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VARIOUS PRODUCTS OF REPRESENTATIVE SERIES

by

V. C. Bui, V. Hoang Ngoc Minh, Q. H. Ngo and V. Nguyen Dinh

Abstract. — For factorizing and decomposing the representative (or rational) series, with coefficients
in a commutative ring A containing Q, we examine various products (such as concatenation, shuffle,
quasi-shuffle) defined on the free monoid which are such that their associated bialgebras are isomorphic
to the Sweedler’s dual, for A being a field K.

Résumé. — Pour factoriser et décomposer la série représentative (ou rationnelle) à coefficients dans
un anneau commutatif A contenant Q, nous examinons divers produits (tels que concaténation, shuffle,
quasi-shuffle) définis sur le monoïde libre qui sont tels que leurs bialgèbres associées sont isomorphes au
dual de Sweedler, pour A étant un corps K.

1. Introduction

Formal series in noncommutative variables have been introduced for the first time by
M.P. Schützenberger [48] to study problems related to theoretical computer science, such as
language theory and the theory of automata. He generalizes the theorem of S.C. Kleene [36] to
noncommutative formal series [47]. He then showed the fundamental role played, for the study
of noncommutative formal series, by matrix representations of free monoids. In particular ir-
reducible representations, allowed him to find fine results on the growth of coefficients [49].
After M.P. Schützenberger, we must cite the work of M. Fliess [22], G. Jacob [32] and
C. Reutenauer [43]. They developed sets of fundamental tools for combinatorial studies of free
monoids, linked to the theory of automata. Specifically, M. Fliess, using the Hankel matrices,
characterizes noncommutative rational series (a series is rational if and only if the rank of its
Hankel matrix is finite) and series with positive coefficients. Furthermore, using matrix rep-
resentations, G. Jacob generalized the notion of loops in finite automata (star lemma) which
enables to solve problems of decidability of the finiteness of the coefficients of rational series.
C. Reutenauer characterized rational series by their syntactic algebra (a series is rational if
and only if the dimension of its syntactic algebra is finite) and defined the notion of varieties
of formal series in the sense of S. Eilenberg [21]. These works are widely reproduced in books
by J. Berstel and C. Reutenauer [1], by W. Kuich and A. Salomaa [38] and by A. Salomaa
and M. Soittola [46].

Key words and phrases. — noncommutative rational series, representative series, Sweedler’s dual.



116 Various products of representative series

As N. Chomsky and M.P. Schützenberger showed that the algebraic languages are the sup-
ports of algebraic series [12] as being solutions of a system of propre algebraic equations
with integer coefficients. M. Nivat [42] and then M. Fliess [22] showed that the study of
noncommutative algebraic series mainly depends on the study of rational transductions1 of
algebraic series. Introducing the notion of regulated transduction (to establish the converse
of the Shamir’s theorem), G. Jacob showed that the image by regulated rational (resp. alge-
braic) transduction of a noncommutative rational (resp. algebraic) series is a noncommutative
rational (resp. algebraic) series, opening a way to the study of nice families of noncommu-
tative formal series. W. Kuich further developed this method in an approach by cycle-free
push-down automata to study noncommutative algebraic series [37]. Noncommutative se-
ries therefore benefited from knowledge of language theories and automata. In return, the
techniques and the results in [22, 32, 43] enabled new visions in these fields [1]. These devel-
opments made the algebra of formal series a preferred tool for the syntactic study of operator
algebras [45]. Furthermore, algebra of formal series proved to be a particularly well-suited tool
for implementations of effective calculations in modern computer algebra systems [34, 35].
In particular, since the input-output behaviors of nonlinear dynamical systems (or causal
functionals) was encoded by noncommutative series (see [26, 33] for an introduction), the
noncommutative symbolic computation (a generalization of the Heaviside’s calculus) became
efficient for dealing with special functions2 (hypergeometric function, hyperlogarithm, poly-
logarithm [18, 28, 29, 30, 39]) in the study of (nonlinear) differential equations in control
theory [23, 24, 31, 33, 44] and in quantum electrodynamics (QED) [5, 6, 18, 30, 31]. Let us
consider, for instance, the following nonlinear dynamical system

(1)


d
dz q(z) = A0(q)u0(z) + · · · + Am(q)um(z),
q(z0) = η,
y(z) = f(q(z)),

where

1. y is the output,

2. the vector state q = (q1, . . . , qn) belongs to a complex holomorphic manifold M of di-
mension n,

3. the observation f is defined within a fixed connected neighbourhood3 U of the initial
state η,

4. the vector fields (Ai)i=0,...,m are defined, with respect to the coordinates, by

(2) Ai =
n∑

j=1
Aj

i (q) ∂

∂qj
, with Aj

i (q) ∈ H(U),

1It will be pratical for transforming rational series over an alphabet X to rational series over another alphabet
Y with coeffients in a ring A (see Examples 4.6–4.7 and Remark 4.8 below).
2In [29], an overview of main results already obtained [5, 17, 28, 29] concerning polylogarithms, harmonic sums
and polyzetas which are indexed by words as well as by rational series, using the present algebraic framework.
3In this introductive description, the points are loosely identified with their coordinates through some chart
φU : U → Cn likewise, in [44], the space of holomorphic functions H(U) is described by CcvJq1, . . . , qnK.
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5. the inputs4 (ui)i=0,...,m, as well as their inverses (u−1
i )i=0,...,m, belong to the subring C0 of

the ring of holomorphic functions H(Ω) with the neutral element 1H(Ω) over the simply
connected manifold Ω.

It is convenient (and possible) to separate the contribution of the vector fields (Ai)i=0,...,m

and that of the differential forms (ωi)i=0,...,m, defined by the inputs, i.e. ωi(z) = ui(z)dz,
through the encoding alphabet X = {xi}i=0,...,m which generates the free monoid X∗ with
the neutral element 1X∗ . Indeed, the output y (depending on z0) can be computed by

(3) y(z) =
∑

w∈X∗
αz

z0(w)Y(w)f|η ,

as the pairing (under suitable convergence conditions [18, 24, 44]) between the Chen series
of (ωi)i=0,...,m along the path z0 ⇝ z over Ω [8, 11, 25] and the generating series of (1) [24],
defined as follows

Cz0⇝z :=
∑

w∈X∗
αz

z0(w) w ∈ H(Ω)⟨⟨X⟩⟩,(4)

σf :=
∑

w∈X∗
Y(w)f w ∈ H(U)⟨⟨X⟩⟩,(5)

where, in (3)–(5), the iterated integral αz
z0(w) and the differential operator Y(w), are com-

puted, from the word w ∈ X∗, recursively as follows

(6)


αz

z0(w) = 1H(Ω) and Y(w) = Id, for w = 1X∗ ,

αz
z0(w) =

∫ z

z0
ωi(s)αs

z0(v) and Y(w) = Ai ◦ Y(v), for w = xiv, xi ∈ X, v ∈ X∗.

There is a large literature concerning Chen series (see [8, 11, 25] and their bibliographies, see
also [6] for our study). In the present work, applications are focussing on σf as being rational
series for which (1) is transformed into the following form [23, 24]

(7) d
dz

q(z) = M0(q)u0(z) + · · · + Mm(q)um(z), q(z0) = η, y(z) = νq(z)

where {Mi}1≤i≤n and ν are matrices in, respectively, Mn,n(A) and M1,n(A) and the vectors
fields (2) can be expressed as follows

(8) Ai =
n∑

j=1

(
n∑

k=1
Mk,jqk

)
∂

∂qj
.

Letting µ be the morphism from X∗ to Mn,n(A) mapping xi to Mi, the generating series
σf|η in (3) admits (ν, µ, η) as linear representation, of rank n (see Section 4 below) such that,
for any w ∈ X∗,
(9) ⟨σf|η | w⟩ = Y(w)f|η = νµ(w)η.

Example 1.1 (Hypergeometric equation). — Let t0, t1, t2 be parameters and

z(1 − z) d2

dz2 y(z) + [t2 − (t0 + t1 + 1)z] d
dz

y(z) − t0t1y(z) = 0.

4For any 0 ≤ i ≤ m, if ui ∈ C(z) then y can be expressed using elementary or hypergeometric functions,
hyperlogarithms and, in particular, polylogarithms (see [13, 18, 39]).
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118 Various products of representative series

Let q1(z) = −y(z) and q2(z) = (1 − z)d/dz y(z). One has
d
dz

(
q1(z)
q2(z)

)
= (M0u0(z) + M1u1(z))

(
q1(z)
q2(z)

)
,

where ui ∈ C(z) and Mi ∈ M2,2(C[t0, t1, t2]) (i = 0, 1) and

u0(z) = 1
z

, u1(z) = 1
1 − z

and M0 = −
(

0 0
t0t1 t2

)
, M1 = −

(
0 1
0 t2 − t0 − t1

)
.

Or equivalently,
d
dz

q(z) = A0(q)u0(z) + A1(q)u1(z) and y(z) = −q1(z),

where A0 and A1 are the following parametrized linear vector fields

A0 = −(t0t1q1 + t2q2) ∂

∂q2
and A1 = −q1

∂

∂q1
− (t2 − t0 − t1)q2

∂

∂q2
.

acting by
∂

∂q1
(q) = ∂

∂q1

(
q1
q2

)
=
(

1
0

)
and ∂

∂q2
(q) = ∂

∂q2

(
q1
q2

)
=
(

0
1

)
.

In this work, using Lazard and Schützenberger monoidal factorizations [40, 52] and extending
results of [13, 18, 29] (already obtained over C), the representative series, with coefficients
in the commutative ring A containing Q (see examples in (4)–(5)) are factorized and decom-
posed, as function on monoids within their associated bialgebras [7, 9, 10]. The organization
of the paper is following.

1. In Section 2, we will examine combinatorial aspects of various products and coproducts
(concatenation, shuffle, quasi-shuffle) for which group like and primitive elements will be
characterized, using Proposition 2.6.

2. In Section 3, applying Theorems 3.1–3.2, pairs of dual bases (see (72)–(73) and (75)–(76))
of shuffle and quasi-shuffle A-bialgebras will be constructed.

3. After that, in Section 4, to determine the output y in (3), the noncommutative generating
series5 σf in (5) will be computed (see Propositions 4.5–4.16, Theorems 4.3–4.21 and
Corollaries 4.9–4.19). It will be also computed, according to the (commutative or nilpotent
or solvable) Lie algebra generated by the matrices {Mi}1≤i≤n [50] in the case where A is
an algebraically closed fields of characteristic zero K (see Theorem 4.23).

