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RANKS OF QUADRATIC TWISTS OF ELLIPTIC CURVES

by

Mark Watkins, Stephen Donnelly, Noam D. Elkies, Tom Fisher, Andrew Granville
and Nicholas F. Rogers

Abstract. — We report on a large-scale project to investigate the ranks of elliptic curves in
a quadratic twist family, focussing on the congruent number curve. Our methods to exclude
candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil
explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists
are reasonably common (though still quite difficult to find), while rank 7 twists seem much
more rare. We also describe our inability to find a rank 8 twist, and discuss how our results here
compare to some predictions of rank growth vis-à-vis conductor. Finally we explicate a heuristic
of Granville, which when interpreted judiciously could predict that 7 is indeed the maximal rank
in this quadratic twist family.

Résumé. — Nous donnons un compte rendu d’un projet de grande envergure sur les rangs des
courbes elliptiques dans une famille de tordues quadratiques en nous focalisant sur les courbes
associées aux nombres congruents. Afin d’exclure certaines courbes, nos méthodes incluent des
tests sur les 2,4,8-groupes de Selmer, l’utilisation de la formule explicite de Guinand-Weil et
également des 3-descentes dans quelques cas. Nous constatons que les tordues quadratiques de
rang 6 sont assez répandues (bien que toujours assez difficile à trouver), alors que celles de
rang 7 semblent bien plus rares. Nous décrivons aussi notre incapacité à obtenir des tordues
quadratiques de rang 8 et expliquons en quoi nos résultats peuvent se comparer à certaines
prédictions sur la croissance du rang en fonction du conducteur. Enfin, nous expliquons une
heuristique due à Granville, qui, lorsqu’elle est interprétée judicieusement, pourrait prédire que
le rang maximal pour cette famille est en effet égal à 7.

1. Introduction

Let E : y2 = x3−x be the congruent number curve, so that d is a congruent number precisely
when the dth quadratic twist Ed : dy2 = x3−x has positive rank. We are interested in how the
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64 Ranks of quadratic twists of elliptic curves

rank behaves as d varies. More generally, we could fix a different elliptic curve y2 = x3+ax+b,
and enquire about its quadratic twists.
Honda [26, §4, p. 98] conjectures the rank is bounded1 in any such family, basing this on an
analogy [26, Theorems 5-6] between Mordell-Weil groups of abelian varieties and Dirichlet’s
unit theorem. Schneiders and Zimmer [53] presented some preliminary evidence for Honda’s
conjecture back in 1989, though it seems that modern thought has preferred to intuit that
ranks are unbounded in quadratic twist families, partially relying on function field analogues
such as in [55] and [56].2
In this paper, we give some experimental data regarding quadratic twists of rank 6-8 for the
congruent number curve. In particular, we find “lots” of rank 6 examples (over 1000), while
we know of no rank 8 example. A number of rank 7 examples are also given (27 currently).
We also explicate a heuristic of Granville that might lead one to suspect that rank 7 is the
maximal rank in this family.

1.1. Acknowledgements. — Some of our computations catalogued below were done on
sage.math.washington.edu (and associated machines) acquired under National Science
Foundation (USA) Grant No. DMS-0821725. We thank W. A. Stein for the use of this.
We thank K. Rubin and A. Silverberg for feedback, and M. O. Rubinstein for noting some
errors in a previous version. W. B. Hart assisted with a couple of issues in coding, while
A. R. Booker and M. O. Rubinstein were instrumental in convincing us that the explicit
formula (§7) could be usefully applied to our situation. The anonymous referee also provided
us with a thorough reading and helpful comments.
This paper is written from the standpoint of the primary author (Watkins), who might better
be termed the “project manager” for some aspects of the research. Indeed, the paper has taken
a much different route than might have been guessed following the initial data accumulations
in 2008. The primary author apologises for the delay in publication — however, the topic of
ranks seems to be of sufficient interest to merit the additional computational time that was
needed. Similarly, the somewhat lengthy descriptions of elements which could be considered
tangential (such as Mestre-Nagao sums) seems warranted as guidance to future investigators.

2. Outline of experimental methodology

In this section we give a general outline of our experimental methods, and then give details
in the following sections. Our goal was typically to find quadratic twists of the congruent
number curve whose rank was at least as large as a target rank r. In some cases we also
wished to be able to give an upper bound on the rank for some given collection of twists,

1The conjecture as printed appears to contain a typographical error, as it asserts an equality for the rank
rather than an upper bound.
2We are indebted to F. Rodriguez Villegas for indicating to us that Néron, in a 1950 footnote in Poincaré’s
collected works [42, III, p. 495, Footnote 3], stated that it was considered “probable” there was a universal
upper bound for ranks of elliptic curves over Q (not just in quadratic twist families): On ignore s’il existe
pour toutes les cubiques rationnelles, appartenant à un corps donné une borne absolute du rang. L’existence
de cette borne est cependant considérée comme probable.
One can contrast the abstract of [35] (Mestre, 1982): Au vu de cette méthode, il semble que l’on puisse
sérieusement conjecturer que le rang des courbes elliptiques définies sur Q n’est pas borné. [This method
seems to suggest that the rank of elliptic curves defined over Q is not bounded.]
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M. Watkins and S. Donnelly and N. D. Elkies and T. Fisher and A. Granville and N. F. Rogers 65

particularly to say that the ranks were less than r. Here is an enumeration of the methods
we used.

– Generate prospective quadratic twists of large rank. We used two principal techniques
here. The first (chronologically in our experiments) was to adapt the method used by
Rogers in [46] (see §3.1 for more history), corresponding to a rank 1 parametrisation of
elliptic curves. This method allows us to find a high-rank twist provided it has a point of
small height.
The second method was a nearly exhaustive search of twists up to a given d-bound. Here
we used Monsky matrices (see §4) and variants thereof due to Rogers, so as to efficiently
bound the possible rank from 2-Selmer information.
Finally, in §3.2 we discuss whether a higher rank parametrisation could be of use, and
in §3.3 we give a lattice-based method to find twists.

– Bound the 2-Selmer rank via a Monsky matrix computation (using linear algebra over
F2). We also used variants of Monsky’s formula (derived by Rogers, see §4) applicable to
isogenous curves.

– Apply a Mestre-Nagao heuristic (§5), ignoring curves (for instance) for which the average
ap-value for p ≤ 105 indicated that large rank was not too likely. This step is largely
heuristic, and essentially says that curves with “many” local points (on average) are
more likely to have large rank.

– Bound the 4-Selmer rank (on all the isogenous curves) via the Cassels-Tate pairing (§6),
as implemented in Magma by Donnelly.

– Bound the 8-Selmer rank via higher descent pairings due to Fisher (§6.1), again imple-
mented in Magma. These rely on the rationality of the 2-torsion.

– Apply the (Guinand-Weil) explicit formula to attempt to bound the analytic rank upon
assuming a suitable Riemann hypothesis (§7).

Usually we would also search for points at some stage, typically after the number of curves
was suitably reduced, for instance after the Cassels-Tate pairing was applied. Due to the
experimental nature of our work, we were willing to assume a parity conjecture, that is, we
would accept a curve with (r − 1) independent points as being rank r if this was implied
by parity. We typically only searched on 2-covers (including isogenous curves), but for a few
curves Fisher computed 4-covers (extending methods of Bremner and Cassels [6], see [21,
§5]), and searched on those (see §9.1).3

3. Generating prospective twists

We now give more details about our methods for generating prospective high-rank quadratic
twists of the congruent number curve. The first method parametrises curves by a point of
“small” height u/v, with d = uv(u + v)(u − v). We then comment on parametrisations
3Indeed, for 150 of our 1486 putative rank 6 curves we still only know 5 independent points, and hope to
remedy this via a more large-scale usage of 4-covers in the near future. (Added in proof: This is now done.)
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66 Ranks of quadratic twists of elliptic curves

by multiple small points, and give a lattice-based method that loops over square divisors
of uv(u+ v)(u− v) rather than u and v. Finally, in §4 we present a method of Rogers (from
his 2004 thesis) that gives a near exhaustive method of finding high-rank quadratic twists
with d up to a given bound.

3.1. Parametrisation via a point of small height. —We review the “standard” method
to find high rank quadratic twists of a given elliptic curve. This is given in [46], with Rogers
noting that Rubin and Silverberg suggested this algorithm following the ideas of [48], who in
turn note that one of the principal observations dates back to Gouvêa and Mazur [22]. Letting
E : y2 = f(x) be the given elliptic curve, any rational number x = u/v is the x-coordinate
for exactly one of the twists Ed : dy2 = f(x), namely when d = f(u/v), and here we can
reduce the problem by taking the square-free part of d. Alternatively, we can homogenise the
equation to note that for f(x) = x3 +ax+b we have f(u/v) = (1/v3)(u3 +auv2 +bv3), and are
thus interested in the square-free part of v(u3 + auv2 + bv3) for a given u/v. In analogy with
more general attempts to find high-rank curves, we might hope that d-values that appear for
“many” small-height points u/v will be more likely to have large rank.
The main step in finding the d-values involves computing the square-free part of the special-
isation of a binary quartic form. This is done most easily when the quartic splits completely,
which is the case of full 2-torsion for the elliptic curve.
3.1.1. The case of the congruent number curve. — For the particular case of the congruent
number curve given in the introduction, we have f(x) = x3 − x so that v4f(u/v) = uv(u −
v)(u + v), and we can note that if u and v are coprime and not both odd, then the four
terms on the right side are all pairwise coprime. This implies that we need only compute the
square-free part of each term individually, which is most conveniently done by pre-computed
table lookup. We also note that for the congruent number curve we can restrict to u > v > 0
and to u, v of opposite parity, both of these due to the 2-torsion.4
The method of computation then proceeds by looping over 1 ≤ v < u ≤ L up to some limit L,
and for each u/v computing the associated d-value as indicated above. It is at this point that
the methods that are used tend to vary. Rogers [46] used a hash table of the d that are found
(to find d’s given by multiple u/v), and also some requirements related to the 2-Selmer group,
such as demanding that d have sufficiently many prime factors (possibly of a certain size).
The searches in [46] reached L = 105. Rogers also used alternative methods to find high rank
twists (including three of rank 7), such as full 2-descent on all the isogenous curves as a filter
for which d to consider (see §4.3).
Dujella, Janfada, and Salami [14] appear to first compute the 2-Selmer rank via a formula of
Monsky [25, Appendix], and then use Mestre-Nagao heuristics (see §5) to select which curves
to investigate further. They work additionally with the 2-isogenous twist dy2 = x3 + 4x
corresponding to the quartic form uv(u2 + v2)/2 from x = 2u/v; as the quadratic term here
does not factor, this limits their possible range of (u, v) and indeed they take L = 105.
We chose to use only the congruent number curve in the u/v stage. We first computed the
2-Selmer rank via Monsky’s formula (via linear algebra over F2, which is quite fast), and then
filtered via Mestre-Nagao sums. However, we later used code from Rogers that computes the
2-Selmer rank of the isogenous curves again via linear algebra over F2, using a variant of
Monsky’s formula and quadratic reciprocity in the Euclidean rings Z[

