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THE ALGEBRAIC GROUPS LEADING TO
SIMULTANEOUS APPROXIMATION OF

AN ALGEBRAIC NUMBER AND ITS SQUARE

by

Fujimori Masami

Abstract. — We determine the algebraic groups which have a close relation to simultaneous approxima-
tion of an algebraic number and its square.

Résumé. — On détermine les groupes algébriques qui ont une étroite relation avec l’approximation
simultanée d’un nombre algébrique et de son carré.

1. Introduction

Denote respectively by Z, Q, R, C, and Q (↪→ C) the ring of rational integers, the field of
rational numbers, the field of real numbers, the field of complex numbers, and the algebraic
closure of Q thought in C. Let α be an element of Q \ Q; q, r, s three indeterminates; ε an
arbitrarily fixed positive constant; and | · | the usual absolute value on R. When α belongs
to R and the degree of α over Q is at least 3, finiteness of the number of rational integral
solutions to the simultaneous approximation inequalities∣∣∣∣α− r

q

∣∣∣∣ < 1
|q|3/2+ε ,

∣∣∣∣α2 − s

q

∣∣∣∣ < 1
|q|3/2+ε

is deduced from finiteness of the number of rational integral solutions to a parametric system
of linear inequalities

|q| < Q2−δ, |−qα+ r| < 1
Q1+δ , |−qα2 + s| < 1

Q1+δ (Q > 1),

where Q is a variable real parameter and δ is an appropriate positive number. The latter
fact is a consequence of the subspace theorem of Schmidt, which is a generalization of the
famous Roth’s theorem (cf. e.g. [4, VI Section 3]).
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146 Groups leading to a simultaneous approximation

Let x1, . . . , xn be indeterminates; l1, . . . , ln linearly independent linear forms in x1, . . . , xn
with coefficients in Q∩R; and c(1), . . . , c(n) real constant numbers with

∑n
k=1 c(k) = 0. The

system S = (l1, . . . , ln; c(1), . . . , c(n)) is called a general Roth system if the simultaneous
linear inequalities

(1) |lk| <
1

Qc(k)+δ (Q > 1; k = 1, . . . , n)

have only a finite number of rational integral solutions for each arbitrarily fixed positive
number δ. The system Sα =

(
q,−qα+ r,−qα2 + s; −2, 1, 1

)
in the previous paragraph is an

example of general Roth system. The subspace theorem of Schmidt tells us in particular
that whether a given system is a general Roth system or not can be known from a certain
aspect of a filtered vector space derived from the given system. To describe this phenomenon,
we need a few terminology.
Put V = x1Q ⊕ · · · ⊕ xnQ. We associate the system S = (l1, . . . , ln; c(1), . . . , c(n)) with a
filtration F ·

SV over Q on V given by

F iSV =
∑
i≤c(k)

lkQ (i ∈ R).

The filtration thus obtained is descending, exhaustive, separated, and left-continuous in the
sense that we have

F iSV ⊃ F jSV (i ≤ j),
⋃
i∈R

F iSV = V ⊗Q Q,

⋂
i∈R

F iSV = 0, and
⋂
i<j

F iSV = F jSV.

Notice that if lk ∈ F iSV , then the parametric system of linear inequalities (1) requires any
solution to satisfy a linear inequality

|lk| <
1

Qi+δ

for some value of the parameter Q which depends on the solution.
Let V be a finite dimensional non-zero vector space over Q equipped with a filtration F ·V (i ∈
R) over Q as above. Let Fw+V = ∪w<jF jV and grw (F ·V ) = FwV

/
Fw+V . A real number

µ(V ) = µ (V, F ·V ) = 1
dimQ V

∑
w∈R

w dimQ grw (F ·V )

is called the slope of the filtered vector space V = (V, F ·V ). It is an average of indices at
which the filtration narrows. A filtered vector space V or its filtration is said to be semi-stable
if for any non-zero vector subspace W over Q of V with the induced sub-filtration over Q, the
inequality µ(W ) ≤ µ(V ) is valid. We denote by Css

0 (Q,Q) the category of finite dimensional
vector spaces over Q equipped with semi-stable filtration over Q of slope zero. The morphisms
in Css

0 (Q,Q) are the linear maps over Q between their underlying vector spaces which respect
filtrations when linearly extended over Q.
A distinction between the general Roth systems and the others is drawn as follows:

Theorem 1.1 (Schmidt, cf. e.g. [4, VI Theorem 2B]). — The filtration F ·
SV derived from

a general Roth system S is semi-stable of slope zero. Conversely, every object of Css
0 (Q,Q)

whose filtration is defined over Q ∩ R comes from a general Roth system.
Publications mathématiques de Besançon – 2025



Fujimori Masami 147

For objects V = (V, F ·V ) and W = (W,F ·W ) in Css
0 (Q,Q), their tensor product V ⊗ W is

the vector space V ⊗Q W equipped with the filtration

F i(V ⊗Q W ) =
∑
i=j+k

F jV ⊗Q F
kW (i ∈ R).

The tensor product V ⊗ W is again semi-stable of slope zero ([1, 5]), which implies the
following:

Theorem 1.2 (Faltings, Totaro). — Let ωss
0 (Q,Q) be the forgetful tensor functor of

Css
0 (Q,Q) to the tensor category VecQ of finite dimensional vector spaces over Q. The tensor

category Css
0 (Q,Q) is equivalent to the tensor category RepQ Autωss

0 (Q,Q) of finite dimen-
sional representations over Q of the affine group scheme Autωss

0 (Q,Q) of natural equivalences
of the functor ωss

0 (Q,Q).

A very interesting byproduct of these two theorems is the fact that a general Roth system is
always obtained from a representation of some algebraic group defined over Q and vice versa.
Let V̆ be the Q-vector space of linear forms in the indeterminates q, r, s. What we are con-
cerned about in our present paper is the filtration F ·

α on V̆ defined over Q given by

F iαV̆ =


V̆ ⊗Q Q (i ≤ −2)
(−qα+ r)Q ⊕ (−qα2 + s)Q (−2 < i ≤ 1)
0 (i > 1),

with which a general Roth system Sα =
(
q,−qα+ r,−qα2 + s; −2, 1, 1

)
at the beginning of

this section is associated. Before stating the result of our present paper, we review what is
known about the filtration derived from the Roth inequality∣∣∣∣α− r

q

∣∣∣∣ < 1
|q|2+ε ,

or parametric simultaneous linear inequalities

|q| < Q1−δ, |−qα+ r| < 1
Q1+δ (Q > 1).

Let W̆ = qQ ⊕ rQ. We define a filtration F ·
αW̆ on W̆ ⊗Q Q as

F iαW̆ =


W̆ ⊗Q Q (i ≤ −1)
(−qα+ r)Q (−1 < i ≤ 1)
0 (i > 1).

The filtered vector space W̆ = (W̆ , F ·
αW̆ ) is readily seen to be an object of Css

0 (Q,Q). When
α ∈ Q ∩ R, the (classical) Roth system (q,−qα+ r; −1, 1) is associated with it. For any
α ∈ Q \ Q, we have proved in [3] that W̆ is in the image of a fully faithful tensor functor
ι from the tensor category of finite dimensional representations over Q of a 1-dimensional
anisotropic torus over Q (which varies with α) or the special linear group SL2 of degree 2
according as the number α is quadratic over Q or not. The functor ι is compatible with the
respective forgetful functors to the tensor category of finite dimensional vector spaces over
Q. This means the filtered vector space W̆ may be regarded as a representation of one of the
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148 Groups leading to a simultaneous approximation

algebraic groups determined by α. We would like to recall the definition of ι in some detail
when α ̸∈ R.
Let Gm be the standard 1-dimensional multiplicative group, σ ∈ Gal(Q/Q) the complex
conjugation restricted to Q,

β = σ(α), and P =
(

1 1
α β

)
.

