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HEIGHTS AND REGULATORS OF NUMBER FIELDS AND
ELLIPTIC CURVES

by

Fabien Pazuki

Abstract. — We compare general inequalities between invariants of number fields and invari-
ants of elliptic curves over number fields. On the number field side, we remark that there is
only a finite number of non-CM number fields with bounded regulator. On the elliptic curve
side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property
for the regulator on the set of elliptic curves with dense rational points over a number field.
This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants
considered here, to the arithmetic of elliptic curves over a number field having a non Zariski
dense Mordell-Weil group, i.e. with rank zero.

Résumé. — Hauteurs et régulateurs de corps de nombres et de courbes elliptiques.
On compare des inégalités entre invariants classiques de corps de nombres et de courbes ellip-
tiques définies sur un corps de nombres. Dans le cas des corps de nombres, on remarque qu’il
n’y a qu’un nombre fini de corps de nombres non-CM avec régulateur borné. On obtient alors
comme conséquence d’une conjecture de Lang et Silverman une propriété de Northcott pour
le régulateur sur l’ensemble des courbes elliptiques sur un corps de nombres dont les points
rationnels sont denses. Cela indique que l’arithmétique d’un corps CM est similaire, au sens des
invariants considérés ici, à celle des courbes elliptiques sur un corps de nombres dont le groupe
de Mordell-Weil n’est pas dense au sens de Zariski, donc de rang nul.

1. Introduction

Comparisons between number fields and abelian varieties defined over number fields are
used to help in the understanding of the arithmetic of both. As a recent example of such a
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48 Heights and regulators of number fields and elliptic curves

comparison one can read [Hin07], where a conjectural asymptotic in the spirit of the Brauer-
Siegel theorem for number fields is given for abelian varieties. In this work we will focus
on inequalities in both settings, but restricting ourselves to abelian varieties of dimension 1,
i.e. elliptic curves. Firstly, we gather some useful inequalities between classical invariants —
discriminant, degree, regulator — of number fields. Secondly we want to understand how
the inequality of Theorem 3.6 between the regulator and the discriminant of a number field
finds its elliptic counterpart in Theorem 4.8, assuming the Lang-Silverman height conjecture.
Let us stress here that Hindry and Silverman showed in [HiSi88] that the Lang-Silverman
conjecture for elliptic curves is implied by the ABC conjecture, see Remark 4.6 in the sequel.
For some inspiring references about regulators of number fields, one can consult various texts,
including Friedman [Fri89], Friedman and Skoruppa [FrSk99], Bergé and Martinet [BeMa90],
Silverman [Si84a], Zimmert [Zim81], Remak [Rem52], Odlyzko [Odl77, Odl90].
Let us now state some consequences of the studied inequalities. On the number field side, one
has the following. First recall that a CM field is a totally imaginary degree 2 extension of a
totally real extension of Q.

Theorem 1.1. — There exists only a finite number of non-CM number fields with bounded
regulator.

The proof is relatively short and essentially relies on existing inequalities. It will be given
in section 3. On the elliptic curve side, one obtains the following result as a corollary of
Theorem 4.8.

Theorem 1.2. — Assume the Lang-Silverman height Conjecture 4.5. Then, the set of Q-
isomorphism classes of elliptic curves E, defined over a fixed number field K with E(K)
Zariski dense in E and bounded regulator is finite.

The Zariski density of E(K) is equivalent to E having positive Mordell-Weil rank over K
because E is simple.
Focusing on elliptic curves defined over number fields, one also obtains (without assuming
any height conjecture) an inequality between the Faltings height of Definitions 2.3 and 4.2,
the primes of bad reduction and the injectivity diameter, which is of independent interest for
two reasons: there is no assumption of semi-stability and all constants are explicit.

Theorem 1.3. — Let K be a number field of degree d. Then for any elliptic curve E defined
over K, one has

hF+(E/K) ≥ 1
3 · 128d

logN0
E/K + 1

3d
∑

v∈M∞
K

dvρ(Ev, Lv)−2 − 1
3 log π

π − 3

where N0
E/K is the product of the norms of the primes of K of bad reduction for E and

ρ(Ev, Lv) is the injectivity diameter of Ev(C) polarized by Lv, the set of archimedean places
of K is denoted by M∞K and dv = [Kv : Qv] is the local degree.

