to a
(necessarily GK-equivariant) section K ↪→ B+

dR. Now we have a canonical identification

B+
dR ⊗Qp E

∼−→
∏

τ :E↪→K

(̂OXE
)∞τ

(see e.g. [32, Tag 07N9]). Using the section K ↪→ B+
dR above, we can rewrite the left side as

B+
dR ⊗K (K ⊗Qp E) =

∏
τ :E↪→K

B+
dR.

Thus, for each τ , there is an E-algebra isomorphism (̂OXE
)∞τ

∼−→ B+
dR, where the right side

is regarded as an E-algebra via the composition τ : E ↪→ K ↪→ B+
dR.

Recall that for each compact interval I ⊆ ]0, 1[, BE,I denotes the completion of

Bb
E :=

{ ∑
n≫−∞

[xn]πn ∈WOE
(C♭)

∣∣∣∣∣ (xn) bounded
}

with respect to the family of norms | · |ρ, ρ ∈ I. We then let BE := lim←−I
BE,I . Similarly using

the ring Bb,+
E := WOE

(OC♭)[1/π], we can define B+
E and B+

E,I . See [19, Chapitre I] for a more
detailed discussion.

Lemma A.2. — For each compact interval I ⊆ ]0, 1[,

(Frac(BE,I))GK = K0,E ,

where K0,E := K0 ⊗E0 E. In particular, as BE ⊆ BE,I , we have (Frac(BE))GK = K0,E.

Proof. — For E = Qp, this is [19, Proposition 10.2.7] for E = Qp, but the same argument
works also for general E. One can also deduce the general case from the case E = Qp as
follows. By [19, Proposition 1.6.9] (and scaling I), it suffices to show that (Frac(BQp,I ⊗E0

E))GK = K0,E . But by [19, Proposition 10.2.7], Frac(BQp,I) ⊗E0 E is already a field, so
we have Frac(BQp,I ⊗E0 E) = Frac(BQp,I) ⊗E0 E, and hence (Frac(BQp,I ⊗E0 E))GK =
(Frac(BQp,I))GK ⊗E0 E = K0 ⊗E0 E = K0,E , as wanted. □
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A.2. Relation with filtered isocrystals. — Let π be a fixed choice of a uniformizer of E,
and let Fq denotes the residue field of E. As usual, we denote by φq the E-linear q-Frobenius
on K0,E ≃WOE

(k)[1/π].

Definition A.3. — Let Vectφq (K0,E) be the category of φq-modules (or isocrystals) (D, φq)
over K0,E , i.e. finite dimensional K0,E-vector spaces D equipped with a linear isomorphism
φ∗

qD
∼→ D.

Let MFφq (K) be the category of filtered φq-modules over K, i.e. triples (D, φq, Fil• DK),
where (D, φq) ∈ Vectφq (K0,E), and Fil• DK is a decreasing filtration on DK := D ⊗K0,E

K.

Fix tE ∈ (B+
E )φq=π such that V +(tE) = {∞τ0} (tE is uniquely determined up to multiplication

in E×). Let Be,E := Γ(XE \ {∞τ0},OXE
) = (B+

E [1/tE ])φq=1; this is a PID equipped with an
action of GK . As in [19, Définition 10.1.2], we let RepBe,E

(GK) denote the category of finite
free Be,E-modules equipped with a continuous semilinear action of GK .

Definition A.4. — Define functors
Dcris,E : RepBe,E

(GK) −→ Vectφq (K0,E)

M 7−→ (M ⊗Be,E
B+

E [1/tE ])GK

and
Vcris,E : Vectφq (K0,E) −→ RepBe,E

(GK)

(D, φq) 7−→ (D ⊗K0,E
B+

E [1/tE ])φq=1.

Proposition A.5 ([19, Proposition 10.2.12]). —

(1) The functors Dcris,E and Vcris,E are well-defined, and form an adjoint pair with Vcris,E
being the left adjoint.

(2) Vcris,E is fully faithful, i.e. the unit

id ∼−→ Dcris,E ◦ Vcris,E

is an isomorphism.

(3) For each M in RepBe,E
(GK), the counit

Vcris,E(Dcris,E(M)) ↪−→M

is an injection.