An embedding e defined over Q of Gm into SL2 is given as, using the usual identification
Gm(R) ≃ R× (the multiplicative group of invertible elements in R) for a Q-algebra R,

e(c) = tP−1
(
c−1 0
0 c

)
tP

(
c ∈ R×)

= 1
β − α

(
β −α

−1 1

)(
c−1 0
0 c

)(
1 α
1 β

)
.

Denote by Tα the image of e which is a subtorus over Q of SL2. The smallest subgroup H̆
defined over Q of SL2 that includes Tα when the base field is extended over Q is Tα itself or
the whole group SL2 [3, Section 4].
Put ψ(1) = −qβ + r and ψ(2) = −qα + r. The torus Tα is naturally identified with the
1-dimensional multiplicative group T = Spec(Q[q, r]/(1 − ψ(1)ψ(2))) whose generators of its
character group are ψ(1) and ψ(2). The identification is given by the map

T ∋ (q, r) 7→
(
r − q(α+ β) −qαβ

q r

)
∈ Tα ⊂ SL2

[3, Lemma 2.5 & Remark 2.6]. The tori T and Tα are generally defined over Q ∩ R. If α is
quadratic over Q, then they are defined over Q.
To the triple of the group H̆, the inclusion map κ = incl : Tα ↪→ H̆×QQ, and the cocharacter
e : Gm ×Q Q → Tα, apply the method of construction of a tensor functor ιH̆,κ,e : RepQ(H̆) →
C(Q,Q) in our former paper [3, Section 1]. Remember that for a finite dimensional represen-
tation space V over Q of H̆, we have defined the filtration V · = V ·

κ,e over Q of ιH̆,κ,e(V ) as

V i =
⊕

i≤⟨ϕ,e⟩
Vϕ (i ∈ R) .

Here ⟨ · , · ⟩ is the canonical Z-valued pairing between the characters and the cocharacters of
Tα and Vϕ is the subspace over Q of V ⊗QQ on which Tα acts by multiplication of a character
ϕ via the map κ = incl. The functor ι = ιH̆,κ,e is fully faithful [3, Theorem 3.8]. The standard
representation of SL2 on W̆ = qQ ⊕ rQ restricted to H̆ defines a representation of H̆. We
have a direct sum decomposition

W̆ ⊗Q Q = W̆ψ(1) ⊕ W̆ψ(2) = (−qβ + r)Q ⊕ (−qα+ r)Q.

Since ⟨ψ(1), e⟩ = −1 and ⟨ψ(2), e⟩ = 1, the filtration on W̆ attached by the functor ι coin-
cides with the filtration F ·

αW̆ defined earlier. Thus the filtered vector space (W̆ , F ·
αW̆ ) is in

the image of a fully faithful tensor functor ι from the tensor category of finite dimensional
representations over Q of an algebraic group H̆ defined over Q.
Let A be the 1-dimensional affine space, which is a ring scheme. Put N = ψ(1)ψ(2) =
(−qβ + r)(−qα + r) ∈ R[q, r]. By means of the basis −α, 1 of C as an R-vector space, the
Publications mathématiques de Besançon – 2025



Fujimori Masami 149

Weil restriction ResC/RA from C to R of A is coordinated as ResC/RA ≃ Spec(R[q, r]). The
correspondence (

ResC/RA
)

(R) = C ≃ Spec(R[q, r])(R)
is such that for a, b ∈ R

C ∋ a(−α) + b 7−→ (q 7→ a, r 7→ b) ∈ Spec(R[q, r])(R).

The function N is the complex norm map ResC/RA → A. The Deligne torus S = ResC/RGm
is an open subscheme of ResC/RA and in our coordinate corresponds to Spec(R[q, r]N ), where
R[q, r]N is the localization ring of R[q, r] by the multiplicative system of non-negative powers
of N . The functions ψ(1) and ψ(2) are a pair of generators of the character group of a 2-
dimensional torus S. Our torus T ×Q∩R R = Spec(R[q, r]/(1 −N)) is the kernel of the norm
N : S → Gm.
We denote by W̆ the Q-vector space qQ ⊕ rQ again. The R-vector space W̆ ⊗Q R can be
regarded as (the set of R-valued points of) the dual vector space to ResC/RA ≃ Spec(R[q, r]).
The multiplication on a ring scheme A induces a canonical action of the Deligne torus
S = ResC/RGm on a 2-dimensional vector space ResC/RA, hence on W̆ ⊗Q R. Using the
above coordinates of ResC/RA and of S, the action of (q0, r0) ∈ S on W̆ ⊗Q R is expressed in
matrix form as

(q, r) 7−→ (q, r)
(
r0 − q0(α+ β) −q0αβ

q0 r0

)
.

The Hodge decomposition of W̆ ⊗Q C reads as

W̆ ⊗Q C = W̆ 0,1 ⊕ W̆ 1,0,

where
W̆ 0,1 = W̆ψ(1) ⊗Q C and W̆ 1,0 = W̆ψ(2) ⊗Q C.

We understand that the Hodge filtration on W̆ ⊗Q C is (essentially) the same as the base
field extension from Q to C of the filtration F ·

αW̆ . Our algebraic group H̆ is nothing but the
Hodge group (the special Mumford-Tate group) of the Q-Hodge structure W̆ .
In this way, we see our category C(Q,Q) contains Q-Hodge structures defined over Q. For any
choice of an object V ∈ C(Q,Q), to determine the algebraic group G defined over Q such that
V ought to be considered a representation of G is a generalization of the problem of finding
out the Hodge group of a prescribed Hodge structure. In particular, an extension of our
result [3] for the 2-dimensional objects to higher dimensional objects is not a simple matter.
Now we explain our result in the present paper.
When α is (rational or) quadratic over Q, the filtration F ·

αV̆ is not semi-stable (cf. Appendix),
hence we assume the degree of α over Q is at least 3.

Theorem 1.3. — If the algebraic number α is cubic over Q, then there exists a fully faithful
tensor functor ι of the category RepQ Tα of finite dimensional representations over Q of a
two-dimensional anisotropic torus Tα over Q into the tensor category Css

0 (Q,Q) such that the
group Tα(Q) of Q-valued points of the torus Tα is isomorphic to the kernel of the norm map
of the cubic number field Q(α) over Q, such that the functor ι commutes with the forgetful
functors to the tensor category VecQ of finite dimensional vector spaces over Q, and such that
its image contains the filtered vector space

(
V̆ , F ·

αV̆
)
.
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150 Groups leading to a simultaneous approximation

If the algebraic number α is not cubic over Q, then there exists a fully faithful tensor functor
ι of the category RepQ SL3 of finite dimensional representations over Q of the special linear
group SL3 of degree 3 into Css

0 (Q,Q) such that the functor ι is compatible with the forget-
ful tensor functors to VecQ and such that the image of ι contains the filtered vector space(
V̆ , F ·

αV̆
)
.