In Section 2 we give the definitions of the regulator of a number field, of the regulator of
an elliptic curve and of the Faltings height, also called the differential height, of an elliptic
curve. In Section 3 we gather the inequalities concerning number fields. In Section 4 we prove
the inequalities concerning elliptic curves and we compare these inequalities with the number
field case. We conclude in Section 5 with a comparative table.
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Another way of reading the inequalities in this text lies in the following remark: in the
number field case, both the discriminant and the regulator are volumes that carry arithmetic
information, but the regulator is a weak invariant on CM-fields. For elliptic curves over a
number field, the regulator and the differential height are both arithmetic volumes, but the
regulator is a weak invariant on elliptic curves with non Zariski dense Mordell-Weil group
(i.e. on rank zero elliptic curves). The inequalities of Theorem 3.6 and Theorem 4.8 compare
these volumes precisely enough to reveal the special cases. An interesting question would be
to obtain similar results in the case of general abelian varieties. This will be the object of a
future work.

2. Definitions

If K is a number field, we denote by d its degree over Q and by MK the set of all places of
K. Let M∞K be the set of archimedean places. For any v ∈ MK , we have Kv the completion
of K with respect to the valuation |.|v. One normalizes |p|v = p−1 for any finite place v above
a prime number p. Then the local degree will be dv = [Kv : Qv]. We will write p for a prime
ideal. We will denote by DK the absolute discriminant of K.
Let S be a set. We will say that a function f : S → R verifies a Northcott property on S if
for any real number B, the set {P ∈ S | f(P ) ≤ B} is finite.

2.1. Regulators of number fields and elliptic curves. —
2.1.1. Number fields. — Let K be a number field of degree d = r1 + 2r2, with r1 real embed-
dings σ1, . . . , σr1 and r2 pairs of complex conjugate embeddings denoted (σr1+1, σr1+1), . . . ,
(σr1+r2 , σr1+r2). We denote by UK the group of units in K. By Dirichlet’s theorem, UK is a
group of rank r = rK = r1 +r2−1. Let ε1, . . . , εr be a fundamental base, i.e. any unit ε ∈ UK
can be uniquely written as ε = zεn1

1 · · · εnrr with z a root of unity in K and n1, . . . , nr ∈ Z.
The norm of any α ∈ K can be written as

NK/Q(α) = σ1(α) . . . σd(α) = σ1(α) . . . σr1(α)|σr1+1(α)|2 . . . |σr1+r2(α)|2.

Let λ be the logarithmic map given by

λ : K → Rr1+r2

α 7→
(

log |σ1(α)|, · · · , log |σr1(α)|, 2 log |σr1+1(α)|, . . . , 2 log |σr1+r2(α)|
)
,

Moreover let d1 = · · · = dr1 = 1 for the real embeddings and dr1+1 = · · · = dr1+r2 = 2 for
the complex embeddings – so di = dvi = [Kvi : Q] for each i ∈ {1, . . . , r1 + r2} and the first
r1 embeddings are the real ones. Let H = {(x1, . . . , xr1+r2) ∈ Rr1+r2 |x1 + · · ·+ xr1+r2 = 0}.
We remark that λ(UK) ⊂ H because the norm of any unit is ±1, hence the logarithm of the
absolute norm is 0. We are interested in the volume of the lattice spanned by the image of
the units of K in H. The vector e = (1, . . . , 1) is orthogonal to the hyperplane H with respect
to the canonical euclidean structure of Rr1+r2 , hence one has the following volume equality

Vol(Rr1+r2/λ(UK)⊕ Ze) = Vol(H/λ(UK))
√
r1 + r2.

The volume of a fundamental domain of the lattice λ(UK) in the hyperplane H is given
by Vol(H/λ(UK)), where the volume is induced by the euclidean structure on Rr1+r2 . This
motivates the following definition.
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Definition 2.1. — The regulator RK of K is defined in the following way

RK =
∣∣∣det


d1 log |σ1(ε1)| d2 log |σ2(ε1)| . . . dr1+r2 log |σr1+r2(ε1)|
d1 log |σ1(ε2)| d2 log |σ2(ε2)| . . . dr1+r2 log |σr1+r2(ε2)|

. . . . . . . . . . . .
d1 log |σ1(εr)| d2 log |σ2(εr)| . . . dr1+r2 log |σr1+r2(εr)|
(r1 + r2)−1 (r1 + r2)−1 . . . (r1 + r2)−1


∣∣∣,

where the square matrix is of size (r1 + r2).