Proof. — This is [19, Proposition 10.2.12] for E = Qp. We begin by constructing a natural
isomorphism Dcris,E ◦ Vcris,E

∼→ id. Let (D, φq) ∈ Vectφq (K0,E). We claim that the natural
map

((D ⊗K0,E
B+

E [1/tE ])φq=1 ⊗Be,E
B+

E [1/tE ])GK −→ D

is an isomorphism (which is clearly φq-equivariant). As (B+
E [1/tE ])GK = K0,E by Lemma A.2,

it suffices to show that the natural map
(D ⊗K0,E

B+
E [1/tE ])φq=1 ⊗Be,E

B+
E [1/tE ] −→ D ⊗K0,E

B+
E [1/tE ](8)
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is an isomorphism. By replacing D with D ⊗K0,E
WOE

(k)[1/π], we may assume k is al-
gebraically closed. Then by the Dieudonné–Manin theorem, we may reduce to the case
D∨ ≃ Dd/h is isoclinic (for some (d, h) ∈ Z × Z≥1 with (d, h) = 1). Recall that by defi-
nition, Dd/h admits a K0,E-basic x0, . . . , xh−1 with φq(xi) = xi+1 for 0 < i < h − 1, and
φq(xh−1) = πdx0. Thus,

(D ⊗K0,E
B+

E [1/tE ])φq=1 = Homφq (D∨, B+
E [1/tE ]) = (B+

E [1/tE ])φh
q =πd

,

and so we are reduced to showing that the map

(B+
E [1/tE ])φh

q =πd ⊗Be,E
B+

E [1/tE ] −→ (B+
E [1/tE ])⊕h

x⊗ a 7−→ (ax, aφq(x), . . . , aφh−1
q (x))

is bijective. As usual let Eh ⊆ C denotes the unique unramified extension of E of degree h; in
particular we have B+

Eh
= B+

E canonically (cf. the proof of [19, Proposition 1.6.9]). Recall also
that the vanishing locus of any nonzero element tEh

∈ (B+
E )φh

q =π consists of a unique (closed)
point: V +(tEh

) = {∞tEh
} (cf. [19, Théorème 6.5.2]). Choose tEh

so that {∞tEh
} maps into

{∞t} under the projection map π : XEh
→ XE . Then (B+

E [1/tE ])φh
q =πd is a free of rank one

over Eh ⊗E Be,E with basis td
Eh

. As tEh
is a unit in B+

E [1/tE ]17, it suffices to show that the
map

Eh ⊗E B+
E [1/tE ] −→ (B+

E [1/tE ])⊕h

x⊗ a 7−→ (φi
q(a)x)0≤i≤h−1

is an isomorphism. This follows immediately from the analogue decomposition Eh ⊗E Eh
∼→∏

0≤i≤h−1 Eh. This gives the isomorphism in part (2). Note that the argument also shows
that (D⊗K0,E

B+
E [1/tE ])φq=1 is finite free over Be,E of rank dimK0,E

(D); in other words, the
functor D 7→ Vcris,E(D) is rank-preserving and indeed lands in RepBe,E

(GK).
For part (3), it suffices to show that for each M in RepBe,E

(GK), the natural map

Vcris,E(Dcris,E(M)) = ((M ⊗Be,E
B+

E [1/tE ])GK ⊗K0,E
B+

E [1/tE ])φq=1 −→M

is injective. As (B+
E [1/tE ])φq=1 = Be,E , we are reduced to show that the map

(M ⊗Be,E
B+

E [1/tE ])GK ⊗K0,E
B+

E [1/tE ] −→M ⊗Be,E
B+

E [1/tE ](9)

is injective. Upon replacing B+
E [1/tE ] by Frac(B+

E [1/tE ]), the result follows readily from the
equality (Frac(B+

E [1/tE ]))GK = K0,E in Lemma A.2. Note that the isomorphism 9 also shows
that dimK0,E

Dcris,E(M) ≤ rankBe,E
M < ∞ and that the linearization φ∗

qDcris,E(M) →
Dcris,E(M) is an isomorphism. Indeed, as the source and target have the same (finite) K0,E-
dimension, it suffices to show that the map is injective, which in turn can be checked after the
faithfully flat extension K0,E → B+

E [1/tE ]. Thus, we see that the functor M 7→ Dcris,E(M)
indeed lands in Vectφq (K0,E), and moreover satisfies dimK0,E