√
−1] and Z[

√
2]. This

4Namely, translation by (0, 0) gives (u : v)→ (v : −u); by (1, 0) yields (u : v)→ (u+ v : u− v).
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allowed us to eliminate approximately 90% more curves before computing Mestre-Nagao
sums. Note these formulæ require us to factor d, which is again feasible via table-lookup in
our case. We do not use a hash table of popular d-values as Rogers did; rather, having one
(u, v) point is enough for us to pass the resulting d to the Selmer machinery. We searched
up to L = 108 in some cases, with the caveat that we ignored curves for which d was rather
large. More information appears below in §8
The 2-Selmer machinery was able to process about 105 twists per core-second. In particular,
in our L = 107 experiment we computed about 2

π2 1014 such Selmer groups, taking about 6-7
core-years. With the L = 108 experiments, many d-values were pruned due to exceeding our
size restriction, but a similar number of Selmer group tests seem to have been applied (we
do not have an exact accounting).
3.1.2. Previous computations and records. — In November 2003, Rogers [47, p.45] found that
d = 797507543735 yields Ed of rank 7. He found this rank 7 curve via testing all possible d
(up to some bound) that allowed rank 7 from the 2-descent information [47, §4.4]. Rogers
also found 14 quadratic twists of rank 6, listed in [14]. The work of Dujella, Janfada, and
Salami [14] determined about 25 more such rank 6 quadratic twists.
The twist d = 797507543735 is first found via the (u, v)-searching method with (v, u) =
(79873, 235280), taking less than a core-hour to find.5 The first rank 6 twist is d = 6611719866
and for rank 5 it is d = 48242239. The purported growth rate for the first rank r twist is
obscure, but one suggestion has been along the lines of 2r2 . The principal rationale here is
that (perhaps from L-function considerations) the rank might be roughly as large as

√
log d,

with the speculation then being phrased in a simple form (though see Footnote 32, and
compare [20]). However, alternative schools of thought (e.g., descent bounds or function field
analogues [56], or rank bounds under a Riemann hypothesis [7, 36]) suggest the rank might
be as large as log d

log log d . The numerics are conflated by the fact that the smallest d of rank 7 is
rather small (perhaps abnormally so), for the second smallest d is more than 2500 times as
large. In particular, an estimate of 282

/272 ≈ 30000 might be quite low for the rank 8 versus
rank 7 ratio. In §10 we discuss more fully our thoughts on whether our computer searches
should have found a rank 8 twist if one exists.

3.2. Searching in larger rank families. —Another search method could be to restrict
to d which are in a parametrised family with larger rank, for instance the rank 3 family
6(u12 − 33u8 − 33u4 + 1)y2 = x3 − x given in [49, Theorem 4.5]. However, the degree 12
polynomial has 2 quartic factors, making it difficult to accumulate data.
Instead, as proposed by Elkies, we tested a couple of rank 2 families. The first (I) equates y-
values, solving s3− s = t3− t via (s, t) =

(
− 2w+1
w2+w+1 ,

1−w2

w2+w+1
)
, obtaining (s3− s)y2 = x3−x,

or w(w + 1)(w − 1)(w + 2)(2w + 1)(w2 + w + 1)y2 = x3 − x. Writing w = m/n, via the
symmetries of the homogeneous octic polynomial in m and n, we can restrict to m,n that are
not congruent modulo 3. The second (II) takes x = w2+2

w2−1 as one point, and then x + 1 also
yields a point on dy2 = x3 − x where d = 3(w + 1)(w − 1)(w2 + 2)(2w2 + 1) here.6 For both

5There are two rank 7 twists with smaller u, found in Table 5 of §9.2.1 below. However, to find the first d this
fast, one filters out larger d (say d > 250), greatly reducing the number of Selmer tests.
6When w2 + 1 is square, upon writing w = (u2 − 1)/2u we recover the above rank 3 family, and there is a
third (independent) small point with x-coordinate −(w2 + 2)/(2w2 + 1).
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68 Ranks of quadratic twists of elliptic curves

families, for the purposes of comparison, we considered w up to height 104, which meant only
minor modifications to our factoring tables.7
One goal of this experiment (or “pilot test”) was to see how many rank 6 curves are found
up to height 104 – if the number does not exceed the total from the rank 1 family, it is
probably not worth trying to find a rank 8 example in these families.8 However, there are
various problems with a direct comparison. Consider Family I, where the d-values now have
7 factors (six, plus one more for projectivisation) in their polynomial factorisation, compared
to 4 previously. This means that the Selmer ranks are likely to be higher, and thus X tends
to abound. The d-values also now come from a polynomial of degree 8, rather than one
of degree 4, and will thus typically be much larger. This implies that searching for points
on 2-covers of the surviving curves is much less likely to actually find anything, for the
regulators will typically also be larger. Furthermore, the existence of another point of small
height means that the other generators will tend to have larger height, again diminishing the
expected returns from point searching. Finally, the larger d implies larger conductor, which
makes the explicit formula computations (see §7) less valuable. The situation is slightly better
with Family II, though similar concerns might apply.
We give the results of the comparisons in Section §12.1 below.

3.3. A variant search method. —A second search method, suggested and implemented
by Elkies9 (with further implementations by Hart/Watkins), parametrises the square divisors
of uv(u+ v)(u− v) via

d2
1|u, d2

2|v, d2
3|(u+ v), d2

4|(u− v),

and then loops over pairwise coprime (d1, d2, d3, d4), looking for short vectors in the (u, v)
lattice. The lattice has determinant D2 =

∏
i d

2
i , which gives a measure of what size of (u, v)

to expect. One restricts (say) to 5 ≤ di ≤ 400 and H1 ≤ d1d2d3d4 ≤ H2 for parameters such
as H1 ≈ 106, H2 ≈ 108, the lower bounds being imposed to preclude the “trivial” cases from
swamping the calculation.10
For instance, the 4-tuple (16, 167, 9, 389) yields d = 797507543735 (the first rank 7 twist)
from the pair (u, v) = (3764480, 2705233). The time taken to find this is comparable to
the method of §3.1.1; an exact analysis depends upon various cut-off ranges that one uses.
There is a (minor) side issue, in that if (u, v) is sufficiently small then the point was already
considered via the previous searches, while otherwise computing the square-reduced part (and
factorisation) via table lookup might not be feasible. We give some preliminary data about
this method in §12.2 below.

7For Family I, instead of factoring m2 + mn + n2, one could (say) loop over (a, b, c, d) up to some limit T ,
and generate (m,n) up to L from (a+ bζ3)(c+ dζ3) = (m+ nζ3), thus allowing factorisation by table on each
part of the LHS. One could also take T slightly larger than

√
L here, perhaps (L, T ) = (107, 104) would be

useful. Elkies notes that the use of lattice reduction should allow one to similarly loop over suitable factors of
the quadratics in Family II.
8As Bober remarks, one nice feature of the rank 1 parametrisation is that it contains all twists of positive
rank, while the corresponding statement for the other families is not true.
9The lattice displayed here is also given by Rubin and Silverberg in [50, §9].
10Indeed, trivially (d1, d2, d3, d4) = (1, 1, 1, 1) generates all (u, v), but the “short” vector enumeration for
lattices of such small determinant is typically infeasible.

Publications mathématiques de Besançon – 2014/2



M. Watkins and S. Donnelly and N. D. Elkies and T. Fisher and A. Granville and N. F. Rogers 69

3.3.1. Searching via restriction to (u, v) with large square divisors. — In the same vein, con-
sidering the parametrisation in §3.1.1, it might be noted that for L = 107 we would already
have d ≈ 1028 if we did not take the squarefree part. Indeed, in our table of rank 7 twists
(Table 5 in §9.2.1) we find the point (v, u) = (2202624, 98856259) with 22812|u and 962|v.
It thus might be feasible to enlarge the L-bound (in a heuristic sense) in conjunction with a
demand that uv/s(u)s(v) be of decent size (where here s(x) is the minimal positive integer
such that xs(x) is square).
The exact correspondence between this method and that given in the previous subsection has
not been fleshed out completely.

4. 2-Selmer ranks and Monsky matrices

As noted above, Rogers was able to derive Monsky-like matrices for the isogenous curves
of dy2 = x3 − x. We briefly recall the construction of Monsky [39], and then give the gen-
eralisation of Rogers. We then describe how to use the 2-Selmer information sequentially,
considering d as a product of primes and building up the matrices one prime at a time. The
effect that appending primes has on the 2-Selmer ranks can be bounded, which then gives a
lower bound on how many additional primes must be included if a target rank is to be met.

4.1. Monsky’s matrix. — Factor d =
∏
i pi into primes pi for d odd, and similarly with

d/2 =
∏
i pi for d even. Monsky defines a matrix A over F2 as follows. For i 6= j let Aij

be 0 or 1 according to whether
(pj
pi

)
= +1 or not. Then define Aii so that the row sums

are all zero. Define Du to be the diagonal matrix with entries given by 0 or 1 depending on
whether

(
u
pi

)
= +1 or not. Then the Monsky matrix M is given alternately for d odd or even

as
M =

(
A+D2 D2
D2 A+D−2

)
and M =

(
D2 A+D2

AT +D2 D−1

)
.

This is a square matrix of size 2w, where w is the number of odd prime factors of d. The
2-Selmer rank (modulo torsion) of Ed is the nullity of this matrix.

4.2. The variant of Rogers. — For the isogenous curve E′d : y2 = x3 + 4dx, Rogers uses
arithmetic over Z[

√
−1] to determine a matrix similar to Monsky’s. For d even, we factor

d =
∏
j qj into elements qj corresponding to prime ideals, where q1 = 2 and the other qj

are aj + bj
√
−1 with aj odd (so bj even), being either part of a conjugate pair, or simply

qj = aj > 0 for an inert prime. For i, j ≥ 2 define Rij for i 6= j to be 0 if qi and qj are either
conjugate or squares modulo each other, and 1 otherwise. For the prime above 2, define Rj1
to be 0 if the norm of qj is 1 mod 8 and 1 otherwise, and define R1j to be 1 if bj is ±2 and
0 otherwise. Finally, define R11 to be 0, and the other diagonal Rii entries to make the row
sums be 0. The 2-Selmer rank (modulo torsion) of E′d is then one less than the nullity of R.
For odd d, most of the Rogers matrix is the same, while the conditions at 2 need to be
modified. There are two cases with the latter, depending on whether d is ±1 modulo 8 or
not; both are sufficiently involved that we omit them here. Letting w be the number of odd
prime factors of d over Z[

√
−1], the Rogers matrix has size (w + 1) when d is even or ±3

modulo 8, and (w + 2) when d is ±1 modulo 8.
The other isogenous curves involve arithmetic over Z[

√
2]. Again the bulk of the matrix

involves quadratic residue symbols, with more complicated computations for the prime
√

2.
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70 Ranks of quadratic twists of elliptic curves

The case of conjugate qi and qj also differs, as one determines the matrix entry via considering
if
√

2 is a square modulo qi.
Rogers has implemented the above in both GP/PARI and C. We adapted the former into
our own C code. Via the use of parity, one finds a quite robust test for correctness, as the
computed 2-Selmer ranks (modulo torsion) of the isogenous curves should all have the same
parity.
The quadratic reciprocity law over Z[

√
−1] is rather simple for odd primes, for qi is a square

modulo qj only if qj is a square modulo qi. Additionally, inert primes are always squares
modulo each other, and squareness is preserved upon conjugating all the primes involved.
The latter two statements remain true for Z[

√
2].

