

The algebraic groups leading to simultaneous approximation of an algebraic number and its square

2025, p. 145-167.

https://doi.org/10.5802/pmb.65

© Les auteurs, 2025.

Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL. https://creativecommons.org/licenses/by/4.0/deed.fr

PRESSE UNIVERSITAIRE DE FRANCHE-COMTÉ

Les Publications mathématiques de Besançon sont membres du Centre Mersenne pour l'édition scientifique ouverte http://www.centre-mersenne.org/ e-ISSN: 2592-6616

THE ALGEBRAIC GROUPS LEADING TO SIMULTANEOUS APPROXIMATION OF AN ALGEBRAIC NUMBER AND ITS SQUARE

by

Fujimori Masami

Abstract. — We determine the algebraic groups which have a close relation to simultaneous approximation of an algebraic number and its square.

 $\pmb{R\'esum\'e}$. — On détermine les groupes algébriques qui ont une étroite relation avec l'approximation simultanée d'un nombre algébrique et de son carré.

1. Introduction

Denote respectively by \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , and $\overline{\mathbb{Q}}$ ($\hookrightarrow \mathbb{C}$) the ring of rational integers, the field of rational numbers, the field of real numbers, the field of complex numbers, and the algebraic closure of \mathbb{Q} thought in \mathbb{C} . Let α be an element of $\overline{\mathbb{Q}} \setminus \mathbb{Q}$; q,r,s three indeterminates; ε an arbitrarily fixed positive constant; and $|\cdot|$ the usual absolute value on \mathbb{R} . When α belongs to \mathbb{R} and the degree of α over \mathbb{Q} is at least 3, finiteness of the number of rational integral solutions to the simultaneous approximation inequalities

$$\left|\alpha - \frac{r}{q}\right| < \frac{1}{|q|^{3/2+\varepsilon}}, \quad \left|\alpha^2 - \frac{s}{q}\right| < \frac{1}{|q|^{3/2+\varepsilon}}$$

is deduced from finiteness of the number of rational integral solutions to a parametric system of linear inequalities

$$|q| < Q^{2-\delta}, \quad |-q\alpha + r| < \frac{1}{Q^{1+\delta}}, \quad |-q\alpha^2 + s| < \frac{1}{Q^{1+\delta}} \quad (Q > 1),$$

where Q is a variable real parameter and δ is an appropriate positive number. The latter fact is a consequence of the subspace theorem of SCHMIDT, which is a generalization of the famous ROTH's theorem (cf. e.g. [4, VI Section 3]).

2020 Mathematics Subject Classification. — 11J13, 11J68.

Key words and phrases. — simultaneous approximation, general Roth system, semi-stable filtration, Hodge filtration, Hodge group.

Let x_1, \ldots, x_n be indeterminates; l_1, \ldots, l_n linearly independent linear forms in x_1, \ldots, x_n with coefficients in $\overline{\mathbb{Q}} \cap \mathbb{R}$; and $c(1), \ldots, c(n)$ real constant numbers with $\sum_{k=1}^n c(k) = 0$. The system $\mathcal{S} = (l_1, \ldots, l_n; c(1), \ldots, c(n))$ is called a *general ROTH system* if the simultaneous linear inequalities

(1)
$$|l_k| < \frac{1}{Q^{c(k)+\delta}} \quad (Q > 1; \ k = 1, \dots, n)$$

have only a finite number of rational integral solutions for each arbitrarily fixed positive number δ . The system $S_{\alpha} = (q, -q\alpha + r, -q\alpha^2 + s; -2, 1, 1)$ in the previous paragraph is an example of general ROTH system. The subspace theorem of SCHMIDT tells us in particular that whether a given system is a general ROTH system or not can be known from a certain aspect of a filtered vector space derived from the given system. To describe this phenomenon, we need a few terminology.

Put $V = x_1 \mathbb{Q} \oplus \cdots \oplus x_n \mathbb{Q}$. We associate the system $S = (l_1, \ldots, l_n; c(1), \ldots, c(n))$ with a filtration F_S^*V over $\overline{\mathbb{Q}}$ on V given by

$$F_{\mathcal{S}}^{i}V = \sum_{i < c(k)} l_{k}\overline{\mathbb{Q}} \quad (i \in \mathbb{R}).$$

The filtration thus obtained is descending, exhaustive, separated, and left-continuous in the sense that we have

$$F_{\mathcal{S}}^{i}V \supset F_{\mathcal{S}}^{j}V \quad (i \leq j), \qquad \bigcup_{i \in \mathbb{R}} F_{\mathcal{S}}^{i}V = V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}},$$

$$\bigcap_{i \in \mathbb{R}} F_{\mathcal{S}}^{i}V = 0, \quad \text{and} \quad \bigcap_{i < j} F_{\mathcal{S}}^{i}V = F_{\mathcal{S}}^{j}V.$$

Notice that if $l_k \in F_S^i V$, then the parametric system of linear inequalities (1) requires any solution to satisfy a linear inequality

$$|l_k| < \frac{1}{Q^{i+\delta}}$$

for some value of the parameter Q which depends on the solution.

Let V be a finite dimensional non-zero vector space over \mathbb{Q} equipped with a filtration $F \cdot V$ ($i \in \mathbb{R}$) over $\overline{\mathbb{Q}}$ as above. Let $F^{w+}V = \bigcup_{w < j} F^j V$ and $\operatorname{gr}^w(F \cdot V) = F^w V / F^{w+} V$. A real number

$$\mu(V) = \mu(V, F \cdot V) = \frac{1}{\dim_{\mathbb{Q}} V} \sum_{w \in \mathbb{R}} w \dim_{\overline{\mathbb{Q}}} \operatorname{gr}^w(F \cdot V)$$

is called the slope of the filtered vector space $V=(V,F^{\cdot}V)$. It is an average of indices at which the filtration narrows. A filtered vector space V or its filtration is said to be semi-stable if for any non-zero vector subspace W over $\mathbb Q$ of V with the induced sub-filtration over $\overline{\mathbb Q}$, the inequality $\mu(W) \leq \mu(V)$ is valid. We denote by $\mathcal C_0^{\mathrm{ss}}(\mathbb Q,\overline{\mathbb Q})$ the category of finite dimensional vector spaces over $\mathbb Q$ equipped with semi-stable filtration over $\overline{\mathbb Q}$ of slope zero. The morphisms in $\mathcal C_0^{\mathrm{ss}}(\mathbb Q,\overline{\mathbb Q})$ are the linear maps over $\mathbb Q$ between their underlying vector spaces which respect filtrations when linearly extended over $\overline{\mathbb Q}$.

A distinction between the general ROTH systems and the others is drawn as follows:

Theorem 1.1 (Schmidt, cf. e.g. [4, VI Theorem 2B]). — The filtration $F_{\mathcal{S}}^{\cdot}V$ derived from a general ROTH system \mathcal{S} is semi-stable of slope zero. Conversely, every object of $\mathcal{C}_0^{\mathrm{ss}}(\mathbb{Q},\overline{\mathbb{Q}})$ whose filtration is defined over $\overline{\mathbb{Q}} \cap \mathbb{R}$ comes from a general ROTH system.

For objects $V = (V, F \cdot V)$ and $W = (W, F \cdot W)$ in $\mathcal{C}_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$, their tensor product $V \otimes W$ is the vector space $V \otimes_{\mathbb{Q}} W$ equipped with the filtration

$$F^{i}(V \otimes_{\mathbb{Q}} W) = \sum_{i=j+k} F^{j}V \otimes_{\overline{\mathbb{Q}}} F^{k}W \quad (i \in \mathbb{R}).$$

The tensor product $V \otimes W$ is again semi-stable of slope zero ([1, 5]), which implies the following:

Theorem 1.2 (Faltings, Totaro). — Let $\omega_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$ be the forgetful tensor functor of $C_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$ to the tensor category $\operatorname{Vec}_{\mathbb{Q}}$ of finite dimensional vector spaces over \mathbb{Q} . The tensor category $C_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$ is equivalent to the tensor category $\operatorname{Rep}_{\mathbb{Q}} \operatorname{Aut} \omega_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$ of finite dimensional representations over \mathbb{Q} of the affine group scheme $\operatorname{Aut} \omega_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$ of natural equivalences of the functor $\omega_0^{ss}(\mathbb{Q}, \overline{\mathbb{Q}})$.

A very interesting byproduct of these two theorems is the fact that a general ROTH system is always obtained from a representation of some algebraic group defined over $\mathbb Q$ and vice versa. Let $\check V$ be the $\mathbb Q$ -vector space of linear forms in the indeterminates q,r,s. What we are concerned about in our present paper is the filtration F_α on $\check V$ defined over $\overline{\mathbb Q}$ given by

$$F_{\alpha}^{i} \breve{V} = \begin{cases} \breve{V} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} & (i \leq -2) \\ (-q\alpha + r) \overline{\mathbb{Q}} \oplus (-q\alpha^{2} + s) \overline{\mathbb{Q}} & (-2 < i \leq 1) \\ 0 & (i > 1), \end{cases}$$

with which a general ROTH system $S_{\alpha} = (q, -q\alpha + r, -q\alpha^2 + s; -2, 1, 1)$ at the beginning of this section is associated. Before stating the result of our present paper, we review what is known about the filtration derived from the ROTH inequality

$$\left|\alpha - \frac{r}{q}\right| < \frac{1}{|q|^{2+\varepsilon}},$$

or parametric simultaneous linear inequalities

$$|q| < Q^{1-\delta}, \quad |-q\alpha + r| < \frac{1}{Q^{1+\delta}} \quad (Q > 1).$$

Let $\check{W} = q\mathbb{Q} \oplus r\mathbb{Q}$. We define a filtration $F_{\alpha}\check{W}$ on $\check{W} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$ as

$$F_{\alpha}^{i} \breve{W} = \begin{cases} \breve{W} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} & (i \leq -1) \\ (-q\alpha + r)\overline{\mathbb{Q}} & (-1 < i \leq 1) \\ 0 & (i > 1). \end{cases}$$

The filtered vector space $\check{W}=(\check{W},F_{\alpha}^{\cdot}\check{W})$ is readily seen to be an object of $\mathcal{C}_{0}^{\mathrm{ss}}(\mathbb{Q},\overline{\mathbb{Q}})$. When $\alpha\in\overline{\mathbb{Q}}\cap\mathbb{R}$, the (classical) ROTH system $(q,-q\alpha+r;-1,1)$ is associated with it. For any $\alpha\in\overline{\mathbb{Q}}\setminus\mathbb{Q}$, we have proved in [3] that \check{W} is in the image of a fully faithful tensor functor ι from the tensor category of finite dimensional representations over \mathbb{Q} of a 1-dimensional anisotropic torus over \mathbb{Q} (which varies with α) or the special linear group SL_2 of degree 2 according as the number α is quadratic over \mathbb{Q} or not. The functor ι is compatible with the respective forgetful functors to the tensor category of finite dimensional vector spaces over \mathbb{Q} . This means the filtered vector space \check{W} may be regarded as a representation of one of the

algebraic groups determined by α . We would like to recall the definition of ι in some detail when $\alpha \notin \mathbb{R}$.