Dcris,E(M) ≤ rankBe,E
M . This

finishes the proof of (3).
Finally, (1) follows by combining (2) and (3). □

17We claim that tEh divides tE in B+
E . As φh

q (t) = πht, we can use [19, Théorème 6.2.1] to write t = t1 . . . th

where ti ∈ (B+
E )φh

q =πfor each i. Then ∞tEh
∈ π−1(∞t) = V +(t1) ∪ . . . ∪ V +(th), so we must have tEh ∈ E×

h ti

for some i (cf. [19, Théorème 6.5.2]); in particular, we have tEh |t, as claimed.
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Definition A.6 ([19, Definition 10.2.13]). —

(1) A representation M ∈ RepBe,E
(GK) is called crystalline if M ∼= Vcris,E(D) for some

(D, φq) ∈ Vectφq (K0,E). We denote by Repcris
Be,E

(GK) the full subcategory of crystalline
objects in RepBe,E

(GK).

(2) A GK-equivariant vector bundle E on XE or XE \ {∞} is called crystalline if the Be,E-
representation H0(XE \ {∞}, E) is crystalline.

Lemma A.7. — M is crystalline if and only if the B+
E [1/tE ]-representation M ⊗Be,E

B+
E [1/tE ] is trivial.

Proof. — This is essentially contained in the proof of Proposition A.5. If M ⊗Be,E
B+

E [1/tE ]
is trivial, i.e.

(M ⊗Be,E
B+

E [1/tE ])GK ⊗K0,E
B+

E [1/tE ] ∼−→M ⊗Be,E
B+

E [1/tE ],

then Vcris,E(Dcris,E(M)) ∼→ M by taking φq-invariants. Conversely, if M ∼= Vcris,E(D), then
by (8), we have

M ⊗Be,E
B+

E [1/tE ] ∼= Vcris,E(D, φq)⊗Be,E
B+

E [1/tE ]
∼←− D ⊗K0,E

B+
E [1/tE ]

is indeed trivial. □

Remark A.8. — Recall that Bcris,E denote Fontaine’s crystalline period ring defined using
E and τ0 : E ↪→ K ⊆ C. As in the case E = Qp ([19, Proposition 1.10.12]), one can check that
B+

E =
⋂

n≥0 φn
q (B+

cris,E) (resp. B+
E [1/tE ] =

⋂
n≥0 φn

q (Bcris,E)) is the maximal subring of B+
cris,E

(resp. Bcris,E) over which Frobenius is an automorphism. It follows that Dcris,E(M) can also
be computed as (M ⊗Be,E

Bcris,E)GK and that M is crystalline if and only if M ⊗Be,E
Bcris,E

is trivial as a Bcris,E-representation. Indeed, as φq is an automorphism on D := (M ⊗Be,E

Bcris,E)GK , we have D ⊆
⋂

n≥0 φn
q (M ⊗Be,E

Bcris,E) = M ⊗Be,E

⋂
n≥0 φn

q (Bcris,E) = M ⊗Be,E

B+
E [1/tE ], whence D = Dcris,E(M).

Remark A.9. — We have seen that M is crystalline precisely when the natural injective
map Vcris,E(Dcris,E(M)) ↪→ M is an isomorphism. In the case E = Qp, it in fact suffices
to require that the source and target have the same Be,E-rank, i.e. dimK0,E

Dcris,E(M) =
rankBe,E

M . Indeed, in this case,∞ is the unique closed point in XQp with finite GK-orbit, so
any GK-equivariant coherent sheaf on XQp\{∞}must be torsion-free (as its torsion part must
have empty support), and hence a vector bundle. Thus, if dimK0,E

Dcris,E(M) = rankBe,E
M ,

then the torsion Be,E-module coker(Vcris,E(Dcris,E(M)) ↪→M) must be zero, as claimed. On
the other hand, this does not seem to be enough if E ̸= Qp since in general there can be more
closed points in XE with finite GK-orbit (for instance, if K contains the Galois closure of E in
K, then GK fixes∞τ for all τ : E ↪→ K). (See, however, the proof of Proposition A.13 below.)
This is also related to the fact that the ring B+

E [1/tE ] is not (E, GK)-regular (as opposed to
the case E = Qp, cf. [19, Corollaire 10.2.8]): the line Et is GK-stable yet t /∈ (B+

E [1/tE ])×.
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Lemma A.10. —

(1) The functor Dcris,E defines an equivalence Repcris
Be,E

(GK) ∼→ Vectφq (K0,E) with quasi-
inverse Vcris,E.