Remark that one has RK = Vol(Rr1+r2/λ(UK)⊕Ze)(r1+r2)−1 = Vol(H/λ(UK))(r1+r2)−1/2,
so the regulator is a volume obtained in the whole space, divided by the square root of the
dimension of the whole space. An equivalent definition used in the literature is

RK =
∣∣∣det


d1 log |σ1(ε1)| d2 log |σ2(ε1)| . . . dr log |σr(ε1)|
d1 log |σ1(ε2)| d2 log |σ2(ε2)| . . . dr log |σr(ε2)|

. . . . . . . . . . . .
d1 log |σ1(εr)| d2 log |σ2(εr)| . . . dr log |σr(εr)|

 ∣∣∣,
where one deletes the last column and the last line of the former matrix. To show equality
of the two determinants, take the (r1 + r2)2 determinant from above and sum over all the
columns to get a last column full of zeros (because the logarithm of the absolute norm of a
unit is 0) except for the last term at the bottom line where one gets (r1 + r2)(r1 + r2)−1 = 1,
and develop the determinant. By the same argument one knows that the final value does not
depend on the column one erases, the only difference would be the sign which is removed by
the absolute value outside the determinant.
This definition is the same as the one found in [Neu99] page 43, if one remarks that his λ(.)
is defined through a factorization of his l(.) page 34 that has the same normalization for the
metrics given here.
We end this section by recalling that a CM field K is a totally imaginary quadratic extension
of a totally real number field.
2.1.2. Elliptic curves. — Let E/K be an elliptic curve over a number field K polarized by
L = 3(O) where O is the neutral element. Let mK be the Mordell-Weil rank of E(K). Let
ĥ = ĥE,L be the Néron-Tate height associated with the pair (E,L). Let < ., . > be the
associated bilinear form, given by

< P,Q >= 1
2
(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
for any P,Q ∈ E(Q̄).

Definition 2.2. — Let P1, . . . , PmK be a basis of the Mordell-Weil group E(K) modulo
torsion. The regulator of E/K is defined by

Reg(E/K) = | det(< Pi, Pj >1≤i,j≤mK )|,

where by convention an empty determinant is equal to 1.
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2.2. The Faltings height. — Let E be an elliptic curve defined over a number field K.
Let S = Spec(OK), where OK is the ring of integers of K and let π : E −→ S be the Néron
model of E over S. Denote by ε : S −→ E the zero section of π and by ωE/S the sheaf of
relative differentials

ωE/S := ε?ΩE/S ' π?ΩE/S .
For any archimedean place v of K, denote by σ an embedding of K in C associated to v,
then the corresponding line bundle

ωE/S,σ = ωE/S ⊗OK ,σ C ' H
0(Eσ(C),ΩEσ(C))

can be equipped with a natural L2-metric ‖.‖v defined by

‖α‖2v = i

2

∫
Eσ(C)

α ∧ α .

The OK-module of rank one ωE/S , together with the hermitian norms ‖.‖v at infinity defines
an hermitian line bundle ωE/S = (ωE/S , (‖.‖v)v∈M∞

K
) over S, which has a well defined Arakelov

degree d̂eg(ωE/S). Recall that for any hermitian line bundle L over S, the Arakelov degree of
L is defined as

d̂eg(L) = log Card (L/sOK)−
∑

v∈M∞
K

dv log ‖s‖v ,

where s is any non zero section of L (the result does not depend on the choice of s in view
of the product formula).
We now give the definition of the classical Faltings height.

Definition 2.3. — The Faltings height of E/K is defined as

hF (E/K) := 1
[K : Q] d̂eg(ωE/S).

We like to think of the Faltings height as a volume, in particular as a positive real num-
ber. An inequality of Bost reads hF (E/K) ≥ −1

2 log 2π2 (a detailed proof being accessible
in [GaRé14a]), we thus would like to rescale the height slightly in the following way:

Notation 2.4. — Let hF+(E/K) = hF (E/K) + 1
2 log(2π2).

We now obtain a non-negative number that can be interpreted as a volume. This little change
of normalization also helps simplifying some formulas in the sequel. We will continue to call
this number the Faltings height or the differential height.
The Faltings height does not depend on any choice of polarization on E. When E/K is semi-
stable, this height only depends on the Q-isomorphism class of E. If E/K is not semi-stable,
one may use Chai’s base change conductor, take formula (4) in the sequel as a complementary
definition. The definition can be extended to abelian varieties of any fixed dimension. To see
that it is really a height (meaning verifying the Northcott property), see for instance [Fa83]
Satz 1, page 356 and 357. This can also be derived from the comparison of heights in [Paz12]
(an article based on former work by Bost and David) and the work of Mumford on theta
structures.
If K ′/K is a number field extension, one has hF+(E/K ′) ≤ hF+(E/K). If E/K is semi-stable,
one defines the stable height by hF+(E/Q) := hF+(E/K), which is invariant by number field
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52 Heights and regulators of number fields and elliptic curves

extension. Let us state the following formula (proved in [CoSi86] page 254) which will be
crucial in the sequel:

Theorem 2.5. — (Silverman) Let E/K be a semi-stable elliptic curve over a number field
K of degree d. One has

hF+(E/K) = 1
12d

logNK/Q(∆E)−
∑

v∈M∞
K

dv log
(
|∆(τv)|(2 Im τv)6

) ,
where ∆E is the minimal discriminant of E; at archimedean places one chooses τv in the
upper half plane such that E(Kv) ' C/Z+ τvZ and ∆(τv) = q

∏+∞
n=1(1− qn)24 is the modular

discriminant, with q = exp(2πiτv).