4.3. Sifting for small d via 2-Selmer tests. —Rogers has used his variants of the Mon-
sky matrices as the basis of a method for finding small d which have large 2-Selmer rank for
all isogenous curves. Namely, one recurses over primes, noting the 2-Selmer rank (modulo
torsion) is determined from the nullity of a matrix, while the possible increase in nullity
from appending an additional prime can be computed by considering the choices of diagonal
elements, the other entries staying constant.11
Given a rank bound r, to reach a d-limit of D should be approximately linear in D, with the
constant depending essentially on the probability that a random F2-matrix of the prescribed
type has augmented nullity (that is, the nullity when considering all relevant choices of
diagonal elements) of at least (r − 2) + 1.
There is a minor issue about having a small core-product times one large prime, for instance
Rogers notes 20162 has augmented nullity 5 while for 723558 it is 6, which then allow12 ranks 6
and 7 respectively when appending one more prime (albeit with congruence conditions). There
are eventually many such core-products, so in our experiments we curtailed the size of this
final prime at 108. Comparatively, with the (u, v) searching method of §3 one knows that no
prime dividing d can exceed 2L.
Using these methods, Rogers was able to find the first three rank 7 examples, namely
797507543735, 2067037027955295, and 2210857604820494. We catalogue our results from this
method in §8.2 below.

5. Mestre-Nagao sums

There are various ways of forming a sum over small primes that heuristically correlates with
curves of large(r) rank. The typical underlying idea derives from the original form of the BSD
conjecture [2, (A)]. Namely, fixing an elliptic curve E of rank r and writing Np = p+1−ap for
the number of points of E/Fp (ignoring bad primes), we should have the asymptotic relation∏
p≤Y Np/p ∼ CE(log Y )r as Y →∞, for some constant CE depending on the elliptic curve E.

Then by taking logarithms and expanding in a power series we find∑
p≤Y

log
(
1− ap/p+ 1/p

)
∼ −

∑
p≤Y

(
ap − 1
p

+ (ap − 1)2

2p2

)
∼ r log log Y,

11See also [18, §4] which mentions a similar method for 3-descent on X3 + Y 3 = k.
12A prime can raise augmented nullity 5 to nullity 7, then subtract one for the 2-Selmer bound.
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and by analytic properties of the symmetric-square L-function we have that a2
p is p on average

(independent of whether the curve has complex multiplication), so this yields that ap is 1
2 − r

on average.13 There are historical reasons why L′

L (s) has been considered as opposed to L(s),
and thus more frequently the heuristics have been described with an extra weighting of log p.
In our experiments we followed this tradition largely out of inertia, though below (§5.2)
we give some consideration as to whether or not this weighting is the most useful for our
purposes.
Thus the sums we consider are more analogous to∑

p≤Y

ap
p

(log p) ∼ (1/2− r) log Y.

As a heuristic, these seem more useful when the conductor is “small” relative to the rank
(recall r . 1

2
logN

log logN under suitable hypotheses [7, §2.11]), as then the effect of ap being
significantly negative (particularly for small p) tends to be more pronounced.
Note that the standard deviation of the above sum should also be of size log Y (and thus the
“∼” symbol is not truly correct), as the variance should resemble14

∑
p≤Y

(
ap − (1/2− r)

)2
p2 (log p)2 ∼

∑
p≤Y

a2
p(log p)2

p2 ∼
∑
p≤Y

(log p)2

p
∼ 1

2(log Y )2.

But there is a secondary term here, and this very well might not be negligible for the Y we
use — for instance, we can recall an equivalent form of a related theorem of Mertens [34],
which states that

∑
p≤Y (log p)/p ∼ log Y − 1.33258 . . .

As Mestre-Nagao sums are written15 in terms of (2− ap), we thus might expect16∑
p≤Y

2− ap
p

(log p) ≈ (r + 3/2 + σ/
√

2) log Y,

where σ is a random Gaussian variable with mean 0 and deviation 1.
In particular, both r and σ are multiplied by log Y in this main term, so taking Y larger does
not have much impact. If we wanted to find a given rank 6 curve with probability 1− 1

30000 ,
thus corresponding to σ about −4, this would say that we might restrict to considering curves
with the above sum exceeding (15/2− 4/

√
2) log Y , though as above, secondary effects might

be apparent.
A typical choice of Nagao [40] is to consider∑

p≤Y

2− ap(E)
#E(Fp)

(log p) and/or − 1
Y

∑
p≤Y

ap(E) log p,

13We are indebted to M. O. Rubinstein who indicated a flaw in our earlier computation. The work of Nagao
[41, §3] contains the correct balance with 1/2. See [10] for the general context.
14This model for the ap is probably most useful when Y is sufficiently smaller than

√
N , else effects from

modularity of the L-function may play a part. When Y →∞, analysing the variance via the explicit formula
might be preferred, see Rubinstein’s method [51] noted in §5.2 below.
15The historical reason for this could derive from a possible typo, namely (p − 1) appears in the numerator
rather than (p+ 1) in [38], which thus lists the formula

∑
p

(
p−1

#E(Fp) − 1
)

log p.
16Here we switch to the ≈ notation rather than ∼. This is to indicate we are using a finite Y in our experiments,
but still largely ignoring the error in the asymptotic.
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where the denominator in the first can be re-written as p + 1 − ap. These appear to derive
from Mestre [35]. We used

Σ5 =
∑
p≤105

2− ap(E)
p+ 1 (log p).

It is unclear exactly what effect these minor modifications have.

5.1. Observations from obtained data. —We record here some data about Σ5 from
our experiments. For instance, in the first experiment below, we had almost 38 million curves
of even parity for which 2-descent allowed rank 6 (or more) on all isogenous curves. The
maximum Σ5 ≈ 70.429 was for d = 141486274882017786 of rank 2, and the first rank 6 curve
was 9th in the list at Σ5 ≈ 69.216, namely d = 718916589348840586. The top 1% of the data
(after imposing Σ5 ≥ 35 as we indicate below) went down to Σ5 ≈ 50.1, and contained about
1175 curves which survived the 4-descent test (there were about 35000 twists overall that
survived this test). Of these, after applying a strict d ≤ 260 bound, there were about 530
for which we found at least 5 independent points. The second percentile reached Σ5 ≈ 48.4,
and had about 600 curves that survived the 4-descent test, of which about 170 yielded at
least 5 independent points. The 50% percentile reached Σ5 ≈ 37.7, with 332 curves surviving
the 4-descent test. There were similarly almost 300 survivor curves in the last percentile,
so the number of 4-descent survivors does not decrease too much. However, the number of
rank 6 curves fell considerably, as the entire bottom half of the data produced only 18 curves
on which we found enough independent points (compared to 1243 for the top half). See also
the comments at the end of §9.1.3.

5.2. Variations of Mestre-Nagao heuristic. — Elkies notes that removing the weight-
ing by log p from Σ5, or indeed returning to the original BSD-weighting, has an advantage
asymptotically, as a rank increment is of size log log Y , while the deviation is only

√
log log Y .

Furthermore, the constant in the analogue of the Mertens theorem is now positive (approx-
imately 0.265) rather than negative. Both of these aspects help to increase the ratio of the
rank increment to the deviation, doing so not only asymptotically, but also for practical values
of Y (such as 105).
However, for practical Y this change also has the negative aspect that larger r will then induce
greater deviation, upon accounting a2

p more precisely in our computations as (ap−(1/2−r))2.
Our preference in using a Mestre-Nagao heuristic was to try to miss as few curves of rank 6 or
more as possible; while the modified heuristics proposed by Elkies might do better in reducing
false positives, the question of whether they miss more borderline curves is comparatively not
so clear.17

17Here is an analysis. Suppose we fix r = 6 as our target rank. As above, we propose the ratio of rank increment
to the deviation as a useful metric. For the congruent number twists, the rank increment seems best modelled
by
∑′

p
2/p (or multiplied by log p) where the sum is over primes up to Y that are 1 mod 4. So a rank increment

for Y = 105 is approximately 1.87 when considering just
∑

p
ap/p, and is about 9.30 when weighting by log p.

The deviation for the unweighted sum is modelled by
√∑

p

(
ap − (1/2− r)

)2
/p2, which is about 1.30 for

r = 0, 1, but then starts rising to 1.57, 2.05, 2.61, 3.22, and finally 3.85 for r = 6, so that a rank increment is
actually quite a lot less than a deviation for rank 6 curves. But with the log-weighted sum, the deviation only
changes from 7.78 for r = 0 to 9.14 for r = 6, still (slightly) less than a rank increment. Finally, the effect of
small primes dividing d would presumably also affect the log-less sum more than the log-weighted, which is
an aspect we ignored here.
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Unfortunately, it seems difficult to construct a relevant data set for comparison between these
heuristics without redoing much of our experiment. More specifically, we would typically be
looking for “borderline” curves that were eliminated by one heuristic but accepted by the
other, and then would need to determine which of these curves had rank 6. One might
only expect a handful of relevant curves to be produced (say 10 or 20), and the statistical
significance of the end result from such an experiment would probably be rather iffy.18

Another alternative method for a rank heuristic is to perform an integrated estimate via
the explicit formula. For instance, Rubinstein [51, (1.15)] reports the bias for various curves
in terms of such an integrated quantity. As we observe later (§7), the explicit formula can
actually be used to produce an upper bound on the (analytic) rank when assuming GRH,
but here we are more interested in heuristic aspects.
These methods are dependent on the choice of a test function, but (following [51]) upon
taking a suitable sum over primes up to X one essentially has an indicator I that is (r −
1/2) + 1

logX
∑
t

Xit

it(1+it) where the sum is over noncentral imaginary parts of zeros (assumed
to be on the central 1-line). With a prediction of 2π/ logN for the lowest height zero, the
secondary terms are of size logN

logX though admittedly with fairly reasonable constants. However,
in our experiments, we might have N = 32d2 ≈ 1037 and X ≈ 105, and thus (just as with
the Mestre-Nagao sums) we would likely have to sort through a lot of examples where the
estimation from I was higher than the actual rank. Below we shall indicate a case where we
had perhaps 109 rank 7 survivors (meaning here that they survived the 2-descent test) to
which we wished to apply a rank heuristic, and this obliged us to use one that was relatively
fast. As with the Mestre-Nagao heuristic, it seems this method should be more useful when
the rank is large compared to the conductor (or d).
A final idea is to produce (say) two independent statistical measures from non-overlapping
ranges of primes. For instance, one might take the primes up to 103 as a first cut-off, and then
the primes from 103 to 107 as another. However, the second such sum here must be taken quite
long if its deviation is to be (say) equal in size to a rank increment; with the above choices,
a rank increment is (7 − 3)(log 10) ≈ 9.2, while the deviation is

√
(log 10)2

2 (72 − 32) ≈ 10.3.
Again there are secondary terms, and in the end we concluded that all this was too much
work for a mere heuristic.