2. Various products and coproducts

In the sequel, as already said in Section 1, A denotes a commutative ring containing Q and X
denotes a finite alphabet (as X = {x0, x1}) or infinite alphabet (as Y = {yk}k≥1) genetating
the free monoid (X ∗, 1X ∗), for the concatenation product (denoted by conc and omitted when
there is no ambiguity). One also denotes
(10) X + = X ∗X = X ∗ \ {1X ∗}.

5See [26] for various approximations of σf|η , in (3), by noncommutative rational series.
Publications mathématiques de Besançon – 2025
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An element of X ∗ (resp. X ) is called word (resp. letter). In particular, the empty word is the
neutral element of the monoid, i.e. 1X ∗ . The length of a word w in X ∗ is denoted by |w|. A
series S is a map X ∗ −→ A, mapping w to ⟨S | w⟩ (called coefficient of w in S), and its graph
is described as follows
(11) S =

∑
w∈X ∗

⟨S | w⟩w.

The constant term of S is ⟨S | 1X ∗⟩. If ⟨S | 1X ∗⟩ = 0 then S is said to be propre. The image of
S is denoted by Im(S). The support of S is the following language
(12) supp(S) := {w ∈ X ∗ | ⟨S | w⟩ ≠ 0}.

If supp(S) is finite then S is a polynomial. On defines the degree of the polynomial P as
follows
(13) deg(P ) := max{|w|}w∈supp(S).

P is homogenous in degree n, if it is linear combination of words of length n. The characteristic
series of L ⊂ X ∗ (i.e. L is a language) is defined by (see [1])

(14) char(L) =
∑
w∈L

w.

In particular, one still denotes, for convenience, the characteristic series of X (resp. X ∗) by X
(resp. X ∗). The set of noncommutative formal series, over X with coefficients in A, is denoted
by A⟨⟨X ⟩⟩:

(15) A⟨⟨X ⟩⟩ = AX ∗

The sum of S, R ∈ A⟨⟨X ⟩⟩ and the mutiplication S by λ ∈ A are given by
(16) ∀ w ∈ X ∗, ⟨S + T | w⟩ = ⟨S | w⟩ + ⟨T | w⟩, ⟨λS | w⟩ = λ⟨S | w⟩.

The set of noncommutative polynomials, over X with coefficients in A, is denoted by A⟨X ⟩
and is an A-module. It admits {w}w∈X∗ as linear basis:
(17) A⟨X⟩ ∼= A[X∗].
By the following pairing6

A⟨⟨X ⟩⟩ ⊗ A⟨X ⟩ −→ A,(18)

T ⊗ P 7−→ ⟨T | P ⟩ :=
∑

w∈X ∗
⟨T | w⟩⟨P | w⟩,(19)

there is a natural duality between A⟨X ⟩ and A⟨⟨X ⟩⟩, i.e. [1]
(20) A⟨⟨X ⟩⟩ = A⟨X ⟩∨.

From (19), using the Kronecker delta, it follows that

(21) ∀ u, v ∈ X +, ⟨u | v⟩ = δu,v.

Let A⟨⟨X ⟩⟩ be equipped the ultrametric distance defined by [1]

(22) ∀ S, T ∈ A⟨⟨X ⟩⟩, d(S, T ) = 2−ω(S−T ).

6This sum is finite because P is a polynomial.
Publications mathématiques de Besançon – 2025



120 Various products of representative series

where ω(S) is the valuation of S ∈ A⟨⟨X ⟩⟩ defined by [1]

(23) ω(S) :=
{

+∞ if S = 0,

inf{|w|}w∈supp(S) if S ̸= 0,

For the discrete topology defined in (22), A⟨⟨X ⟩⟩ is a complete topological ring and A⟨X ⟩ is
a dense subring of A⟨⟨X ⟩⟩, i.e. Â⟨X ⟩ = A⟨⟨X ⟩⟩ [1].
Let LieA⟨X ⟩ be the smallest A-submodule of A⟨X ⟩, contaning X and being closed for by the
Lie bracket defined, for any P and Q ∈ A⟨X ⟩, by [40, 45, 52]

(24) [P, Q] = PQ − QP.

This bracket is anticommutative and satisfies the Jacobi identity [40, 45, 52]. Any element P
of LieA⟨X ⟩ is called Lie polynomial and it is propre, i.e. ⟨P | 1X ∗⟩ = 0. It is also proved that
LieA⟨X ⟩ is the free Lie algebra over A [40, 45, 52]. A series S ∈ A⟨⟨X ⟩⟩ is a Lie series if it is
uniquely expressed as follows [45]

(25) S =
∑
k≥1

Pk,

where each Pk is a Lie polynomial, homogenous of weight k [40, 45, 52]. The set of Lie series
over X , with coefficients in A, is denoted by LieA⟨⟨X ⟩⟩. One also defines the bracket, of two
Lie series

(26) S =
∑
k≥1

Pk and R =
∑
l≥1

Ql

as follows

(27) [S, R] =
∑

k,l≥1
[Pk, Ql].

With this bracket, LieA⟨⟨X ⟩⟩ is a Lie algebra over A.
As algebras the A-module A⟨X ⟩ is equipped

1. The associative noncommutative and unital concatenation, i.e. the following bilinear map

(28) conc : A⟨X ⟩ ⊗ A⟨X ⟩ −→ A⟨X ⟩

or, equivalently, by the coproduct (with respected to the pairing in (19))

∆conc : A⟨X ⟩ −→ A⟨X ⟩ ⊗ A⟨X ⟩,(29)
x 7−→ 1X ∗ ⊗ x + x ⊗ 1X ∗(30)

such that, for any u, v, w ∈ X ∗ as follows

(31) ⟨conc(u, v) | w⟩ = ⟨uv | ∆concw⟩.

∆conc is a morphism for concatenation and then, for any w ∈ X ∗, one has

(32) ∆concw =
∑

u,v∈X ∗,uv=w

u ⊗ v

Publications mathématiques de Besançon – 2025
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2. The associative commutative and unital shuffle product, i.e. the following bilinear map

(33) ⊔⊔ : A⟨X ⟩ ⊗ A⟨X ⟩ −→ A⟨X ⟩

defined, for any x, y ∈ X and u, v, w ∈ X ∗, by the following recursion

(34) w ⊔⊔ 1X ∗ = 1X ∗ ⊔⊔ w = w and xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v),

or, equivalently, by the coproduct (with respected to the pairing in (19))

∆⊔⊔ : A⟨X ⟩ −→ A⟨X ⟩ ⊗ A⟨X ⟩,(35)
x 7−→ 1X ∗ ⊗ x + x ⊗ 1X ∗(36)

and such that, for any u, v, w ∈ X ∗,

(37) ⟨u ⊔⊔ v | w⟩ = ⟨uv | ∆⊔⊔(w)⟩.

It is a morphism for concatenation, i.e.

(38) ∀ u, v ∈ X ∗, ∆⊔⊔(uv) = (∆⊔⊔u)(∆⊔⊔v).

3. Additionally, the A-module A⟨Y ⟩ is also equipped with the associative commutative and
unital quasi-shuffle product, i.e. the following bilinear map

(39) ⊔−⊔ : A⟨Y ⟩ ⊗ A⟨Y ⟩ −→ A⟨Y ⟩

defined, for any u, v ∈ Y ∗ and yi, yj ∈ Y , by

u ⊔−⊔ 1Y ∗ = 1Y ∗ ⊔−⊔ u = u,(40)
yiu ⊔−⊔ yjv = yi(u ⊔−⊔ yjv) + yj(yiu ⊔−⊔ v) + yi+j(u ⊔−⊔ v),(41)

or, equivalently, by the coproduct (with respected to the pairing in (19))

∆⊔−⊔ : A⟨Y ⟩ −→ A⟨Y ⟩ ⊗ A⟨Y ⟩,(42)

yk 7−→ yk ⊗ 1Y ∗ + 1Y ∗ ⊗ yk +
∑

i+j=k

yi ⊗ yj(43)

and such that, for any u, v, w ∈ Y ∗,

(44) ⟨u ⊔−⊔ v | w⟩ = ⟨uv | ∆⊔−⊔(w)⟩.

It is also a conc-morphism, i.e.

(45) ∀ u, v ∈ Y ∗, ∆⊔−⊔(uv) = (∆⊔−⊔u)(∆⊔−⊔v).

Now, let us extend the above products (i.e. conc, ⊔⊔ and ⊔−⊔ in, respectively, (28), (33) and (39))

conc, ⊔⊔ : A⟨⟨X ⟩⟩ ⊗ A⟨⟨X ⟩⟩ −→ A⟨⟨X ⟩⟩,(46)
⊔−⊔ : A⟨⟨Y ⟩⟩ ⊗ A⟨⟨Y ⟩⟩ −→ A⟨⟨Y ⟩⟩(47)
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122 Various products of representative series

as follows (see also Remark 11 below)

∀ S, R ∈ A⟨⟨X ⟩⟩, SR =
∑

w∈X ∗

( ∑
u,v∈X ∗
uv=w

⟨S | u⟩⟨R | v⟩
)

w,(48)

∀ S, R ∈ A⟨⟨X ⟩⟩, S ⊔⊔ R =
∑

u,v∈X ∗
⟨S | u⟩⟨R | v⟩u ⊔⊔ v,(49)

∀ S, R ∈ A⟨⟨Y ⟩⟩, S ⊔−⊔ R =
∑

u,v∈Y ∗
⟨S | u⟩⟨R | v⟩u ⊔−⊔ v,(50)

and their coproducts (∆conc, ∆⊔⊔ and ∆⊔−⊔ in, respectively, (29), (35) and (42))

∆conc, ∆⊔⊔ : A⟨⟨X ⟩⟩ −→ A⟨⟨X ∗ ⊗ X ∗⟩⟩,(51)
∆⊔−⊔ : A⟨⟨Y ⟩⟩ −→ A⟨⟨Y ∗ ⊗ Y ∗⟩⟩(52)

as follows (see also Remark 11 below)

∀ S ∈ A⟨⟨X ⟩⟩, ∆concS =
∑

w∈X ∗
⟨S | w⟩∆concw ∈ A⟨⟨X ∗ ⊗ X ∗⟩⟩,(53)

∀ S ∈ A⟨⟨X ⟩⟩, ∆⊔⊔S =
∑

w∈X ∗
⟨S | w⟩∆⊔⊔w ∈ A⟨⟨X ∗ ⊗ X ∗⟩⟩,(54)

∀ S ∈ A⟨⟨Y ⟩⟩, ∆⊔−⊔S =
∑

w∈Y ∗
⟨S | w⟩∆⊔−⊔w ∈ A⟨⟨Y ∗ ⊗ Y ∗⟩⟩.(55)

Remark 2.1. —

1. If A = K, is a field, then K⟨⟨X ⟩⟩ ⊗ K⟨⟨X ⟩⟩ embeds (injectively) in K⟨⟨X ∗ ⊗ X ∗⟩⟩ ∼=
[K⟨⟨X ⟩⟩]⟨⟨X ⟩⟩. Indeed, K⟨⟨X ⟩⟩⊗K⟨⟨X ⟩⟩ contains the elements of the form

∑
i∈I Gi⊗Di, for

some finite set I and (Gi, Di) ∈ K⟨⟨X ⟩⟩×K⟨⟨X ⟩⟩. But, for S =
∑

i≥0 ui⊗vi, for non empty
words u and v, S belongs to K⟨⟨X ∗ ⊗ X ∗⟩⟩ and S does not belong to K⟨⟨X ⟩⟩ ⊗ K⟨⟨X ⟩⟩.