We recall that |∆(τv)|(Im τv)6 is independent of the choice of τv in his orbit under the classical
action of SL2(Z) on the upper half plane. At finite places we focus on the bad reduction locus
with the following classical quantities.

Definition 2.6. — Let E be an elliptic curve over a number field K. Let us denote by
N0
E/K the norm of the product of the bad reduction primes of E.

Definition 2.7. — Let E be an elliptic curve over a number field K. We say that a prime
p of OK is of stable bad reduction if for any number field extension K ′/K and any prime p′ of
OK above p, the elliptic curve E/K ′ has bad reduction at p′. If the prime p is a prime of bad
reduction for E/K that is not a stable one, it will be referred to as an unstable bad prime of
E/K.

Regarding archimedean places, let us recall what the injectivity diameter is.

Definition 2.8. — Let E be a complex elliptic curve. Let L be a polarization on E. Let
TE be the tangent space of E and ΓE its period lattice and HL the associated Riemann form
on TE . The injectivity diameter is the positive number ρ(E,L) = min

γ∈Γ\{0}

√
HL(γ, γ), i.e. the

first minimum in the successive minima of the period lattice of E.

If one writes (E,L) ' (C/Z+ τZ, Hτ ) as polarized complex abelian varieties of dimension 1,
where τ is a complex period verifying Imτ >

√
3/2 and |Reτ | ≤ 1/2, then one has

ρ(E,L) = (Imτ)−1/2.

We will now carry on a comparison between inequalities relating the number field invariants
and inequalities relating elliptic curve invariants.

3. Number fields

We start this paragraph by gathering some unconditional inequalities between different clas-
sical invariants of number fields, the degree, the absolute discriminant and the regulator. One
may consult [Sam03] for a reference. We will then give the proof of Theorem 1.1.
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Theorem 3.1. — (Hermite-Minkowski) Let K be a number field of discriminant DK and
degree d. Then

|DK |1/2 ≥
(
π

4

)r2 dd

d!
and if d ≥ 2

|DK | ≥
π

3

(3π
4

)d−1
.

Remark 3.2. — For a better bound when d is large, see Odlyzko [Odl77] who gives

|DK |1/d ≥ 60r1/d222r2/d + o(1)
when d→ +∞.

The following classical theorem will be used in the sequel.

Theorem 3.3. — (Hermite) There is only a finite number of number fields with bounded
discriminant.

The following two theorems compare the regulator with the degree of the number field. The
second statement is even more precise because it gives a lower bound on a relative regulator.

Theorem 3.4. — (Friedman, [Fri89] page 620, Corollary) Let K be a number field of regu-
lator RK , degree d and number of roots of unity wK . Let r1 be the number of real embeddings
of K. Then

RK
wK
≥ 0.0031 exp(0.241d+ 0.497r1).

Theorem 3.5. — (Friedman, Skoruppa, [FrSk99]) There exists absolute constants c1 > 0
and c2 > 1 such that for any number field extension L/K the ratio of their regulators satisfies

RL
RK
≥
(
c1c

[L:K]
2

)[K:Q]
,

and one can take c1 = 1/(11.5)39 and c2 = 1.15.

The next step is important, it provides a lower bound for the regulator in terms of the
discriminant and of the degree of the field. One needs to pay attention, the inequality is
trivial in some cases that are analyzed in the sequel.

Theorem 3.6. — (Silverman [Si84a], Friedman [Fri89]) Let K be a number field of discrim-
inant DK , regulator RK and degree d. Let rK denote the unit rank of K and r0 the maximum
of the unit ranks of proper subfields of K. Then there exists a universal constant c3 > 0 such
that

RK ≥ c3d
−2d

(
log |DK |

dd

)rK−r0

.

The next proposition explains the case rK = r0.

Proposition 3.7. — One has rK = r0 if and only if K is a CM field. Moreover, if K is a
CM field and K0 its maximal totally real subfield, then

RK
RK0

= 2s, with r0 − 1 ≤ s ≤ r0.