Let \mathbb{G}_{m} be the standard 1-dimensional multiplicative group, $\sigma \in \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ the complex conjugation restricted to $\overline{\mathbb{Q}}$,

$$\beta = \sigma(\alpha)$$
, and $P = \begin{pmatrix} 1 & 1 \\ \alpha & \beta \end{pmatrix}$.

An embedding e defined over $\overline{\mathbb{Q}}$ of \mathbb{G}_{m} into SL_2 is given as, using the usual identification $\mathbb{G}_{\mathrm{m}}(R) \simeq R^{\times}$ (the multiplicative group of invertible elements in R) for a $\overline{\mathbb{Q}}$ -algebra R,

$$e(c) = {}^{t}P^{-1} \begin{pmatrix} c^{-1} & 0 \\ 0 & c \end{pmatrix} {}^{t}P \qquad (c \in R^{\times})$$
$$= \frac{1}{\beta - \alpha} \begin{pmatrix} \beta & -\alpha \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c^{-1} & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ 1 & \beta \end{pmatrix}.$$

Denote by T_{α} the image of e which is a subtorus over $\overline{\mathbb{Q}}$ of SL_2 . The smallest subgroup \check{H} defined over \mathbb{Q} of SL_2 that includes T_{α} when the base field is extended over $\overline{\mathbb{Q}}$ is T_{α} itself or the whole group SL_2 [3, Section 4].

Put $\psi(1) = -q\beta + r$ and $\psi(2) = -q\alpha + r$. The torus T_{α} is naturally identified with the 1-dimensional multiplicative group $T = \operatorname{Spec}(\overline{\mathbb{Q}}[q,r]/(1-\psi(1)\psi(2)))$ whose generators of its character group are $\psi(1)$ and $\psi(2)$. The identification is given by the map

$$T \ni (q,r) \mapsto \begin{pmatrix} r - q(\alpha + \beta) & -q\alpha\beta \\ q & r \end{pmatrix} \in T_{\alpha} \subset SL_{2}$$

[3, Lemma 2.5 & Remark 2.6]. The tori T and T_{α} are generally defined over $\overline{\mathbb{Q}} \cap \mathbb{R}$. If α is quadratic over \mathbb{Q} , then they are defined over \mathbb{Q} .

To the triple of the group \check{H} , the inclusion map $\kappa = \operatorname{incl}: T_{\alpha} \hookrightarrow \check{H} \times_{\mathbb{Q}} \overline{\mathbb{Q}}$, and the cocharacter $e \colon \mathbb{G}_{\mathrm{m}} \times_{\mathbb{Q}} \overline{\mathbb{Q}} \to T_{\alpha}$, apply the method of construction of a tensor functor $\iota_{\check{H},\kappa,e} \colon \operatorname{Rep}_{\mathbb{Q}}(\check{H}) \to \mathcal{C}(\mathbb{Q},\overline{\mathbb{Q}})$ in our former paper [3, Section 1]. Remember that for a finite dimensional representation space V over \mathbb{Q} of \check{H} , we have defined the filtration $V = V_{\kappa,e}$ over $\overline{\mathbb{Q}}$ of $\iota_{\check{H},\kappa,e}(V)$ as

$$V^i = \bigoplus_{i < \langle \phi, e \rangle} V_\phi \quad (i \in \mathbb{R}).$$

Here $\langle \cdot, \cdot \rangle$ is the canonical \mathbb{Z} -valued pairing between the characters and the cocharacters of T_{α} and V_{ϕ} is the subspace over $\overline{\mathbb{Q}}$ of $V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$ on which T_{α} acts by multiplication of a character ϕ via the map $\kappa = \text{incl.}$ The functor $\iota = \iota_{\check{H},\kappa,e}$ is fully faithful [3, Theorem 3.8]. The standard representation of SL_2 on $\check{W} = q\mathbb{Q} \oplus r\mathbb{Q}$ restricted to \check{H} defines a representation of \check{H} . We have a direct sum decomposition

$$\breve{W} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} = \breve{W}_{\psi(1)} \oplus \breve{W}_{\psi(2)} = (-q\beta + r)\overline{\mathbb{Q}} \oplus (-q\alpha + r)\overline{\mathbb{Q}}.$$

Since $\langle \psi(1), e \rangle = -1$ and $\langle \psi(2), e \rangle = 1$, the filtration on \check{W} attached by the functor ι coincides with the filtration $F_{\alpha}\check{W}$ defined earlier. Thus the filtered vector space $(\check{W}, F_{\alpha}\check{W})$ is in the image of a fully faithful tensor functor ι from the tensor category of finite dimensional representations over \mathbb{Q} of an algebraic group \check{H} defined over \mathbb{Q} .

Let \mathbb{A} be the 1-dimensional affine space, which is a ring scheme. Put $N=\psi(1)\psi(2)=(-q\beta+r)(-q\alpha+r)\in\mathbb{R}[q,r]$. By means of the basis $-\alpha,1$ of \mathbb{C} as an \mathbb{R} -vector space, the Publications mathématiques de Besançon – 2025

Well restriction $\operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A}$ from \mathbb{C} to \mathbb{R} of \mathbb{A} is coordinated as $\operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A} \simeq \operatorname{Spec}(\mathbb{R}[q,r])$. The correspondence

$$\left(\operatorname{Res}_{\mathbb{C}/\mathbb{R}}\mathbb{A}\right)(\mathbb{R}) = \mathbb{C} \simeq \operatorname{Spec}(\mathbb{R}[q,r])(\mathbb{R})$$

is such that for $a, b \in \mathbb{R}$

$$\mathbb{C} \ni a(-\alpha) + b \longmapsto (q \mapsto a, r \mapsto b) \in \operatorname{Spec}(\mathbb{R}[q, r])(\mathbb{R}).$$

The function N is the complex norm map $\operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A} \to \mathbb{A}$. The Deligne torus $\mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{\mathrm{m}}$ is an open subscheme of $\operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A}$ and in our coordinate corresponds to $\operatorname{Spec}(\mathbb{R}[q,r]_N)$, where $\mathbb{R}[q,r]_N$ is the localization ring of $\mathbb{R}[q,r]$ by the multiplicative system of non-negative powers of N. The functions $\psi(1)$ and $\psi(2)$ are a pair of generators of the character group of a 2-dimensional torus \mathbb{S} . Our torus $T \times_{\overline{\mathbb{Q}} \cap \mathbb{R}} \mathbb{R} = \operatorname{Spec}(\mathbb{R}[q,r]/(1-N))$ is the kernel of the norm $N \colon \mathbb{S} \to \mathbb{G}_{\mathrm{m}}$.

We denote by \check{W} the \mathbb{Q} -vector space $q\mathbb{Q} \oplus r\mathbb{Q}$ again. The \mathbb{R} -vector space $\check{W} \otimes_{\mathbb{Q}} \mathbb{R}$ can be regarded as (the set of \mathbb{R} -valued points of) the dual vector space to $\mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A} \simeq \mathrm{Spec}(\mathbb{R}[q,r])$. The multiplication on a ring scheme \mathbb{A} induces a canonical action of the Deligne torus $\mathbb{S} = \mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{\mathrm{m}}$ on a 2-dimensional vector space $\mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A}$, hence on $\check{W} \otimes_{\mathbb{Q}} \mathbb{R}$. Using the above coordinates of $\mathrm{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A}$ and of \mathbb{S} , the action of $(q_0, r_0) \in \mathbb{S}$ on $\check{W} \otimes_{\mathbb{Q}} \mathbb{R}$ is expressed in matrix form as

$$(q,r) \longmapsto (q,r) \begin{pmatrix} r_0 - q_0(\alpha + \beta) & -q_0\alpha\beta \\ q_0 & r_0 \end{pmatrix}.$$

The Hodge decomposition of $\check{W} \otimes_{\mathbb{Q}} \mathbb{C}$ reads as

$$\breve{W} \otimes_{\mathbb{Q}} \mathbb{C} = \breve{W}^{0,1} \oplus \breve{W}^{1,0},$$

where

$$\check{W}^{0,1} = \check{W}_{\psi(1)} \otimes_{\overline{\mathbb{Q}}} \mathbb{C} \quad \text{and} \quad \check{W}^{1,0} = \check{W}_{\psi(2)} \otimes_{\overline{\mathbb{Q}}} \mathbb{C}.$$

We understand that the HODGE filtration on $\check{W} \otimes_{\mathbb{Q}} \mathbb{C}$ is (essentially) the same as the base field extension from $\overline{\mathbb{Q}}$ to \mathbb{C} of the filtration $F_{\alpha}^{\cdot}\check{W}$. Our algebraic group \check{H} is nothing but the HODGE group (the special Mumford-Tate group) of the \mathbb{Q} -HODGE structure \check{W} .

In this way, we see our category $\mathcal{C}(\mathbb{Q}, \overline{\mathbb{Q}})$ contains \mathbb{Q} -Hodge structures defined over $\overline{\mathbb{Q}}$. For any choice of an object $V \in \mathcal{C}(\mathbb{Q}, \overline{\mathbb{Q}})$, to determine the algebraic group G defined over \mathbb{Q} such that V ought to be considered a representation of G is a generalization of the problem of finding out the Hodge group of a prescribed Hodge structure. In particular, an extension of our result [3] for the 2-dimensional objects to higher dimensional objects is not a simple matter. Now we explain our result in the present paper.

When α is (rational or) quadratic over \mathbb{Q} , the filtration $F_{\alpha}^{\cdot}\check{V}$ is not semi-stable (cf. Appendix), hence we assume the degree of α over \mathbb{Q} is at least 3.

Theorem 1.3. — If the algebraic number α is cubic over \mathbb{Q} , then there exists a fully faithful tensor functor ι of the category $\operatorname{Rep}_{\mathbb{Q}} T_{\alpha}$ of finite dimensional representations over \mathbb{Q} of a two-dimensional anisotropic torus T_{α} over \mathbb{Q} into the tensor category $C_0^{\operatorname{ss}}(\mathbb{Q}, \overline{\mathbb{Q}})$ such that the group $T_{\alpha}(\mathbb{Q})$ of \mathbb{Q} -valued points of the torus T_{α} is isomorphic to the kernel of the norm map of the cubic number field $\mathbb{Q}(\alpha)$ over \mathbb{Q} , such that the functor ι commutes with the forgetful functors to the tensor category $\operatorname{Vec}_{\mathbb{Q}}$ of finite dimensional vector spaces over \mathbb{Q} , and such that its image contains the filtered vector space $(\check{V}, F_{\alpha}^*\check{V})$.