(2) Both Dcris,E and Vcris,E are exact.

(3) The category Repcris
Be,E

(GK) is stable under direct summand subquotients, tensor products,
and duals. Moreover, Dcris,E naturally respects these operations.

Proof. —

(1). — It follows immediately from definition and Proposition A.5.

(2). — We will show that Vcris,E is exact (the argument for Dcris,E being analogous). Let
0 → D1 → D2 → D3 → 0 be an exact sequence in of isocrsyals over K0,E . As the inclusion
Be,E ↪→ B+

E [1/tE ] is faithfully flat18, it suffices to show that the induced sequence after
applying Vcris,E( · )⊗Be,E

B+
E [1/tE ] is exact. We are now done because this functor is naturally

identified with ( · )⊗K0,E
B+

E [1/tE ].

(3). — Let 0 → M1 → M2 → M3 → 0 be an exact sequence in RepBe,E
(GK) with M2

crystalline. Consider the commutative diagram

0 Vcris,E(Dcris,E(M1)) Vcris,E(Dcris,E(M2)) Vcris,E(Dcris,E(M3))

0 M1 M2 M3 0
≃

As the middle vertical arrow is an isomorphism, a simple diagram chasing shows that the two
outer maps are also isomorphisms, i.e. M1 and M2 are crystalline, as wanted.
The other claims can be proved e.g. using Lemma A.7. □

Recall that we have a natural functor (D, φq) 7→ E(D, φq) from Vectφq (K0,E) to the category
of GK-equivariant vector bundles on XE , where E(D, φq) is the OXE

-module associated to
the graded module ⊕

n≥0
(D ⊗K0,E

B+
E )φq=πn

.

By Beauville–Laszlo glueing (applied to the locus∞τ0 ↪→ XE), the datum of a GK-equivariant
vector bundle on XE is equivalent to the data of a triple (Me, M+

dR, u) where Me ∈
RepBe,E

(GK), M+
dR ∈ RepB+

dR
(GK), and u is a GK-equivariant isomorphism Me ⊗ BdR

∼→
M+

dR[1/tE ]. In terms of this description, E(D, φq) corresponds to the triple (Vcris,E(D), DK⊗K

B+
dR, ι) (with DK := D⊗K0,E

K, and ι being the natural isomorphism). In particular, by def-
inition, a GK-equivariant vector bundle E on XE is crystalline if and only if there exists
(D, φq) so that there is a GK-equivariant isomorphism E|XE\{∞τ0 } ∼= E(D, φq)|XE\{∞τ0 }.

18As Be,E is a PID and B+
E [1/tE ] is a domain, the map is flat. It remains to show that mB+

E [1/tE ] ̸= (1) for
each m ∈ Max(Be,E). By [19, Théorème 6.5.2], such m is generated by t′/tE for some t′ ∈ (B+

E )φq=π \ EtE .
Now t′/t is a not a unit in B+

E [1/tE ] as otherwise it would be already a unit in (B+
E [1/tE ])φq=1 = Be,E .
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Lemma A.11. — Let V be a continuous semilinear representation of GK on a finite free
B+

dR-module. Then V is trivial if and only if V ⊗B+
dR

C is trivial as a C-semilinear represen-
tation of GK .

Proof. — See [14, Proposition 2.18(1)]. (The proof of [14] uses the usual B+
dR (and the cy-

clotomic period t), but we have seen that the natural map (̂OXQ)∞ → (̂OXE
)τ0

is a GK-
equivariant isomorphism.) □

Lemma A.12. — Let V ∈ RepE(GK) be an E-representation of GK . Then V is crystalline
if and only if dimK0,E

(V ⊗E0 Bcris)GK = dimE V .

Proof. — We have

Dcris(V ) = (V ⊗Qp Bcris)GK = (V ⊗E0 E0 ⊗Qp Bcris)GK

=
⊕

0≤i≤f−1
(V ⊗E0,φi

p
Bcris)GK ,

For each i, we have dimE⊗
E0,φi

p
K0(V ⊗E0,σi

p
Bcris)GK ≤ dimE V with equality if and only if

the E ⊗E0,φi
p

Bcris-representation V ⊗E0,φi
p

Bcris is trivial19. As the latter can be obtained
from V ⊗E0 Bcris by extending scalars along the (GK-equivariant) map φi

p : Bcris → Bcris,
it in fact suffices to require that V ⊗E0 Bcris is trivial. The lemma now follows by counting
dimensions. □

We can now give a geometric interpretation of the notion of E-crystalline representations of
Kisin–Ren in terms of vector bundles on the Fargues–Fontaine curve.