Publications mathématiques de Besançon – 2014/2
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Proof. — Let K be a number field of rank rK and K0 be a strict subfield realizing r0 =
rank(K0). Then one has rK = r1(K) + r2(K)− 1 and r0 = r1(K0) + r2(K0)− 1. If rK = r0,
it gives

(1) r1(K) + r2(K) = r1(K0) + r2(K0)

on the one hand, and by the degree formula r1(K) + 2r2(K) = [K : K0](r1(K0) + 2r2(K0))
on the other hand. It implies by substitution that

r1(K) + 2r2(K) = [K : K0](r1(K) + r2(K) + r2(K0))
= [K : K0](r1(K) + 2r2(K) + r2(K0)− r2(K)),

hence,

(2) [K : K0](r2(K)− r2(K0)) = ([K : K0]− 1)(r1(K) + 2r2(K)) > 0

as [K : K0] ≥ 2 for the last inequality and so r2(K) > 0. Next, using r2(K0) ≥ 0 and
r1(K) ≥ 0 one obtains in (2)

[K : K0]r2(K) ≥ (2[K : K0]− 2)r2(K)

which implies 2 ≥ [K : K0], so [K : K0] = 2. Back to (2), one obtains

2r2(K)− 2r2(K0) = r1(K) + 2r2(K),

so −2r2(K0) = r1(K) and both numbers r1 and r2 are non-negative, hence must both be
zero. So from (1) one obtains r2(K) = r1(K0). Finally we have K0 with only real embeddings
and K a purely imaginary degree two extension of K0, i.e. K is a CM field.
Reciprocally, if K is a CM field, let K0 be its maximal totally real subfield. Then we will
show below that any base of UK0 modulo {±1} lifts to a base of a subgroup of index 1 or 2
in UK modulo roots of unity, hence the ranks are equal, which implies rK = r0.
Take a unit ε in K. One will denote by a bar the complex conjugation from K/K0. Consider
ε̄/ε. It is also a unit and its image by any of the complex embeddings of K is of module 1. As
a unit, it is also an algebraic integer. Hence just by using the definition of the height of an
algebraic number, one has h(ε̄/ε) = 0. By a theorem of Kronecker, one obtains that ε̄/ε is a
root of unity in K. Let us denote by µK the set of roots of unity of K. Writing εε̄ = ε2 ε̄

ε ∈ K0,
one obtains that up to a torsion element, ε2 ∈ K0. Moreover if ε̄/ε = ζ2 where ζ ∈ µK , then
ε̄ζ−1 = εζ, so εζ = ±εζ. Hence the mapping ε 7→ ε̄/ε is an injection

UK/µKUK0 ↪→ µK/µ
2
K ,

so the index of UK modulo torsion over UK0 modulo torsion is bounded by 2. Now if ε1, . . . , εr
is a basis of UK0 modulo K0-roots of unity, it will lift to a basis of a subgroup of index 1 or 2 of
UK modulo K-roots of unity. In the determinant defining the regulator given in Definition 2.1
all embeddings are real for K0, hence di = 1 for all i ∈ {1, . . . , r0}, whereas all embeddings
are complex for K, hence di = 2 for all i ∈ {1, . . . , rK}. Now as r0 = rK we get the result by
applying Lemma 4.15 page 41 of [Wash97]. �

One finds the comparison of regulators in [Wash97] page 41, with the (r1 + r2−1)2-matrix to
define the regulator (loc.cit. same page). The second part of the proof here essentially follows
his strategy.
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Remark 3.8. — Proposition 3.7 shows that the regulator of a CM field is bounded in terms
of its maximal totally real subfield, hence one cannot expect to obtain RK � log |DK | in that
case, because |DK | may not be bounded. Take for instance a family of quadratic imaginary
extensions of Q, then |DK | tends to infinity but RK is bounded.

We thus obtain the following proof of Theorem 1.1. In a nutshell: the regulator verifies a
Northcott property on the collection of all non-CM fields.

Proof. — Let us take a family of non-CM number fields K with bounded regulator. Then
using Theorem 3.3 one has that the degree d is bounded. Moreover using Theorem 3.6 and the
fact that rK−r0 6= 0 by Proposition 3.7, then the discriminant is also bounded because we have
just seen that the degree d is bounded. This gives finiteness by Hermite’s Theorem 3.1. �

If one needs an asymptotic result concerning the discriminant and the regulator of number
fields, let us also quote the classical Brauer-Siegel theorem.

Theorem 3.9. — (Brauer-Siegel) Consider a family of number fields K of bounded degree
and let hK denote the class number of K. Then as |DK | tends to infinity, one has for any
ε > 0 the inequalities

|DK |1/2−ε � hKRK � |DK |1/2+ε.