The method of proof is similar to that in [3].
Statements and proofs are given over arbitrary fields in the body of the paper. The conclusion
becomes a little weak when the base field has a positive characteristic.
The plan of the paper is as follows: In the first two sections, we take up the case when the
Galois closure of the field generated by a given α over the base field is abelian of type
(2, 2, . . .). The next two sections treat the remaining cases. In the last section, we make clear
what are the Hodge-like groups in the situation of our present paper when the characteristic
of the base field is zero. The results in Section 2 and Section 3 are newly obtained. The
results in the other sections have been announced at a meeting [2] but their proofs are not
yet published.
As we have said above, although the results and proofs of our former paper [3] and those of
the present one are alike, determination of Hodge-like groups for arbitrarily given filtered
vector spaces is not easy in general. Its confirmation in our present case is already a bit
complicated. So, we believe the contribution of our present work to the literature would be
helpful especially for the people who feel an interest in our former paper [3] and who want to
know results in simultaneous approximation cases. This is why the author has written this
paper.

2. Commutative case of type (2, 2, . . .)

In this section, we define several things that we need in Section 3. We see some properties of
them.
Let K be an arbitrary field. We denote respectively by Gm and by SL3 the standard 1-
dimensional split multiplicative group and the special linear group of degree 3 whose base
fields are both viewed as K. Let Ksep be a separable algebraic closure of K and α ∈ Ksep such
that ω2(α) = α for all ω ∈ Gal (Ksep/K). In this situation, the Galois closure of the field
generated by α overK is a finite abelian extension ofK (cf., e.g., [3, Lemma 4.3]). Assume that
the extension degree of K(α) over K is at least 4. Fix a (finite or infinite) Galois extension
field L of K containing α and also fix σ, τ ∈ Gal (Ksep/K) with σ(α) ̸= α, τ(α) ̸= α, and
σ(α) ̸= τ(α). Note that we have στ(α) = τσ(α) ̸= α. Elements β, γ, δ ∈ L and an element
P ∈ GL3(L) are respectively defined as

β = σ−1(α) = σ(α), γ = τ(α), δ = στ(α), and P =

 1 1 1
α β γ
α2 β2 γ2

 .
Let e1, e2, and e3 be the embeddings defined over L of Gm into SL3 given respectively by,
using the usual identification Gm(R) ≃ R× (the group of invertible elements in R) for an
Publications mathématiques de Besançon – 2025



Fujimori Masami 151

L-algebra R,

e1(c) = tP−1

 c−2 0 0
0 c 0
0 0 c

 tP, e2(c) = tP−1

 c 0 0
0 c−2 0
0 0 c

 tP,

and e3(c) = (e1(c)e2(c))−1 (c ∈ R×). We denote respectively by T1, T2, T3 the subgroups over
L of SL3 which are the images of e1, e2, e3.
We note that

P−1 = D ·

 βγ −β − γ 1
γα −γ − α 1
αβ −α− β 1

 ,
where

D = diag
( 1

(β − α)(γ − α) ,
1

(γ − β)(α− β) ,
1

(α− γ)(β − γ)

)
.

Put

ε1 = (β − δ)(γ − δ)
(β − α)(γ − α) , ε2 = (γ − δ)(α− δ)

(γ − β)(α− β) ,

ε3 = (α− δ)(β − δ)
(α− γ)(β − γ) , and Ei j = εi

εj
(i, j = 1, 2, 3).

We have

P−1 σ(P ) =

 0 1 ε1
1 0 ε2
0 0 ε3

 =

 1 0 E1 3
0 1 E2 3
0 0 1

 1 0 0
0 1 0
0 0 ε3

 0 1 0
1 0 0
0 0 1

 ,
P−1 τ(P ) =

 0 ε1 1
0 ε2 0
1 ε3 0

 =

 1 E1 2 0
0 1 0
0 E3 2 1

 1 0 0
0 ε2 0
0 0 1

 0 0 1
0 1 0
1 0 0

 ,
and

P−1 στ(P ) =

 ε1 0 0
ε2 0 1
ε3 1 0

 =

 1 0 0
E2 1 1 0
E3 1 0 1

 ε1 0 0
0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 .
Let A1, A2, and A3 be the L-valued points of SL3 defined respectively as

A1 = tP−1

 1 −E2 1 −E3 1
0 1 0
0 0 1

 tP, A2 = tP−1

 1 0 0
−E1 2 1 −E3 2

0 0 1

 tP,

and

A3 = tP−1

 1 0 0
0 1 0

−E1 3 −E2 3 1

 tP.
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152 Groups leading to a simultaneous approximation

We see for an L-algebra R and a, b, c ∈ R× that

σ(tP−1) diag(a, b, c)σ(tP ) = tP−1A3 diag(b, a, c)A−1
3

tP

= tP−1

 b 0 0
0 a 0

E1 3(c− b) E2 3(c− a) c

 tP,

τ(tP−1) diag(a, b, c) τ(tP ) = tP−1A2 diag(c, b, a)A−1
2

tP

= tP−1

 c 0 0
E1 2(b− c) b E3 2(b− a)

0 0 a

 tP,

and
στ(tP−1) diag(a, b, c)στ(tP ) = tP−1A1 diag(a, c, b)A−1

1
tP

= tP−1

 a E2 1(a− c) E3 1(a− b)
0 c 0
0 0 b

 tP.

Denote by Int(A) the conjugation left action on SL3 of A ∈ SL3(L). Making use of the above
equations, we understand that the relations

(2) e2 = Int(σ(A3)) ◦ σ(e1) = Int(τ(A2)) ◦ τ(e2) = Int(στ(A1)) ◦ στ(e3)

and

(3) e3 = Int(σ(A3)) ◦ σ(e3) = Int(τ(A2)) ◦ τ(e1) = Int(στ(A1)) ◦ στ(e2)

hold. At the same time, we obtain the next proposition:

Proposition 2.1. — Let Tα;σ,τ be the maximal torus T2 T3 of SL3 ×KL. The smallest sub-
group Ğ defined over K of SL3 which includes the torus Tα;σ,τ when the base field is extended
to L is the whole group SL3.

3. Representation in the exceptional case

In this section, we prove our filtered vector space should be regarded as a representation of
the special linear group of degree 3 if the Galois closure of the field generated by a primarily
given number is abelian of type (2, 2, . . .).
The symbol Ui j (i, j = 1, 2, 3; i ̸= j) designates the 1-dimensional unipotent subgroup over
L of SL3 whose conjugate tPUi j

tP−1 is the standard 1-dimensional unipotent subgroup with
its non-diagonals all zero except the (i, j)-coefficient. As an example, for an L-algebra R, the
additive group of R-valued points of U1 2 is given by

U1 2(R) = tP−1

 1 R 0
0 1 0
0 0 1

 tP.

Let Tα;σ,τ be the maximal torus in Section 2 of SL3 ×KL. We denote by χ(2) and χ(3) the
characters on Tα;σ,τ dual to the cocharacters e2 and e3 in Section 2. We see for an L-algebra
Publications mathématiques de Besançon – 2025



Fujimori Masami 153

R and b, c ∈ R×; ui j ∈ R (i, j = 1, 2, 3; i ̸= j) that bc 0 0
0 b−2c 0
0 0 bc−2

 1 u1 2 u1 3
u2 1 1 u2 3
u3 1 u3 2 1

 b−1c−1 0 0
0 b2c−1 0
0 0 b−1c2


=

 1 b3u1 2 c3u1 3
b−3u2 1 1 b−3c3u2 3
c−3u3 1 b3c−3u3 2 1

 .
This equality means the group, say U3 2, is the unipotent subgroup over L of SL3 on which
the maximal torus Tα;σ,τ acts (by the inner automorphism from the left) via the character
3χ(2) − 3χ(3) (additive notation).
To the triple of the group Ğ = GL3, the inclusion map κ = incl : Tα;σ,τ ↪→ Ğ ×K L, and
the cocharacter e = e1 : Gm ×K L → Tα;σ,τ , apply the method of construction of a tensor
functor ιĞ,κ,e : RepK(Ğ) → C(K,L) in our former paper [3, Section 1]. Recall that for a
finite dimensional representation space V over K of Ğ, we have defined a filtration over L of
ιĞ,κ,e(V ) as

V i = V i
κ,e =

⊕
i≤⟨ϕ,e⟩

Vϕ (i ∈ R) ,

where Vϕ is the subspace over L of V ⊗KL on which Tα;σ,τ acts by multiplication of a character
ϕ via the map κ = incl.