6. Use of the Cassels-Tate pairing and beyond

The 2-Selmer test, even when combined with a Mestre-Nagao heuristic, still leaves a large
number of curves that could attain the prescribed target rank. For the surviving curves we
used the Magma [5] implementation of the CasselsTatePairing due to Donnelly [13]. This
has the feature that it requires solving a conic only over the base field (whereas [8] demanded
nontrivial calculations in the 2-torsion field).
We have a pairing Sel2(E) × Sel2(E) → Z/2Z such that a 2-covering C ∈ Sel2(E) trivially
pairs with all C ′ if and only if C is in the image of Sel4(E)→ Sel2(E); so we obtain precisely
the same information as doing 4-descent on E. Thus by taking a basis of the 2-covers (after

18Comparing the heuristics on a smaller data set is not unreasonable, but could produce bias as the curves
with relatively small d for a given r tend to have more significant Mestre-Nagao sums, while as stated above,
we would be more interested in the borderline ones.
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removing 2-torsion), the 2-covers that lift to 4-covers are exactly those in the kernel of the
pairing matrix on such a basis.
Each call to CasselsTatePairing takes typically about 0.2 seconds19 (though it can depend
upon the size of d and the target rank), and in some cases computing the 2-covers themselves
is nontrivial. However, in the most common case where our target rank equals the 2-Selmer
rank modulo torsion, we need only find one nontrivial CTP result to conclude the rank is
smaller than the target. Note also that one can apply the CasselsTatePairing to each of
the isogenous curves.

6.1. Use of higher-descent pairings. —We are indebted to Fisher for the description
of these, and for running the Magma programmes that implement them. Given a 2-isogeny
φ : E → E′, Fisher computes the image of Sel4φ(E) → Selφ(E) and similarly for the dual
isogeny. This involves the solution of quadratic forms (over Q) of ranks 3 or 4, then the
computation of local points, minimisation and reduction steps, and finally linear algebra over
F2. See [21], which extends the method in [6].
For our congruent-number twists, there are three choices of 2-isogeny, thus giving three upper
bounds for the rank from the higher descents. Furthermore, Fisher has a similar pairing
corresponding to full 8-descent that is applicable when the curve has (as in our case) full
2-torsion. We do not have precise timings for these higher descents, but a typical example
might take 10 seconds for each 4φ-computation.

7. Bounding the analytic rank via the explicit formula

The use of the explicit formula to bound the analytic rank seems to be first described by
Mestre [36]. Other examples appear in [43] and [3].
Let F be even, continuous, and supported on [−1, 1], and write FS(x) = 1

SF (x/S). Define
F̂ (t) =

∫
eixtF (x) dx so that F̂S(x) = F̂ (Sx). The Guinand-Weil explicit formula [24, 59]

applied to an elliptic curve L-function (see [36, p.219]) then gives∑
γ

F̂ (Sγ) = FS(0) log N

4π2 − 2
∫ ∞

0

(
FS(x)
ex − 1 − FS(0)e

−x

x

)
dx

− 2
∑
pm

(αmp + βmp )FS(log pm) log p
pm

Here the γ-sum is over nontrivial zeros 1 + iγ (with multiplicity) of the L-function, N is the
conductor, and αp + βp = ap with αpβp = 0 if p|N else αpβp = p. When F̂ (0) = 1, as S →∞
the left side converges to the analytic rank (from the γ = 0 terms).
A basic principle of L-functions ([30], [9, §10.3]) is that we can approximate values (via the
functional equation) using O(

√
N) terms of the Dirichlet series. Here we hope to do better

than this, as we only want an upper bound on the analytic rank. If we choose F̂ to be
nonnegative on the critical line, then the evaluation of the right side for any S-value will
give an upper bound on the analytic rank (assuming GRH). The method does best when the
closest noncentral zeros are not too near to the central point, as then (heuristically) a smaller
S-value will suffice to make Sγn large enough so that the decay in F̂ dominates. One expects
19Some of this is implementation-dependent; the discriminant of an auxiliary conic has a factor that is the
size of the twisting parameter d, but this conic construction could be modified if needed.
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the (low-height) zeros to be spaced at about 2π/ logN , though elevated analytic rank might
tend to make the first noncentral zero a bit larger. We often found that taking eS ≈ N1/4 or
even as small as N1/6 or N1/8 would suffice to give a suitable rank bound.
The condition that F̂ be nonnegative can be recast as saying that it is the square of some
entire function, and so F is the self-convolution of some function supported on [−1/2, 1/2].20
We will normalise so that F̂ (0) = 1. We want F̂ to be concentrated as much as possible
around t = 0. For instance, we might want to minimise

∫
F̂ (t) dt = 2πF (0). Note that we

do not require that F itself be nonnegative, though this essentially follows from our other
conditions.
Mestre uses Odlyzko’s function F̂ (t) = π4(cos t/2)2/(t2− π2)2, though for us perhaps simply
F̂ (t) = (sin t/2)2/(t/2)2 is superior. Booker [4, §3] introduces a more complicated method,21
for instance taking

F̂ (t) = (sin t/2M)2

(t/2M)2

(M−1∑
k=0

ck cos kt

2M

)2

for some (large) integer M , where the ck are undetermined coefficients.22 Indeed, one gets
a quadratic form in the ck, which can be minimised subject to the condition that F̂ (0) =∑
k ck = 1.

Booker’s method can give a slightly sharper upper bound on the analytic rank, but usually
the gain is rather small (say 0.05). The point seems to be that the use of an interpolating
sum can quell contributions from zeros that are not too close to t = 0, but the uncertainty
principle precludes the method from sharply distinguishing zeros at t = 0 from those that are
close by. In the hardest examples, we expect that there are indeed such zeros that are fairly
near to the central point.
We implemented the above method (without Booker’s extension) for the function F (x) =
1 − |x| compactly supported on [−1, 1], that is, F̂ (t) = (sin t/2)2/(t/2)2. Our C-based im-
plementation could compute with S = 26 in about an hour. It does not spend much time
computing the ap, as this can be done quite efficiently for the congruent number curve via a
pre-computation which enumerates over a2 + 4b2 in annuli (rather than solving p = a2 + 4b2

for each p). The Kronecker symbol computations (for a given d) are nonnegligible though
not dominant, and similarly with the time spent by the memory-management subsystem in
looking up pre-computed ap values.
Booker’s method incurs some overhead regarding the bookkeeping with the quadratic form.
However, the additional computations with minimising the quadratic form are typically neg-
ligible, and indeed, in a case where the ap-computation dominates the running time, there
would be no reason (other than simplicity of implementation) not to use it.
As an illustrative example, we consider S = 18 for d = 32058375240488794. The upper bound
on the analytic rank from the direct method is 7.1379, while Booker’s method with M = 10
gives 7.0901 and increasing to M = 40 yields 7.0885, so it seems that we have essentially
reached the point of diminishing returns. The minimising vector ~c for M = 10 is given

20The Paley-Wiener theorem [44] reinterprets supp(F ) in terms of the exponential type of F̂ .
21Booker and Dwyer showed (see [3, Remark 1.2]) the Elkies curve [16] has analytic rank at most 28 (un-
der GRH) via this, but both Booker and Bober tell us the method of [3] suffices.
22He actually takes (sin t/4M)4/(t/4M)4 as the multiplier, as the contribution from trivial zeros is a bit
simpler (to write) when F (t) is continuously differentiable.
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approximately by
(0.02354, 0.18034, 0.03976, 0.18067, 0.03592, 0.17445, 0.03035, 0.16604, 0.01320, 0.15573).

In Figure 1, we plot F̂ (t) = (sin t/2)2/(t/2)2 versus the optimal B̂10(t) given by Booker’s
method for (M,S, d) = (10, 18, 32058375240488794), the former being the solid line. For
this d, with S = 27 the direct method gives a rank bound of 5.99, so that (assuming BSD
and GRH) the rank is not 6 (we have 4 independent points on this curve, so the rank is
presumably 4).

 0
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Figure 1. Comparison of F̂ (t) = (sin t/2)2/(t/2)2 to B̂10(t)

We have logN ≈ 78.78 and S = 18 here, so that the re-scaled mean spacing of low-height
zeros is 2πS/ logN ≈ 1.44. However, the effect at having 4 zeros at the central point must
be taken into account in this. Also, noting that the maximum of F̂ (t) − B̂10(t) is about
0.0226 near t ≈ 8.45, while B̂10(t) exceeds F̂ (t) by twice this amount around t ≈ 4, the
placing of zeros must be rather delicate to simultaneously have both

∑
γ F̂ (Sγ) ≈ 7.1379

and
∑
γ B̂10(Sγ) ≈ 7.0901. Looking at Figure 2, one sees that the minor contributions from

distant zeros are approximately halved with B̂10. For instance, there should be approximately
4 zeros between 4π and 6π, contributing maybe 0.02 more to F̂ than B̂10, this then being
doubled by evenness.

8. Our experiments and results

We performed three experiments with the first method (§3.1.1), which we describe in this
section. We keep the notation of §3.1.1, searching for (v : u) pairs with 1 ≤ v < u ≤ L
up to some limit L, with d the square-free part of uv(u + v)(u − v). We write s(x) for the
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Figure 2. Comparison of F̂ (t) and B̂10(t) for larger values of t

square-free part of x (which is the minimal positive integer such that xs(x) is square), and
B(u, v) = blog2 s(uv)c+ blog2 s(u2 − v2)c.
In Experiments P6a and P7a we took L = 108 and restricted to B(u, v) ≤ 60. This kept us
within 64-bit arithmetic (though latterly we determined this was not a real excuse), and more
importantly greatly limited the number of d that got sent to the 2-Selmer tests. One goal of
this first data collection was to find as many twists of rank 6 or more as possible in a given
d-range.
In Experiment P7b (and P8b), we took L = 107 but did not restrict d at all. Here our goal
was to find as many rank 7 twists as possible, and possibly one of rank 8.
In Experiment P8c we took L = 5 ·107, and restricted B(u, v) ≤ 80. Here our goal was simply
to try to find a twist of rank 8.
In all cases, we used Monsky’s formula (and possibly the extension by Rogers) before turning
to our heuristic Mestre-Nagao sum Σ5. With Experiments P6a, P7a, and P8c we required
Σ5 ≥ 35, while for P7b and P8b we required Σ5 ≥ 40. A rough estimate (with L = 105

for r = 6) is that about 81.5% of the curves were eliminated by the Σ5 ≥ 35 condition. From
both the analysis in §5 and the data we obtained, we expect that only a few curves of the
desired rank were accidentally eliminated by this criterion. Each of the above experiments
took roughly 6-7 core-years (for instance, about 4 months on 19 cores).