Proposition A.13. — Let V ∈ RepE(GK). Then the following are equivalent:

(1) The GK-equivariant vector bundle V ⊗EOX is crystalline in the sense of Definition A.6.

(2) V is E-crystalline.

Example A.14. — Let V = E(1) denotes the E-representation of GK given by the Lubin–
Tate character χLT : GK → O×

E associated to the uniformizer π (and the embedding τ0 :
E ↪→ K). Then V satisfies condition (1) of Proposition A.13. Indeed, V ⊗E B+

E [1/tE ] has a
GK-invariant basis given by v⊗ t−1

E where v is an E-basis in V . More generally, this holds for
the p-adic Tate module of any π-divisible OE-module over OK ; see Lemma 4.22 (the previous
example being the case of the Lubin–Tate formal OE-module associated to π).

Proof of Proposition A.13. — Assume (1). By Lemma A.7, V ⊗E B+
E [1/tE ] is trivial as a

B+
E [1/tE ]-representation of GK . As tE is invertible in (̂XE)∞τ

for each τ ̸= τ0 (as V +(tE) =
∞τ0), by extending scalars,

⊕
τ ̸=τ0 V ⊗E,τ B+

dR is also trivial (as a B+
dR-representation), whence

the same is true for ⊕τ ̸=τ0V ⊗E,τ C.

19This follows from the usual property of admissible representations, and the fact that E ⊗E0,φi
p

Bcris is
(E, GK)-regular, which in turn can be proved in exactly the same way as in the case E = Qp.
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Moreover, by extending scalars along B+
E [1/tE ] ↪→ Bcris⊗E0 E20, V ⊗E0 Bcris is also trivial as a

Bcris⊗E0 E-representation, and hence taking GK-invariants yields dimK0,E
(V ⊗E0 Bcris)GK =

dimE V . By Lemma A.12, V is crystalline, as wanted.
Conversely, assume (2) holds. Let D := Dcris,E(V ) = (V ⊗E B+

E [1/tE ])GK . We need to show
that the natural inclusion

Vcris,E(D) = (D ⊗K0,E
B+

E [1/tE ])φq=1 ↪−→ V ⊗E Be,E(10)

is an isomorphism. We first show that the source and target have the same rank, i.e. dimE V =
dim D. As B+

E [1/tE ] ⊆ Bcris ⊗E0 E, we always have D ⊆ (V ⊗E0 Bcris)GK , and the latter has
dimension dimE V by Lemma A.12. We will show that D = (V ⊗E0 Bcris)GK . As Repcris

Be,E
(GK)

is stable under tensor products by Lemma A.10, by replacing V with V ⊗E E(n) for n≪ 0,
we may assume that the Hodge–Tate weights of V are all non-negative. In particular, we have

(V ⊗E0 Bcris)GK = (V ⊗E0 B+
cris)GK .

Moreover, as φq is an automorphism on (V ⊗E0 B+
cris)GK , we deduce that

(V ⊗E0 B+
cris)GK =

(
V ⊗E0

⋂
n≥0

φn
q (B+

cris)
)GK

= (V ⊗E0 B+
Qp

)GK

= (V ⊗E (E ⊗E0 B+
Qp

))GK

= (V ⊗E B+
E )GK ⊆ D,

as wanted. (For the second equality, see e.g. [19, Section 1.10].)
Next, we claim that the induced map⊕

τ ̸=τ0

D ⊗K0,E ,τ B+
dR ↪−→

⊕
τ ̸=τ0

V ⊗E,τ B+
dR(11)

on completed stalks is an isomorphism. As V is E-crystalline, both the source and target
are trivial as a B+

dR-representation by Lemma A.11. As any such representation W satisfies
W = (W [1/t])GK ⊗K B+

dR, it suffices to observe that 11 becomes an isomorphism after taking
⊗BdR (being an injection between BdR-vector spaces of the same (finite) dimension).
Thus, the cokernel of 10 is a torsion equivariant coherent sheaf F on XE \ {∞τ0} satisfying
F̂∞τ = 0 for all τ ̸= τ0. As {∞τ}τ = π−1(∞) is precisely the set of closed points in XE

with finite GK-orbit, F must be supported on the set {∞τ}τ ̸=τ0 , and hence must be zero, as
claimed. □

Remark A.15. — Combining with Remark A.8, we see that an object V ∈ RepE(GK) is
E-crystalline if and only if V ⊗E Bcris,E is trivial as a Bcris,E-representation. Thus, the notion
of E-crystalline representations is in some sense indeed a natural extension of the usual notion
for Qp-representations.