Example 3.1 (representation corresponding to a simultaneous approximation). —
Let si j be an indeterminate considered a function on SL3 defined as the matrix coefficient in
the i-th row and the j-th column for each indices i and j. Put q = s3 1, r = s3 2, and s = s3 3.
Let V̆ be the vector space over K spanned by q, r, and s in the ring of functions over K
on SL3. By the translation to the right on SL3, the vector space V̆ becomes a representation
space of Ğ = SL3. Since the action of the torus Tα;σ,τ is defined as, for an arbitrary L-algebra
R, b ∈ R× ≃ T2(R), and c ∈ R× ≃ T3(R),

(
q r s

)
7−→

(
q r s

) tP−1

 bc 0 0
0 b−2c 0
0 0 bc−2

 tP ,

where

tP−1 =

 βγ γα αβ
−β − γ −γ − α −α− β

1 1 1

 ·D (D: a diagonal matrix)

is the same as the transposed inverse of the matrix P in Section 2, we see that

(qβγ − r(β + γ) + s)L = V̆χ(2)+χ(3),

(qγα− r(γ + α) + s)L = V̆−2χ(2)+χ(3),

and

(qαβ − r(α+ β) + s)L = V̆χ(2)−2χ(3).
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The relation e1 + e2 + e3 = 0 taken into account, the filtration of ιĞ,κ,e(V̆ ) is given by

F iαV̆ =


V̆ ⊗K L for i ≤ −2
V̆−2χ(2)+χ(3) ⊕ V̆χ(2)−2χ(3) for − 2 < i ≤ 1
0 for i > 1.

On the other hand, we have

(qγα− r(γ + α) + s) − (qαβ − r(α+ β) + s) = (−qα+ r)(β − γ)

and

(qγα− r(γ + α) + s) (α+ β) − (qαβ − r(α+ β) + s) (γ + α) = (−qα2 + s)(β − γ).

Thus the filtration F ·
αV̆ can be written as

F iαV̆ =


V̆ ⊗K L for i ≤ −2
(−qα+ r)L⊕ (−qα2 + s)L for − 2 < i ≤ 1
0 for i > 1.

Note that the filtration F ·
αV̆ does not depend on the choice of the element σ nor τ ∈

Gal(L/K).

Remember the definition of a quantity m [3, Defintion 3.2] for an element x of a filtered
vector space V ⊗K L:

(4) m(x) = sup{i | V i ∋ x}

Proposition 3.2. — Suppose we are given a representation space V over K of Ğ = SL3.
For a character ϕ = a · χ(2) + b · χ(3) (a, b ∈ Z) of the torus Tα;σ,τ , let

ϕ◦ = −(a+ b) · χ(2) + b · χ(3) and ϕ† = a · χ(2) − (a+ b) · χ(3).

If x ∈ Vϕ \ {0}, then there exist elements y ∈ Vϕ◦ \ {0} and z ∈ Vϕ† \ {0} such that

σ(x) − y ∈
⊕

k,l≥0; (k,l)̸=(0,0)
Vϕ◦+3k(χ(2)−χ(3))−3lχ(3)

and
τ(x) − z ∈

⊕
k,l≥0; (k,l)̸=(0,0)

Vϕ†+3k(χ(3)−χ(2))−3lχ(2).

In particular, we have

m(σ(x)) = ⟨ϕ◦, e⟩ = ⟨ϕ, e2⟩ and m(τ(x)) = ⟨ϕ†, e⟩ = ⟨ϕ, e3⟩.

Proof. — Note first that A3 ∈ U3 1U3 2. We have remarked at the beginning of this section
that the unipotent subgroups U3 1 and U3 2 correspond respectively to the characters −3χ(3)
and 3χ(2) − 3χ(3) of the maximal torus Tα;σ,τ . As is well-known, the group U3 1 U3 2 sends an
element x of Vϕ to an affine space

x+
⊕

k,l≥0; (k,l)̸=(0,0)
Vϕ−3kχ(3)+3l(χ(2)−χ(3)).
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We get an expression

A−1
3 x = x+

∑
k,l≥0; (k,l)̸=(0,0)

xk,l, xk,l ∈ Vϕ−3kχ(3)+3l(χ(2)−χ(3)).

Applying σ ∈ Gal(L/K), we have

σ(A3)−1σ(x) = σ(x) +
∑

k,l≥0; (k,l)̸=(0,0)
σ(xk,l),

namely,
σ(x) = σ(A3x) +

∑
k,l≥0; (k,l)̸=(0,0)

σ(A3xk,l).

For an L-algebra R and c ∈ R×, we know by the relations (2) and (3)

e2(c)σ(A3x) = σ(A3)σ(e1)(c)σ(A3)−1 · σ(A3)σ(x)
= σ(A3) c−a−bσ(x) = c−a−bσ(A3x)

and

e3(c)σ(A3x) = σ(A3)σ(e3)(c)σ(A3)−1 · σ(A3)σ(x)
= σ(A3) cbσ(x) = cbσ(A3x),

in other words σ(A3x) ∈ Vϕ◦ . We obtain similarly

e2(c)σ(A3xk,l) = c−a−b+3kσ(A3xk,l)

and
e3(c)σ(A3xk,l) = cb−3k−3lσ(A3xk,l),

i.e., σ(A3xk,l) ∈ Vϕ◦+3k(χ(2)−χ(3))−3lχ(3). We see that y = σ(A3x) meets the requirement, for
σ(A3x) ̸= 0 if x ̸= 0.
The equality

⟨ϕ◦ + 3k(χ(2) − χ(3)) − 3lχ(3), e⟩ = a+ 3l

implies that
σ(x) ∈ V a and σ(x) ̸∈ V i (i > a),

hence m(σ(x)) = a = ⟨ϕ◦, e⟩ = ⟨ϕ, e2⟩.
The assertion concerning τ(x) is derived in the same manner. □

Lemma 3.3. — For any non-zero finite dimensional representation space V over K of
Ğ = SL3, we have µ(ιĞ,κ,e(V )) = 0, where µ is the slope function of filtered vector spaces (cf.
e.g. [3, Definition 1.12]).

Proof. — Completely the same as the proof of Lemma 3.5 in [3]. □

Lemma 3.4. — To an arbitrary 1-dimensional vector subspace W over K of an SL3-
representation V over K, attach the sub-filtration over L of ιSL3,κ,e(V ). We have µ(W ) ≤ 0.
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Proof. — In the coefficient extension V ⊗K L, a non-zero vector w ∈ W is written
w = w1 + · · · + wr, wi ∈ Vψ(i) \ {0},

where Vψ(i) is the subspace over L of V ⊗K L on which the torus Tα;σ,τ acts via a character
ψ(i). We may assume that the characters ψ(i) are pairwise distinct. By the definitions of the
sub-filtration and the quantity m( · ) recalled in (4), we have

µ(W ) = min
1≤i≤r

⟨ψ(i), e⟩ = m(w).