8.1. Data from these experiments. —We label the first experiment by P6a and P7a,
splitting the obtained data into parity classes of the rank. Similarly, the data from the second
experiment falls under P7b and P8b, and the third consists of P8c.
In Table 1, for the experiments we list the L-limit, the B-limit (if any), the Mestre-Nagao
bound Σ5, the target rank r; then the number of curves that survived the 2-Selmer tests,
then the 4-descent Cassels-Tate pairing, then the number that survived the 4φ- and 8-descent
pairings of Fisher; and finally the number Nr for which we found at least (r−1) independent
points. The others were eliminated (under BSD/GRH) by an explicit formula calculation,
with 3-descent being used for 3 curves from P6a.
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L B Σ5 r 2-Selmer CTP F4φ F8 Nr

P6a 100 million 60 35 6 37873578 21016? 3691 2006 1261
P7a 100 million 60 35 7 1912493 71 17 16 13
P7b 10 million ∞ 40 7 217704329 4902 67 21 12
P8b 10 million ∞ 40 8 8576723 3 0 0 0
P8c 50 million 80 35 8 22516203 9 0 0 0

Table 1. Conditions for experiments (first method), and survivor counts

Note that with Experiments P6a and P7a, we actually applied the Monsky-like formulæ of
Rogers (on the isogenous curves) in a separate run, for these experiments were started before
we received the code from Rogers. They were thus partially intertwined into the further CTP
sifting, and the numeric accounting listed was actually determined after the fact.
Furthermore, there was a minor programming bug in one of the cases in some initial versions
of our code, and it thus failed to properly eliminate about 4% of curves in some cases; these
were easily detected and eliminated upon applying the CasselsTatePairing as in §6. With
this caveat, the curves that survive the 2-Selmer tests have a sufficiently large 2-Selmer rank
on all isogenous curves.
For comparison with the data from the sifting method (§8.2), we note that 352 of the (pre-
sumed) rank 6 curves have d ≤ 250. The rank 7 data obtained from Experiments P7a and P7b
have large overlap, and in the end we only get 15 twists of rank 7 from combining these.
In the even parity case of the first experiment, we actually had approximately 35000 curves
that survived the CTP sifter, but in order not to skew the counts in the rank 6 statistics we
enforced a bound of d < 260 rather than B(u, v) ≤ 60. This is the reason for the asterisk on
the P6a/CTP entry (21016) in Table 1.
For the first experiment, processing the 40 million curves took around a core-year. The even
parity data for the second experiment, comprising about 5 times fewer curves, took about the
same amount of time,23 and the data for the third experiment was of the same magnitude.
The odd parity data for the second experiment was processed in 3 weeks on a cluster of 128
threads, so about 7-8 thread-years.24

8.2. Results from 2-Selmer sifting. —Recall that Rogers used his variants of Monsky
matrices (§4.3) for a nearly exhaustive search for d up to a given bound for a given target
rank (on all isogenous curves). As noted there, we exclude25 prime factors larger than 108.
The largest prime divisor in our rank 6 data is 78988561 from d = 681563383055674, and
four others26 have a prime factor exceeding 107.
In Table 2 we give a list of the smallest d for each rank r ≤ 7, with the proof of correctness
following as in §4.3. The “num” column indicates where the curve stands (in order of d)

23The d are larger, making each test slightly harder, while the chance of hitting a nontrivial CTP result is
lower when the target rank is 8 rather than 6.
24Specialised code could undoubtedly make the CTP test faster, but we have not pursued this.
25In the rank 8 data up to 260, we find 10.2% of the survivors with a prime factor exceeding 107, another
21.9% with one exceeding 106, while the majority (67.9%) have no prime factor this large.
26The most notable are d = 336476810846858 with p = 22425577 >

√
d and 132233570668249 which is

41 · 227089 · 14202401. The latter and 119222067089 = 3769 · 4729 · 6689 are currently the only known rank 6
twists that only have 3 prime factors.
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among those that survive the 2-descent test, for instance the first rank 5 curve is the 742nd
to survive the 2-descent test for rank 5.

r d factorisation num
1 5 1
2 34 2 · 17 1
3 1254 2 · 3 · 11 · 19 3
4 29274 2 · 3 · 7 · 17 · 41 2
5 48272239 23 · 31 · 79 · 857 742
6 6611719866 2 · 3 · 17 · 31 · 449 · 4657 1346
7 797507543735 5 · 7 · 17 · 97 · 173 · 79873 4388

Table 2. Smallest rank r quadratic twists y2 = x3 − d2x

8.2.1. Data and comments. —One difficulty with this method is the large amount of un-
wanted 2-Selmer survivors that then fail a 4-Selmer test. Comparatively, the (u, v)-search
sidesteps the (substantial) rank 0 subset. Similarly, a point on a rank 1 curve is not likely to
be of low height, so the (u, v)-search avoids most rank 1 curves.
We implemented a variant of the C code that Rogers gave us. With the upper limit of 108

on prime divisors of d, it takes about 2 minutes to find all 955353 rank 6 survivors up to 240,
about 2.5 minutes to find all 529011 rank 7 survivors up to 245, and again about 2.5 minutes
to find all 36771 rank 8 survivors up to 250 (all timings on one core), with the behaviour close
to linear in the D-bound.
In Table 3 we catalogue our experiments: we list the target rank, the D-bound for the compu-
tations, the Mestre-Nagao bound we used (if any), the total number of survivors, the number
of survivors that exceeded the Mestre-Nagao bound,27 the number that survived the Cassels-
Tate 4-descent pairings, the number that survived Fisher’s 4φ- and 8-descent pairings, and
the number Nr for which we have r independent points. All 8-descent survivors not included
in the final column were eliminated via the explicit formula (assuming GRH/BSD).

r D Σ5 survivors large Σ5 CTP F4φ F8 Nr

R6a 6 250 35.0 2343956262 53082687 3455 849 819 577
R7a 7 255 35.0 1382722102 31455895 29 9 9 8
R7b 7 260 45.0 55406567157 26360572 61 28 28 23
R8a 8 260 193727581 193727581 2 0 0 0
R8b 8 265 35.0 9668039478 218261949 2 0 0 0
R8c 8 270 45.0 413434136874 193744327 2 0 0 0

Table 3. Data for the 2-Selmer searches for small d

In particular, a putative rank 8 twist with d ≤ 260 must have a prime factor exceeding 108,
and we have fair confidence there is no rank 8 twist with d ≤ 270.

27Note the percentages for a given Σ5 will differ from the earlier experiments (those were biassed toward curves
with a point of small height). Also, the speed of the Mestre-Nagao computations becomes non-negligible, even
dominant in some ranges, particularly when 64-bit arithmetic is exceeded.
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Note that the rank 6 data has 50.8% of its “large Σ5” data with odd d, while this percentage
is 25.3% for rank 7, and 40.8% for rank 8 (similarly for survivor counts).
8.2.2. Comparison to the first method. —We find that the parametrisation from a point of
small height (§3.1.1) found 352 of the 577 rank 6 twists up to 250. The smallest Σ5 in this
range is approximately 38.064 (for d = 562073132513082); as this is sufficiently greater than
our bound of 35.0, it seems reasonable to expect that we did not miss any rank 6 curves due
to this. The smallest d that was missed by the other method was d = 855100330394, with a
point of (naïve) height 7980742225.

9. Data for high ranks

9.1. Rank 6 data. —Upon applying the 4-descent Cassels-Tate pairing (on all isogenous
curves) in Experiment P6a, we were left28 with 21016 rank 6 survivors with d < 260. Fisher
then used pairings for higher descents to reduce the count of rank 6 survivors to 2006. We
were then able to find at least 5 independent points (via searching to height 105 on the
2-covers of all isogenous curves) on 1230 of these.
For the 776 remaining curves, we turned to the explicit formula methodology. Applying
this with S = 26 (or smaller values), we were able to show that the rank was less than 6
(assuming BSD and GRH) for all but 49 of them. Raising this to S = 30 left 34 twists. For
22 of the remaining curves, we were able to find at least 5 independent points via searching
to height 3 · 106 on the 2-covers of all isogenous curves. Fisher then provided us with enough
points on 9 of the 12 remaining curves, by searching on 4-covers that he computed as in [21,
§5]. We probably could have eliminated the final 3 rank 6 survivors by the explicit formula,
but instead chose to use the 3-Selmer machinery of Magma. This was originally implemented
by Stoll based on [52]. Due to recent class group improvements by Donnelly, each run took
only a few days (assuming GRH), and found each 3-Selmer rank to be 4 (as expected).
For Experiment R6a using the method of §4.3, we had about 2.3 billion 2-Selmer survivors
for d ≤ 250, of which around 53 million had sufficiently high Mestre-Nagao indicator Σ5. The
4-descent Cassels-Tate pairing reduced this to 3455 survivors, and Fisher’s pairings left us
with 819 of which 577 have rank 6, while using S ≤ 26 with the explicit formula eliminated
the other 242 upon assuming BSD and GRH.
For 150 of the 1486 rank 6 curves we currently only have 5 independent points, and thus are
relying on a Parity Conjecture (we expect that 4-cover computations should resolve most of
these in the near future).
9.1.1. Selmer rank data. —We can ask how often these (presumed) rank 6 curves have non-
trivial even part of X. We summarise this data in Table 4. The curve Ed is y2 = x3 − d2x,
the curve E′d is y2 = x3 + 4d2x, and E±d are y2 = x3 − 11d2x ± 14d3. The next 3 columns
indicate how many curves have reduced 2-Selmer rank (that is, modulo torsion) of the given
size, while the fourth column gives the number of curves with reduced 4-Selmer rank of 8.
Note that if any isogenous curve has reduced 4-Selmer rank 8, then the reduced 2-Selmer
rank of Ed must be at least 8. The information is then replicated (to the right) for the 577
rank 6 twists with d ≤ 250.

28The total amount with B(u, v) ≤ 60 was about 35000, but we chose to switch to a hard d-bound.
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6 8 10 8 6 8 10 8
Ed 1309 162 15 1 513 58 6 0
E′d 1184 300 2 17 516 61 0 4
E+
d 1369 117 0 0 553 24 0 0

E−d 1218 265 3 5 513 64 0 0

Table 4. Selmer rank data for rank 6 twists

There are 12 rank 6 curves that have reduced 2-Selmer rank 8 on all isogenous curves. Of
these, two (d = 457038106894219, 13449178862457819) have reduced 2-Selmer rank 10, while
d = 86784274056751354 has reduced 4-Selmer rank 8 on both Ed and E′d. Three others from
these 12 have reduced 4-Selmer rank 8 on one of the isogenous curves.29

9.1.2. The ratios prediction for the rank 6 data. —As already suggested by the analysis in §5,
the d which yield rank 6 are not equidistributed to various moduli. A similar phenomenon
was described (for instance) in [58, §3]. A particular prediction from random matrix theory
might be that, fixing a prime modulus p, the ratio of the number of rank 6 d-values that are
nonzero quadratic residues (QR twists) to those that are nonquadratic residues should be
about (p+1+ap

p+1−ap )k for some k, possibly k = 3/2− r so k = −9/2 here.30

The data agree with this qualitatively quite well. We consider the 577 curves with d ≤ 250

(the set of 1486 curves reveal similar data), and primes p up to 104. When ap is not too close
to zero, say a2

p ≥ p (which by sector equidistribution is 2/3 of the primes that are 1 mod 4),
the quantity of QR twists almost always exceeds the quantity of non-QR twists precisely
when ap is negative. For p ≤ 104 this fails only for p ∈ {4153, 5573, 8581, 9293}.
The quantitative fit is also not bad. Writing S±p for respectively the number of QR and non-
QR twists, the best-fit log-log slope derived from the 609 data points