If the reader is interested in a comparison between this theorem and the behavior of some
invariants of abelian varieties, a detailed study is accessible in [Hin07].

4. Elliptic curves

We give in this section a lower bound of the differential height by the norm of the product
of the bad reduction primes in the semi-stable case, then we obtain the result in the general
case, hence deriving a proof of Theorem 1.3. This implies an upper bound on the Mordell-Weil
rank of elliptic curves over number fields in terms of the differential height. Using this and the
Lang-Silverman conjecture, we obtain a proof of Theorem 4.8, which implies Theorem 1.2.

4.1. Bad reduction primes. —Our aim in this paragraph is to compare the height of E
and the norm of the product of the bad reduction primes of E over the base field K. We
will first prove the inequality in the semi-stable case and then derive it in general using some
base change properties in the next paragraph. The following proposition gives the result in
the semi-stable case.

Proposition 4.1. — Let E/K be a semi-stable elliptic curve defined over a number field K
of degree d. Then

hF+(E/K) ≥ 1
12d logN0

E/K .

Proof. — One has the exact formula from Theorem 2.5

hF+(E/K) = 1
12d

logNK/Q(∆E)−
∑

v∈M∞
K

dv log
(
|∆(τv)|(2 Im τv)6

) ,
where ∆E is the minimal discriminant of the curve, one may choose τv a period in the
fundamental domain such that E(K̄v) ' C/Z + τvZ and ∆(τv) = q

∏+∞
n=1(1 − qn)24 is the
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modular discriminant, with q = exp(2πiτv). A direct analytic estimate using Im τv ≥
√

3/2
provides us with

+∞∑
n=1

log |1− e2iπτvn| ≤
+∞∑
n=1

log(1 + e−
√

3πn) ≤ 0.005

hence

−2π Im τv + 24
+∞∑
n=1

log |1− e2iπτvn|+ 6 log(2 Im τv) ≤ 0,

hence − log(|∆(τv)|(2 Im τv)6) ≥ 0 and

(3) hF+(E/K) ≥ 1
12d logNK/Q(∆E) ≥ 1

12d logN0
E/K ,

because the bad reduction primes divide the discriminant. �

4.2. Reducing to the semi-stable case. —We explain in this section how to use base
change properties to jump from the semi-stable case to the general case. We will use the
following definition.

Definition 4.2. — Let E be an elliptic curve defined over a discrete valuation field Kp and
let K ′p′ be a finite extension of Kp where E has semi-stable reduction, with ramification index
eK′

p′/Kp
, where p′ is a prime above p, and ωE/Kp

the sheaf of differentials. Let

c(E) = 1
eK′

p′/Kp

lengthOK′
p′

Γ(Spec(OKp), ωE/Kp
)⊗OK′

p′

Γ(Spec(OK′
p′

), ωE/K′
p′

) ,

where Γ(., .) stands for global sections. For any prime p in OK , we define the local base change
conductor at p by setting c(E, p) = c(EKp).

This conductor was defined by Chai in [Cha00]. It verifies the two following key properties.

Proposition 4.3. — Let E be an elliptic curve defined over a discrete valuation field Kp

and let K ′p′ be a finite extension of Kp where E has semi-stable reduction with base change
conductor c(E, p). Then

1. one has c(E, p) = 0 if and only if E/Kp has semi-stable reduction,

2. if c(E, p) 6= 0, then c(E, p) ≥ 1/[K ′p′ : Kp].

Proof. — To show the first point, let us start by assuming that E/Kp has semi-stable re-
duction. Then if one denotes by E0

OKp
the identity component of the Néron model of E over

Kp one has E0
OKp
⊗OK′

p′
' E0

OK′
p′

by Corollaire 3.3 page 348 of SGA 7.1 [SGA72], hence the

differentials are the same and c(E, p) = 0.
Reciprocally, one still has a map Φ : E0

OKp
⊗ OK′

p′
→ E0

OK′
p′

by the Néron property. As

c(E, p) = 0, the Lie algebras are the same and as Φ is an isomorphism on the generic fibers,
Φ is birational. On the special fiber, Φ has finite kernel and is thus surjective because the
dimensions are equal, here again because c(E, p) = 0.
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Overall, Φ is quasi-finite and birational. As EO′
K′

p

is normal, by Zariski’s Main Theorem found

in Corollary 4.6 page 152 of [Liu02], Φ is an open immersion. Hence Φ is surjective and an
open immersion, hence an isomorphism. This implies that E/Kp is semi-abelian.
For the second point, as the length is non zero it must be at least one and we may upper
bound eK′

p′/Kp
≤ [K ′p′ : Kp]. �

Let Uns denote the set of unstable primes of E over K. Let K ′ be a number field extension
of K over which E has semi-stable reduction everywhere. One then has

(4) hF+(E/K ′)− hF+(E/K) = − 1
[K ′ : K]

∑
p∈Uns

c(E, p) logNK/Q(p).