If the algebraic number α is not cubic over \mathbb{Q} , then there exists a fully faithful tensor functor ι of the category $\operatorname{Rep}_{\mathbb{Q}}\operatorname{SL}_3$ of finite dimensional representations over \mathbb{Q} of the special linear group SL_3 of degree 3 into $C_0^{\operatorname{ss}}(\mathbb{Q},\overline{\mathbb{Q}})$ such that the functor ι is compatible with the forgetful tensor functors to $\operatorname{Vec}_{\mathbb{Q}}$ and such that the image of ι contains the filtered vector space $(\check{V},F_{\circ}\check{V})$.

The method of proof is similar to that in [3].

Statements and proofs are given over arbitrary fields in the body of the paper. The conclusion becomes a little weak when the base field has a positive characteristic.

The plan of the paper is as follows: In the first two sections, we take up the case when the Galois closure of the field generated by a given α over the base field is abelian of type $(2, 2, \ldots)$. The next two sections treat the remaining cases. In the last section, we make clear what are the Hodge-like groups in the situation of our present paper when the characteristic of the base field is zero. The results in Section 2 and Section 3 are newly obtained. The results in the other sections have been announced at a meeting [2] but their proofs are not yet published.

As we have said above, although the results and proofs of our former paper [3] and those of the present one are alike, determination of Hodge-like groups for arbitrarily given filtered vector spaces is not easy in general. Its confirmation in our present case is already a bit complicated. So, we believe the contribution of our present work to the literature would be helpful especially for the people who feel an interest in our former paper [3] and who want to know results in simultaneous approximation cases. This is why the author has written this paper.

2. Commutative case of type (2, 2, ...)

In this section, we define several things that we need in Section 3. We see some properties of them.

Let K be an arbitrary field. We denote respectively by \mathbb{G}_{m} and by SL_3 the standard 1-dimensional split multiplicative group and the special linear group of degree 3 whose base fields are both viewed as K. Let K^{sep} be a separable algebraic closure of K and $\alpha \in K^{\mathrm{sep}}$ such that $\omega^2(\alpha) = \alpha$ for all $\omega \in \mathrm{Gal}(K^{\mathrm{sep}}/K)$. In this situation, the Galois closure of the field generated by α over K is a finite abelian extension of K (cf., e.g., [3, Lemma 4.3]). Assume that the extension degree of $K(\alpha)$ over K is at least 4. Fix a (finite or infinite) Galois extension field L of K containing α and also fix $\sigma, \tau \in \mathrm{Gal}(K^{\mathrm{sep}}/K)$ with $\sigma(\alpha) \neq \alpha$, $\tau(\alpha) \neq \alpha$, and $\sigma(\alpha) \neq \tau(\alpha)$. Note that we have $\sigma\tau(\alpha) = \tau\sigma(\alpha) \neq \alpha$. Elements $\beta, \gamma, \delta \in L$ and an element $P \in \mathrm{GL}_3(L)$ are respectively defined as

$$\beta = \sigma^{-1}(\alpha) = \sigma(\alpha), \ \gamma = \tau(\alpha), \ \delta = \sigma\tau(\alpha), \ \text{and} \ P = \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \end{pmatrix}.$$

Let e_1 , e_2 , and e_3 be the embeddings defined over L of \mathbb{G}_{m} into SL_3 given respectively by, using the usual identification $\mathbb{G}_{\mathrm{m}}(R) \simeq R^{\times}$ (the group of invertible elements in R) for an Publications mathématiques de Besançon – 2025

L-algebra R,

$$e_1(c) = {}^t P^{-1} \begin{pmatrix} c^{-2} & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{pmatrix} {}^t P, \quad e_2(c) = {}^t P^{-1} \begin{pmatrix} c & 0 & 0 \\ 0 & c^{-2} & 0 \\ 0 & 0 & c \end{pmatrix} {}^t P,$$

and $e_3(c) = (e_1(c)e_2(c))^{-1}$ $(c \in R^{\times})$. We denote respectively by T_1, T_2, T_3 the subgroups over L of SL_3 which are the images of e_1, e_2, e_3 .

We note that

$$P^{-1} = D \cdot \begin{pmatrix} \beta \gamma & -\beta - \gamma & 1 \\ \gamma \alpha & -\gamma - \alpha & 1 \\ \alpha \beta & -\alpha - \beta & 1 \end{pmatrix},$$

where

$$D = \operatorname{diag}\left(\frac{1}{(\beta - \alpha)(\gamma - \alpha)}, \frac{1}{(\gamma - \beta)(\alpha - \beta)}, \frac{1}{(\alpha - \gamma)(\beta - \gamma)}\right).$$

Put

$$\varepsilon_{1} = \frac{(\beta - \delta)(\gamma - \delta)}{(\beta - \alpha)(\gamma - \alpha)}, \quad \varepsilon_{2} = \frac{(\gamma - \delta)(\alpha - \delta)}{(\gamma - \beta)(\alpha - \beta)},$$

$$\varepsilon_{3} = \frac{(\alpha - \delta)(\beta - \delta)}{(\alpha - \gamma)(\beta - \gamma)}, \quad \text{and} \quad E_{ij} = \frac{\varepsilon_{i}}{\varepsilon_{j}} \ (i, j = 1, 2, 3).$$

We have

$$P^{-1}\sigma(P) = \begin{pmatrix} 0 & 1 & \varepsilon_1 \\ 1 & 0 & \varepsilon_2 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & E_{13} \\ 0 & 1 & E_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$P^{-1}\tau(P) = \begin{pmatrix} 0 & \varepsilon_1 & 1 \\ 0 & \varepsilon_2 & 0 \\ 1 & \varepsilon_3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & E_{12} & 0 \\ 0 & 1 & 0 \\ 0 & E_{32} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

and

$$P^{-1}\sigma\tau(P) = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ \varepsilon_2 & 0 & 1 \\ \varepsilon_3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ E_{21} & 1 & 0 \\ E_{31} & 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Let A_1 , A_2 , and A_3 be the L-valued points of SL_3 defined respectively as

$$A_{1} = {}^{t}P^{-1} \begin{pmatrix} 1 & -E_{21} & -E_{31} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} {}^{t}P, \ A_{2} = {}^{t}P^{-1} \begin{pmatrix} 1 & 0 & 0 \\ -E_{12} & 1 & -E_{32} \\ 0 & 0 & 1 \end{pmatrix} {}^{t}P,$$

and

$$A_3 = {}^t P^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -E_{13} & -E_{23} & 1 \end{pmatrix} {}^t P.$$

We see for an L-algebra R and $a, b, c \in R^{\times}$ that

$$\begin{split} \sigma(^tP^{-1})\operatorname{diag}(a,b,c)\,\sigma(^tP) &= {}^tP^{-1}A_3\operatorname{diag}(b,a,c)\,A_3^{-1}\,{}^tP \\ &= {}^tP^{-1}\left(\begin{array}{ccc} b & 0 & 0 \\ 0 & a & 0 \\ E_{13}(c-b) & E_{23}(c-a) & c \end{array}\right){}^tP, \\ \tau(^tP^{-1})\operatorname{diag}(a,b,c)\,\tau(^tP) &= {}^tP^{-1}A_2\operatorname{diag}(c,b,a)\,A_2^{-1}\,{}^tP \\ &= {}^tP^{-1}\left(\begin{array}{ccc} c & 0 & 0 \\ E_{12}(b-c) & b & E_{32}(b-a) \\ 0 & 0 & a \end{array}\right){}^tP, \end{split}$$

and

$$\sigma \tau({}^{t}P^{-1})\operatorname{diag}(a,b,c)\,\sigma \tau({}^{t}P) = {}^{t}P^{-1}A_{1}\operatorname{diag}(a,c,b)\,A_{1}^{-1}{}^{t}P$$

$$= {}^{t}P^{-1}\left(\begin{array}{ccc} a & E_{21}(a-c) & E_{31}(a-b) \\ 0 & c & 0 \\ 0 & 0 & b \end{array}\right){}^{t}P.$$

Denote by Int(A) the conjugation left action on SL_3 of $A \in SL_3(L)$. Making use of the above equations, we understand that the relations

(2)
$$e_2 = \operatorname{Int}(\sigma(A_3)) \circ \sigma(e_1) = \operatorname{Int}(\tau(A_2)) \circ \tau(e_2) = \operatorname{Int}(\sigma\tau(A_1)) \circ \sigma\tau(e_3)$$

and

(3)
$$e_3 = \operatorname{Int}(\sigma(A_3)) \circ \sigma(e_3) = \operatorname{Int}(\tau(A_2)) \circ \tau(e_1) = \operatorname{Int}(\sigma\tau(A_1)) \circ \sigma\tau(e_2)$$

hold. At the same time, we obtain the next proposition:

Proposition 2.1. — Let $T_{\alpha;\sigma,\tau}$ be the maximal torus T_2T_3 of $SL_3 \times_K L$. The smallest subgroup \check{G} defined over K of SL_3 which includes the torus $T_{\alpha;\sigma,\tau}$ when the base field is extended to L is the whole group SL_3 .

3. Representation in the exceptional case

In this section, we prove our filtered vector space should be regarded as a representation of the special linear group of degree 3 if the GALOIS closure of the field generated by a primarily given number is abelian of type (2, 2, ...).

The symbol U_{ij} $(i, j = 1, 2, 3; i \neq j)$ designates the 1-dimensional unipotent subgroup over L of SL_3 whose conjugate ${}^tPU_{ij}{}^tP^{-1}$ is the standard 1-dimensional unipotent subgroup with its non-diagonals all zero except the (i, j)-coefficient. As an example, for an L-algebra R, the additive group of R-valued points of U_{12} is given by

$$U_{12}(R) = {}^{t}P^{-1} \begin{pmatrix} 1 & R & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} {}^{t}P.$$

Let $T_{\alpha;\sigma,\tau}$ be the maximal torus in Section 2 of $\mathrm{SL}_3 \times_K L$. We denote by $\chi(2)$ and $\chi(3)$ the characters on $T_{\alpha;\sigma,\tau}$ dual to the cocharacters e_2 and e_3 in Section 2. We see for an L-algebra Publications mathématiques de Besançon – 2025

R and $b, c \in R^{\times}$; $u_{i,j} \in R \ (i, j = 1, 2, 3; i \neq j)$ that

$$\begin{pmatrix} bc & 0 & 0 \\ 0 & b^{-2}c & 0 \\ 0 & 0 & bc^{-2} \end{pmatrix} \begin{pmatrix} 1 & u_{12} & u_{13} \\ u_{21} & 1 & u_{23} \\ u_{31} & u_{32} & 1 \end{pmatrix} \begin{pmatrix} b^{-1}c^{-1} & 0 & 0 \\ 0 & b^{2}c^{-1} & 0 \\ 0 & 0 & b^{-1}c^{2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & b^{3}u_{12} & c^{3}u_{13} \\ b^{-3}u_{21} & 1 & b^{-3}c^{3}u_{23} \\ c^{-3}u_{31} & b^{3}c^{-3}u_{32} & 1 \end{pmatrix}.$$

This equality means the group, say U_{32} , is the unipotent subgroup over L of SL_3 on which the maximal torus $T_{\alpha;\sigma,\tau}$ acts (by the inner automorphism from the left) via the character $3\chi(2) - 3\chi(3)$ (additive notation).