20This inclusion is defined as follows. By [12, Lemma 9.17], tE divides t in B+
max ⊗E0 E, and so we have

B+
E [1/tE ] = (B+

Qp
⊗E0 E)[1/tE ] ⊆ B+

max[1/t] ⊗E0 E = Bmax ⊗E0 E. As φp(Bmax) ⊆ Bcris and φq is an
automorphism on B+

E [1/tE ], we also have B+
E [1/tE ] ⊆ Bcris ⊗E0 E, as wanted.
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Lemma A.16. — Let V be a finite dimensional K-vector space. Then the association
Fil• V 7→ Fil0(V ⊗K BdR) gives a bijection between the set of (finite, separated, exhausted)
descreasing filtrations on V , and the set of GK-equivariant B+

dR-lattices in V ⊗K BdR. The
inverse bijection is given by W 7→ (t•

EW )GK .

Proof. — See [19, Proposition 10.4.3]. □

Combining the above lemma with Beauville–Lazlo’s glueing theorem, we deduce the following
result.

Lemma A.17. — The functor
MFφq (K) ∼−→ FibGK ,cris(XE)

(D, φq, Fil• DK) 7−→ E(D, φq, Fil• DK)
defines an equivalence onto the categories of crystalline GK-equivariant vector bundles on
XE. Here E(D, φq, Fil• DK) is the modification of E(D, φq) at ∞τ0, defined using the GK-
stable B+

dR-lattice Fil•(DK ⊗K BdR).

A.3. “Weakly admissible implies admissible”. — In this subsection, we finish the proof
that E-crystalline representations are equivalent to weakly admissible filtered isocrystals over
K (Theorem A.19).
We begin by recalling the notion of weak admissibility for filtered φq-modules. Namely, for a
1-dimensional object D in MFφq (K), we pick a basis vector v ∈ D and let tN (D) := vπ(α)
where α ∈ (K0,E)× is such that vq(v) = αv. We let tH(DK) (or more precisely, tH(Fil• DK))
be the unique integer i ∈ Z such that Fili DK = DK and Fili+1 DK = 0. For a general D,
we define tH(DK) := tH(det(DK)) and tN (D) := tN (det(D)). We say that an object D in
MFφq (K) is weakly admissible if tH(D) = tN (D) and tH(D′) ≤ tN (D′) for all subobjects
D′ ⊆ D. As in the case E = Qp, the degree function and the rank function

deg : (D, φq, Fil• DK) 7−→ tH(DK)− tN (D, φq),
rank : (D, φq, Fil• DK) 7−→ rank(D, φq)

make MFφq (K) into a slope category with slope function µ := deg / rank. In particular, each
object in MFφq (K) admits a unique Harder–Narasimhan filtration, and the resulting abelian
subcategory of semistable objects of slope 0 is precisely formed by those weakly admissible
objects in the preceding sense.
For ease of notation, in what follows we will simply write D for a filtered φq-module over K,
and E(D) for E(D, φq, Fil•).

Proposition A.18 ([19, Proposition 10.5.6]). — Let D be a filtered φq-module over K.

(1) We have rank(D) = rank(E(D)), deg(D) = deg(E(D)), and µ(D) = µ(E(D)).

(2) If 0 = D0 ⊊ . . . ⊊ Dr = D is the Harder–Narasimhan filtration of D, then that of
E(D, φq, Fil• DK) is given by

0 = E(D0) ⊊ . . . ⊊ E(Dr) = E(D).
In particular, D is weakly admissible if and only if E(D) is semistable of slope 0.