Let
a = min

1≤i≤r
⟨ψ(i), e2⟩, m′ = min {⟨ψ(i), e⟩ | ⟨ψ(i), e2⟩ = a} ,

and ϕ = aχ(2) − (a+m′)χ(3). There exists a unique number j such that ψ(j) = ϕ. Applying
σ ∈ Gal(L/K) to w, we have

w = σ(w) = σ (w1) + · · · + σ (wr) .
From Proposition 3.2, we see that

w = σ(w) ∈
r∑
i=1

⊕
k,l≥0

Vψ◦(i)+3k(χ(2)−χ(3))−3lχ(3)

and that there exists an element y ∈ Vϕ◦ \ {0} with

σ(wj) − y ∈
⊕

k,l≥0; (k,l)̸=(0,0)
Vψ◦(j)+3k(χ(2)−χ(3))−3lχ(3).

Since for all i
⟨ψ◦(i) + 3k(χ(2) − χ(3)) − 3lχ(3), e⟩ = ⟨ψ(i), e2⟩ + 3l ≥ a

and for i such that ⟨ψ(i), e2⟩ = a

⟨ψ◦(i) + 3k(χ(2) − χ(3)) − 3lχ(3), e2⟩ = ⟨ψ(i), e⟩ + 3k ≥ m′,

the eigenvector y with respect to the action of the torus Tα;σ,τ does not cancel out in the sum
w = σ(w1) + · · · + σ(wr). We get the equality m(w) = m(σ(w)) = a.
Put this time

b = min
1≤i≤r

⟨ψ(i), e3⟩, m′′ = min {⟨ψ(i), e⟩ | ⟨ψ(i), e3⟩ = b} ,

and φ = −(m′′ + b)χ(2) + bχ(3). There is a unique index h with ψ(h) = φ. In the same way
as in the previous paragraph, we know the simultaneous equalities

⟨ψ†(i) + 3k(χ(3) − χ(2)) − 3lχ(2), e⟩ = b

and
⟨ψ†(i) + 3k(χ(3) − χ(2)) − 3lχ(2), e3⟩ = m′′

are possible only when i = h and k = l = 0. We see m(w) = m(τ(w)) = b.
Each character ψ(i) is expressed as ψ(i) = aiχ(2) + biχ(3) (ai, bi ∈ Z). By the definitions of
m( · ), a, b, we obtain

m(w) ≤ ⟨ψ(i), e⟩ = −ai − bi ≤ −a− b = −2m(w),
i.e., µ(W ) = m(w) ≤ 0. □
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Proposition 3.5. — For any non-zero finite dimensional representation space V over K
of Ğ = SL3, the filtered vector space ιĞ,κ,e(V ) is semi-stable of slope zero, hence the functor
ιĞ,κ,e factors through Css

0 (K,L).

Proof. — The same proof as the one of Proposition 3.7 in [3] is valid. □

Let V be the underlying vector space over K of an object in C(K,L). Remember that a linear
map f over K of V to another underlying space is filtered if and only if

m(x) ≤ m (f(x))
for all x ∈ V ⊗K L.

Theorem 3.6. — The functor ιSL3,κ,e : RepK(SL3) → Css
0 (K,L) is fully faithful.

Proof. — Let W be an arbitrary finite dimensional representation space over K of SL3. For
any y ∈ W ⊗K L, we have a unique expression

y =
∑
ψ∈X

yψ, yψ ∈ Wψ,

where X is the character group of the torus Tα;σ,τ and Wψ is the subspace over L of W ⊗K L
on which Tα;σ,τ acts by multiplication of a character ψ. We define a set X(y) of characters as

X(y) = {ψ ∈ X | yψ ̸= 0}.
Assume y ̸= 0 and let

a(y) = min
ψ∈X(y)

⟨ψ, e2⟩ and b(y) = min
ψ∈X(y)

⟨ψ, e3⟩.

By the same and a similar reasoning to the one in the proof of Lemma 3.4, we see that
m(σ(y)) = a(y) and m(τ(y)) = b(y).

Hence, for a linear map f : V → W over K between the underlying vector spaces of finite
dimensional representations and x ∈ Vϕ such that f(x) ̸= 0, we have

m(σ(x)) = a(x) = ⟨ϕ, e2⟩, m(σ(f(x))) = a(f(x)),

m(τ(x)) = b(x) = ⟨ϕ, e3⟩, and m(τ(f(x))) = b(f(x)).
On the assumption that f is filtered, we get

⟨ϕ, e⟩ = m(x) ≤ m(f(x)) = min
ψ∈X(f(x))

⟨ψ, e⟩,

⟨ϕ, e2⟩ = m(σ(x)) ≤ m(f(σ(x))) = m(σ(f(x))) = a(f(x)),

and

⟨ϕ, e3⟩ = m(τ(x)) ≤ m(f(τ(x))) = m(τ(f(x))) = b(f(x)).
Since e = e1 = −e2 − e3, the first inequality is equivalent to

max
ψ∈X(f(x))

{⟨ψ, e2⟩ + ⟨ψ, e3⟩} ≤ ⟨ϕ, e2⟩ + ⟨ϕ, e3⟩.

By the definitions of a( · ) and b( · ), these inequalities must be all equalities. We find
⟨ψ, e2⟩ = a(f(x)) = ⟨ϕ, e2⟩ and ⟨ψ, e3⟩ = b(f(x)) = ⟨ϕ, e3⟩
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for all ψ ∈ X(f(x)). Thus we obtain

X (f(x)) = {ϕ} if f(x) ̸= 0.

This means
f(x) = yϕ ∈ Wϕ for all x ∈ Vϕ,

that is, that the map f commutes with the action of Tα;σ,τ . Since f is defined over K, the map
commutes with all Galois conjugates ω(Tα;σ,τ ) (ω ∈ Gal(L/K)) and so with Ğ = SL3. □

4. The remaining cases

In this section, we collect what are required in Section 5.
The symbols K,Gm,SL3, and Ksep being as in Section 2, let α be an element of Ksep such
that there exists an element σ ∈ Gal (Ksep/K) with σ2(α) ̸= α. Fix a (finite or infinite)
Galois extension field L of K containing α. Fix σ ∈ Gal (Ksep/K) such that σ2(α) ̸= α.
Elements β, γ ∈ L and an element P ∈ GL3(L) are respectively defined as

β = σ−1(α), γ = σ−2(α), P =

 1 1 1
α β γ
α2 β2 γ2

 .
With these β, γ, and P , we define embeddings e1, e2, e3 over L of Gm into SL3 by the same
expressions as in Section 2. Their images are respectively written T1, T2, T3 as before.
Put

λ1 =
(
β − σ−1(γ)

) (
γ − σ−1(γ)

)
(β − α)(γ − α) , λ2 =

(
γ − σ−1(γ)

) (
α− σ−1(γ)

)
(γ − β)(α− β) ,

λ3 =
(
α− σ−1(γ)

) (
β − σ−1(γ)

)
(α− γ)(β − γ) , Λ2 = λ2

λ1
, Λ3 = λ3

λ1
,

ν1 = (β − σ(α)) (γ − σ(α))
(β − α)(γ − α) , ν2 = (γ − σ(α)) (α− σ(α))

(γ − β)(α− β) ,

ν3 = (α− σ(α)) (β − σ(α))
(α− γ)(β − γ) , N1 = ν1

ν3
, and N2 = ν2

ν3
.