2. Over the algebras of polynomials, A⟨X ⟩ (resp. A⟨Y ⟩), the coproducts ∆conc and ∆⊔⊔

(resp. ∆⊔−⊔) are well defined [45] (resp. [27]). But in the algebras of series, A⟨⟨X ⟩⟩, these
are less studied so we are doing in the remainder of this section (step by step and not in the
general way7) for the concepts of group like and primitive series (see Definitions 2.3–2.4
and Proposition 2.6 below) which are classical in the theory of bialgebras.

Definition 2.2. — Let S ∈ A⟨⟨X ⟩⟩ (resp. A⟨⟨X ⟩⟩⊗A⟨⟨X ⟩⟩). If ⟨S | 1X ∗⟩ = 0 (resp. ⟨S | 1X ∗ ⊗
1X ∗⟩ = 0) then one defines the Kleene star of S as the infinite sum [1]

S∗ := 1 + S + S2 + · · · .

In the same way, one also defines the diagonal series as follows

MX :=
∑
t∈X

t ⊗ t and then DX := M∗
X =

∑
w∈X ∗

w ⊗ w.

7It will be done in future works.
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For any S ∈ A⟨⟨X ⟩⟩ (resp. A⟨⟨X ⟩⟩⊗A⟨⟨X ⟩⟩) such that ⟨S | 1X ∗⟩ = 0 (resp. ⟨S | 1X ∗ ⊗1X ∗⟩ = 0),
the Kleene star S∗ is the unique8 left solution and right solution of the following star equations
(T is unknown series)
(56) ∇T = ST and ∇T = TS,

where
(57) ∇T := T − 1X ∗ (resp. ∇T := T − 1X ∗ ⊗ 1X ∗).
Similarly, the diagonal series DX is the unique left solution and right solution of the following
equations
(58) ∇T = MX T and ∇T = TMX .

With the extented definitions (48)–(50) and in (53)–(55), one defines the following notions,
considered as classic in the theory of Hopf algebras (see [10]).

Definition 2.3. — A series S ∈ A⟨⟨Y ⟩⟩ (resp. A⟨⟨X ⟩⟩) is

1. ⊔−⊔ (resp. ⊔⊔ and conc)-character of (A⟨Y ⟩, conc, 1Y ∗) (resp. (A⟨X ⟩, conc, 1X ∗) if and only
if, for any u and v ∈ Y ∗ (resp. X ∗), ⟨S | 1Y ∗⟩ = 1A (resp. ⟨S | 1X ∗⟩ = 1A) and ⟨S | u ⊔−⊔ v⟩ =
⟨S | u⟩⟨S | v⟩ (resp. ⟨S | u ⊔⊔ v⟩ = ⟨S | u⟩⟨S | v⟩ and ⟨S | uv⟩ = ⟨S | u⟩⟨S | v⟩).

2. ⊔−⊔ (resp. ⊔⊔ and conc)-infinitesimal character of (A⟨Y ⟩, conc, 1Y ∗) (resp. (A⟨X ⟩, conc, 1X ∗)
if and only if, for any u and v ∈ Y ∗ (resp. X ∗), ⟨S | u⊔−⊔v⟩ = ⟨S | u⟩⟨v | 1Y ∗⟩+⟨u | 1Y ∗⟩⟨S | v⟩
(resp. ⟨S | u ⊔⊔ v⟩ = ⟨S | u⟩⟨v | 1Y ∗⟩ + ⟨u | 1Y ∗⟩⟨S | v⟩ and ⟨S | uv⟩ = ⟨S | u⟩⟨v | 1Y ∗⟩ +
⟨u | 1Y ∗⟩⟨S | v⟩).

Definition 2.4. — A series S ∈ A⟨⟨Y ⟩⟩ (resp. A⟨⟨X ⟩⟩) is

1. group like for ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc), if and only if ⟨S | 1Y ∗⟩ = 1A (resp. ⟨S | 1X∗⟩ =
1A) and ∆⊔−⊔S = S ⊗ S (resp. ∆⊔⊔S = S ⊗ S and ∆concS = S ⊗ S). Let GY

⊔−⊔ (resp. GX
⊔⊔

and GX
conc) denote the set of group like series for ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc).

2. primitive for ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc), if and only if ∆⊔−⊔S = 1Y ∗ ⊗ S + S ⊗ 1Y ∗ (resp.
∆⊔⊔S = 1X ∗ ⊗ S + S ⊗ 1X ∗ and ∆concS = 1X ∗ ⊗ S + S ⊗ 1X ∗). Let PY

⊔−⊔ (resp. PX
⊔⊔ and

PX
conc) denote the set of primitive series for ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc).

Remark 2.5. —

1. By (29) and (35), any letter x ∈ X is primitive for ∆conc and ∆⊔⊔. By (42), the letter y1
is primitive for ∆⊔−⊔.

2. Since ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc) is a morphism of algebras then
(a) GY

⊔−⊔ (resp. GX
⊔⊔ and GX

conc) is a group.
(b) PY

⊔−⊔ (resp. PX
⊔⊔ and PX

conc) is a Lie algebra.

The following proposition is an extension of the Friedrichs criterion, initially established by
Ree for shuffle [45] and extended to quasi-shuffle in [27].
8Solutions obtained by convergent iteration process for a discrete topology.
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Proposition 2.6. — Let S ∈ A⟨⟨X ⟩⟩. Then the series S is

1. group like for ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc), if and only if S is a ⊔−⊔ (resp. ⊔⊔ and conc)-
character of (A⟨Y ⟩, conc, 1Y ∗) (resp. (A⟨X ⟩, conc, 1X ∗)).

2. primitive for ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc), if and only if S is an infinitesimal character of
(A⟨Y ⟩, conc, 1Y ∗) (resp. (A⟨X ⟩, conc, 1X ∗)).

Proof. — As already said, similarly to ∆⊔−⊔ [27] and ∆⊔⊔ [45], one has

∆concS = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S − ⟨S | 1Y ∗⟩1Y ∗ ⊗ 1Y ∗ +
∑

u,v∈Y +

⟨S | uv⟩u ⊗ v,

∆concS =
∑

u,v∈Y ∗
⟨S | uv⟩u ⊗ v and S ⊗ S =

∑
u,v∈Y ∗

⟨S | u⟩⟨S | v⟩u ⊗ v.

Then, by Definitions 2.3–2.4, it follows that

1. ∆concS = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S ⇐⇒ ⟨S | 1Y ∗⟩ = 0 and ⟨S | uv⟩ = 0, for u, v ∈ Y +.

2. ∆concS = S ⊗ S ⇐⇒ ⟨S | 1Y ∗⟩ = 1 and ⟨S | uv⟩ = ⟨S | u⟩⟨S | v⟩, for u, v ∈ Y ∗. □

3. Various bialgebras

An important class of problems in the theory of Hopf algebras is the question of primitive
elements (see, for examples, Defintions 2.3–2.4 and Proposition 2.6) and the aim of9 the
CQMM theorem [3, 7, 9, 10, 41] is to provide necessary and sufficient conditions for a bialgebra
to be an enveloping algebra [3, 14]. Indeed,

Theorem 3.1 (Cartier–Quillen–Milnor–Moore theorem, [4]). — Let A be a unitary
commutative associative Q-algebra and B be a (general10) co-commutative A-bialgebra. Let
the envelopping algebra generated by the primitive elements of B for ∆×, be denoted by U(P×).
Then the following assertions are equivalent:

1. There is an increasing sequence {Bn}, B0 = A.1B ⊂ B1 ⊂ · · · ⊂ Bn ⊂ · · · , satisfying
(a) B =

⋃
n≥0 Bn,

(b) ∀ p, q ∈ N, BpBq ⊂ Bp+q,
(c) ∀ n ∈ N, ∆×(Bn) ⊂

∑
p+q=n Bp ⊗ Bq.

2. The envelopping algebra U(P×) is isomorphic to the bialgebra (B, conc, 1B, ∆×).

Now, let mi ∈ N(I), i ∈ I, be the elementary multiindex defined by
(59) mi(j) = δi,j , j ∈ I

and let {bi}i∈I be a basis of P×. By the following multiindex notation

(60) ∀ α ∈ N(I), supp(α) ⊂ {i1, . . . , in}, bα = b
α(i1)
i1

. . . b
α(in)
in

,

9CQMM is an abbreviation of P. Cartier, D. Quillen, J. Milnor and J. Moore.
10Applications below concern (A⟨X ⟩, conc, 1X ∗ , ∆⊔⊔) and (A⟨Y ⟩, conc, 1Y ∗ , ∆⊔−⊔).
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the11 PBW basis {bα}α∈N(I) of the enveloping algebra U(P×) and the dual basis {b̌α}α∈N(I)

of its dual U(P×)∨ are constructed as follows [3, 14]

(61) ⟨bβ | b̌α⟩ = δα,β.

It follows that [3, 14]

b̌α × b̌β = (α + β)!
α!β! b̌α+β, where ∀ α ∈ N(I), α! =

∏
i∈I

αi!,(62)

b̌α(i1)mi1 +···+α(ik)mik
=

b̌
×α(i1)
mi1

× · · · × b̌
×α(ik)
mik

α(i1)! . . . α(ik)!(63)

and the following infinite product identity holds, within End(U(P×)),

(64) IdU(P×) =
∏
i∈I

eb̌ei ⊗bei .