To the triple of the group $\check{G} = \operatorname{GL}_3$, the inclusion map $\kappa = \operatorname{incl}: T_{\alpha;\sigma,\tau} \hookrightarrow \check{G} \times_K L$, and the cocharacter $e = e_1 : \mathbb{G}_{\mathrm{m}} \times_K L \to T_{\alpha;\sigma,\tau}$, apply the method of construction of a tensor functor $\iota_{\check{G},\kappa,e} \colon \operatorname{Rep}_K(\check{G}) \to \mathcal{C}(K,L)$ in our former paper [3, Section 1]. Recall that for a finite dimensional representation space V over K of \check{G} , we have defined a filtration over L of $\iota_{\check{G},\kappa,e}(V)$ as

$$V^{i} = V_{\kappa,e}^{i} = \bigoplus_{i \leq \langle \phi, e \rangle} V_{\phi} \quad (i \in \mathbb{R}),$$

where V_{ϕ} is the subspace over L of $V \otimes_K L$ on which $T_{\alpha;\sigma,\tau}$ acts by multiplication of a character ϕ via the map $\kappa = \text{incl.}$

Example 3.1 (representation corresponding to a simultaneous approximation). — Let s_{ij} be an indeterminate considered a function on SL_3 defined as the matrix coefficient in the *i*-th row and the *j*-th column for each indices *i* and *j*. Put $q = s_{31}$, $r = s_{32}$, and $s = s_{33}$. Let \check{V} be the vector space over K spanned by q, r, and s in the ring of functions over K on SL_3 . By the translation to the right on SL_3 , the vector space \check{V} becomes a representation space of $\check{G} = \operatorname{SL}_3$. Since the action of the torus $T_{\alpha;\sigma,\tau}$ is defined as, for an arbitrary L-algebra R, $b \in R^{\times} \simeq T_2(R)$, and $c \in R^{\times} \simeq T_3(R)$,

$$(q \ r \ s) \longmapsto (q \ r \ s)^t P^{-1} \begin{pmatrix} bc & 0 & 0 \\ 0 & b^{-2}c & 0 \\ 0 & 0 & bc^{-2} \end{pmatrix}^t P,$$

where

$${}^{t}P^{-1} = \begin{pmatrix} \beta\gamma & \gamma\alpha & \alpha\beta \\ -\beta - \gamma & -\gamma - \alpha & -\alpha - \beta \\ 1 & 1 & 1 \end{pmatrix} \cdot D \qquad (D: a diagonal matrix)$$

is the same as the transposed inverse of the matrix P in Section 2, we see that

$$(q\beta\gamma - r(\beta + \gamma) + s) L = \breve{V}_{\chi(2) + \chi(3)},$$

$$(q\gamma\alpha - r(\gamma + \alpha) + s) L = \breve{V}_{-2\chi(2) + \chi(3)},$$

and

$$(q\alpha\beta - r(\alpha + \beta) + s) L = \breve{V}_{\chi(2) - 2\chi(3)}.$$

The relation $e_1 + e_2 + e_3 = 0$ taken into account, the filtration of $\iota_{\breve{G},\kappa,e}(\breve{V})$ is given by

$$F_{\alpha}^{i} \breve{V} = \begin{cases} \breve{V} \otimes_{K} L & \text{for } i \leq -2 \\ \breve{V}_{-2\chi(2) + \chi(3)} \oplus \breve{V}_{\chi(2) - 2\chi(3)} & \text{for } -2 < i \leq 1 \\ 0 & \text{for } i > 1. \end{cases}$$

On the other hand, we have

$$(q\gamma\alpha - r(\gamma + \alpha) + s) - (q\alpha\beta - r(\alpha + \beta) + s) = (-q\alpha + r)(\beta - \gamma)$$

and

$$(q\gamma\alpha - r(\gamma + \alpha) + s)(\alpha + \beta) - (q\alpha\beta - r(\alpha + \beta) + s)(\gamma + \alpha) = (-q\alpha^2 + s)(\beta - \gamma).$$

Thus the filtration $F_{\alpha}^{\cdot} \breve{V}$ can be written as

$$F_{\alpha}^{i} \breve{V} = \begin{cases} \breve{V} \otimes_{K} L & \text{for } i \leq -2\\ (-q\alpha + r)L \oplus (-q\alpha^{2} + s)L & \text{for } -2 < i \leq 1\\ 0 & \text{for } i > 1. \end{cases}$$

Note that the filtration $F_{\alpha}^{\cdot} \check{V}$ does not depend on the choice of the element σ nor $\tau \in \operatorname{Gal}(L/K)$.

Remember the definition of a quantity m [3, Defintion 3.2] for an element x of a filtered vector space $V \otimes_K L$:

$$(4) m(x) = \sup\{i \mid V^i \ni x\}$$

Proposition 3.2. — Suppose we are given a representation space V over K of $\check{G} = \operatorname{SL}_3$. For a character $\phi = a \cdot \chi(2) + b \cdot \chi(3)$ $(a, b \in \mathbb{Z})$ of the torus $T_{\alpha;\sigma,\tau}$, let

$$\phi^{\circ} = -(a+b) \cdot \chi(2) + b \cdot \chi(3)$$
 and $\phi^{\dagger} = a \cdot \chi(2) - (a+b) \cdot \chi(3)$.

If $x \in V_{\phi} \setminus \{0\}$, then there exist elements $y \in V_{\phi^{\circ}} \setminus \{0\}$ and $z \in V_{\phi^{\dagger}} \setminus \{0\}$ such that

$$\sigma(x) - y \in \bigoplus_{k,l \geq 0; \, (k,l) \neq (0,0)} V_{\phi^{\circ} + 3k(\chi(2) - \chi(3)) - 3l\chi(3)}$$

and

$$\tau(x) - z \in \bigoplus_{k,l \ge 0; (k,l) \ne (0,0)} V_{\phi^{\dagger} + 3k(\chi(3) - \chi(2)) - 3l\chi(2)}.$$

In particular, we have

$$m(\sigma(x)) = \langle \phi^{\circ}, e \rangle = \langle \phi, e_2 \rangle$$
 and $m(\tau(x)) = \langle \phi^{\dagger}, e \rangle = \langle \phi, e_3 \rangle$.

Proof. — Note first that $A_3 \in U_{31}U_{32}$. We have remarked at the beginning of this section that the unipotent subgroups U_{31} and U_{32} correspond respectively to the characters $-3\chi(3)$ and $3\chi(2) - 3\chi(3)$ of the maximal torus $T_{\alpha;\sigma,\tau}$. As is well-known, the group $U_{31}U_{32}$ sends an element x of V_{ϕ} to an affine space

$$x + \bigoplus_{k,l \ge 0; (k,l) \ne (0,0)} V_{\phi-3k\chi(3)+3l(\chi(2)-\chi(3))}$$

We get an expression

$$A_3^{-1}x = x + \sum_{k,l \ge 0; (k,l) \ne (0,0)} x_{k,l}, \qquad x_{k,l} \in V_{\phi-3k\chi(3)+3l(\chi(2)-\chi(3))}.$$

Applying $\sigma \in \operatorname{Gal}(L/K)$, we have

$$\sigma(A_3)^{-1}\sigma(x) = \sigma(x) + \sum_{k,l \ge 0; (k,l) \ne (0,0)} \sigma(x_{k,l}),$$

namely,

$$\sigma(x) = \sigma(A_3 x) + \sum_{k,l \ge 0; (k,l) \ne (0,0)} \sigma(A_3 x_{k,l}).$$

For an L-algebra R and $c \in R^{\times}$, we know by the relations (2) and (3)

$$e_2(c) \, \sigma(A_3 x) = \sigma(A_3) \, \sigma(e_1)(c) \, \sigma(A_3)^{-1} \cdot \sigma(A_3) \, \sigma(x)$$
$$= \sigma(A_3) \, c^{-a-b} \sigma(x) = c^{-a-b} \sigma(A_3 x)$$

and

$$e_3(c) \, \sigma(A_3 x) = \sigma(A_3) \, \sigma(e_3)(c) \, \sigma(A_3)^{-1} \cdot \sigma(A_3) \, \sigma(x)$$

= $\sigma(A_3) \, c^b \sigma(x) = c^b \sigma(A_3 x),$

in other words $\sigma(A_3x) \in V_{\phi^{\circ}}$. We obtain similarly

$$e_2(c) \sigma(A_3 x_{k,l}) = c^{-a-b+3k} \sigma(A_3 x_{k,l})$$

and

$$e_3(c) \sigma(A_3 x_{k,l}) = c^{b-3k-3l} \sigma(A_3 x_{k,l}),$$

i.e., $\sigma(A_3x_{k,l}) \in V_{\phi^{\circ}+3k(\chi(2)-\chi(3))-3l\chi(3)}$. We see that $y = \sigma(A_3x)$ meets the requirement, for $\sigma(A_3x) \neq 0$ if $x \neq 0$.

The equality

$$\langle \phi^{\circ} + 3k(\chi(2) - \chi(3)) - 3l\chi(3), e \rangle = a + 3l$$

implies that

$$\sigma(x) \in V^a$$
 and $\sigma(x) \notin V^i \ (i > a)$,

hence $m(\sigma(x)) = a = \langle \phi^{\circ}, e \rangle = \langle \phi, e_2 \rangle$.

The assertion concerning $\tau(x)$ is derived in the same manner.

Lemma 3.3. — For any non-zero finite dimensional representation space V over K of $\check{G} = \mathrm{SL}_3$, we have $\mu(\iota_{\check{G},\kappa,e}(V)) = 0$, where μ is the slope function of filtered vector spaces (cf. e.g. [3, Definition 1.12]).