[(p+1+ap
p+1−ap

)
, S+

p /S
−
p

]
for p

up to 104 that are 1 mod 4 is approximately −3.5.
Another minor comment about this congruence data is that certain primes, namely those
that are 1 mod 8, tend to divide d with large rank more often, as might be guessed from an
analysis of quadratic residue symbols (say) in the Monsky matrix. For instance, 346 of the
1486 d-values are divisible by 13, while 729 are divisible by 17. Similarly, 373 are divisible
by 41 compared to 208 divisible by 29.
9.1.3. Rank 6 distribution. —One might ask whether we can determine a putative distri-
bution of rank 6 twists from our limited data of 577 curves. A graphical representation is
in Figure 3, which is a log-log plot of rank 6 counts versus d, with the x-axis (the d-value)
labelled in powers of 2.
If the rank 6 count satisfies a power law, the graph should be close to linear. The best-
fitting ecDa is e−9.1D0.45 for the 577 data points, though it could be imprudent to speculate
from such limited data. One can similarly best-fit to ecDa(logD)b, but here the data seem

29Except for d = 301980419090843394 (where we only have 5 independent points), the isogeny invariance of
the BSD-quotient implies that none of the rank 6 curves has any 8-torsion in X.
30Predictions along these lines (first seen in [11, Conjecture 2]), are sometimes called the “ratios conjecture”
though that phrase has now taken upon a different meaning in the field of number theoretical random matrix
theory, so we prefer “ratios prediction” instead.
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Figure 3. Log-log plot of rank 6 counts vs d-value

totally inadequate, yielding the nonsensical (a, b) = (−0.52, 29.9). The best-fit ec(logD)b is
approximately e−42.6(logD)13.8.

9.2. Rank 7 data. — In Experiment P7a, searching to L = 108 with B(u, v) ≤ 260, we had
almost 2 million rank 7 survivors of the 2-Selmer tests, while an application of the Cassels-
Tate pairing left a mere 71 rank 7 survivors. For 13 of these we found 7 independent points
via searching (see §9.2.1 and Table 5).
Fisher then eliminated 54 of the survivors via an additional isogeny descent (corresponding
to a degree 32 map), and a 55th (d = 326800477198750566) via a pairing corresponding to
full 8-descent. The remaining 3 curves were eliminated via the explicit formula (see §7 and
Table 6).
Given that the lowest observed Σ5 (at least in this d-range) for a rank 7 twist was 49.5, which
is comfortably above our bound of 35, it seems reasonable to suspect that we did not miss
any rank 7 twists due to the imposition of this bound.
For Experiment P7b we searched up to L = 107 with no d-limit, with the purpose being
to try to find as many rank 7 twists as possible. The Mestre-Nagao limit used here was
40. This found just 2 new rank 7 twists, though d = 24951070826189778270 has a point
(v, u) = (34440, 145343) with smaller height than for d = 797507543735. Three of the curves
found in Experiment P7a were not found here (cf. Table 5), as the height of the point is too
large (namely u ≥ 107).
The Cassels-Tate pairing for 4-descent (on all isogenous curves) eliminated all but 4902 of the
217.5 million 2-Selmer survivors. Fisher then reduced this to 67 via a pairing corresponding to
an extra isogeny descent, and then further to 21 from the full 8-descent information. Table 5
includes the 12 that have rank 7, while the other 9 were eliminated by the explicit formula
(see Table 6).
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Experiment R7a considered d ≤ 255 and produced 1.38 billion 2-Selmer survivors, of which
about 31 million had sufficiently large Σ5. Of these, only 29 survived the 4-descent CTP
test, and Fisher reduced the survivor count to 9. One of these was eliminated by the explicit
formula, while the other 8 do indeed have rank 7, and in fact 5 of the 8 were not found by
the methods of §3.1.1.
Experiment R7b considered d ≤ 260 and produced over 55 billion 2-Selmer survivors, of which
about 26 million had sufficiently large Σ5. Of these, only 61 survived the 4-descent CTP test,
and Fisher reduced the survivor count to 28. Five of these were eliminated by the explicit
formula, while the other 23 do indeed have rank 7. Here it appears reasonable to assume that
the Mestre-Nagao bound Σ5 ≥ 45.0 did not exclude any rank 7 curves (the smallest Σ5 in
Table 5 is 49.5).
9.2.1. Twists of rank 7. —Table 5 lists the 27 rank 7 twists we found. The smallest (canoni-
cal) height ĥ of a point on the curve is given, and if u ≤ 108 we list (v : u). The Mestre-Nagao
sum Σ5 is listed, while the last four columns record the 2-Selmer rank (modulo torsion) of the
isogenous curves as per the notation with Table 4. The E′d curve for d = 674252816149274406
has nontrivial 4-torsion in X (thus the asterisk)
The first 8 of these 27 were found by Experiment R7a and the next 15 were additionally
found by Experiment R7b. The 13 twists with u ≤ 108 and d ≤ 261 (the final two due to
the difference between B(u, v) ≤ 60 and d ≤ 260) were found by Experiment P7a, while
Experiment P7b found the 12 twists with u ≤ 107.

9.3. Data for rank 8. — Experiment P8b with L = 107 and Σ5 ≥ 40.0 produced 8576723
twists of even parity that could have rank at least 8 from the 2-descent information. It took
about 1 thread-year to process these with CasselsTatePairing.
We found no rank 8 curves, but did note 3 examples where the 4-descent information allows
rank 8 on all isogenous curves, namely

d = 211348261439238289719306, d = 999813059534639477880290,
and d = 143336924388134266044361386.

Again Fisher ran his higher degree pairings on these twists, and they showed that the first
has rank at most 4, the second at most 2, and the third at most 4.
Recall Experiment P8c was aimed at trying to find a rank 8 twist, searching up to L = 50 ·106

with B(u, v) ≤ 280. We used a Mestre-Nagao cut-off of Σ5 ≥ 35.0. This yielded 22516203
curves that were possibly of rank 8. This is less than thrice as many as from the previous
experiment, even though we increased the L-bound by a factor of 5 (so that one might expect
25x more curves). The reason is that most of the d lie outside our B(u, v)-bound. We found
no curves of rank 8. There were only 9 curves that survived the CasselsTatePairing test,
and Fisher could show that each of these has rank no more than 6 (in fact, each has rank 4
or less).
The 4-descent Cassels-Tate pairing was almost completely successful in Experiments R8a,
R8b, and R8c, leaving only a handful of curves to be eliminated by Fisher’s 8-descent pairings.
Again we found no curves of rank 8 (see Table 3).

9.4. Curves unresolved by 8-descent pairings. —As noted above, Fisher’s higher de-
gree pairings were able to eliminate a significant number of curves from our consideration.
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d ĥ v u Σ5 sd s′d s+
d s−d

797507543735 12.507 79873 235280 68.4 7 7 7 7
2067037027955295 18.758 66.8 7 7 7 7
2210857604820494 15.464 1492992 4542367 64.2 7 7 7 7
7616488732945534 23.857 72.1 7 7 7 7

11805305708568790 19.736 67.5 7 7 7 7
17056825108852669 23.999 55.8 7 7 7 7
17260078859287719 13.540 57175 733552 57.3 7 7 7 7
34872135169596005 19.814 50.3 7 7 7 7
46521610872080974 15.835 717241 7213568 49.8 9 7 7 9
55423105368015838 19.879 59.5 7 7 7 7
72909257919534679 22.254 56.8 9 7 7 7
82449281639107110 13.199 376909 383264 55.7 7 7 7 7
88770882541545735 19.146 49.6 7 7 7 7
187756280391835974 15.236 1441834 3511291 61.6 7 7 7 7
204817995109385574 12.369 62936 207689 63.7 7 7 7 7
254563891000186614 27.328 66.8 7 7 7 7
262456590553161245 18.419 2202624 98856259 64.2 7 7 7 7
344926532953988286 22.695 51.6 7 9 7 7
361526994851532510 13.912 70699 1069440 55.1 7 7 7 7
626123180330580614 33.543 52.9 7 7 7 7
667159490914887399 13.910 1577 1098816 49.5 9 7 9 9
674252816149274406 17.284 22664923 22702950 58.5 9 9? 7 9
763168101947645646 27.164 49.7 7 9 7 7
1500797991496877286 16.670 9221704 13454667 51.9 7 7 7 7
1584837449477135854 16.196 7545824 7677377 57.8 7 7 7 7
24951070826189778270 11.987 34440 145343 58.2 7 7 7 7
123014221849062598515846 14.621 770953 1901416 53.8 7 9 7 7

Table 5. Twenty-seven known rank 7 quadratic twists

However, some curves were still left, and for these we turned to using the explicit formula
methods (§7).
With rank 6, as noted in §9.1 the explicit formula (with S = 26 necessary for a couple of
curves) eliminated all extraneous 242 survivors of 8-descent for Experiment R6a. Similarly,
using S = 26 or smaller eliminated 727 of the 8-descent survivors from Experiment P6a, and
raising this to S = 30 pruned out 15 more.
We still had 3 curves of unknown rank from Experiment P6a, which as noted above, Don-
nelly was to eliminate by using the 3-descent machinery in Magma. The d-values here were
54638221936676081, 120250527896300074, 529340421036976874. The explicit formula bounds
with S = 26 were respectively 6.54, 6.48, 6.30, and with S = 30 were 6.08, 6.01, 6.04, so per-
haps Booker’s method would have sufficed.
With the rank 7 experiments, Fisher’s 8-descent pairings only left 15 survivors for which we
could not find sufficiently many independent points, and the explicit formula was able to
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eliminate all of these. Table 6 gives data31 concerning these 8-descent survivors. We give the
logarithm LN of the conductor, the cutoff parameter S so that we consider coefficients up
to eS , and the analytic rank bound b (assuming GRH) from our computation. The r-column
indicates how many independent points we found.

d v u Σ5 r LN S b
9216040803197470 34587520 58049161 50.5 5 76.3 18 6.89

248384796376777526 237402050 241161007 56.3 5 82.9 22 6.95
540517599062334679 648491137 779723300 47.9 5 85.1 20 6.84
570241054482429926 10299572\

68797169
10303548\
45705538 52.9 5 84.5 22 6.97

907957034379641662 37945242475 609479331936 48.8 5 85.4 18 6.76
1488977816607274326 18570553 18637634 45.7 5 86.5 21 6.84
1606761724662540886 56910150 63632821 35.3 5 86.6 17 6.91
96652756814973839942 1732721 3279154 46.1 3 94.8 21 6.87

132645399823739432742 1141600 3057073 51.2 3 95.4 20 6.84
493240121331611079055 228769 8313104 53.4 4 98.8 26 6.92
2229007454996999309574 1685977 3440594 41.0 1 101.1 18 6.95

15976519624716905845534 3141233 8517664 43.9 1 105.1 20 6.75
139720610704182979487414 90008 7952921 41.9 1 109.4 21 6.86
6737702895723796083999229 3438756 5072533 40.2 1 117.8 20 6.91

40044726772560104885558214 6739177 6803666 40.2 1 120.7 26 6.82

Table 6. Fifteen rank 7 survivors not eliminated by 8-descent pairings

9.5. Comments about higher descents. — Fisher also noted about 15 curves (of tar-
get rank 7) for which his programme returns a bound of rank 1 for all three choices of
2-torsion point, even though 4-descent allows a rank of 7. The largest example here is
d = 1176708781878011833746605406. This could be of interest, for we know a point of quite
small height, namely (v, u) = (4748713, 7465946), so that either #X must be quite large
(much more so that the 46 from the 2-part), or the L′-value must be quite small (assuming
that BSD holds). To be precise, we should have L′(Ed, 1)/#Xodd ≈ 1/388292.