Note that when σ3(α) = α, we have λ2 = λ3 = ν1 = ν2 = 0. We know

P−1 σ−1(P ) =

 0 0 λ1
1 0 λ2
0 1 λ3

 =

 1 0 0
Λ2 1 0
Λ3 0 1

 λ1 0 0
0 1 0
0 0 1

 0 0 1
1 0 0
0 1 0


and

P−1 σ(P ) =

 ν1 1 0
ν2 0 1
ν3 0 0

 =

 1 0 N1
0 1 N2
0 0 1

 1 0 0
0 1 0
0 0 ν3

 0 1 0
0 0 1
1 0 0

 .
Let A and B be the L-valued points of SL3 defined respectively as

A = tP−1

 1 −Λ2 −Λ3
0 1 0
0 0 1

 tP and B = tP−1

 1 0 0
0 1 0

−N1 −N2 1

 tP.
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We see for an L-algebra R and a, b, c ∈ R×; u ∈ R that

σ−1(tP−1) diag(a, b, c)σ−1(tP ) = tP−1Adiag(c, a, b)A−1 tP

= tP−1

 c Λ2(c− a) Λ3(c− b)
0 a 0
0 0 b

 tP,

σ(tP−1) diag(a, b, c)σ(tP ) = tP−1B diag(b, c, a)B−1 tP

= tP−1

 b 0 0
0 c 0

N1(a− b) N2(a− c) a

 tP,

σ−1(tP−1)

 1 u 0
0 1 0
0 0 1

σ−1(tP ) = tP−1

 1 0 −Λ2u
0 1 u
0 0 1

 tP,

and

σ(tP−1)

 1 0 0
0 1 0
0 u 1

σ(tP ) = tP−1

 1 0 0
u 1 0

−N2u 0 1

 tP.

In particular, we have

(5) e2 = Int(σ(A)) ◦ σ(e3) = Int(σ−1(B)) ◦ σ−1(e1)

and

(6) e3 = Int(σ(A)) ◦ σ(e1) = Int(σ−1(B)) ◦ σ−1(e2),

where the symbol Int implies the conjugation left action on SL3 as before. We find the
following:

Proposition 4.1. — Let Tα;σ be the maximal torus T2 T3 of SL3 ×KL and Ğ the smallest
subgroup defined over K of SL3 which includes the torus Tα;σ when the base field is extended
to L. If σ3(α) ̸= α, then Ğ = SL3. If the extension field K(α) is cubic over K, then the torus
Tα;σ is defined over K, hence Ğ = Tα;σ.

Remark 4.2. — Let q, r, s be three indeterminates. When α is cubic over K, we observe
that the torus Tα;σ is naturally isomorphic to a 2-dimensional anisotropic torus over K (cf. [3,
Lemma 2.5])

Spec
(
K[q, r, s]

/(
1 −

2∏
i=0

σ−i(qβγ − r(β + γ) + s)
))

,

the functions qγα − r(γ + α) + s and qαβ − r(α + β) + s being considered generators of its
character group. Hence, the group Tα;σ(K) of K-valued points on the torus Tα;σ is identified
with the multiplicative subgroup of K(α) composed of the elements of norm 1.
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5. Representation in the remaining cases

In this section, we show our filtered vector space should be considered a representation of
the algebraic group defined in Section 4 if the Galois closure of the field generated by a
primarily given number is non-abelian or is abelian of type other than (2, 2, . . .).
Let Ui j (i, j = 1, 2, 3; i ̸= j) be the 1-dimensional unipotent subgroups over L of SL3 similar
to those in Section 3, Tα;σ the maximal torus over L of SL3 in Section 4, and χ(2), χ(3) the
characters on Tα;σ dual to the cocharacters e2, e3 in Section 4. The expression in terms of
χ(2), χ(3) of the character by multiplication of which the torus Tα;σ acts on Ui j is the same
as in Section 3.
To the triple of the group Ğ in Section 4, the inclusion map κ = incl : Tα;σ ↪→ Ğ ×K L, and
the cocharacter e = e1 : Gm ×K L → Tα;σ in Section 4, apply the method of construction of
a tensor functor ιĞ,κ,e : RepK(Ğ) → C(K,L) in our former paper [3, Section 1]. The vector
space V̆ over K spanned by three indeterminates q, r, s equipped with the filtration over L

F iαV̆ =


V̆ ⊗K L for i ≤ −2
(−qα+ r)L⊕ (−qα2 + s)L for − 2 < i ≤ 1
0 for i > 1

is an object in the image of the functor ιĞ,κ,e as in the exceptional case of Section 3.

Proposition 5.1. — Given a character ϕ = a · χ(2) + b · χ(3) (a, b ∈ Z) of the torus Tα;σ,
let ϕ◦ = b · χ(2) − (a+ b) · χ(3). For a representation space V over K of Ğ, if x ∈ Vϕ \ {0},
then there exists an element y ∈ Vϕ◦ \ {0} such that

σ(x) − y ∈
⊕

k,l≥0; (k,l)̸=(0,0)
Vϕ◦−3kχ(3)+3l(χ(2)−χ(3)).

In particular, we have m(σ(x)) = ⟨ϕ◦, e⟩ = ⟨ϕ, e2⟩, where m is the function described in (4).

Proof. — First, we assume that σ3(α) ̸= α. We know Ğ = SL3. The assertion is confirmed
in the same fashion as in the proof of Proposition 3.2.
Next, assume that σ3(α) = α. In this case, by the definitions of Λ2 and Λ3, the L-valued
point A equals the identity, hence we know from the relations (5) and (6) that

e2 = σ(e3) and e3 = σ(e1).
For an L-algebra R and c ∈ R×, we obtain

e2(c)σ(x) = σ(e3)(c)σ(x) = cbσ(x)
and

e3(c)σ(x) = σ(e1)(c)σ(x) = c−(a+b)σ(x).
Thus y = σ(x) ∈ Vϕ◦ \ {0} suffices. □

Lemma 5.2. — Any 1-dimensional representation defined over K of Ğ is trivial.

Proof. — Let V be a 1-dimensional representation space over K of Ğ. The torus Tα;σ acts
on V ⊗K L via a character ϕ, in other words, V ⊗K L = Vϕ. We see from Proposition 5.1 that
ϕ◦ = ϕ, which forces ϕ = 0. The rest of proof is the same as the latter part of the proof of
Lemma 3.4 in [3]. □
Publications mathématiques de Besançon – 2025



Fujimori Masami 161

Using this lemma, we get the next:

Lemma 5.3. — For any non-zero finite dimensional representation space V over K of Ğ,
we have µ(ιĞ,κ,e(V )) = 0, where µ is the slope function of filtered vector spaces (cf. e.g. [3,
Definition 1.12]).

Lemma 5.4. — To an arbitrary 1-dimensional vector subspace W over K of a Ğ-represent-
ation V over K, attach the sub-filtration over L of ιĞ,κ,e(V ). We have µ(W ) ≤ 0.

Proof. — In the coefficient extension V ⊗K L, a non-zero vector w ∈ W is written

w = w1 + · · · + wr, wi ∈ Vψ(i) \ {0}

as in the proof of Lemma 3.4.
We have

µ(W ) = min
1≤i≤r

⟨ψ(i), e⟩ = m(w).

Let
a = min

1≤i≤r
⟨ψ(i), e2⟩, a′ = min {⟨ψ(i), e3⟩ | ⟨ψ(i), e2⟩ = a} ,

and ϕ = aχ(2) + a′χ(3). There exists a unique number j with ψ(j) = ϕ. Applying σ ∈
Gal(L/K) to w, we have

w = σ(w) = σ (w1) + · · · + σ (wr) .