As applications of the CQMM theorem and the factorization in (64), let us consider the
shuffle and quasi-shuffle bialgebras

H⊔⊔(X ) := (A⟨X ⟩, conc, 1X ∗ , ∆⊔⊔),(65)
H⊔−⊔(Y ) := (A⟨Y ⟩, conc, 1Y ∗ , ∆⊔−⊔),(66)

and their respective duals

H∨
⊔⊔(X ) := (A⟨X ⟩, ⊔⊔, 1X ∗ , ∆conc),(67)

H∨
⊔−⊔(Y ) := (A⟨Y ⟩, ⊔−⊔, 1Y ∗ , ∆conc).(68)

By Theorem 3.1, the enveloping algebras U(PX
⊔⊔) and U(PY

⊔−⊔) are isomorphic to the A-modules
associated to the bialgebras H⊔⊔(X ) and H⊔−⊔(Y ), respectively.
In (64), when the noncommutative polynomials {bi}i∈I are totally ordered then the commu-
tative polynomials {b̌α}α∈N(I) can be also chosen such that these two orderings are compatible
and (62) is then also ordered (for example, the bases in (72)–(73) and (75)–(76) and their
product in (74) and (77) below, with decreasing lexicographic ordering over Lyn X ).
For that, let π1 : A⟨Y ⟩ −→ A⟨Y ⟩ denote the Eulerian projector defined, for any w =
yii . . . yir ∈ Y ∗, by [29]

(69) π1(w) = w +
∑
k≥2

(−1)k−1

k

∑
u1,...,uk∈Y +

⟨w | u1 ⊔−⊔ · · · ⊔−⊔ uk⟩u1 . . . uk.

In particular, for any k ≥ 1,

(70) π1(yk) = yk +
∑
l≥2

(−1)l−1

l

∑
j1,...,jl≥1

j1+···+jl=k

yj1 . . . yjl
.

We are now in the position to state the following

11PBW is an abbreviation of H. Poincaré, G. Birkhoff and E. Witt.
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Theorem 3.2 ([29]). — Let A be a Q-algebra, then the endomorphism of algebras φπ1 :
(A⟨Y ⟩, conc, 1Y ∗) −→ (A⟨Y ⟩, conc, 1Y ∗) maps yk to π1(yk) (see (70)). Then φπ1 is an au-
tomorphism of A⟨Y ⟩ realizing an isomorphism of bialgebras between H⊔⊔(Y ) and H⊔−⊔(Y ).
Moreover, the following diagram commutes

A⟨Y ⟩ A⟨Y ⟩ ⊗ A⟨Y ⟩

A⟨Y ⟩ A⟨Y ⟩ ⊗ A⟨Y ⟩.

∆⊔⊔

φπ1 φπ1 ⊗φπ1

∆⊔−⊔

Remark 3.3. —

1. Any letter in Y is a Lie polynomial and primitive, for ∆⊔⊔. Moreover, both LieA⟨Y ⟩ and
PY

⊔⊔ are, by definition, closed by linear combinaisons and by the Lie bracket. Then, as
consequence of (65),

U(PY
⊔⊔) = U(LieA⟨Y ⟩) ∼= H⊔⊔(Y ).

2. By (42), since ∆⊔−⊔yk ̸= yk ⊗ 1Y ∗ + 1Y ∗ ⊗ yk, for k > 1, then PY
⊔−⊔ ̸= LieA⟨Y ⟩. Then let

Y ′ := {y′
k}k≥1 such that y′

k := π1(yk), for k ≥ 1 (see (70)). On the one hand, by the
previous item, LieA⟨Y ′⟩ = PY ′

⊔⊔ and on the other hand, by Theorem 3.2, PY
⊔−⊔ ∼= PY ′

⊔⊔
∼=

Im π1.

Now, let X be equipped the following usual total orders
(71) x0 ≺ x1 and y1 ≻ · · · ≻ yn ≻ yn+1 ≻ · · · ,

for which, any word w ∈ X + is a Lyndon word if it is strictly smaller in lexicographic order
(induced by (71)) than all of its rotations [40, 52]. Or equivalently, w is a Lyndon word if
and only if it is lexicographically strictly smaller than any of its proper suffixes that is, for
any u, v ∈ X + such that w = uv, one has w < v [40, 52]. The set of Lyndon words over X is
denoted by Lyn X .
Any pair of Lyndon words (l1, l2) is called the standard factorization of l ∈ Lyn X , and
is denoted by st(l), if l = l1l2 and l2 is the longest nontrivial proper right factor of l or,
equivalently, its smallest such (for the lexicographic ordering, see [40] for proofs).
According to Radford’s theorem (see [45]), Lyn X forms a pure transcendence basis of the
A-shuffle algebra (A⟨X ⟩, ⊔⊔, 1X ∗), i.e. Lyn X is a algebraic basis of the A-shuffle algebra and
each Lyndon word is trancendent over A.
In the case when A is a Q-algebra, one classically endows A⟨X ⟩ with the graded12 linear
basis {Pw}w∈X ∗ , expanded by decreasing PBW theorem [3] after any basis {Pl}l∈Lyn X of
LieA⟨X ⟩, homogeneous in weight, and its graded dual basis {Sw}w∈X ∗ (containing the pure
transcendence basis {Sl}l∈Lyn X of the A-shuffle algebra) [14, 45]. These dual bases of poly-
nomials {Pw}w∈X ∗ and {Sw}w∈X ∗ , homogeneous in weight, can be constructed recursively as

12For X = X or = Y the corresponding monoids are equipped with length functions, for X we consider the
length of words and for Y the length is given by the weight ℓ(yi1 . . . yin ) = i1 + · · ·+ in. This naturally induces
a grading of A⟨X ⟩ and LieA⟨X ⟩ in free modules of finite rank. For general X , we consider the fine grading [45]
i.e. the grading by all partial degrees which, as well, induces a grading of A⟨X ⟩ and LieA⟨X ⟩ in free modules
of finite rank.
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follows [40, 52]

(72)


Px = x, for x ∈ X ,
Pl = [Pl1 , Pl2 ], for l = yl′ ∈ Lyn X \ X , st(l) = (l1, l2),

Pw = P i1
l1

. . . P ik
lk

, for w = li1
1 . . . lik

k , with l1, . . . , lk ∈ Lyn X , l1 ≻ · · · ≻ lk.

and then by duality [45],

(73)


Sx = x for x ∈ X ,
Sl = ySl′ , for l = yl′ ∈ Lyn X \ X , st(l) = (l1, l2),

Sw =
S⊔⊔i1

l1
⊔⊔ · · · ⊔⊔ S

⊔⊔ik
lk

i1! . . . ik! , for w = li1
1 . . . lik

k , with l1, . . . , lk ∈ Lyn X , l1 ≻ · · · ≻ lk.

One obtains the following13 factorization of the diagonal series DX , on H⊔⊔(X ) (see Defini-
tion 2.2 and (72)–(73)), which reads [45]

(74) DX =
∑

w∈X ∗
Sw ⊗ Pw =

↘∏
l∈Lyn X

eSl⊗Pl , (decreasing lexcographical ordered product).

Similarly, Lyn Y forms a pure transcendence basis of the A-quasi-shuffle algebra
(A⟨Y ⟩, ⊔−⊔, 1Y ∗) (see [27, 29]). In the case when A is a Q-algebra, one also endows PY

⊔−⊔ the
linear basis {Πw}w∈Y ∗ , expanded by decreasing PBW basis after any basis {Πl}l∈Lyn Y , ho-
mogeneous in weight, and its graded dual basis {Σw}w∈Y ∗ (containing the pure transcendence
basis {Σl}l∈Lyn Y of the A-quasi-shuffle algebra) [27, 29]. By Theorem 3.2, the bases of ho-
mogeneous polynomials {Πw}w∈Y ∗ and {Σw}w∈Y ∗ of U(PY

⊔−⊔) are images by φπ1 and by the
adjoint mapping of its inverse of {Pw}w∈Y ∗ and {Sw}w∈Y ∗ , respectively.
Algorithmically, these can be constructed directly and recursively by [27, 29]

(75)


Πys = π1(ys), for ys ∈ Y,
Πl = [Πl1 , Πl2 ], for l ∈ Lyn Y \ Y, st(l) = (l1, l2),

Πw = Πi1
l1

. . . Πik
lk

, for w = li1
1 . . . lik

k , with l1, . . . , lk ∈ Lyn Y, l1 ≻ · · · ≻ lk

and then by duality,

(76)



Σys = ys for ys ∈ Y,

Σl =
∑
(∗∗)

ysk1 +···+ski

i! Σl1...ln , for l ∈ Lyn Y \ Y, st(l) = (l1, l2),

Σw =
Σ⊔−⊔i1

l1
⊔−⊔ · · · ⊔−⊔ Σ⊔−⊔ik

lk

i1! . . . ik! , for w = li1
1 . . . lik

k , with l1, . . . , lk ∈ Lyn Y, l1 ≻ · · · ≻ lk.

In (∗∗), the sum is taken over all {k1, . . . , ki} ⊂ {1, . . . , k} and l1 ⪰ · · · ⪰ ln such that
(ys1 , . . . , ysk

) is derived from (ysk1
, . . . , yski

, l1, . . . , ln) by transitive closure of the relations on
standard sequences [4, 45].

13MSR is an abbreviation of G. Mélançon, M.P. Schützenberger and C. Reutenauer.
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One also has the factorization of the diagonal series DY , on H⊔−⊔(Y ) (see Definition 2.2
and (75)–(76)), which reads14 [29]

(77) DY =
∑

w∈Y ∗
Σw ⊗ Πw =

↘∏
l∈Lyn Y

eΣl⊗Πl , (decreasing lexcographical ordered product).

4. Representative series

By (11), representative (or rational) series are the representative functions on the free monoid.
These functions were considered on groups in [7, 9].

Definition 4.1. — Let S ∈ A⟨⟨X ⟩⟩ (resp. A⟨X ⟩) and P ∈ A⟨X ⟩ (resp. A⟨⟨X ⟩⟩).

1. The left and the right shifts15 of S by P , P ▷ S and S ◁ P , are defined, for any w ∈ X ∗,
by ⟨P ▷ S | w⟩ = ⟨S | wP ⟩ and ⟨S ◁ P | w⟩ = ⟨S | Pw⟩, respectively.

2. Let A = K be a field then one defines also the Sweedler’s dual H◦
⊔⊔(X ) (resp. H◦

⊔−⊔(Y )) of
H⊔⊔(X ) (resp. H⊔−⊔(Y )) by

S ∈ H◦
⊔⊔(X ) (resp. H◦

⊔−⊔(Y )) ⇐⇒ ∆conc(S) =
∑

i∈Ifinite

Gi ⊗ Di,

where {Gi, Di}i∈Ifinite are series.

Remark 4.2. — The series {Gi, Di}i∈Ifinite can be chosen in H◦
⊔⊔(X ) (see [29]).

Theorem 4.3 ([19, 20, 45]). — The following assertions are equivalent

1. The shifts {S ◁ w}w∈X ∗ (resp. {w ▷ S}w∈X ∗) lie in a finitely generated shift-invariant
A-module [32].

2. The series S belongs to the (algebraic) closure of Â.X by the rational operations16

{conc, +, ∗} (within A⟨⟨X ⟩⟩).