9.6. Bottlenecks to computing further. —We briefly state the limiting factors for ex-
tending our experiments. With Experiments P6a and P7a, the d-cutoff of 260 means most
(u, v) are simply ignored. For Experiments P7b and P8b the time for the 4-descent Cassels-
Tate pairings becomes dominant, due to the large number of false positives (indeed, we raised
the Mestre bound Σ5 due to this). In Experiment P8c the d-cutoff (now 280) again eliminates
the great majority of (u, v) pairs.
For the experiments using the method of Rogers (§4.3), the great number of false positives
(thus Cassels-Tate pairings) again dominates, though perhaps with a sufficiently large Mestre
bound the time for the 2-Selmer tests would be comparable.

31The twist d = 9216040803197470 has another small point (v, u) = (156217, 322592).
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10. Musings about a rank 8 twist

Here we speculate about when one might expect to find a rank 8 twist (if one exists). The
conductor Nd will also appear below; for squarefree d it is either 32d2 or 16d2 depending on
whether d is odd or even.
There are competing conjectures for the size of the smallest d of a given rank. The first
is r ∼ 1

2
logNd

log logNd , which is an upper bound under GRH ([7, §2.11]). This is also the upper
bound one obtains for the congruent number curve from 2-descent (counting the number of
prime factors of d). One impetus for this guess is the function field analogue, though [56,
Conjecture 10.5] is not restricted to twist families. The second guess is approximately the
square root of this [45, Corollary in Appendix] (only an upper bound is stated), possibly
with the log log(Nd) in the numerator [20, (5.20)].32 Again neither of these suggestions was
originally restricted to twist families.
The first guess looks contraindicated by the data, as it predicts that by d ≈ 260 we should
already have seen rank 9. Of course one can speculate a smaller constant than 1

2 , though for
an analogous problem [19, §5] it seems that the secondary terms actually seem to increase the
main term for small conductors. Furthermore, one still must muse on an explanation of the
r = 7 data. Even if one uses d ≈ 1015 (close to the second r = 7 data point) and takes ratios
so as to dismiss the constant, one has33 F (260)/F (1015) ≈ 8

7 for F (d) = logNd
log logNd , implying

260 to be the expected size for rank 8 under this model.
The situation is not quite so bad with a guess such as34 r ≈ c

√
logNd, at least if one (rather

rashly) assumes the r = 7 data to be an outlier point, and so substitutes d ≈ 1015 for it. But
even upon this assumption one finds (by taking ratios as above, and solving G(x)/G(1015) ≈
8/7 with G(d) =

√
logNd) that r = 8 should appear around 6.6 · 1019, bordering the range

where we have guarded confidence.35

11. A variant of a heuristic of Granville

We now give a heuristic of Granville, which purports to bound the rank of elliptic curves in
various families, most specifically quadratic twists. We then give extensions of this heuristic,
and some warnings concerning similar problems.
Fix E : Y 2 = f(X) = X3 + aX + b, and consider quadratic twists in projective form as

Ed : y2z = x3 + ad2xz2 + bd3z3.

Granville’s idea is that we can guess an upper bound on the number of (integral) (d, x, y, z)
points on this surface (in some range, considering d as a variable) while one twist of sufficiently
large rank will produce more points than this upper bound.

32One could also use Heath-Brown’s result [25] on the density of d with a given 2-Selmer rank to conjecture
something similar. Namely, the density of d with (reduced) 2-Selmer rank of r is proportional to 2r/

∏
j≤r(2

j−
1), which on a logarithmic scale is ∼ 1/2r

2/2. If this predicts the size of the smallest d as 2r
2/2, inversion gives

r ∼
√

2 log d/ log 2 ∼
√

logNd/ log 2. Perhaps using isogenous curves could sharpen this, or one might consider
an analogue for 2l-Selmer ranks.
33Here we use Nd = 32d2 as with odd d; the adjustments for Nd = 16d2 with even d are minor.
34If we included a log log in the square root the d-estimate for r = 8 then goes down by about 10; it goes up
by about 50 (to around 272) if one inserts the reciprocal of log log.
35With r = 6 and d ≈ 6 · 1010 (the 2nd rank 6 twist), we similarly get r = 8 around 5.5 · 1019.

Publications mathématiques de Besançon – 2014/2



M. Watkins and S. Donnelly and N. D. Elkies and T. Fisher and A. Granville and N. F. Rogers 87

11.1. Heuristic for the number of integral points. —The above formula for Ed has
some implications for primitive integral points (x, y, z): first z is cube, say z̃ = 3

√
z; then

x ≡ 0 (mod z̃); and also f̄(x, dz) ≡ 0 (mod y2) with f̄(X,Z) = X3 + aXZ2 + bZ3. We next
split the variables into dyadic-like intervals,36 taking |d| ∼ D, then |x| ∼ T and z ∼ U/D.
We also assume that (x3 + ad2xz2 + bd3z3) does not generically have much cancellation, so
that typically we have y ∼

√
DV 3/U where V = max(T,U).

Following Granville’s lead, we then proceed to estimate the number ND(T,U) of (d, x, y, z)
points with |d| ∼ D and |x| ∼ T and z ∼ U/D as

ND(T,U)�
?

∑
d∼D

∑
y∼
√
DV 3/U

∑
z̃∼ 3
√
U/D

∑
x∼T,z̃|x

f̄(x,dz̃3)≡0 (y2)

1.

The y2-congruence has a density of solutions given by approximately σf (y2)/y2, where σf (y2)
is the number of roots of f modulo y2.
Granville uses this density to make the heuristic guess that

ND(T,U)�
??

∑
d∼D

∑
y∼
√
DV 3/U

σf (y2)
y2

∑
z̃∼ 3
√
U/D

T

z̃
� TD

√
U

DV 3
(
logDV 3/U

)η−1
,

where η ∈ {1, 2, 3} is the average number of roots of f modulo primes.
Summing dyadically over T,U up to a bound G accrues an extra logarithm (from the T = U
contributions), and this gives us an overall bound of

CD(G)�
??

√
D(logG)η

for the number CD(G) of points (d, x, y, z) with |x|, z ≤ G and |d| ∼ D.
11.1.1. Remarks. —

– Granville notes that something like this should be provable for G � Dδ for some δ > 0
via sieve theory, but he applies it for G ≈ eDl with l > 0.
Compare the work of Hooley [27] regarding solutions to Pell equations.

– The original Granville heuristic dealt with dY 2 = Z(X3 +aXZ2 +bZ3), where one seems
to lose a logarithm due to the Z-factor on the right.

– At a cruder level, writing x = x̃z̃, we have z̃ ∼ S, x̃ ∼ S2D, and so y2 ∼ S6D3.
Taking (x̃, z̃) pairs and (crudely) asking for y2 to be a square of this size gives the
probability S3D/

√
S6D3. Summing over d yields

√
D integral points per dyadic interval.

Counting local roots for f is more precise in obtaining logarithms.

11.2. Relating this to high rank curves. —Next we count the number of points of
“small” height on an elliptic curve of rank r and regulator R, where asymptotically the
number of points up to (canonical) height H as H → ∞ is Hr/2/

√
R. We assume (from

ellipsoids) this is a lower bound for H � R1/r and that canonical and naïve heights are
close. The conjectural BSD formula implies Rd �

√
D · L(r)(Ed, 1) for twists d ∼ D (the

36In this section we use the notation a ∼ A to denote a in a dyadic interval A ≤ a ≤ 2A, or if necessary
A ≤ a ≤ A+A/F (A) where F (x)→∞ slowly as x→∞, say F (x) = log log x.
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variation of the real period being dominant), and a Lindelöf-like hypothesis would imply
L(r)(Ed, 1)�ε D

ε for all ε > 0. From this we obtain

Hr/2

D1/4+ε �ε
Hr/2
√
R
� # of pts up to height H

on one rank r twist of sizeD� CD(eH)�
√
DHη.

Finally, we must guess how large we can take H = Dl. Plugging into the above, we get r ≤
2η + 3

2l as D → ∞, so in particular any l > 0 gives an upper bound on ranks in twist
families. Contrarily, allowing l > 3/2 implies r ≤ 2 for the generic case η = 1, while the data
of [58] suggest otherwise. Granville offers, in relation to the size of solutions to Pell equations,
that l = 1

2 seems reasonable, leading to r ≤ 2η + 3.
For curves with full 2-torsion (η = 3) there is an additional subtlety, as every such curve is
isogenous to one with only one 2-torsion point (η = 2), and it is unclear whether the bound
for the latter should dominate. If so, one obtains an asymptotic bound of r ≤ 7 for quadratic
twists of an elliptic curve with 2-torsion. Obvious additions allow heuristic guesses about
densities.

11.3. Adaptation to cubic twists. —One can easily adapt Granville’s heuristic to cubic
twists of X3 + Z3 = 1. Here dY 3 = X3 + Z3 for the twists, which gives the congruence
X3+Z3 ≡ 0 (mod Y 3). Upon writing σ(Y 3) for the number of cube roots of unity modulo Y 3,
in each dyadic T -range we get a heuristic bound for the number of (d,X, Y, Z)-points with
d ∼ D and X,Z ∼ T as∑

Y∼T/D1/3

∑∑
X,Z∼T

X3+Z3≡0 (Y 3)

1� T 2 ∑
Y∼T/D1/3

σ(Y 3)
Y 3 � D2/3(log T )ν−1,

where ν = 2 is the average number of cube roots of unity modulo p as p→∞.
Summing dyadically over T gives a heuristic upper bound of D2/3(logG)2, which is to
be compared to the lower bound of Hr/2/D1/6 coming from counting points in ellipsoids.
With H = logG = Dl, this implies rl

2 −
1
6 ≤

2
3 + 2l, or r ≤ 4 + 5

3l . Granville suggests that
l = 1

3 is appropriate here, yielding r ≤ 9. Here the finitely many exceptions would include
the examples found by Elkies and Rogers [18] that have rank 11.
As noted by Elkies, the above curves are isogenous to dY 3 = XZ(X+Z), where the right-side
factors completely. From this, we might speculate that the situation of “arithmetic influence”
is analogous to quadratic twists of curves with full 2-torsion.