Proof. — Completely the same as the proof of Lemma 3.5 in [3]. \Box

Lemma 3.4. — To an arbitrary 1-dimensional vector subspace W over K of an SL_3 representation V over K, attach the sub-filtration over L of $\iota_{\operatorname{SL}_3,\kappa,e}(V)$. We have $\mu(W) \leq 0$.

Publications mathématiques de Besançon – 2025

Proof. — In the coefficient extension $V \otimes_K L$, a non-zero vector $w \in W$ is written

$$w = w_1 + \dots + w_r, \quad w_i \in V_{\psi(i)} \setminus \{0\},$$

where $V_{\psi(i)}$ is the subspace over L of $V \otimes_K L$ on which the torus $T_{\alpha;\sigma,\tau}$ acts via a character $\psi(i)$. We may assume that the characters $\psi(i)$ are pairwise distinct. By the definitions of the sub-filtration and the quantity $m(\cdot)$ recalled in (4), we have

$$\mu(W) = \min_{1 \le i \le r} \left< \psi(i), e \right> = m(w).$$

Let

$$a = \min_{1 \le i \le r} \langle \psi(i), e_2 \rangle, \quad m' = \min \left\{ \langle \psi(i), e \rangle \mid \langle \psi(i), e_2 \rangle = a \right\},$$

and $\phi = a\chi(2) - (a+m')\chi(3)$. There exists a unique number j such that $\psi(j) = \phi$. Applying $\sigma \in \operatorname{Gal}(L/K)$ to w, we have

$$w = \sigma(w) = \sigma(w_1) + \cdots + \sigma(w_r).$$

From Proposition 3.2, we see that

$$w = \sigma(w) \in \sum_{i=1}^{r} \bigoplus_{k,l>0} V_{\psi^{\circ}(i)+3k(\chi(2)-\chi(3))-3l\chi(3)}$$

and that there exists an element $y \in V_{\phi^{\circ}} \setminus \{0\}$ with

$$\sigma(w_j) - y \in \bigoplus_{k,l \ge 0; (k,l) \ne (0,0)} V_{\psi^{\circ}(j) + 3k(\chi(2) - \chi(3)) - 3l\chi(3)}.$$

Since for all i

$$\langle \psi^{\circ}(i) + 3k(\chi(2) - \chi(3)) - 3l\chi(3), e \rangle = \langle \psi(i), e_2 \rangle + 3l \ge a$$

and for i such that $\langle \psi(i), e_2 \rangle = a$

$$\langle \psi^{\circ}(i) + 3k(\chi(2) - \chi(3)) - 3l\chi(3), e_2 \rangle = \langle \psi(i), e \rangle + 3k \ge m',$$

the eigenvector y with respect to the action of the torus $T_{\alpha;\sigma,\tau}$ does not cancel out in the sum $w = \sigma(w_1) + \cdots + \sigma(w_r)$. We get the equality $m(w) = m(\sigma(w)) = a$. Put this time

$$b = \min_{1 \le i \le r} \langle \psi(i), e_3 \rangle, \quad m'' = \min \{ \langle \psi(i), e \rangle \mid \langle \psi(i), e_3 \rangle = b \},$$

and $\varphi = -(m'' + b)\chi(2) + b\chi(3)$. There is a unique index h with $\psi(h) = \varphi$. In the same way as in the previous paragraph, we know the simultaneous equalities

$$\langle \psi^{\dagger}(i) + 3k(\chi(3) - \chi(2)) - 3l\chi(2), e \rangle = b$$

and

$$\langle \psi^{\dagger}(i) + 3k(\chi(3) - \chi(2)) - 3l\chi(2), e_3 \rangle = m''$$

are possible only when i = h and k = l = 0. We see $m(w) = m(\tau(w)) = b$.

Each character $\psi(i)$ is expressed as $\psi(i) = a_i \chi(2) + b_i \chi(3)$ $(a_i, b_i \in \mathbb{Z})$. By the definitions of $m(\cdot), a, b$, we obtain

$$m(w) \le \langle \psi(i), e \rangle = -a_i - b_i \le -a - b = -2m(w),$$

i.e.,
$$\mu(W) = m(w) \le 0$$
.

Proposition 3.5. — For any non-zero finite dimensional representation space V over K of $\check{G} = \operatorname{SL}_3$, the filtered vector space $\iota_{\check{G},\kappa,e}(V)$ is semi-stable of slope zero, hence the functor $\iota_{\check{G},\kappa,e}$ factors through $\mathcal{C}_0^{\operatorname{ss}}(K,L)$.

Proof. — The same proof as the one of Proposition 3.7 in [3] is valid. \Box

Let V be the underlying vector space over K of an object in C(K, L). Remember that a linear map f over K of V to another underlying space is filtered if and only if

$$m(x) \le m(f(x))$$

for all $x \in V \otimes_K L$.

Theorem 3.6. — The functor $\iota_{\mathrm{SL}_3,\kappa,e} \colon \mathrm{Rep}_K(\mathrm{SL}_3) \to \mathcal{C}_0^{\mathrm{ss}}(K,L)$ is fully faithful.

Proof. — Let W be an arbitrary finite dimensional representation space over K of SL_3 . For any $y \in W \otimes_K L$, we have a unique expression

$$y = \sum_{\psi \in X} y_{\psi}, \quad y_{\psi} \in W_{\psi},$$

where X is the character group of the torus $T_{\alpha;\sigma,\tau}$ and W_{ψ} is the subspace over L of $W \otimes_K L$ on which $T_{\alpha;\sigma,\tau}$ acts by multiplication of a character ψ . We define a set X(y) of characters as

$$X(y) = \{ \psi \in X \mid y_{\psi} \neq 0 \}.$$

Assume $y \neq 0$ and let

$$a(y) = \min_{\psi \in X(y)} \langle \psi, e_2 \rangle$$
 and $b(y) = \min_{\psi \in X(y)} \langle \psi, e_3 \rangle$.

By the same and a similar reasoning to the one in the proof of Lemma 3.4, we see that

$$m(\sigma(y)) = a(y) \quad \text{and} \quad m(\tau(y)) = b(y).$$

Hence, for a linear map $f: V \to W$ over K between the underlying vector spaces of finite dimensional representations and $x \in V_{\phi}$ such that $f(x) \neq 0$, we have

$$m(\sigma(x)) = a(x) = \langle \phi, e_2 \rangle, \quad m(\sigma(f(x))) = a(f(x)),$$

 $m(\tau(x)) = b(x) = \langle \phi, e_3 \rangle, \text{ and } m(\tau(f(x))) = b(f(x)).$

On the assumption that f is filtered, we get

$$\langle \phi, e \rangle = m(x) \le m(f(x)) = \min_{\psi \in X(f(x))} \langle \psi, e \rangle,$$
$$\langle \phi, e_2 \rangle = m(\sigma(x)) \le m(f(\sigma(x))) = m(\sigma(f(x))) = a(f(x)),$$

and

$$\langle \phi, e_3 \rangle = m(\tau(x)) \le m(f(\tau(x))) = m(\tau(f(x))) = b(f(x)).$$

Since $e = e_1 = -e_2 - e_3$, the first inequality is equivalent to

$$\max_{\psi \in X(f(x))} \{ \langle \psi, e_2 \rangle + \langle \psi, e_3 \rangle \} \le \langle \phi, e_2 \rangle + \langle \phi, e_3 \rangle.$$

By the definitions of $a(\cdot)$ and $b(\cdot)$, these inequalities must be all equalities. We find

$$\langle \psi, e_2 \rangle = a(f(x)) = \langle \phi, e_2 \rangle$$
 and $\langle \psi, e_3 \rangle = b(f(x)) = \langle \phi, e_3 \rangle$

for all $\psi \in X(f(x))$. Thus we obtain

$$X(f(x)) = {\phi}$$
 if $f(x) \neq 0$.

This means

$$f(x) = y_{\phi} \in W_{\phi}$$
 for all $x \in V_{\phi}$,

that is, that the map f commutes with the action of $T_{\alpha;\sigma,\tau}$. Since f is defined over K, the map commutes with all Galois conjugates $\omega(T_{\alpha;\sigma,\tau})$ ($\omega \in \operatorname{Gal}(L/K)$) and so with $\check{G} = \operatorname{SL}_3$. \square

4. The remaining cases

In this section, we collect what are required in Section 5.

The symbols K, \mathbb{G}_{m} , SL_3 , and K^{sep} being as in Section 2, let α be an element of K^{sep} such that there exists an element $\sigma \in \mathrm{Gal}(K^{\mathrm{sep}}/K)$ with $\sigma^2(\alpha) \neq \alpha$. Fix a (finite or infinite) Galois extension field L of K containing α . Fix $\sigma \in \mathrm{Gal}(K^{\mathrm{sep}}/K)$ such that $\sigma^2(\alpha) \neq \alpha$. Elements $\beta, \gamma \in L$ and an element $P \in \mathrm{GL}_3(L)$ are respectively defined as

$$\beta = \sigma^{-1}(\alpha), \quad \gamma = \sigma^{-2}(\alpha), \quad P = \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \end{pmatrix}.$$

With these β, γ , and P, we define embeddings e_1, e_2, e_3 over L of \mathbb{G}_{m} into SL_3 by the same expressions as in Section 2. Their images are respectively written T_1, T_2, T_3 as before. Put

$$\lambda_{1} = \frac{\left(\beta - \sigma^{-1}(\gamma)\right)\left(\gamma - \sigma^{-1}(\gamma)\right)}{\left(\beta - \alpha\right)\left(\gamma - \alpha\right)}, \quad \lambda_{2} = \frac{\left(\gamma - \sigma^{-1}(\gamma)\right)\left(\alpha - \sigma^{-1}(\gamma)\right)}{\left(\gamma - \beta\right)\left(\alpha - \beta\right)},$$

$$\lambda_{3} = \frac{\left(\alpha - \sigma^{-1}(\gamma)\right)\left(\beta - \sigma^{-1}(\gamma)\right)}{\left(\alpha - \gamma\right)\left(\beta - \gamma\right)}, \quad \Lambda_{2} = \frac{\lambda_{2}}{\lambda_{1}}, \quad \Lambda_{3} = \frac{\lambda_{3}}{\lambda_{1}},$$

$$\nu_{1} = \frac{\left(\beta - \sigma(\alpha)\right)\left(\gamma - \sigma(\alpha)\right)}{\left(\beta - \alpha\right)\left(\gamma - \alpha\right)}, \quad \nu_{2} = \frac{\left(\gamma - \sigma(\alpha)\right)\left(\alpha - \sigma(\alpha)\right)}{\left(\gamma - \beta\right)\left(\alpha - \beta\right)},$$

$$\nu_{3} = \frac{\left(\alpha - \sigma(\alpha)\right)\left(\beta - \sigma(\alpha)\right)}{\left(\alpha - \gamma\right)\left(\beta - \gamma\right)}, \quad N_{1} = \frac{\nu_{1}}{\nu_{3}}, \quad \text{and} \quad N_{2} = \frac{\nu_{2}}{\nu_{3}}.$$