From Proposition 5.1, we see that

w = σ(w) ∈
r∑
i=1

⊕
k,l≥0

Vψ◦(i)−3kχ(3)+3l(χ(2)−χ(3))

and that there exists an element y ∈ Vϕ◦ \ {0} such that

σ(wj) − y ∈
⊕

k,l≥0; (k,l)̸=(0,0)
Vψ◦(j)−3kχ(3)+3l(χ(2)−χ(3)).

Since for all i

⟨ψ◦(i) − 3kχ(3) + 3l(χ(2) − χ(3)), e⟩ = ⟨ψ(i), e2⟩ + 3k ≥ a

and for i such that ⟨ψ(i), e2⟩ = a

⟨ψ◦(i) − 3kχ(3) + 3l(χ(2) − χ(3)), e2⟩ = ⟨ψ(i), e3⟩ + 3l ≥ a′,

the eigenvector y with respect to the action of the torus Tα;σ does not cancel out in the sum
w = σ(w1) + · · · + σ(wr). We get the equality m(w) = m(σ(w)) = a and a number h with
ψ(h) = ϕ◦.
By the definition of a, we obtain

a ≤ ⟨ψ(h), e2⟩ = ⟨ϕ◦, e2⟩ = ⟨ϕ, e3⟩ = a′,

hence
a = m(w) ≤ ⟨ψ(j), e⟩ = ⟨ϕ, e⟩ = −a− a′ ≤ −2a.

This is possible only when 0 ≥ a = m(w) = µ(W ). □
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Proposition 5.5. — For any finite dimensional representation space V over K of Ğ, the
filtered vector space ιĞ,κ,e(V ) is semi-stable of slope zero, hence the functor ιĞ,κ,e factors
through Css

0 (K,L).

Proof. — The same proof as the one of Proposition 3.7 in [3] is valid. □

Theorem 5.6. — The functor ιĞ,κ,e : RepK(Ğ) → Css
0 (K,L) is fully faithful.

Proof. — Let W be an arbitrary finite dimensional representation space over K of Ğ. For
any y ∈ W ⊗K L, we have a unique expression

y =
∑
ψ∈X

yψ, yψ ∈ Wψ

as in the proof of Theorem 3.6.
We define a set X(y) of characters as

X(y) = {ψ ∈ X | yψ ̸= 0}.
Assume y ̸= 0 and let

a(y) = min
ψ∈X(y)

⟨ψ, e2⟩, b(y) = min
ψ∈X(y)

⟨ψ, e3⟩,

b′(y) = min
ψ∈X(y)

{⟨ψ, e2⟩ | ⟨ψ, e3⟩ = b(y)},

and φ(y) = b′(y)χ(2)+b(y)χ(3). By a similar reasoning to the one in the proof of Lemma 5.4,
we see that

m(σ(y)) = a(y), φ◦(y) ∈ X (σ(y)) ,
and

a(σ(y)) def= min
ψ∈X(σ(y))

⟨ψ, e2⟩ = ⟨φ◦(y), e2⟩ = b(y).

Hence, for a linear map f : V → W over K between the underlying vector spaces of finite
dimensional representations and x ∈ Vϕ such that f(x) ̸= 0, we have

m(σ(x)) = a(x) = ⟨ϕ, e2⟩, m(σ(f(x))) = a(f(x)),

m
(
σ2(x)

)
= a(σ(x)) = b(x) = ⟨ϕ, e3⟩,

and
m
(
σ2(f(x))

)
= a(σ(f(x))) = b(f(x)).

On the assumption that f is filtered, we get
⟨ϕ, e⟩ = m(x) ≤ m(f(x)) = min

ψ∈X(f(x))
⟨ψ, e⟩,

⟨ϕ, e2⟩ = m(σ(x)) ≤ m(f(σ(x))) = m(σ(f(x))) = a(f(x)),
and

⟨ϕ, e3⟩ = m(σ2(x)) ≤ m
(
f(σ2(x))

)
= m

(
σ2(f(x))

)
= b(f(x)).

Since e = e1 = −e2 − e3, the first inequality is equivalent to
max

ψ∈X(f(x))
{⟨ψ, e2⟩ + ⟨ψ, e3⟩} ≤ ⟨ϕ, e2⟩ + ⟨ϕ, e3⟩.

By the definitions of a( · ) and b( · ), these inequalities must be all equalities. We obtain
⟨ψ, e2⟩ = a(f(x)) = ⟨ϕ, e2⟩ and ⟨ψ, e3⟩ = b(f(x)) = ⟨ϕ, e3⟩
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for all ψ ∈ X(f(x)). Thus the rest of proof goes through the same path as in the proof of
Theorem 3.6. □

6. The group in characteristic zero

We shall make explicit the group defined in Section 4 when the characteristic of the base field
is zero, using the one-to-one correspondence between Lie algebras and connected Lie groups.
We calculate the Lie algebra ğ of the group Ğ defined in Section 4 as a subalgebra of the
Lie algebra sl3 of the special linear group SL3 of degree 3. We identify the Lie algebra gl3
of the general linear group GL3 of degree 3 with the Lie algebra of all matrices of degree 3
and regard sl3 as the subalgebra of trace zero. For each i, j = 1, 2, 3, the element of gl3 which
is identified with the matrix whose (i, j)-coefficient is 1 and whose other coefficients are 0 is
denoted by Ei j .
To ease notation, we examine in fact the Lie algebra tP ğ tP−1 of the conjugate group
tP Ğ tP−1, where P is the matrix used to define Ğ in Section 4 and tP is its transpose.
For i = 1, 2, 3, set

Zi = 1 − 3Ei i ∈ sl3(Z).

Lemma 6.1. — Z1, Z2, Z3 ∈ tP ğ tP−1

Proof. — Recall that the tori Ti (i = 1, 2, 3) are respectively the images of the embeddings
ei (i = 1, 2, 3) over L of Gm into SL3. The morphism e1, for example, is written in matrix
form as

e1(c) = tP−1

 c−2 0 0
0 c 0
0 0 c

 tP.

Differentiating both sides with respect to c, we see

d

dc
e1(c) = tP−1

 −2c−3 0 0
0 1 0
0 0 1

 tP.

The torus T1 is included in Ğ by definition. We get

tP−1 Z1
tP = tP−1

 −2 0 0
0 1 0
0 0 1

 tP ∈ ğ.

In the same way, we obtain tP−1 Z2
tP, tP−1 Z3

tP ∈ ğ. □

Fix temporarily an arbitrary element τ of Gal(Ksep/K). Denote by ci (i = 1, 2, 3) the i-th
column vector of the matrix tP τ(tP−1). We denote similarly by ri (i = 1, 2, 3) the i-th row
vector of the matrix τ(tP ) tP−1. Put A = c1r1, B = c2r2, and C = c3r3. They are matrices
of degree 3. We call respectively ai j , bi j , and ci j the coefficients in the i-th row and the j-th
column of the matrices A, B, and C: A = (ai j), B = (bi j), C = (ci j). Set

WA = 1 − 3A, WB = 1 − 3B, and WC = 1 − 3C.

Lemma 6.2. — WA, WB, WC ∈ tP ğ tP−1
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Proof. — We have

tP τ(e1)(c) tP−1 = tP τ(tP−1)

 c−2 0 0
0 c 0
0 0 c

 τ(tP ) tP−1.