Publications mathématiques de Besançon – 2025



92 Prismatic F -crystals and E-crystalline Galois representations

Proof. —

(1). — We have seen in the proof of Proposition A.5 that the functor (D, φq) 7→ Vcris(D, φq) is
rank-preserving. Thus rank(E(D)) = rank(E(D, φq)) = rank(D). It remains to show det(D) =
deg(E(D)). As E(D) is defined as the modification of E(D, φq) at ∞τ0 using the lattice
Fil0(DK ⊗K BdR), we have

deg(E(D)) = deg(E(D, φq))− [DK ⊗K B+
dR : Fil0(DK ⊗K BdR)]21

Now deg(E(D, φq)) = −tN (D, φq) (recall that if (D, φq) = O(λ), then E(D, φq) = O(−λ)),
while it follows easily by choosing a splitting of the filtration on DK that

[DK ⊗K B+
dR : Fil0(DK ⊗K BdR)] = −tH(Fil• DK),

as desired.

(2). — We follow the proof of [19, Proposition 10.5.6]. Observe firstly that by uniqueness,
the Harder–Narasimhan filtration of E(D) is GK-equivariant. Thus, by part (1) and definition
of semistability, it suffices to show that if E ′ ⊆ E(D) is a GK-stable subbundle, then E ′ =
E(D′) for a (necessarily unique) subobject D′ ⊆ D (as a filtered φq-module). As E ′ is a
subbundle, E ′|XE\{∞τ0 } is in particular is a Galois stable direct summand of Vcris,E(D), and
hence crystalline by Lemma A.10. Thus, E ′ = E(D′, φq) on XE \ {∞τ0} for some φq-module
D′ ⊆ D. The lattice (̂E ′)∞τ0

determines a filtration on D′
K , which we claim is simply the one

inherited from DK . Indeed, if E ′′ denotes the equivariant vector bundle given by this latter
filtration, then it follows from the (explicit) bijection in Lemma A.16 that E ′ ⊆ E ′′. As E ′ is
a subbundle in E (hence in E ′′) and rank(E ′) = rank(E ′′) = dim D′, we must have E ′ = E ′′.
Thus, we see that E ′ = E(D′) for a subobject D′ ⊆ D, as claimed. □

After the classification of vector bundles ([19, Théorème 8.2.10]), any vector bundle E on XE

is of the form
E ≃ O(λ1)⊕ . . .⊕O(λn)

for a unique tuple (λ1 ≥ . . . ≥ λn) of rational numbers. As

dimE H0(X,O(λ)) =


0 if λ < 0,

1 if λ = 0,

∞ if λ > 0,

E is semistable of slope 0 if and only if dimE H0(XE , E) = rank(E). Combining with Propo-
sition A.18, we see that a filtered φq-module D over K is weakly admissible if and only
if dimK0,E

D = dimE VE(D), where VE(D) := H0(XE , E(D)) = (D ⊗K0,E
B+

E [1/tE ])φq=1 ∩
Fil0(DK ⊗K BdR).
Motivated by the case E = Qp, we next proceed to show that the functor D 7→ VE(D) defines
an equivalence between the category of weakly admissible filtered φq-modules over K, and
the category of E-crystalline representations of GK .

21For an effective modification 0 → E ′ → E → F → 0 (so that F is a skyscraper sheaf, supported at ∞τ0 ),
this follows from additivity of degree: deg(E) = deg(E′)+ length(F) = deg(E)+[(̂E)∞τ0

: (̂E ′)∞τ0
]. In general,

we can choose n ≫ 0 so that (̂E ′)∞τ0
⊆ t−n

E (̂E)∞τ0
, and hence reduce to effective case.
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Let V ∈ RepE(GK). Define

Dcris,E(V ) := (V ⊗E B+
E [1/tE ])GK .

Of course, this is nothing but Dcris,E(M) where M := V ⊗E Be,E . In particular, we have seen
that Dcris,E(V ) is naturally a φq-module over K0,E , of dimension ≤ dimE V . Via the natural
inclusion B+

E [1/tE ]⊗K0,E
K ↪→ BdR, we can endow

Dcris,E(V )⊗K0,E
K ↪−→ (V ⊗E BdR)GK

with the subspace filtration from V ⊗E BdR. In this way, D := Dcris,E(V ) is naturally a
filtered φq-module over K.

Theorem A.19. — The functor

Dcris,E : Repcris
E (GK) −→ MFφq (K)

is fully faithful. Moreover, the essential image is precisely the subcategory of weakly admissible
objects.