Note that when $\sigma^3(\alpha) = \alpha$, we have $\lambda_2 = \lambda_3 = \nu_1 = \nu_2 = 0$. We know

$$P^{-1}\sigma^{-1}(P) = \begin{pmatrix} 0 & 0 & \lambda_1 \\ 1 & 0 & \lambda_2 \\ 0 & 1 & \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \Lambda_2 & 1 & 0 \\ \Lambda_3 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

and

$$P^{-1}\sigma(P) = \begin{pmatrix} \nu_1 & 1 & 0 \\ \nu_2 & 0 & 1 \\ \nu_3 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & N_1 \\ 0 & 1 & N_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \nu_3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Let A and B be the L-valued points of SL_3 defined respectively as

$$A = {}^{t}P^{-1} \begin{pmatrix} 1 & -\Lambda_{2} & -\Lambda_{3} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} {}^{t}P \quad \text{and} \quad B = {}^{t}P^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -N_{1} & -N_{2} & 1 \end{pmatrix} {}^{t}P.$$

We see for an L-algebra R and $a, b, c \in \mathbb{R}^{\times}$; $u \in \mathbb{R}$ that

$$\begin{split} \sigma^{-1}({}^tP^{-1})\operatorname{diag}(a,b,c)\,\sigma^{-1}({}^tP) &= {}^tP^{-1}A\operatorname{diag}(c,a,b)\,A^{-1}\,{}^tP \\ &= {}^tP^{-1}\left(\begin{array}{ccc} c & \Lambda_2(c-a) & \Lambda_3(c-b) \\ 0 & a & 0 \\ 0 & 0 & b \end{array} \right){}^tP, \\ \sigma({}^tP^{-1})\operatorname{diag}(a,b,c)\,\sigma({}^tP) &= {}^tP^{-1}B\operatorname{diag}(b,c,a)\,B^{-1}\,{}^tP \\ &= {}^tP^{-1}\left(\begin{array}{ccc} b & 0 & 0 \\ 0 & c & 0 \\ N_1(a-b) & N_2(a-c) & a \end{array} \right){}^tP, \end{split}$$

$$\sigma^{-1}({}^{t}P^{-1}) \begin{pmatrix} 1 & u & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sigma^{-1}({}^{t}P) = {}^{t}P^{-1} \begin{pmatrix} 1 & 0 & -\Lambda_{2}u \\ 0 & 1 & u \\ 0 & 0 & 1 \end{pmatrix} {}^{t}P,$$

and

$$\sigma({}^{t}P^{-1})\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & u & 1 \end{array}\right)\sigma({}^{t}P) = {}^{t}P^{-1}\left(\begin{array}{ccc} 1 & 0 & 0\\ u & 1 & 0\\ -N_{2}u & 0 & 1 \end{array}\right){}^{t}P.$$

In particular, we have

(5)
$$e_2 = \operatorname{Int}(\sigma(A)) \circ \sigma(e_3) = \operatorname{Int}(\sigma^{-1}(B)) \circ \sigma^{-1}(e_1)$$

and

(6)
$$e_3 = \operatorname{Int}(\sigma(A)) \circ \sigma(e_1) = \operatorname{Int}(\sigma^{-1}(B)) \circ \sigma^{-1}(e_2),$$

where the symbol Int implies the conjugation left action on SL_3 as before. We find the following:

Proposition 4.1. — Let $T_{\alpha;\sigma}$ be the maximal torus T_2T_3 of $\operatorname{SL}_3 \times_K L$ and \check{G} the smallest subgroup defined over K of SL_3 which includes the torus $T_{\alpha;\sigma}$ when the base field is extended to L. If $\sigma^3(\alpha) \neq \alpha$, then $\check{G} = \operatorname{SL}_3$. If the extension field $K(\alpha)$ is cubic over K, then the torus $T_{\alpha;\sigma}$ is defined over K, hence $\check{G} = T_{\alpha;\sigma}$.

Remark 4.2. — Let q, r, s be three indeterminates. When α is cubic over K, we observe that the torus $T_{\alpha;\sigma}$ is naturally isomorphic to a 2-dimensional anisotropic torus over K (cf. [3, Lemma 2.5])

Spec
$$\left(K[q,r,s] / \left(1 - \prod_{i=0}^{2} \sigma^{-i} (q\beta\gamma - r(\beta+\gamma) + s)\right)\right)$$
,

the functions $q\gamma\alpha - r(\gamma + \alpha) + s$ and $q\alpha\beta - r(\alpha + \beta) + s$ being considered generators of its character group. Hence, the group $T_{\alpha;\sigma}(K)$ of K-valued points on the torus $T_{\alpha;\sigma}$ is identified with the multiplicative subgroup of $K(\alpha)$ composed of the elements of norm 1.

5. Representation in the remaining cases

In this section, we show our filtered vector space should be considered a representation of the algebraic group defined in Section 4 if the Galois closure of the field generated by a primarily given number is non-abelian or is abelian of type other than (2, 2, ...).

Let U_{ij} $(i, j = 1, 2, 3; i \neq j)$ be the 1-dimensional unipotent subgroups over L of SL_3 similar to those in Section 3, $T_{\alpha;\sigma}$ the maximal torus over L of SL_3 in Section 4, and $\chi(2), \chi(3)$ the characters on $T_{\alpha;\sigma}$ dual to the cocharacters e_2, e_3 in Section 4. The expression in terms of $\chi(2), \chi(3)$ of the character by multiplication of which the torus $T_{\alpha;\sigma}$ acts on U_{ij} is the same as in Section 3.

To the triple of the group \check{G} in Section 4, the inclusion map $\kappa = \operatorname{incl}: T_{\alpha;\sigma} \hookrightarrow \check{G} \times_K L$, and the cocharacter $e = e_1 : \mathbb{G}_{\mathrm{m}} \times_K L \to T_{\alpha;\sigma}$ in Section 4, apply the method of construction of a tensor functor $\iota_{\check{G},\kappa,e} \colon \operatorname{Rep}_K(\check{G}) \to \mathcal{C}(K,L)$ in our former paper [3, Section 1]. The vector space \check{V} over K spanned by three indeterminates q,r,s equipped with the filtration over L

$$F_{\alpha}^{i} \breve{V} = \begin{cases} \breve{V} \otimes_{K} L & \text{for } i \leq -2\\ (-q\alpha + r)L \oplus (-q\alpha^{2} + s)L & \text{for } -2 < i \leq 1\\ 0 & \text{for } i > 1 \end{cases}$$

is an object in the image of the functor $\iota_{\check{G},\kappa,e}$ as in the exceptional case of Section 3.

Proposition 5.1. — Given a character $\phi = a \cdot \chi(2) + b \cdot \chi(3)$ $(a, b \in \mathbb{Z})$ of the torus $T_{\alpha;\sigma}$, let $\phi^{\circ} = b \cdot \chi(2) - (a+b) \cdot \chi(3)$. For a representation space V over K of \check{G} , if $x \in V_{\phi} \setminus \{0\}$, then there exists an element $y \in V_{\phi^{\circ}} \setminus \{0\}$ such that

$$\sigma(x) - y \in \bigoplus_{k,l \ge 0; (k,l) \ne (0,0)} V_{\phi^{\circ} - 3k\chi(3) + 3l(\chi(2) - \chi(3))}.$$

In particular, we have $m(\sigma(x)) = \langle \phi^{\circ}, e \rangle = \langle \phi, e_2 \rangle$, where m is the function described in (4).

Proof. — First, we assume that $\sigma^3(\alpha) \neq \alpha$. We know $\check{G} = \mathrm{SL}_3$. The assertion is confirmed in the same fashion as in the proof of Proposition 3.2.

Next, assume that $\sigma^3(\alpha) = \alpha$. In this case, by the definitions of Λ_2 and Λ_3 , the *L*-valued point *A* equals the identity, hence we know from the relations (5) and (6) that

$$e_2 = \sigma(e_3)$$
 and $e_3 = \sigma(e_1)$.

For an L-algebra R and $c \in R^{\times}$, we obtain

$$e_2(c) \, \sigma(x) = \sigma(e_3)(c) \, \sigma(x) = c^b \sigma(x)$$

and

$$e_3(c)\,\sigma(x) = \sigma(e_1)(c)\,\sigma(x) = c^{-(a+b)}\sigma(x).$$

Thus $y = \sigma(x) \in V_{\phi^{\circ}} \setminus \{0\}$ suffices.

Lemma 5.2. — Any 1-dimensional representation defined over K of \check{G} is trivial.

Proof. — Let V be a 1-dimensional representation space over K of \check{G} . The torus $T_{\alpha;\sigma}$ acts on $V \otimes_K L$ via a character ϕ , in other words, $V \otimes_K L = V_{\phi}$. We see from Proposition 5.1 that $\phi^{\circ} = \phi$, which forces $\phi = 0$. The rest of proof is the same as the latter part of the proof of Lemma 3.4 in [3].

Using this lemma, we get the next:

Lemma 5.3. — For any non-zero finite dimensional representation space V over K of \check{G} , we have $\mu(\iota_{\check{G},\kappa,e}(V)) = 0$, where μ is the slope function of filtered vector spaces (cf. e.g. [3, Definition 1.12]).

Lemma 5.4. — To an arbitrary 1-dimensional vector subspace W over K of a \check{G} -representation V over K, attach the sub-filtration over L of $\iota_{\check{G},\kappa,e}(V)$. We have $\mu(W) \leq 0$.

Proof. — In the coefficient extension $V \otimes_K L$, a non-zero vector $w \in W$ is written

$$w = w_1 + \cdots + w_r, \quad w_i \in V_{\psi(i)} \setminus \{0\}$$

as in the proof of Lemma 3.4.