Hence
tP ğ tP−1 ∋ tP τ(tP−1)Z1τ(tP ) tP−1 = 1 − 3 tP τ(tP−1)E1 1τ(tP ) tP−1

= 1 − 3(c1,0,0)

 r1
r2
r3


= 1 − 3c1r1.

We see in a similar fashion for i = 2, 3
1 − 3ciri = tP τ(tP−1)Ziτ(tP ) tP−1 ∈ tP ğ tP−1 .

□

Lemma 6.3. — 1
9[Zi,WA] = Ei iA−AEi i (i = 1, 2, 3)

Proof. — By definition, we find instantly
1
9[Zi,WA] = [Ei i, A] = Ei iA−AEi i.

□

Lemma 6.4. — For i ̸= j, we have 1
27 [Zi, [Zj ,WA]] = ai jEi j + aj iEj i.

Proof. — From Lemma 6.3, we see for i ̸= j

1
27 [Zi, [Zj ,WA]] = −[Ei i, Ej jA−AEj j ]

= Ei iAEj j + Ej jAEi i

= ai jEi j + aj iEj i.

□

Lemma 6.5. — For i ̸= j, we have 1
81 [Zi, [Zi, [Zj ,WA]]] = aj iEj i − ai jEi j.

Proof. — Immediate from Lemma 6.4. □

Proposition 6.6. — For each distinct indices i and j (i, j = 1, 2, 3), we have ai jEi j ∈
tP ğ tP−1. Explicitly:

ai jEi j = 1
54 [Zi, [Zj ,WA]] − 1

162 [Zi, [Zi, [Zj ,WA]]]

Proof. — Combination of Lemma 6.4 with Lemma 6.5. □

Corollary 6.7. — For each distinct indices i and j (i, j = 1, 2, 3), we also have bi jEi j ∈
tP ğ tP−1 and ci jEi j ∈ tP ğ tP−1.

Proof. — Replace A with B or with C in Lemmas 6.3–6.5 and Proposition 6.6. □
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Lemma 6.8. — Suppose α is not cubic, where α ∈ Ksep is the element used to define the
group Ğ. For i ̸= j, there exists τ ∈ Gal(Ksep/K), which may depend on the pair (i, j), such
that at least one of ai j, bi j, or ci j becomes non-zero.

Proof. — By definition

tP =

 1 α α2

1 β β2

1 γ γ2

 .
As we saw in Section 2, we have

tP−1 =

 βγ γα αβ
−β − γ −γ − α −α− β

1 1 1

 ·D.

Here D is a diagonal matrix and detD ̸= 0. Thus we know for any τ ∈ Gal(Ksep/K)
tP τ(tP−1)

=

 1 α α2

1 β β2

1 γ γ2

 τ(β)τ(γ) τ(γ)τ(α) τ(α)τ(β)
−τ(β) − τ(γ) −τ(γ) − τ(α) −τ(α) − τ(β)

1 1 1

 · τ(D)

=

 (α− τ(β))(α− τ(γ)) (α− τ(γ))(α− τ(α)) (α− τ(α))(α− τ(β))
(β − τ(β))(β − τ(γ)) (β − τ(γ))(β − τ(α)) (β − τ(α))(β − τ(β))
(γ − τ(β))(γ − τ(γ)) (γ − τ(γ))(γ − τ(α)) (γ − τ(α))(γ − τ(β))

 · τ(D)

and

τ(tP ) tP−1 =

 (τ(α) − β)(τ(α) − γ) (τ(α) − γ)(τ(α) − α) (τ(α) − α)(τ(α) − β)
(τ(β) − β)(τ(β) − γ) (τ(β) − γ)(τ(β) − α) (τ(β) − α)(τ(β) − β)
(τ(γ) − β)(τ(γ) − γ) (τ(γ) − γ)(τ(γ) − α) (τ(γ) − α)(τ(γ) − β)

 ·D.

We show that there exists τ ∈ Gal(Ksep/K) such that at least one of a1 2, b1 2, or c1 2 does not
vanish. Since α is not cubic, we can choose τ ∈ Gal(Ksep/K) so that α does not equal any
of τ(α), τ(β), and τ(γ). With such a choice of τ , by the definitions of a1 2, b1 2, and c1 2, they
are respectively equal to τ(α) − γ, τ(β) − γ, and τ(γ) − γ modulo multiplication of non-zero
elements of Ksep. We see in this way at least two of them are non-zero indeed. With the
same choice of τ ∈ Gal(Ksep/K), the elements a1 3, b1 3, and c1 3 are respectively τ(α) − β,
τ(β) − β, and τ(γ) − β up to multiplication of non-zero elements of Ksep. Hence at most one
of them disappears.
Changing the role of α with that of β or γ in the above discussion, we obtain what we
want. □

Corollary 6.9. — On the assumption that α is not cubic, we have Ğ = SL3.

Proof. — Directly follows from Proposition 6.6, Corollary 6.7, and Lemma 6.8. □

Theorem 6.10. — If the base field K is of characteristic zero (and if there exists an element
σ ∈ Gal(Ksep/K) with σ2(α) ̸= α), then the filtered vector space

(
V̆ , F ·

αV̆
)

in Section 5 is in
the image of a fully faithful tensor functor of the category of finite dimensional representation
spaces over K of a 2-dimensional anisotropic torus over K or SL3 according as the coefficient
α is cubic over K or not, the functor being compatible with the forgetful functors to VecK .

Publications mathématiques de Besançon – 2025



166 Groups leading to a simultaneous approximation

Proof. — When the element α is cubic over K, we have already seen in Section 5 that the
conclusion is true. When α is not cubic over K, we have confirmed in Corollary 6.9 that the
group Ğ is identical to SL3, hence we are done. □

Appendix

Let q, r, s be indeterminates; K an arbitrary field; L an extension field of K; α, β elements of
L; and c a positive constant number. We denote by V the vector space over K generated by
the indeterminates q, r, s and put

l0 = q, l1 = −qα+ r, l2 = −qβ + s.

The linear forms l0, l1, l2 in q, r, s constitute a basis of the vector space V ⊗K L over L. We
attach to the vector space V over K a filtration F ·V over L defined as

F iV =


V ⊗K L (i ≤ −2c)
l1 L⊕ l2 L (−2c < i ≤ c)
0 (i > c).

Lemma A.1. — The filtered vector space (V, F ·V ) of slope zero is semi-stable if and only
if the elements 1, α, β of L are linearly independent over K.

Proof. — Suppose V is not semi-stable. There exists a non-zero subspace W over K of V
such that its slope µ(W ) is positive (cf. e.g. [3, Definition 1.13]). By the definition of (induced)
sub-filtration (cf. e.g. [3, Definition 1.4]), we must have

W ⊗K L ⊂ l1 L⊕ l2 L.

In particular, for a non-zero w ∈ W there exist a, b ∈ L such that
w = l1a+ l2b = −q(aα+ bβ) + ra+ sb.

We observe that (a, b) ̸= (0, 0) and that the elements a, b, and aα+ bβ belong in fact to K.
Thus 1, α, β are linearly dependent over K.
Conversely, if 1, α, β are linearly dependent over K, then there exist a, b ∈ K such that
(a, b) ̸= (0, 0) and aα+ bβ ∈ K. Set w = l1a+ l2b. We see

w = −q(aα+ bβ) + ra+ sb ∈ V ∩ (l1 L⊕ l2 L) \ {0}.
We get 0 ̸= wK ⊂ V and µ(wK) = c > 0 = µ(V ), which indicates V is not semi-stable. □
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