Proof. — Recall that Be,E ∩ B+
dR = E (as follows from the fundamental exact sequence

0 → E → Be,E → BdR/B+
dR → 0). The first statement follows rather formally from this.

More precisely, for each V is the source, we have

V = (V ⊗E B+
E [1/tE ])φq=1 ∩ Fil0(V ⊗E BdR) = VE(Dcris,E(V )).

Taking GK-invariants yields, V GK = Fil0(Dcris,E(V )φq=1). Using a suitable internal Hom, this
implies full faithfulness of Dcris,E . We remark also that VE is a quasi-inverse on the essential
image of Dcris,E . We next show that D := Dcris,E(V ) is weakly admissible. This follows from
the equality dimE VE(D) = dimE V = dimK0,E

D, Proposition A.18, and the classification of
vector bundles on XE .
It remains to show that if D is a weakly admissible filtered φq-module over K, then V :=
VE(D) is E-crystalline, and Dcris,E(V ) ≃ D as filtered φq-modules. We will follow the proof
of [13, Proposition 4.5]. Let CE denote the fraction field of B+

E [1/tE ]. As (CE)GK = K0,E

by Lemma A.2, by [13, Lemme 4.6], there exists a (necessarily unique) K0,E-vector space
D′ ⊆ D such that D′ ⊗K0,E

CE equals the CE-subspace of D ⊗K0,E
CE generated by V .

As V is fixed by φq, D′ is φq-stable, and hence naturally a subobject of D (as a filtered
φq-module). Moreover, as V ⊆ D′⊗CE and V ⊆ D⊗B+

E [1/tE ], we have V ⊆ D′⊗B+
E [1/tE ],

whence V = VE(D′). Let d1, . . . , dr be a K0,E-basis of D′. Choose also v1, . . . , vr ∈ V which
spans D′ ⊗K0,E

CE over CE . For each i, write vi =
∑

j bijdj for some bij ∈ B+
E [1/tE ]. Then

b := det(bij) is nonzero, and so

w := v1 ∧ . . . ∧ vr = b(d1 ∧ . . . ∧ dr)

is a nonzero element in W := VE(∧rD′) ⊆ B+
E [1/tE ] ⊗ ∧rD′. As tH(D′) ≤ tN (D′) (by weak

admissibility of D), it follows from Lemma A.20 below that tH(D′) = tN (D′), W = Ew and
that b is a unit in B+

E [1/tE ]. Thus the natural map V ⊗E B+
E [1/tE ]→ D′⊗B+

E [1/tE ] is surjec-
tive, and so as the source and target are abstractly isomorphic (as dimE V = dimE VE(D′) =
dimK0,E

D′ by weak admissibility of D′), it is in fact an isomorphism. Thus V is E-crystalline
and Dcris,E(V ) = D′ ⊆ D. Finally as dim D′ = dimE V = dim D, we must have D′ = D. □
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Lemma A.20. — Let D be a filtered φq-module over K. Assume D is 1-dimensional with
a basis d. Then

dimE VE(D) =


0 if tH(D) < tN (D),
1 if tH(D) = tN (D),
∞ if tH(D) > tN (D).

Moreover, in case dim VE(D) = 1, any basis of VE(D) is of the form bd for some unit
b ∈ B+

E [1/tE ].

Proof. — Write φq(d) = πtN (D)uv with u ∈WOE
(k)×. Choose x ∈WOE

(k)× so that φq(x) =
ux. One then checks easily that

VE(D) = t
−tH(D)
E x−1 Fil0(B+

E [1/tE ])φq=πtH (D)−tN (D)
.

The lemma now follows from this and the fundamental exact sequence. □

Remark A.21. — For a weakly admissible D in MFφq (K), let V ′
E(D) := (D⊗K0,E

(Bcris⊗E0

E))φq=1 ∩Fil0(DK ⊗K BdR). As B+
E [1/tE ] ⊆ Bcris⊗E0 E, VE(D) ⊆ V ′

E(D). Moreover, by [27,
Proposition (3.3.4)], dimE V ′

E(D) ≤ dim D. As dim VE(D) = dim H0(XE , E(D)) = dim D
(recall that E(D) is semistable of slope 0 by weak admissibility of D), V ′

E(D) = VE(D). Thus,
the definition of VE(D) here agrees with the one in [27, Section 3] (for weakly admissible D).
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