We have

$$\mu(W) = \min_{1 \le i \le r} \langle \psi(i), e \rangle = m(w).$$

Let

$$a = \min_{1 \le i \le r} \langle \psi(i), e_2 \rangle, \quad a' = \min \{ \langle \psi(i), e_3 \rangle \mid \langle \psi(i), e_2 \rangle = a \},$$

and $\phi = a\chi(2) + a'\chi(3)$. There exists a unique number j with $\psi(j) = \phi$. Applying $\sigma \in \operatorname{Gal}(L/K)$ to w, we have

$$w = \sigma(w) = \sigma(w_1) + \dots + \sigma(w_r).$$

From Proposition 5.1, we see that

$$w = \sigma(w) \in \sum_{i=1}^{r} \bigoplus_{k > 0} V_{\psi^{\circ}(i) - 3k\chi(3) + 3l(\chi(2) - \chi(3))}$$

and that there exists an element $y \in V_{\phi^{\circ}} \setminus \{0\}$ such that

$$\sigma(w_j) - y \in \bigoplus_{k,l \ge 0; (k,l) \ne (0,0)} V_{\psi^{\circ}(j) - 3k\chi(3) + 3l(\chi(2) - \chi(3))}.$$

Since for all i

$$\langle \psi^{\circ}(i) - 3k\chi(3) + 3l(\chi(2) - \chi(3)), e \rangle = \langle \psi(i), e_2 \rangle + 3k \ge a$$

and for i such that $\langle \psi(i), e_2 \rangle = a$

$$\langle \psi^{\circ}(i) - 3k\chi(3) + 3l(\chi(2) - \chi(3)), e_2 \rangle = \langle \psi(i), e_3 \rangle + 3l \ge a',$$

the eigenvector y with respect to the action of the torus $T_{\alpha;\sigma}$ does not cancel out in the sum $w = \sigma(w_1) + \cdots + \sigma(w_r)$. We get the equality $m(w) = m(\sigma(w)) = a$ and a number h with $\psi(h) = \phi^{\circ}$.

By the definition of a, we obtain

$$a \le \langle \psi(h), e_2 \rangle = \langle \phi^{\circ}, e_2 \rangle = \langle \phi, e_3 \rangle = a',$$

hence

$$a = m(w) \le \langle \psi(j), e \rangle = \langle \phi, e \rangle = -a - a' \le -2a.$$

This is possible only when $0 \ge a = m(w) = \mu(W)$.

Proposition 5.5. — For any finite dimensional representation space V over K of \check{G} , the filtered vector space $\iota_{\check{G},\kappa,e}(V)$ is semi-stable of slope zero, hence the functor $\iota_{\check{G},\kappa,e}$ factors through $\mathcal{C}_0^{\mathrm{ss}}(K,L)$.

Proof. — The same proof as the one of Proposition 3.7 in [3] is valid. \Box

Theorem 5.6. — The functor $\iota_{\check{G},\kappa,e}$: $\operatorname{Rep}_K(\check{G}) \to \mathcal{C}_0^{\operatorname{ss}}(K,L)$ is fully faithful.

Proof. — Let W be an arbitrary finite dimensional representation space over K of \check{G} . For any $y \in W \otimes_K L$, we have a unique expression

$$y = \sum_{\psi \in X} y_{\psi}, \quad y_{\psi} \in W_{\psi}$$

as in the proof of Theorem 3.6.

We define a set X(y) of characters as

$$X(y) = \{ \psi \in X \mid y_{\psi} \neq 0 \}.$$

Assume $y \neq 0$ and let

$$a(y) = \min_{\psi \in X(y)} \langle \psi, e_2 \rangle, \qquad b(y) = \min_{\psi \in X(y)} \langle \psi, e_3 \rangle,$$
$$b'(y) = \min_{\psi \in X(y)} \{ \langle \psi, e_2 \rangle \mid \langle \psi, e_3 \rangle = b(y) \},$$

and $\varphi(y) = b'(y)\chi(2) + b(y)\chi(3)$. By a similar reasoning to the one in the proof of Lemma 5.4, we see that

$$m(\sigma(y)) = a(y), \qquad \varphi^{\circ}(y) \in X(\sigma(y)),$$

and

$$a(\sigma(y)) \stackrel{\text{def}}{=} \min_{\psi \in X(\sigma(y))} \langle \psi, e_2 \rangle = \langle \varphi^{\circ}(y), e_2 \rangle = b(y).$$

Hence, for a linear map $f: V \to W$ over K between the underlying vector spaces of finite dimensional representations and $x \in V_{\phi}$ such that $f(x) \neq 0$, we have

$$m(\sigma(x)) = a(x) = \langle \phi, e_2 \rangle, \qquad m(\sigma(f(x))) = a(f(x)),$$

 $m(\sigma^2(x)) = a(\sigma(x)) = b(x) = \langle \phi, e_3 \rangle,$

and

$$m(\sigma^2(f(x))) = a(\sigma(f(x))) = b(f(x)).$$

On the assumption that f is filtered, we get

$$\langle \phi, e \rangle = m(x) \le m(f(x)) = \min_{\psi \in X(f(x))} \langle \psi, e \rangle,$$

$$\langle \phi, e_2 \rangle = m(\sigma(x)) \le m(f(\sigma(x))) = m(\sigma(f(x))) = a(f(x)),$$

and

$$\langle \phi, e_3 \rangle = m(\sigma^2(x)) \le m\Big(f(\sigma^2(x))\Big) = m\Big(\sigma^2(f(x))\Big) = b(f(x)).$$

Since $e = e_1 = -e_2 - e_3$, the first inequality is equivalent to

$$\max_{\psi \in X(f(x))} \{ \langle \psi, e_2 \rangle + \langle \psi, e_3 \rangle \} \le \langle \phi, e_2 \rangle + \langle \phi, e_3 \rangle.$$

By the definitions of $a(\cdot)$ and $b(\cdot)$, these inequalities must be all equalities. We obtain

$$\langle \psi, e_2 \rangle = a(f(x)) = \langle \phi, e_2 \rangle$$
 and $\langle \psi, e_3 \rangle = b(f(x)) = \langle \phi, e_3 \rangle$

for all $\psi \in X(f(x))$. Thus the rest of proof goes through the same path as in the proof of Theorem 3.6.

6. The group in characteristic zero

We shall make explicit the group defined in Section 4 when the characteristic of the base field is zero, using the one-to-one correspondence between LIE algebras and connected LIE groups. We calculate the LIE algebra $\check{\mathfrak{g}}$ of the group \check{G} defined in Section 4 as a subalgebra of the LIE algebra \mathfrak{sl}_3 of the special linear group SL_3 of degree 3. We identify the LIE algebra \mathfrak{gl}_3 of the general linear group GL_3 of degree 3 with the LIE algebra of all matrices of degree 3 and regard \mathfrak{sl}_3 as the subalgebra of trace zero. For each i,j=1,2,3, the element of \mathfrak{gl}_3 which is identified with the matrix whose (i,j)-coefficient is 1 and whose other coefficients are 0 is denoted by E_{ij} .

To ease notation, we examine in fact the LIE algebra ${}^tP\ \check{\mathfrak{g}}\ {}^tP^{-1}$ of the conjugate group ${}^tP\ \check{G}\ {}^tP^{-1}$, where P is the matrix used to define \check{G} in Section 4 and tP is its transpose. For i=1,2,3, set

$$Z_i = 1 - 3E_{i\,i} \in \mathfrak{sl}_3(\mathbb{Z}).$$

Lemma 6.1. — $Z_1, Z_2, Z_3 \in {}^tP\,\check{\mathfrak{g}}\,{}^tP^{-1}$

Proof. — Recall that the tori T_i (i = 1, 2, 3) are respectively the images of the embeddings e_i (i = 1, 2, 3) over L of \mathbb{G}_{m} into SL_3 . The morphism e_1 , for example, is written in matrix form as

$$e_1(c) = {}^t P^{-1} \begin{pmatrix} c^{-2} & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{pmatrix} {}^t P.$$

Differentiating both sides with respect to c, we see

$$\frac{d}{dc}e_1(c) = {}^tP^{-1} \begin{pmatrix} -2c^{-3} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} {}^tP.$$

The torus T_1 is included in \check{G} by definition. We get

$${}^{t}P^{-1}Z_{1}{}^{t}P = {}^{t}P^{-1}\begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}{}^{t}P \in \check{\mathfrak{g}}.$$

In the same way, we obtain ${}^tP^{-1}Z_2{}^tP$, ${}^tP^{-1}Z_3{}^tP \in \check{\mathfrak{g}}$.

Fix temporarily an arbitrary element τ of $\operatorname{Gal}(K^{\operatorname{sep}}/K)$. Denote by \mathbf{c}_i (i=1,2,3) the *i*-th column vector of the matrix ${}^tP\tau({}^tP^{-1})$. We denote similarly by \mathbf{r}_i (i=1,2,3) the *i*-th row vector of the matrix $\tau({}^tP){}^tP^{-1}$. Put $A=\mathbf{c}_1\mathbf{r}_1$, $B=\mathbf{c}_2\mathbf{r}_2$, and $C=\mathbf{c}_3\mathbf{r}_3$. They are matrices of degree 3. We call respectively a_{ij} , b_{ij} , and c_{ij} the coefficients in the *i*-th row and the *j*-th column of the matrices A, B, and C: $A=(a_{ij})$, $B=(b_{ij})$, $C=(c_{ij})$. Set

$$W_A = 1 - 3A$$
, $W_B = 1 - 3B$, and $W_C = 1 - 3C$.

Lemma 6.2. — $W_A, W_B, W_C \in {}^tP \, \check{\mathfrak{g}} \, {}^tP^{-1}$

Proof. — We have

$${}^{t}P\,\tau(e_{1})(c)\,{}^{t}P^{-1} = {}^{t}P\,\tau({}^{t}P^{-1})\left(\begin{array}{ccc}c^{-2} & 0 & 0\\ 0 & c & 0\\ 0 & 0 & c\end{array}\right)\tau({}^{t}P)\,{}^{t}P^{-1}.$$

Hence

$${}^{t}P \ \breve{\mathfrak{g}} \ {}^{t}P^{-1} \ni {}^{t}P \tau ({}^{t}P^{-1}) Z_{1}\tau ({}^{t}P) \ {}^{t}P^{-1} = 1 - 3 \ {}^{t}P \tau ({}^{t}P^{-1}) E_{1 \ 1}\tau ({}^{t}P) \ {}^{t}P^{-1}$$

$$= 1 - 3(\mathbf{c}_{1}, \mathbf{0}, \mathbf{0}) \begin{pmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \end{pmatrix}$$

$$= 1 - 3\mathbf{c}_{1}\mathbf{r}_{1}.$$

We see in a similar fashion for i = 2, 3

$$1 - 3\mathbf{c}_{i}\mathbf{r}_{i} = {}^{t}P\,\tau({}^{t}P^{-1})Z_{i}\tau({}^{t}P)\,{}^{t}P^{-1} \in {}^{t}P\,\check{\mathfrak{g}}\,{}^{t}P^{-1}\,.$$

Lemma 6.3. $-\frac{1}{9}[Z_i, W_A] = E_{ii}A - AE_{ii} \ (i = 1, 2, 3)$

Proof. — By definition, we find instantly

$$\frac{1}{9}[Z_i, W_A] = [E_{ii}, A] = E_{ii}A - AE_{ii}.$$

Lemma 6.4. — For $i \neq j$, we have $\frac{1}{27}[Z_i, [Z_j, W_A]] = a_{ij}E_{ij} + a_{ji}E_{ji}$.