3. There is an integer n and matrices ν ∈ M1,n(A), η ∈ Mn,1(A) and morphism of monoids
µ : X ∗ → Mn,n(A) such that ⟨S | w⟩ = νµ(w)η, for w ∈ X ∗.

The triplet (ν, µ, η) is called linear representation of S of rank n.

Remark 4.4. —

1. The shifts operators are associative and mutually commute, i.e. S ◁ (P ◁ R) = (S ◁ P ) ◁ R,
P ▷ (R ▷ S) = (P ▷ R) ▷ S, (P ◁ S) ▷ R = P ◁ (S ▷ R) and then, for any x, y ∈ X and
w ∈ X ∗, one has x ▷ (wy) = (yw) ◁ x = δy

xw.

14Again all tensor products will be taken over A. Note that this factorization holds for any enveloping algebra
as announced in [45]. Of course, the diagonal series no longer exists and must be replaced by the identity IdU .
15These are called residuals and extend shifts of functions in harmonic analysis [33].
16In here, Â.X is understood as the set of all series of the form

∑
x∈X axx.

Publications mathématiques de Besançon – 2025



V. C. Bui and V. Hoang Ngoc Minh and Q. H. Ngo and V. Nguyen Dinh 129

2. A series satisfying one of the conditions of Theorem 4.3 is called rational. The A-module of
these series is denoted by Arat⟨⟨X ⟩⟩ and it is closed by {conc, +, ∗} [1]. It is, in fact, a unital
A-algebra with respected to one of the products {conc, ⊔⊔, ⊔−⊔} (see also Proposition 4.5
below).

One has the following constructions of linear representations (only the last one is new and
the first ones are already treated in [33], see also [15]). Those of R1 ⊔⊔ R2 and R1 ⊔−⊔ R2 base
on coproducts and tensor product of linear representations:

Proposition 4.5. — The module Arat⟨⟨X ⟩⟩ (resp. Arat⟨⟨Y ⟩⟩) is closed by ⊔⊔ (resp. ⊔−⊔). More-
over, for any i = 1, 2, let Ri ∈ Arat⟨⟨X ⟩⟩ and (νi, µi, ηi) be its representation of dimension ni.
Then the linear representation of

R∗
i is

((
0 1
)

,

{(
µi(x) + ηiνiµi(x) 0

νiηi 0

)}
x∈X

,

(
ηi

1

))
,

that of R1 + R2 is
((

ν1 ν2
)

,

{(
µ1(x) 0

0 µ2(x)

)}
x∈X

,

(
η1
η2

))
,

that of R1R2 is
((

ν1 0
)

,

{(
µ1(x) η1ν2µ2(x)

0 µ2(x)

)}
x∈X

,

(
η1µ2η2

η2

))
,

that of R1 ⊔⊔ R2 is (ν1 ⊗ ν2, {µ1(x) ⊗ In2 + In1 ⊗ µ2(x)}x∈X , η1 ⊗ η2),

that of R1 ⊔−⊔ R2 is
(

ν1 ⊗ ν2, {µ1(yk) ⊗ In2 + In1 ⊗ µ2(yk)

+
∑

i+j=k

µ1(yi) ⊗ µ2(yj)}k≥1, η1 ⊗ η2

)
.

Example 4.6 (Identity (−t2y2)∗ ⊔−⊔ (t2y2)∗ = (−4t4y4)∗ [5]). —

1start 2start 3start

y2, −t2 y2, t2 y4, −t4

(−t2y2)∗ ↔ (ν2, µ2(y2), η2)
= (1, −t2, 1),

(t2y2)∗ ↔ (ν1, µ1(y2), η1)
= (1, t2, 1),

(−t4y4)∗ ↔ (ν, µ(y4), η)
= (1, −t4, 1).

Example 4.7 (Identity (−t2x0x1)∗ ⊔⊔ (t2x0x1)∗ = (−4t4x2
0x2

1)∗ [5]). —

1start 2

x0, it

x1, it
Istart II

x0, t

x1, t

(−t2x0x1)∗ ↔ (ν2, {µ2(x0), µ2(x1)}, η2) (t2x0x1)∗ ↔ (ν1, {µ1(x0), µ1(x1)}, η1)
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with

ν1 =
(
1 0
)

, µ1(x0) =
(

0 t
0 0

)
, µ1(x1) =

(
0 0
t 0

)
, η1 =

(
1
0

)
,

ν2 =
(
1 0
)

, µ2(x0) =
(

0 it
0 0

)
, µ2(x1) =

(
0 0
it 0

)
, η2 =

(
1
0

)
.

(1, I)start

(2, I)

(2, II)

(1, II)

x0, it

x0, t

x0, t

x1, it x1, t

x1, itx1, t

x0, it

(−t2x0x1)∗ ⊔⊔ (t2x0x1)∗ ↔ (ν, {µ(x0), µ(x1)}, η)

with ν = ν1 ⊗ ν2 =
(
1 0 0 0

)
and η = η1 ⊗ η2 = t

(
1 0 0 0

)
and

µ(x0) = µ1(x0) ⊗ In2 + In1 ⊗ µ2(x0) =


0 0 t 0
0 0 0 t
0 0 0 0
0 0 0 0

+


0 it 0 0
0 0 0 0
0 0 0 it
0 0 0 0

 =


0 it t 0
0 0 0 t
0 0 0 it
0 0 0 0

 ,

µ(x1) = µ1(x1) ⊗ In2 + In1 ⊗ µ2(x1) =


0 0 0 0
0 0 0 0
t 0 0 0
0 t 0 0

+


0 0 0 0
it 0 0 0
0 0 0 0
0 0 it 0

 =


0 0 0 0
it 0 0 0
t 0 0 0
0 t it 0

 .

Remark 4.8. —

1. Identities of rational series in Examples 4.6–4.7 are used in [5] to study the rationality of
certains ratio of polyzetas, of weight 2k, over π2k.

2. Since (−t2x0x1)∗ = πX((−t2y2)∗) and (t2x0x1)∗ = πX((t2y2)∗) and, on the other hand,
(−t2y2)∗ = πY ((−t2x0x1)∗) and (t2y2)∗ = πY ((t2x0x1)∗), then πX and πY can be viewed
as transducers.

Corollary 4.9 ([29]). — With notations in Definitions 2.3–2.4, if A is a field K then there
exists a finite double family of series (Gi, Di)i∈Ifinite satisfying three assertions of Theorem 4.3
or, equivalently, one of the following assertions holds.

1. ⟨S | PQ⟩ =
∑

i∈Ifinite
⟨Gi | P ⟩⟨Di | Q⟩, for P and Q ∈ K⟨X ⟩ (resp. ∈ K⟨Y ⟩).

2. ∆conc(S) =
∑

i∈Ifinite
Gi ⊗ Di.
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Hence, the Sweedler’s dual of the bialgebra H⊔⊔(X ) (resp. H⊔−⊔(Y )) is isomorphic to
(Krat⟨⟨X ⟩⟩, ⊔⊔, 1X ∗ , ∆conc) (resp. (Krat⟨⟨Y ⟩⟩, ⊔−⊔, 1Y ∗ , ∆conc).

Proof. — Let (β, µ, η) of dimension n be a linear representation of S ∈ Krat⟨⟨X ⟩⟩. It can
be also associated to the following linear representations (β, µ, ei) of Li and (tei, µ, η) of
Ri, 1 ≤ i ≤ n, of dimension n, where

ei ∈ M1,n(K) and tei = (0 · · · 0 1
i

0 · · · 0).

Hence, for any u and v ∈ X ∗, using the morphism of monoids µ, let us formulate the proof
given in [29] as follows

⟨S | uv⟩ = βµ(u)µ(v)η =
n∑

i=1
(βµ(u)ei)(teiµ(v)η) =

n∑
i=1

⟨Li | u⟩⟨Ri | v⟩,(78)

⟨∆conc(S) | u ⊗ v⟩ = ⟨S | uv⟩ =
n∑

i=1
⟨Li | u⟩⟨Ri | v⟩ =

n∑
i=1

⟨Li ⊗ Ri | u ⊗ v⟩.(79)

One deduces then the following criterion yielding the expected results

S ∈ Krat⟨⟨X ⟩⟩ ⇐⇒ ∆conc(S) =
n∑

i=1
Li ⊗ Ri.

Finally, according to Defintion 2.4, it follows the final conclusion concerning the Sweedler’s
dual of bialgebras H⊔⊔(X ) (resp. H⊔−⊔(Y )). □

Definition 4.10. — Any series S ∈ A⟨⟨X ⟩⟩ is called

1. syntactically exchangeable if and only if it is constant on multi-homogeneous classes,
i.e. (∀ u, v ∈ X ∗)([(∀ x ∈ X )(|u|x = |v|x)] ⇒ ⟨S | u⟩ = ⟨S | v⟩). The set of syntactically
exchangeable series is denoted by Asynt

exc ⟨⟨X ⟩⟩.

2. rationally exchangeable if and only if it admits a representation (ν, µ, η) such that the
matrices {µ(x)}x∈X commute and the set of these series, a shuffle subalgebra of A⟨⟨X⟩⟩,
is denoted by Arat

exc⟨⟨X ⟩⟩.

Remark 4.11. — S is syntactically exchangeable if and only if it is of the form17

S =
∑

α∈N(X ),
supp(α)={x1,...,xk}

sαx
α(x1)
1 ⊔⊔ · · · ⊔⊔ x

α(xk)
k .

When A = K is a field, the rational exchangeable series (Definition 4.10, item 2) are exactly
those that admit a representation with commuting matrices (at least the minimal one is
such) and it is taken as definition as, even for rings, implying syntactic exchangeability
(Definition 4.10, item 1).

17Recall that X could be infinite and the support of the map α : X −→ N is finite.
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Theorem 4.12 (See [17, 29]). —

1. In all cases, one has Arat
exc⟨⟨X ⟩⟩ ⊂ Arat⟨⟨X ⟩⟩ ∩ Asynt

exc ⟨⟨X ⟩⟩. The equality holds when A
is a field and, letting Arat

fin ⟨⟨Y ⟩⟩ =
⋃

F ⊂finiteY Arat⟨⟨F ⟩⟩, the algebra of series over finite
subalphabets, one has

Arat
exc⟨⟨X⟩⟩ = Arat⟨⟨x0⟩⟩ ⊔⊔ Arat⟨⟨x1⟩⟩ =

⊔⊔
x∈X

Arat⟨⟨x⟩⟩

and

Arat
exc⟨⟨Y ⟩⟩ ∩ Arat

fin ⟨⟨Y ⟩⟩ =
⋃
k≥0

k⊔⊔
j=1

Arat⟨⟨yj⟩⟩ ⊊ Arat
exc⟨⟨Y ⟩⟩.