Proposition 4.4. — Let K a number field of degree d. For any elliptic curve (not necessarily
semi-stable) E defined over K one has

hF+(E/K) ≥ 1
128d

logN0
E/K .

Proof. — Let N st
E/K be the product of the norms of primes with semi-stable bad reduction.

Let Nuns
E/K be the product of the norms of primes with unstable bad reduction. By definition

one has N0
E/K = N st

E/KN
uns
E/K . Let K ′ be a number field extension of K such that E acquires

semi-stable reduction everywhere over K ′. Using equality (4), one gets

hF+(E/K) ≥ hF+(E/K ′) + 1
[K ′ : K]2 logNuns

E/K .

As E/K ′ has semi-stable reduction everywhere, one gets by Proposition 4.1 that

hF+(E/K ′) ≥ 1
12d′ logN st

E/K′ .

Recall (use Theorem 6.2 page 413 of [SiZa95] or [Se72] page 294) that one may choose
K ′ = K[E[12]], hence the degree d′ = [K ′ : Q] is controlled by the degree d = [K : Q] in the
following way: use Lemme 4.7 of [GaRé14b] to get [K ′ : K] ≤ 124, hence d′ ≤ 124d. Now by
definition N st

E/K′ = N st
E/K

[K′:K] and so putting everything together it gives

hF+(E/K) ≥ 1
125d

logN st
E/K + 1

128 logNuns
E/K ≥

1
128d

logN0
E/K .

�

We obtain a proof of Theorem 1.3 as a consequence of Proposition 4.4 in the following way.

Proof. — Apply Proposition 4.4 to get

(5) hF+(E/K) ≥ 1
128d

logN0
E/K

and apply the Matrix Lemma of Autissier’s [Aut13] in his simplified version to the polarized
elliptic curve (E,L). For any ε ∈ ]0, 1[ Autissier gives (note that 2π2 disappeared with the
non-negative normalization, and that g = 1):

hF+(E/K) + 1
2 log 1

ε
≥ (1− ε)π

6d
∑

v∈M∞
K

dvρ(Ev, Lv)−2.
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Choose ε = 1− 3
π to get

(6) 2hF+(E/K) + log π

π − 3 ≥
1
d

∑
v∈M∞

K

dvρ(Ev, Lv)−2.

Then sum the two inequalities (5) and (6). �

4.3. Regulator. —We start this paragraph by recalling the original conjecture of Lang-
Silverman in dimension 1 (Conjecture 9.9 of [Si86] page 233, see also [Si84b] page 396 for a
generalized version by Silverman for abelian varieties, originally the conjecture was a question
of Lang about elliptic curves).

Conjecture 4.5. — (Lang-Silverman) For any number field K, there exists a positive con-
stant c4 = c4(K) such that for any elliptic curve E/K, for any point P ∈ A(K), if Z·P is
Zariski dense one has

ĥ(P ) ≥ c4 max
{
hF+(E/K), 1

}
,

where ĥ(.) = ĥE,L(.) is the Néron-Tate height associated to L = 3(O) and hF+(E/K) is the
(relative) differential height of the elliptic curve E/K.

As E is simple, the Zariski density of Z·P is equivalent to P being a non-torsion point.

Remark 4.6. — In the article [HiSi88], Hindry and Silverman show that the conjecture
is true for a large class of elliptic curves (namely, with bounded Szpiro quotient). They
furthermore show that the ABC conjecture implies the Lang-Silverman conjecture for elliptic
curves.

Firstly let us show (unconditionally) that the Mordell-Weil rankmK is bounded by the height
hF+(E/K).

Lemma 4.7. — Let E be an elliptic curve defined over a number field K. Let mK be the
rank of E(K). There exists a constant c5 = c5(K) > 0 such that

mK ≤ c5 max{1, hF+(E/K)},
and one may take c5 = (22638 + 28 log 16)d3 + 28d log |∆K/Q|.