Proof. — From Lemma 6.3, we see for $i \neq j$

$$\begin{split} \frac{1}{27} \left[Z_i, [Z_j, W_A] \right] &= -[E_{i\,i}, E_{j\,j} A - A E_{j\,j}] \\ &= E_{i\,i} A E_{j\,j} + E_{j\,j} A E_{i\,i} \\ &= a_{i\,j} E_{i\,j} + a_{j\,i} E_{j\,i}. \end{split}$$

Lemma 6.5. — For $i \neq j$, we have $\frac{1}{81}[Z_i, [Z_i, [Z_j, W_A]]] = a_{ji}E_{ji} - a_{ij}E_{ij}$.

Proof. — Immediate from Lemma 6.4.

Proposition 6.6. — For each distinct indices i and j (i, j = 1, 2, 3), we have $a_{ij}E_{ij} \in {}^{t}P \ \breve{\mathfrak{g}}^{t}P^{-1}$. Explicitly:

$$a_{ij}E_{ij} = \frac{1}{54} [Z_i, [Z_j, W_A]] - \frac{1}{162} [Z_i, [Z_i, [Z_j, W_A]]]$$

Proof. — Combination of Lemma 6.4 with Lemma 6.5.

Corollary 6.7. — For each distinct indices i and j (i, j = 1, 2, 3), we also have $b_{ij}E_{ij} \in {}^tP\ \breve{\mathfrak{g}}\ {}^tP^{-1}$ and $c_{ij}E_{ij} \in {}^tP\ \breve{\mathfrak{g}}\ {}^tP^{-1}$.

Proof. — Replace A with B or with C in Lemmas 6.3–6.5 and Proposition 6.6. \square Publications mathématiques de Besançon – 2025

Lemma 6.8. — Suppose α is not cubic, where $\alpha \in K^{\text{sep}}$ is the element used to define the group \check{G} . For $i \neq j$, there exists $\tau \in \text{Gal}(K^{\text{sep}}/K)$, which may depend on the pair (i,j), such that at least one of a_{ij} , b_{ij} , or c_{ij} becomes non-zero.

Proof. — By definition

$${}^{t}P = \left(\begin{array}{ccc} 1 & \alpha & \alpha^{2} \\ 1 & \beta & \beta^{2} \\ 1 & \gamma & \gamma^{2} \end{array} \right).$$

As we saw in Section 2, we have

$${}^{t}P^{-1} = \left(\begin{array}{ccc} \beta \gamma & \gamma \alpha & \alpha \beta \\ -\beta - \gamma & -\gamma - \alpha & -\alpha - \beta \\ 1 & 1 & 1 \end{array} \right) \cdot D.$$

Here D is a diagonal matrix and det $D \neq 0$. Thus we know for any $\tau \in \operatorname{Gal}(K^{\operatorname{sep}}/K)$

$${}^{t}P \tau({}^{t}P^{-1})$$

$$= \begin{pmatrix} 1 & \alpha & \alpha^{2} \\ 1 & \beta & \beta^{2} \\ 1 & \gamma & \gamma^{2} \end{pmatrix} \begin{pmatrix} \tau(\beta)\tau(\gamma) & \tau(\gamma)\tau(\alpha) & \tau(\alpha)\tau(\beta) \\ -\tau(\beta)-\tau(\gamma) & -\tau(\gamma)-\tau(\alpha) & -\tau(\alpha)-\tau(\beta) \\ 1 & 1 & 1 \end{pmatrix} \cdot \tau(D)$$

$$= \begin{pmatrix} (\alpha-\tau(\beta))(\alpha-\tau(\gamma)) & (\alpha-\tau(\gamma))(\alpha-\tau(\alpha)) & (\alpha-\tau(\alpha))(\alpha-\tau(\beta)) \\ (\beta-\tau(\beta))(\beta-\tau(\gamma)) & (\beta-\tau(\gamma))(\beta-\tau(\alpha)) & (\beta-\tau(\alpha))(\beta-\tau(\beta)) \\ (\gamma-\tau(\beta))(\gamma-\tau(\gamma)) & (\gamma-\tau(\gamma))(\gamma-\tau(\alpha)) & (\gamma-\tau(\alpha))(\gamma-\tau(\beta)) \end{pmatrix} \cdot \tau(D)$$

and

$$\tau({}^tP)^{\,t}P^{-1} = \left(\begin{array}{ccc} (\tau(\alpha) - \beta)(\tau(\alpha) - \gamma) & (\tau(\alpha) - \gamma)(\tau(\alpha) - \alpha) & (\tau(\alpha) - \alpha)(\tau(\alpha) - \beta) \\ (\tau(\beta) - \beta)(\tau(\beta) - \gamma) & (\tau(\beta) - \gamma)(\tau(\beta) - \alpha) & (\tau(\beta) - \alpha)(\tau(\beta) - \beta) \\ (\tau(\gamma) - \beta)(\tau(\gamma) - \gamma) & (\tau(\gamma) - \gamma)(\tau(\gamma) - \alpha) & (\tau(\gamma) - \alpha)(\tau(\gamma) - \beta) \end{array} \right) \cdot D.$$

We show that there exists $\tau \in \operatorname{Gal}(K^{\operatorname{sep}}/K)$ such that at least one of a_{12} , b_{12} , or c_{12} does not vanish. Since α is not cubic, we can choose $\tau \in \operatorname{Gal}(K^{\operatorname{sep}}/K)$ so that α does not equal any of $\tau(\alpha)$, $\tau(\beta)$, and $\tau(\gamma)$. With such a choice of τ , by the definitions of a_{12} , b_{12} , and c_{12} , they are respectively equal to $\tau(\alpha) - \gamma$, $\tau(\beta) - \gamma$, and $\tau(\gamma) - \gamma$ modulo multiplication of non-zero elements of K^{sep} . We see in this way at least two of them are non-zero indeed. With the same choice of $\tau \in \operatorname{Gal}(K^{\operatorname{sep}}/K)$, the elements a_{13} , b_{13} , and c_{13} are respectively $\tau(\alpha) - \beta$, $\tau(\beta) - \beta$, and $\tau(\gamma) - \beta$ up to multiplication of non-zero elements of K^{sep} . Hence at most one of them disappears.

Changing the role of α with that of β or γ in the above discussion, we obtain what we want.

Corollary 6.9. — On the assumption that α is not cubic, we have $\check{G} = \operatorname{SL}_3$.

Proof. — Directly follows from Proposition 6.6, Corollary 6.7, and Lemma 6.8. □

Theorem 6.10. — If the base field K is of characteristic zero (and if there exists an element $\sigma \in \operatorname{Gal}(K^{\operatorname{sep}}/K)$ with $\sigma^2(\alpha) \neq \alpha$), then the filtered vector space $(\check{V}, F_{\alpha}\check{V})$ in Section 5 is in the image of a fully faithful tensor functor of the category of finite dimensional representation spaces over K of a 2-dimensional anisotropic torus over K or SL_3 according as the coefficient α is cubic over K or not, the functor being compatible with the forgetful functors to Vec_K .

Proof. — When the element α is cubic over K, we have already seen in Section 5 that the conclusion is true. When α is not cubic over K, we have confirmed in Corollary 6.9 that the group \check{G} is identical to SL_3 , hence we are done.

Appendix

Let q, r, s be indeterminates; K an arbitrary field; L an extension field of K; α, β elements of L; and c a positive constant number. We denote by V the vector space over K generated by the indeterminates q, r, s and put

$$l_0 = q$$
, $l_1 = -q\alpha + r$, $l_2 = -q\beta + s$.

The linear forms l_0, l_1, l_2 in q, r, s constitute a basis of the vector space $V \otimes_K L$ over L. We attach to the vector space V over K a filtration F V over L defined as

$$F^{i}V = \begin{cases} V \otimes_{K} L & (i \leq -2c) \\ l_{1} L \oplus l_{2} L & (-2c < i \leq c) \\ 0 & (i > c). \end{cases}$$

Lemma A.1. — The filtered vector space $(V, F \cdot V)$ of slope zero is semi-stable if and only if the elements $1, \alpha, \beta$ of L are linearly independent over K.

Proof. — Suppose V is not semi-stable. There exists a non-zero subspace W over K of V such that its slope $\mu(W)$ is positive (cf. e.g. [3, Definition 1.13]). By the definition of (induced) sub-filtration (cf. e.g. [3, Definition 1.4]), we must have

$$W \otimes_K L \subset l_1 L \oplus l_2 L$$
.

In particular, for a non-zero $w \in W$ there exist $a, b \in L$ such that

$$w = l_1 a + l_2 b = -q(a\alpha + b\beta) + ra + sb.$$

We observe that $(a, b) \neq (0, 0)$ and that the elements a, b, and $a\alpha + b\beta$ belong in fact to K. Thus $1, \alpha, \beta$ are linearly dependent over K.

Conversely, if $1, \alpha, \beta$ are linearly dependent over K, then there exist $a, b \in K$ such that $(a, b) \neq (0, 0)$ and $a\alpha + b\beta \in K$. Set $w = l_1a + l_2b$. We see

$$w = -q(a\alpha + b\beta) + ra + sb \in V \cap (l_1 L \oplus l_2 L) \setminus \{0\}.$$

We get $0 \neq wK \subset V$ and $\mu(wK) = c > 0 = \mu(V)$, which indicates V is not semi-stable. \square

References

- [1] G. Faltings, "Mumford-Stabilität in der algebraischen Geometrie", in *Proceedings of the international congress of mathematicians, ICM '94, August 3-11, 1994, Zürich, Switzerland. Vol. I*, Birkhäuser, 1995, p. 648-655.
- [2] M. Fujimori, "On the algebraic groups leading to simultaneous approximations", Oral presentation, January 2017, Diophantine Analysis and Related Fields 2017, held at Ochanomizu Campus, College of Science and Technology, Nihon University, Japan.
- [3] ——, "The algebraic groups leading to the Roth inequalities", J. Théor. Nombres Bordeaux 24 (2012), no. 2, p. 257-292.

[4] W. M. SCHMIDT, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, 1980.

[5] B. Totaro, "Tensor products in p-adic Hodge theory", Duke Math. J. 83 (1996), no. 1, p. 79-104.

FUJIMORI MASAMI, Kanagawa Institute of Technology, 243-0292 Japan *E-mail*: fujimori@gen.kanagawa-it.ac.jp