2. One has Arat⟨⟨x⟩⟩ = {P (1 − xQ)−1}P,Q∈A[x] (for x ∈ X ) and if A = K is an algebraically
closed field of characteristic zero then one also has Krat⟨⟨x⟩⟩ = spanK{(ax)∗ ⊔⊔ K⟨x⟩|
a ∈ K}.

3. Series
(∑

x∈X αxx
)∗ are conc-characters. Any conc-character is of this form.

4. A is supposed without zero divisors. If the family (φi)i∈I is Z-linearly independent within
ÂX then the family Lyn(X ) ⊎ {φ∗

i }i∈I is A-algebraically free within (Arat⟨⟨X ⟩⟩, ⊔⊔, 1X ∗).

5. In particular, if A is a ring without zero divisors then {x∗}x∈X (resp. {y∗}y∈Y ) are
algebraically independent over (A⟨X ⟩, ⊔⊔, 1X ∗) (resp. (A⟨Y ⟩, ⊔−⊔, 1Y ∗)) within (Arat⟨⟨X ⟩⟩,
⊔⊔, 1X ∗) (resp. (Arat⟨⟨Y ⟩⟩, ⊔−⊔, 1Y ∗)).

Proof. —

1. The inclusion is obvious in view of Definition 4.10. For the equality, it suffices to prove
that, when A is a field, every rational and exchangeable series admits a representation with
commuting matrices. This is true of any minimal representation as shows the computation
of shifts (see [17, 19, 29]).
Now, if X is finite, then (all matrices commute)∑

w∈X ∗
µ(w)w =

( ∑
x∈X

µ(x)x
)∗

=
⊔⊔
x∈X

(µ(x)x)∗

and the result comes from the fact that R is a linear combination of matrix elements.
As regards the second equality, inclusion ⊃ is straightforward. We remark that⋃

k≥1 Arat⟨⟨y1⟩⟩ ⊔⊔ · · · ⊔⊔ Arat⟨⟨yk⟩⟩ is directed as these algebras are nested in one another.
With this in view, the reverse inclusion comes from the fact that every S ∈ Arat

fin ⟨⟨Y ⟩⟩ is
a series over a finite alphabet and the result follows from the first equality.

2. This is nothing but a theorem by Kronecker (see [53]), rephrased with terms and notations
of [1].

3. Let S =
(∑

x∈X αx x
)∗. Then ⟨S | 1X ∗⟩ = 1A. Furthermore, if w = xu then ⟨S | xu⟩ =

αx⟨S | u⟩. Thus, by induction on the length, ⟨S | x1 . . . xk⟩ =
∏k

i=1 αxi showing that S is
a conc-character. Conversely, by Schützenberger’s reconstruction lemma, we have S =
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⟨S | 1X ∗⟩.1A +
∑

x∈X x.x−1S. But, if S is a conc-character (i.e. ⟨S | 1X ∗⟩ = 1 and x−1S =
⟨S | x⟩S) then the previous expression reads S = 1A +

(∑
x∈X ⟨S | x⟩x

)
S. The last equality

is equivalent to S =
(∑

x∈X ⟨S | x⟩x
)∗ proving the claim.

4. As (A⟨X ⟩, ⊔⊔) and (A⟨Y ⟩, ⊔−⊔) are enveloping algebras, this property is an application of
the fact that, on an enveloping U , the characters are linearly independent with respect
to the convolution algebra U∗

∞ (see the general construction and proof in [16]. Here, this
convolution algebra (U∗

∞) contains the polynomials (is equal in case of finite X ). Now,
consider a monomial (φ∗

i1)⊔⊔α1 . . . (φ∗
in

)⊔⊔αn =
(∑n

k=1 αik
φik

)∗. The Z-linear independence
of the monomials in (φi)i∈I implies that all these monomials are linearly independent over
A⟨X ⟩ which proves algebraic independence of the family (φi)i∈I .
To end with, the fact that Lyn(X )⊎{φ∗

i }i∈I is algebraically free comes from Radford the-
orem (A⟨X ⟩, ⊔⊔, 1X ∗) ≃ A[Lyn(X )] and the transitivity of polynomial algebras (see [2]).

5. Comes directly as an application of the preceding point. □

Remark 4.13. —

1. The last inclusion of Theorem 4.12.1 is strict as shows the example of the following
identity, living in Arat

exc⟨⟨Y ⟩⟩ but not in Arat
exc⟨⟨Y ⟩⟩ ∩ Arat

fin ⟨⟨Y ⟩⟩

(ty1 + t2y2 + . . . )∗ = lim
k→+∞

(ty1 + · · · + tkyk)∗

= lim
k→+∞

(ty1)∗ ⊔⊔ · · · ⊔⊔ (tkyk)∗ =
⊔⊔
k≥1

(tkyk)∗.

2. Item 2 can be rephrased in terms of stars as Arat⟨⟨x⟩⟩ = {P (xQ)∗}P,Q∈A[x] holds for every
ring and is therefore characteristic free, unlike the shuffle version requiring algebraic
closure and denominators.

Corollary 4.14 (Kleene stars of the plane). — Let R, L ∈ Arat⟨⟨X ⟩⟩ such that L∗ = R
(⟨R | 1X ∗⟩ = 1A and ⟨L | 1X ∗⟩ = 0). The following assertions are equivalent.

1. R is a conc-character of (A⟨X ⟩, conc, 1X ∗).

2. There is a family of coefficients (cx)x∈X such that R = (
∑

x∈X cxx)∗.

3. The series R admits a linear representation of dimension one18.

4. L belongs to the plane A.X .

5. L is an infinitesimal conc-character of (A⟨X ⟩, conc, 1X∗).

Proof. —

1 ⇐⇒ 2. — This corresponds to the point 3 of Theorem 4.12 above.

2 ⇐⇒ 3. — This is a direct consequence of Theorem 4.3.
18The dimension is here (as in [1]) the size of the matrices.
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2 ⇐⇒ 4. — This is obvious, by construction (in which L is viewed as the ⊔⊔-logarithm of R).
Indeed, since (cxx)n = (cxx)⊔⊔n/n!, for any n ∈ N, doing as in Remark 4.13, one has

R =
( ∑

x∈X
cxx

)∗

=
⊔⊔
x∈X

(cxx)∗ =
⊔⊔
x∈X

exp⊔⊔(cxx) = exp⊔⊔

( ∑
x∈X

cxx

)
.

4 ⇐⇒ 5. — If L is an infinitesimal character then, by Definitions 2.3–2.4,

∀ u, v ∈ X ∗, ⟨L | uv⟩ = ⟨L | u⟩⟨v | 1X ∗⟩ + ⟨u | 1X ∗⟩⟨L | v⟩.

Hence, for any w = uv ∈ X ≥2 with u, v ∈ X +, one gets ⟨L | w⟩ = ⟨L | uv⟩ = 0. In addition, for
u = v = 1X ∗ , one also gets ⟨L | 1X ∗⟩ = 0 and it follows that L =

∑
x∈X ⟨L | x⟩x. Conversely,

since ⟨uv | x⟩ = ⟨u | x⟩⟨v | 1X ∗⟩ + ⟨u | 1X ∗⟩⟨v | x⟩ = 0, for u, v ∈ X + and x ∈ X , then by the
pairing in (19), one deduces that

⟨L | uv⟩ =
∑
x∈X

⟨L | x⟩⟨uv | x⟩ = 0

meaning that L is an infinitesimal conc-character. □

Remark 4.15. — In Corollary 4.14, if A = K being a field, point 1 (resp. 5) can be
rephrased as “R is a group like element” (resp. “L is a primitive element”) of Krat⟨⟨X ⟩⟩, for
∆conc. Indeed, in (53)–(55), if S ∈ K⟨⟨Y ⟩⟩ (resp. K⟨⟨X ⟩⟩ is a ⊔−⊔ (resp. ⊔⊔, conc)-character of
(K⟨Y ⟩, conc, 1Y ∗) (resp. (K⟨X ⟩, conc, 1X ∗) then

1. Since S ⊗ S =
∑

u,v∈X ∗⟨S | u⟩⟨S | v⟩u ⊗ v then ∆⊔−⊔(S) = S ⊗ S (resp. ∆⊔⊔(S) = S ⊗ S
and ∆conc(S) = S ⊗ S).

2. Since ∆⊔−⊔ (resp. ∆⊔⊔ and ∆conc) and the maps T 7−→ T ⊗ 1Y ∗ and T 7−→ 1Y ∗ ⊗ T
(resp. T 7−→ T ⊗ 1X ∗ and T 7−→ 1X ∗ ⊗ T ) are continuous homomorphisms then19

∆⊔−⊔(logconc S) = logconc S ⊗ 1X ∗ + 1X ∗ ⊗ logconc S (resp. ∆⊔⊔(logconc S) = logconc S ⊗
1X ∗ + 1X ∗ ⊗ logconc S and ∆conc(logconc S) = logconc S ⊗ 1X ∗ + 1X ∗ ⊗ logconc S).

Then S is group like for {∆⊔−⊔, ∆⊔⊔, ∆conc}, if and only if logconc S is primitive meaning that
the equivalence, between 1 and 5, is an extension of the Ree’s theorem which was established
for ⊔⊔ (see [45]) and adapted for ⊔−⊔ (see [29]).

Proposition 4.16. — Let αx, βx, as, bs, be complex numbers (x ∈ X and s ≥ 1). Then( ∑
x∈X

αxx

)∗

⊔⊔

( ∑
x∈X

βxx

)∗

=
( ∑

x∈X
(αx + βx)x

)∗

,

(∑
s≥1

asys

)∗

⊔−⊔

(∑
s≥1

bsys

)∗

=
(∑

s≥1
(as + bs)ys +

∑
r,s≥1

asbrys+r

)∗

.