Proof. — We will use as a pivot the quantity N0
E/K defined as the product of the norms of

the bad reduction primes of the elliptic curve E over K. Applying Theorem 5.1 of [Rém10]
page 775, there exists constants c6 = c6(K) > 0 and c7 = c7(K) ≥ 0 such that mK ≤
c6(K) logN0

E/K + c7(K). The constants are given explicitly and depend on the degree and
the discriminant of the base field here. We may take the slightly bigger explicit constants
c6(K) = d2212 and c7(K) = d28(log |∆K/Q| + d2 log 16). This last inequality doesn’t require
semi-stability of E. Applying Proposition 4.4 of the present text one obtains logN0

E/K ≤
c8(K) max{hF+(E/K), 1}, also valid in general with c8(K) = 128d. One concludes by

mK ≤ c6(K) logN0
E/K + c7(K) ≤ c6(K)c8(K) max{hF+(E/K), 1}+ c7(K),

hence
mK ≤ (c6(K)c8(K) + c7(K)) max{hF+(E/K), 1},

and so c5 = 128212d3 +28d(log |∆K/Q|+d2 log 16) = (22638 +28 log 16)d3 +28d log |∆K/Q|. �
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Theorem 4.8. — Assume the Lang-Silverman Conjecture 4.5. Let K be a number field.
There exists a constant c10 = c10(K) > 0 such that for any elliptic curve E defined over K,

Reg(E/K) ≥
(
c10 max{hF+(E/K), 1}

)mK/2
.

Thus the set of elliptic curves defined over a fixed number field K such that E(K) is Zariski
dense and with bounded regulator is finite (up to isomorphisms).

Proof. — For the duration of the proof, let us denote h = max{hF+(E/K), 1}. The inequality
is trivial for mK = 0 because in that case the regulator is 1. From now on, let us assume
mK 6= 0. Let L = 3(O) and let ĥ = ĥE,L be the associated canonical height on E and
consider the euclidean space (E(K)⊗R, ĥ) ' (RmK , ĥ). Apply Minkowski’s successive minima
inequality to the Mordell-Weil lattice ΛK = E(K)/E(K)tors viewed as a lattice inside this
euclidean space,

λ1(ΛK) · · ·λmK (ΛK) ≤ mmK/2
K Reg(E/K).

Now apply mK times the inequality of Conjecture 4.5 to get

(7) Reg(E/K) ≥ cmK4 hmK

m
mK/2
K

,

then applying Lemma 4.7 one obtains

(8)
√
mK ≤

√
c5
√
h.

Hence we have in (7)

Reg(E/K) ≥
(
c4c
−1/2
5
√
h
)mK

.

Finally, if the regulator is bounded then the height is bounded as soon as mK 6= 0, hence the
claimed finiteness. �

Remark 4.9. — If the rank mK is zero, then the regulator Reg(E/K) is 1, so the inequality
of Theorem 4.8 is optimal in this respect. If one takes for instance the family of curves Ep over
Q defined by the affine model y2 = x3 +p2, where p is a prime congruent to 5 modulo 9, then
rankQ(Ep) is zero by [CoPa09] page 399 and hF+(Ep/Q)� log p. The situation is then similar
to the CM-fields case as described in the Remark 3.8. One cannot expect the height to be
upper bounded for rank zero elliptic curves, even if the regulator is upper bounded for trivial
reasons. Then when the rank is non-zero we have two cases. If the Mordell-Weil rank mK is
one the inequality is exactly Lang-Silverman’s. If mK ≥ 2 the inequality of Theorem 4.8 is a
priori weaker than the Lang-Silverman conjecture.

We thus obtain Theorem 1.2 as a corollary which may be expressed in other words by: the
Lang-Silverman conjecture implies that the regulator Reg(E/K) verifies a Northcott property
on the set of elliptic curves E defined over a fixed number field K with E(K) Zariski dense.
This would be the elliptic curve counterpart to Theorem 1.1.
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5. Conclusion

Starting from the comparison of the residue theorem for the Dedekind zeta function and the
strong form of the conjecture of Birch and Swinnerton-Dyer, one gets a way to put number
fields invariants and abelian varieties invariants in link. Studying furthermore the Brauer-
Siegel theorem for number fields, Hindry gives in [Hin07] a conjectural equivalent in the
case of abelian varieties. He then comes with a dictionary linking the invariants. Based on
the previous inequalities, let us now add three lines to the (slightly reformulated) dictionary
of [Hin07]. Note that we only focus on the case of elliptic curves here.

Number fieldK Elliptic curveE/K

zeta function ζK(s) ↔ L(E, s) L function
log of discriminant log |DK | ↔ hF+(E) Faltings height
regulator RK ↔ Reg(E/K) regulator
class number hK ↔ |X(E/K)| Tate− Shafarevitch group
torsion (UK)tors ↔ (E × Ê)(K)tors torsion of E and dual Ê

degree d ↔ g dimension
CM field rK = r0 ↔ mK = 0 E(K) non Zariski dense
non− CM field rK > r0 ↔ mK > 0 E(K) Zariski dense
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