19Here, logconc S ⊗ 1Y ∗ and 1Y ∗ ⊗ logconc S (resp. logconc S ⊗ 1X ∗ and 1X ∗ ⊗ logconc S) commute.
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Proof. — Let us use ∆⊔⊔ (resp. ∆⊔−⊔) defined in (35) and then (54) (resp. (42) and then (55))
and, for any xi ∈ X , yt ∈ Y , apply (49)〈( ∑

x∈X
αxx

)∗

⊔⊔

( ∑
x∈X

βxx

)∗ ∣∣∣∣∣∣xi

〉

=
〈( ∑

x∈X
αxx

)∗

⊗
( ∑

x∈X
βxx

)∗ ∣∣∣∣∣∣∆⊔⊔(xi)
〉

=
〈( ∑

x∈X
αxx

)∗

⊗
( ∑

x∈X
βxx

)∗ ∣∣∣∣∣∣xi ⊗ 1X∗ + 1X∗ ⊗ xi

〉
= αi + βi

=
〈( ∑

x∈X
(αx + βx)x

)∗ ∣∣∣∣∣∣xi

〉
,

〈(∑
s≥1

asys

)∗

⊔−⊔

(∑
s≥1

bsys

)∗ ∣∣∣∣∣∣ yt

〉

=
〈(∑

s≥1
asys

)∗

⊗
(∑

s≥1
bsys

)∗ ∣∣∣∣∣∣∆⊔−⊔(yt)
〉

=
〈(∑

s≥1
asys

)∗ ⊗
(∑

s≥1
bsys

)∗ ∣∣∣∣∣∣ yt ⊗ 1Y ∗ + 1Y ∗ ⊗ yt +
∑

r,s≥1,r+s=t

ys ⊗ yr

〉

= at + bt +
∑

r,s≥1,r+s=t

asbr

=
〈(∑

s≥1
(as + bs)ys +

∑
r,s≥1

asbrys+r

)∗ ∣∣∣∣∣∣ yt

〉
. □

Remark 4.17. — Since
∑

r,s≥1 asbrys+r =
∑

r>s≥1(asbr + arbs)ys+r +
∑

s≥1 asbsy2s then(∑
s≥1 asys

)∗
⊔−⊔
(∑

s≥1 bsys
)∗ =

(∑
s≥1((as + bs)ys + asbsy2s) +

∑
r>s≥1(asbr + arbs)ys+r

)∗.
Note also that since, for any x ∈ X and n ≥ 0, one has xn = x⊔⊔n/n! then

(∑
x∈X αxx

)∗ =
exp⊔⊔

(∑
x∈X αxx

)
and ⊔⊔ is commutative then exp⊔⊔(A + B) = exp⊔⊔(A) exp⊔⊔(B). But it is

more complicated for ⊔−⊔.

Example 4.18. — For any ys, yr ∈ Y and as, ar ∈ C, one has (see also Example 4.6)

(asys)∗ ⊔−⊔ (aryr)∗ = (asys + aryr + asarys+r)∗, (−asys)∗ ⊔−⊔ (asys)∗ = (−a2
sy2s)∗.

Then, for any c ∈ C and yk ∈ Y , one has

1. (cy∗
k)⊔−⊔2 = (cyk)∗ ⊔−⊔ (cyk)∗ = (2cyk + c2y2k)∗,

2. (cy∗
k)⊔−⊔3 = (2cyk + c2y2k)∗ ⊔−⊔ (cyk)∗ = (3cyk + 3c2y2k + c3y3k)∗.
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Corollary 4.19. — 1. Let k, n ∈ N, c ∈ C and x ∈ X . Then

⟨(cx)∗ ⊔⊔ (1 + cx)n | xk⟩ =
(

n + k

k

)
ck.

2. Let x ∈ X , yk ∈ Y and c ∈ C, n ∈ N≥1. One has20

((cx)∗)⊔⊔n = (ncx)∗, ((cx)∗)n = (cx)∗ ⊔⊔ (1 + cx)n−1,

((cyk)∗)⊔−⊔n =
(

n∑
i=1

(
n

i

)
ciyik

)∗

=
n⊔⊔

i=1

((
n

i

)
ciyik

)∗

.

3. For any k, m ∈ N, x1, . . . , xm ∈ X and l1, . . . , lm ∈ N, l1 + · · · + lm = k, let

Pk := xl1
1 ⊔⊔ · · · ⊔⊔ xlm

m and Lk := supp(Pk).

Then, for any n1, . . . , nm ∈ N, c, c1, . . . , cm ∈ C \ {0} and w ∈ Lk, one has21,〈
m⊔⊔

i=1
((cixi)∗)ni+1

∣∣∣∣∣w
〉

=
∑

l1+···+lm=k

(
n1 + l1

l1

)
. . .

(
nm + lm

lm

)
cl1

1 . . . clm
m ,

〈
m⊔⊔

i=1
((cxi)∗)ni+1

∣∣∣∣∣w
〉

=
(

n1 + · · · + nm + k

k

)
ck.

Proof. —

1. By (49), with S = (cx)∗, R = (1 + cx)n and (cx)k ⊔⊔ (cx)i =
(k+i

k

)
(cx)k+i, one has

(cx)∗ ⊔⊔ (1 + cx)n =
∑
k≥0

n∑
i=0

(
k + i

k

)(
n

i

)
(cx)k+i =

∑
k≥0

(
n∑

i=0

(
k

k − i

)(
n

i

))
(cx)k

and the Chu–Vandermonde identity [51] yields the expected result.

2. Since (cx)∗ = exp⊔⊔(cx) then ((cx)∗)⊔⊔n = exp⊔⊔(ncx) = (ncx)∗. The two last identities
are obvious for n = 1 and supposed to hold, up to rank n ≥ 1. Next, by ((cx)∗)n+1 =
(cx)∗((cx)∗)n and ((cyk)∗)⊔−⊔n+1 = (cyk)∗ ⊔−⊔ ((cyk)∗)⊔−⊔n and then by induction hypothesis,

20((cx)∗)n = (cx)∗ . . . (cx)∗︸ ︷︷ ︸
n times

, ((cx)∗)⊔⊔n = (cx)∗
⊔⊔ · · · ⊔⊔ (cx)∗︸ ︷︷ ︸

n − 1 times ⊔⊔

, ((cyk)∗)⊔−⊔n = (cx)∗
⊔−⊔ · · · ⊔−⊔ (cx)∗︸ ︷︷ ︸

n − 1 times ⊔−⊔

.

21Recall that, for any positive integer k and nonnegative integers m, n1, n2, . . . , nm, the generalized Chu–
Vandermonde’s identity is expressed as follows [51]∑

l1+l2+···+lm=k

(
n1

l1

)(
n2

l2

)
. . .

(
nm

lm

)
=
(

n1 + n2 + · · · + nm

k

)
.
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one obtains successively
((cx)∗)n+1 = (cx)∗((cx)∗)n

= (cx)∗
(∑

k≥0

(
n − 1 + k

k

)
(cx)k

)
(by Item 1)

=
∑
k≥0

(
k∑

l=0

(
n − 1 + l

l

))
(cx)k (by (48))

=
∑
k≥0

(
n + k

n

)
(cx)k (by the Chu–Vandermonde identity)

= (cx)∗ ⊔⊔ (1 + cx)n (by Item 1),

(cy∗
k)⊔−⊔n+1 =

(
cyk +

n∑
i=1

(
n

i

)
ciyik +

n∑
i=1

(
n

i

)
ci+1y(i+1)k

)∗
=
(
cyk +

(
n

1

)
cyk +

n∑
i=2

(
n

i

)
ciyik +

n+1∑
i=2

(
n

i − 1

)
ciyik

)∗
=
((

n + 1
1

)
cyk +

n∑
i=2

((
n

i

)
+
(

n

i − 1

))
ciyik +

(
n + 1
n + 1

)
cn+1y(n+1)k

)∗

=
((

n + 1
1

)
cyk +

n∑
i=2

(
n + 1

i

)
ciyik +

(
n + 1
n + 1

)
cn+1y(n+1)k

)∗

=
(

n+1∑
i=1

(
n + 1

i

)
ciyik

)∗

=
n⊔⊔

i=1

((
n

i

)
ciyik

)∗

(by Proposition 4.16).

3. By Items 1–2 and Proposition 4.16, one gets
m⊔⊔

i=1
((cixi)∗)ni+1 =

m⊔⊔
i=1

(cixi)∗ ⊔⊔ (1 + cixi)ni =
m⊔⊔

i=1

∑
li≥0

(
ni + li

li

)
(cixi)li

=
∑
k≥0

∑
l1+···+lm=k

(
n1 + l1

l1

)
. . .

(
nm + lm

lm

)
cl1

1 . . . clm
m Pk.

It follows then the expected results. □

Definition 4.20 ([50]). — Let L be the Lie algebra. Then L is said to be

1. nilpotent if and only if there exists an integer k ≥ 1 such that the sequence {Ln}n≥1,
defined recursively as follows

L1 = L, Ln+1 = [L, Ln],
satisfies Lk+1 = {0}.
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2. solvable if and only if there exists an integer k ≥ 1 such that the sequence {L(n)}n≥1,
defined recursively as follows

L(1) = L, L(n+1) = [L(n), L(n)],

satisfies L(k+1) = {0}.

To determine the output y in (3) of the nonlinear dynamical system in (1), the noncommu-
tative generating series σf are approximately computed by using the rational series of the
following forms for which their linear representations are examined by Theorems 4.21–4.23
below [29].

E1xi1 . . . Ejxij Ej+1, where xi1 , . . . , xij ∈ X, E1, . . . , Ej ∈ Arat⟨⟨x0⟩⟩,(80)
E1xi1 . . . Ejxij Ej+1, where xi1 , . . . , xij ∈ X, E1, . . . , Ej ∈ Arat⟨⟨x1⟩⟩,(81)
E1xi1 . . . Ejxij Ej+1, where xi1 , . . . , xij ∈ X, E1, . . . , Ej ∈ Arat

exc⟨⟨X⟩⟩.(82)

Theorem 4.21 (Triangular sub bialgebras of (Arat⟨⟨X ⟩⟩, ⊔⊔, 1X∗ , ∆conc)). — Let ρ =
(ν, µ, η) be a representation of R ∈ Arat⟨⟨X ⟩⟩ and let L be the Lie algebra generated by the
matices22 {µ(x)}x∈X . Then

1. If {µ(x)}x∈X mutually commute and if the alphabet is finite, any rational exchangeable
series decomposes as R =

∑n
i=1

⊔⊔
x∈X R

(i)
x , with R

(i)
x ∈ Arat⟨⟨x⟩⟩.

2. If L consists of upper-triangular matrices then R ∈ Arat
exc⟨⟨X ⟩⟩ ⊔⊔ A⟨X ⟩.

3. Let M(x) := µ(x)x, for x ∈ X . Then M(R) =
∑

w∈X ∗⟨R | w⟩µ(w)w and then R =
νM(X ∗)η. Moreover,

(a) Since A contains Q then, by (74), one has

M(X ∗) =
↘∏

l∈Lyn X
eSlµ(Pl), (decreasing lexcographical ordered product).

By (77), one has in addition,

M(Y ∗) =
↘∏

l∈Lyn Y

eΣlµ(Πl), (decreasing lexcographical ordered product).

(b) If {µ(x)}x∈X are upper-triangular then there exists a diagonal (resp. strictly upper-
triangular) letter matrix D(X ) (resp. N(X )) such that

M(X ) = D(X ) + N(X )

and then, by Lazard factorization [40], one has

M(X ∗) = ((D(X ∗)N(X ))∗D(X ∗)).

22L depends on µ, i.e. R.
Publications mathématiques de Besançon – 2025



V. C. Bui and V. Hoang Ngoc Minh and Q. H. Ngo and V. Nguyen Dinh 139

(c) For X = {x0, x1}, similarly (by Lazard factorization again),

M((x0 + x1)∗) = (M(x∗
1)M(x0))∗M(x∗

1) = (M(x∗
0)M(x1))∗M(x∗

0)

and the modules generated by the families series in the forms (80)–(82) are closed
by conc and ⊔⊔. Furthermore, it follows that R is a linear combination of series
in the form (80) (resp. (81)) if M(x∗

1)M(x0) (resp. M(x∗
0)M(x1)) is strictly upper-

triangular.

In all the sequel, A = K is supposed to be an algebraically closed field of characteristic zero. In
order to establish Theorem 4.23 below, Lie’s theorem [50] (essentially true over algebraically
closed fields characteristic zero) and the following Lemma 4.22 are used.

Lemma 4.22. — Let (ν, τ, η) a representation of S of dimension r such that, for all x ∈ X ,
(τ(x) − c(x)Ir) is strictly upper triangular, then S ∈ Krat

exc⟨⟨X ⟩⟩ ⊔⊔ K⟨X ⟩.

Proof. — Let (ei)1≤i≤r be the canonical basis of M1,r(K). We construct the representations
of S1 and S2

ρ1 = (ν, (x 7−→ τ(x) − c(x)Ir), η) and ρ2 = (e1, (x 7−→ c(x)Ir), te1)

and remark that S1 ⊔⊔ S2 admits the representation

ρ3 = (ν ⊗ e1, ((τ(x) − c(x)Ir) ⊗ Ir + Ir ⊗ c(x)Ir)x∈X , η ⊗ te1)

as Ir ⊗ c(x)Ir = c(x)Ir ⊗ Ir, ρ3 is, in fact, (ν ⊗ e1, (τ(x) ⊗ Ir)x∈X , η ⊗ te1) which represents S,
the result now comes from the fact that S1 ∈ K⟨X ⟩ and S2 =

(∑
x∈X c(x)x

)∗ ∈ Krat
exc⟨⟨X ⟩⟩. □

Theorem 4.23 (Triangular sub bialgebras of (Krat⟨⟨X ⟩⟩, ⊔⊔, 1X∗ , ∆conc)). — With the
notations in Definition 4.20, one has

1. L is commutative if and only if R ∈ Krat
exc⟨⟨X ⟩⟩,

2. L is nilpotent if and only if R ∈ Krat
exc⟨⟨X ⟩⟩ ⊔⊔ K⟨X ⟩,

3. L is solvable if and only if R is a linear combination of series in form (82).

Proof. — 1. Since L is commutative then, due to the commutation of matrices, for any
x, y ∈ X and p, s ∈ X ∗, one has ⟨R | pxys⟩ = ⟨R | pyxs⟩. Conversely, since ρ is minimal
then there is Pi and Qi ∈ K⟨X ⟩ (i = 1 . . . n) such that, for any u ∈ X ∗, (see [1, 19])

µ(u) = (⟨Pi ▷ R ◁ Qi | u⟩)1≤i,j≤n = (⟨R | QiuPi⟩)1≤i,j≤n.

Now, for any x, y ∈ X ,

µ(xy) = (⟨R | QixyPi⟩)1≤i,j≤n
(∗)= (⟨R | QiyxPi⟩)1≤i,j≤n = µ(yx),

(equality (∗)= being due to exchangeability).

2. Since L is nilpotent then let Kn be the space of the representation of L given by µ
and

⊕m
j=1 Vj be a decomposition of Kn into indecomposable L-modules (see [14] for

characteristic 0, or [3] for arbitrary characteristic), we know that Vj is an L-module and
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the action of L is triangularisable with constant diagonals inside each sector Vj . Thus, it
is an invertible matrix P in GL(n, K) such that, for any x ∈ X ,

Pµ(x)P −1 = blockdiag(T1, T2 . . . , Tk) =


T1 0 . . . 0
0 T2 . . . 0
...

... . . . ...
0 0 . . . Tk

 ,

where the Tj ’s are upper triangular matrices with constant coefficients in the diagonal. It
means that Tj(x) = λ(x)I +N(x), where N(x) is strictly upper-triangular23. Set dj to be
the dimension of Tj (so that n =

∑m
j=1 dj), partitioning νP −1 = ν ′ (resp. Pη = η′) with

these dimensions we get blocks so that each (ν ′
j , Tj , η′

j) is the representation of a series
Rj and R =

∑m
j=1 Rj . By Lemma 4.22, each Rj belongs to Krat

exc⟨⟨X ⟩⟩ ⊔⊔ K⟨X ⟩ then so is
their sum R.
Conversely, if ρi = (νi, τi, ηi), i = 1, 2, are two representations then

[τ1(x) ⊗ Ir + Ir ⊗ τ2(x), τ1(y) ⊗ Ir + Ir ⊗ τ2(y)]
= [τ1(x) ⊗ Ir, τ1(y) ⊗ Ir] + [τ1(x) ⊗ Ir, Ir ⊗ τ2(y)]

+ [Ir ⊗ τ2(x), τ1(y) ⊗ Ir] + [Ir ⊗ τ2(x), Ir ⊗ τ2(y)]
= [τ1(x), τ1(y)] ⊗ Ir + Ir ⊗ [τ2(x), τ2(y)]

because
[τ1(x) ⊗ Ir, τ1(y) ⊗ Ir] = τ1(x)τ1(y) ⊗ Ir − τ1(y)τ1(x) ⊗ Ir

= [τ1(x), τ1(y)] ⊗ Ir,

[τ1(x) ⊗ Ir, Ir ⊗ τ2(y)] = τ1(x) ⊗ τ2(y) − τ2(y) ⊗ τ1(x) = 0,

[Ir ⊗ τ2(x), τ1(y) ⊗ Ir] = τ1(y) ⊗ τ2(x) − τ1(y) ⊗ τ2(x) = 0,

[Ir ⊗ τ2(x), Ir ⊗ τ2(y)] = Ir ⊗ τ2(x)τ2(y) − Ir ⊗ τ2(y)τ2(x)
= Ir ⊗ [τ2(x), τ2(y)].

A similar formula holds for m-fold brackets (Dynkin combs), so that if L(τi)’s are nilpo-
tent, the Lie algebra L(τ1 ⊗ Ir + Ir ⊗ τ2) is also nilpotent. The point here comes from
the fact that series in Krat

exc⟨⟨X ⟩⟩ as well as in K⟨X ⟩ admit nilpotent representations,
so, let (α, τ, β) such a representation and (α′, τ ′, β′) its minimal quotient (obtained by
minimization, see [1]), then L(τ ′) is nilpotent as a quotient of L(τ). Now two minimal
representations being isomorphic, L(µ) is isomorphic to L(τ) and then it is nilpotent.

3. Since the Lie algebra L (generated by {µ(x)}x∈X) is solvable (see Definition 4.20) then, by
a Lie’s theorem [50], the matrices {µ(x)}x∈X are simultaneously upper triangularisable (as
in the above case of nilpotent L). Hence, in the favorable change of bases, one supposes
(without loss generality) that the linear representation (ν, µ, η) of R is such that each
matrix µ(x) is upper-triangular, and let D(X ) (resp. N(X )) be the diagonal (resp. strictly
upper-triangular) letter matrix such that M(X ) = D(X ) + N(X ). Then

R = νM(X ∗)η = ν(D(X ∗)N(X ))∗D(X ∗)η.

23Even, as K is infinite, there is a global linear form on L, λlin such that, for all g ∈ L, P gP −1 − λlin(g)I is
strictly upper-triangular.
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Since D(X ∗)N(X ) is nilpotent of order n then

(D(X ∗)N(X ))∗ =
n∑

j=0
(D(X ∗)N(X ))j .

Hence, letting S be the vector space generated by forms of type (82) which is closed by
concatenation, one has

D(X ∗)N(X ) ∈ Sn×nand then(D(X ∗)N(X ))∗ ∈ Sn×n.

Finally, R = νM(X ∗)η ∈ S which is the claim.
Conversely, as sums and quotients of solvable representations are solvable, it suffices
to show that a single form of type (82) admits a solvable representation and end by
quotient and isomorphism as in Item 2. From Proposition 4.5, we get the fact that, if Ri

admits solvable representations so does R1R2, then the claim follows from the fact that,
firstly, single letters admit solvable (even nilpotent) representations and secondly series
of ⊔⊔x∈X {Krat⟨⟨x⟩⟩} admit solvable representations. Finally, we choose (or construct) a
solvable representation of R, call it (α, τ, β) and (α′, τ ′β′) its minimal quotient, then L(τ ′)
is solvable as a quotient of L(τ). Now two minimal representations being isomorphic, L(µ)
is isomorphic to L(τ), hence solvable. □

Remark 4.24. —

1. Denoting by Krat
nil ⟨⟨X ⟩⟩ (resp. Krat

sol ⟨⟨X ⟩⟩), the set of rational series such that L(µ) is
nilpotent (resp. solvable), we get a tower of sub Hopf algebras of the Sweedler’s dual,
Krat

nil ⟨⟨X ⟩⟩ ⊂ Krat
sol ⟨⟨X ⟩⟩ ⊂ H◦

⊔⊔(X ).

2. For an example of series S with solvable representation but such that S /∈ Krat
exc⟨⟨X ⟩⟩ ⊔⊔

K⟨X ⟩, one can take X = {a, b} and S = a∗b(−a)∗.

5. Conclusion

In this work, various products {conc, ⊔⊔, ⊔−⊔} of noncommutative formal series, with coefficients
in a commutative ring A containing Q, and their coproducts {∆conc, ∆⊔⊔, ∆⊔−⊔} are examined,
in Section 2. Basing on various pairs of dual bases, contructed in Section 3, the represen-
tative (or rational) series, viewed as functions on the monoid (X ∗, 1X ∗) (resp. (Y ∗, 1Y ∗))
within their associated bialgebra (Arat⟨⟨X ⟩⟩, ⊔⊔, 1X ∗ , ∆conc) (resp. (Arat⟨⟨Y ⟩⟩, ⊔−⊔, 1Y ∗ , ∆conc)),
were factorized and decomposed, in Section 4. In particular, for A being a field K. This
bialgebra coincides with the Sweedler’s dual of the bialgebra (K⟨X ⟩, conc, 1X ∗ , ∆⊔⊔) (resp.
(K⟨Y ⟩, conc, 1Y ∗ , ∆⊔−⊔)).
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