11.4. Other twists, and the family of all elliptic curves. — It does not seem that
Granville’s heuristic can be directly adapted to quartic or sextic twists. However, probabilisitic
reasoning of a similar sort, which seems not to go past what is already available via conjectures
of Lang [29], suggests the following bounds: that r ≤ 21 except for finitely many elliptic
curves; that r ≤ 13 for all but finitely many (Mordell) curves of the shape y2 = x3 + k; and
that r ≤ 11 for all but finitely many quartic twists of the congruent number curve, given
by y2 = x3−nx. Furthermore, one might presume that each of the “borderline” cases should
have no faster than log-power growth as the parameter tends to infinity.
However, as with the cubic twist case above, the current records exceed the bounds suggested
above, namely rank 14 with

y2 = x3 + 402599774387690701016910427272483x
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for quartic twists (listed in [1, Acknowledgements]), rank 15 for the Mordell curve

y2 = x3 + 46974552981863676115647417

(see [17]),37 and rank 28 for elliptic curves over the rationals (see [16]).38

11.5. Further warnings. — In addition to the previous paragraph, there are similar prob-
lems where one can notice possible failings of probabilistic models. For instance, Elkies notes
(in a letter to Zagier [15] reproduced in the appendix to [57]), one can achieve large integral
points on elliptic curves Y 2 = X3 +AX+B (where all four variables are parameters), namely
an infinite family with logX

logH → 12 where H = max(|A|1/2, |B|1/3), whereas the probabilistic
heuristic suggests a limiting upper bound of 10 for this quotient.39
Similarly, for integral points of small height on curves y2 = x3 + Ax + B, say |x| ≤ H2,
|y| ≤ H3 with |A| ≤ H4 and |B| ≤ H6, upon looping over (x, y,A) and solving for B, one
finds that there are H9 such (x, y,A,B) with an integral point of small height. The paper
[19] extends this observation to pairs of integral points, essentially indicating a bound like
H8(logH)• (for some unspecified power of logH). One can pass from “integral points” of
small height to “rational points” of small height via increasing the power of logarithm, and
a similar logarithmic effect should come about from enlarging the notion of “small height”
to any polynomial bound in H. However, the rank 11 (or 12) families of Mestre [37, 38]
have 11 (or 12) independent points, with all of these of small height (indeed, for the points
to be written down easily, they must of necessity be of polynomial height). So the natural
extrapolation of this heuristic about k-tuples of points of small height appears to break down.

11.6. Data about Granville’s heuristic. —There are several possible avenues of trying
to collect data about Granville’s heuristic, particularly the first consideration (in §11.1) re-
garding the bound on integral points on the twist surface. For instance, again sticking with
the congruent number curve, one could take the twisting parameter d in a dyadic-like range
around 104, so that the regulators might typically be of size 100. This is sufficiently small
that one could expect to be able to find Mordell-Weil generators on all the twists, either by
Heegner points for twists of rank 1, or by 4-descent and point searches for twists of higher
rank. In fact, taking d ∼ 105 or even d ∼ 106 may be feasible, but one still must consider
whether the asymptotic behaviour is beginning to be seen.40

37Elkies has “many” such r = 13 curves, but it is unclear if the growth rate exceeds a log-power.
38It so happens that this curve of Elkies has logN

2 log logN ≈ 28.16, and [19, §5] again gives some evidence
(admittedly a bit tenuous) for such growth. Meanwhile, the rank 24 curve [32] actually has logN

2 log logN ≈ 20.39
(and Elkies has a rank 24 curve with 19.86 here) indicating that the secondary terms should play some rôle
here. It has also been suggested that 28 is so large that one should not expect it to be a natural barrier.
However, given the discussion in the next subsection, namely that parametrisations often allow one to beat
the strong Lang surmises by a small amount, one might alternatively propose that 28 does not really exceed
21 to an irrefragable extent.
39Elkies considers Q(t)Y (t)2 = X(t)3 +A(t)X(t)+B(t) where deg(X,Y,A,B) = (4, 5, 0, 1) and Q is quadratic;
via a parameter count there should be a nondegenerate 0-dimensional solution variety, which happens to yield
a rational point here. Upon scaling appropriately, the sparse (Pellian) set of t-values for which Q(t) is a square
then give large integral points via specialisation.
40One of Granville’s concerns was whether one should really expect the bound

√
D(logG)η as opposed to√

D(logD)η, particularly in ranges where logG is much larger than logD.
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Another idea, especially as Granville uses solutions of Pell equations to intuit that l = 1/2,
is to investigate solution sizes of conic twists, namely dy2 = f(x) with f quadratic. Some
calculations in this regard have been carried out by Lacasse [28].

12. Data from affiliated experiments

Here we give the data for the experiments described in §3.2 and §3.3.

12.1. Initial data from rank 2 families. —We recall the rank 2 families introduced
in §3.2. The first (I) has w(w + 1)(w − 1)(w + 2)(2w + 1)(w2 + w + 1)y2 = x3 − x. Writing
w = m/n, via the symmetries of the homogeneous octic polynomial inm and n, we can restrict
to m,n that are not congruent modulo 3. The second (II) family has 3(w + 1)(w − 1)(w2 +
2)(2w2 + 1)y2 = x3 − x. For both families, for the purposes of comparison, we considered w
up to height 104, which meant only minor modifications to our factoring tables. One goal of
this experiment was to see how many rank 6 curves are found up to height 104 – unless the
count exceeds that from the rank 1 family, it is probably not worth trying to find a rank 8
example in I or II.
Table 7 lists the data we obtained from these experiments. It lists the number of m/n up to
height 104 that survived the 2-Selmer test (note that a few d appear twice), the number of d
that survived the 4-descent Cassels-Tate pairing,41 then the number that survived Fisher’s
higher pairings, the number of curves on which we found at least (r− 1) independent points,
followed by the number of unknowns (after applying the explicit formula machinery), and
finally the smallest example (if any) for the target rank. The first two lines correspond to
the full (u, v) experiment, and the latter ones to the indicated families. In these comparisons
we omitted the Mestre-Nagao filtration step.42 For some curves, Fisher’s implementation
took too long to compute a bound; the number of such failures is noted by a plus sign in
the tabulation. For instance, 11 of the 6135 Family I rank 6 survivors took too long at the
4φ-step, and 342 of the 1437 remaining hit time constraints with the 8-descent pairing.

Fam r num CTP F4φ F8 Nr ? first
(u, v) 6 16692 36 21 18 17 0 779/134

7 740 0 0 0 0 0
I 6 447030 6135 1437+11 122+342+11 1 449 227/210

7 56197 38 3 0 0 0
II 6 546208 7839 1416 380+6 18 133 103/41

7 80275 76 5 4 0 0

Table 7. Comparison with rank 2 families up to height 104

Family II contains a number of examples of notable rank. For instance, Elkies notesm/n = 18
gives the rank 5 twist d = 205015206 found by Rogers.43 Similarly m/n = 103/41 gives

41There was also a missing step in the Magma integer factorisation code (not detecting powers before entering
ECM in all cases), which caused CasselsTatePairing to take hours occasionally.
42There was one d in the (u, v) family which survived the descent tests but had rank only 4 (using the explicit
formula); this d = 344333282586 has Σ5 ≈ 34.566, less than our cutoff of 35.
43This is cited in [50, Table 2] as appearing in [46], though [46] lists 4132814070 for rank 5.
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the smallest rank 6 example, while both m/n = 229/146 and m/n = 248/203 yield d =
61471349610. We found 18 curves of rank 6 via searching to 105 on 2-covers (increasing
to 106 yielded no additional ones), and currently have 133 remaining curves, having pruned
the original list of 386 via the explicit formula with S = 26. As a general conclusion, this
Family produces a comparable amount of high-rank curves to the (u, v) family, but also
produces a lot more false positives.
Our results are largely inconclusive for Family I, due to computational difficulties.44 Note that
Family II had 4 rank 7 survivors after the 8-descent pairing was applied (all were eliminated
by the explicit formula with S = 22 or less), while Family I had none. Also, the largest Σ5
for Family I is only 54.569 (for m/n = 7382/1531), much less than 65.873 for Family II.

12.2. Data concerning the lattice search method. —We recall here the lattice-based
method given in §3.3. We parametrise the square divisors of uv(u+ v)(u− v) via

d2
1|u, d2

2|v, d2
3|(u+ v), d2

4|(u− v),

and then loop over pairwise coprime (d1, d2, d3, d4), looking for short vectors in the (u, v)-
lattice. The lattice determinant D2 =

∏
i d

2
i gives an expected (u, v) size.

In Table 8 we list points on known rank 7 twists that have maxi(di) ≤ 103 (where d2
i

is the maximal square dividing the relevant expression). The measure u/D indicates how
much enumeration of lattice points would be necessary to find such a point, while T =
max(1, u/D)2 ·maxi(di)4 quantifies the total work needed to find it.
One can see that the (u, v) that are “easily” obtained are already known from the other
experiments; indeed there is quite a large correlation between points of “small” height (u ≤
108) and those found by this method. We estimate that searching the range di ≤ 2500 would
take maybe a core-year with optimised code, somewhat ignoring various issues with taking
squarefree parts and exclusion of small di (either individually or product-wise).

13. Complementary ideas

13.1. Short vector distribution. —Rubin and Silverberg give equivalent conditions for
the unboundedness of ranks in quadratic twist families in [48]. This involves short vectors in
the lattices Lα,d,d′ = {(u, v) ∈ Z2 : d2|(u−αv), d′2|v} where α satisfies d2|f(α) with y2 = f(x)
defining the elliptic curve E.
Furthermore, their Remark 5.2 discusses that if an elliptic curve has at least one quadratic
twist with rank exceeding 8, then there is a lack of uniformity in the distribution of these
vectors.45 This becomes somewhat problematic when one starts with a curve of rank 9 or
more, and then twists it. Granville’s heuristic attempts to bypass this issue by requiring that
the twisting parameter d be in a dyadic-like interval. Thus for small d the implied constants
can presumably be so large that larger ranks are allowed.

44Admittedly, we did not make so much effort, only applying the explicit formula with S = 24 (eliminating
25 of 475 curves), and searching on 2-covers up to 105.
45The cutoff of 8 here appears to be related to their use of a specific statistic to measure non-uniformity, and
thus might be lowered by a sharpened heuristic.
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d v u u/D T [d1, d2, d3, d4]
797507543735 79873 235280 6.93 2.36E10 [4, 1, 57, 149]

351232 367625 8.42 1.78E11 [5, 224, 3, 13]
2705233 3764480 0.40 2.29E10 [16, 167, 9, 389]

2210857604820494 1492992 4542367 19.1 2.04E14 [1, 864, 11, 25]
17260078859287719 57175 733552 643 1.38E13 [76, 5, 1, 3]

162377 5552384 138 3.51E14 [368, 1, 109, 1]
46521610872080974 717241 7213568 95.3 4.31E11 [16, 1, 57, 83]
55423105368015838 291489400 308455417 2.40 5.74E12 [677, 10, 19, 999]
82449281639107110 376909 383264 4166 4.86E12 [4, 1, 23, 1]

37841 1068704 1429 1.70E11 [4, 1, 11, 17]
6320405 6991648 101 7.42E13 [292, 1, 237, 1]
1421797795 6888910758 0.09 7.71E11 [199, 473, 833, 937]

88770882541545735 19060673 197870608 4.87 4.96E12 [676, 373, 7, 23]
187756280391835974 1441834 3511291 211 1.09E13 [7, 19, 125, 1]
204817995109385574 62936 207689 4154 6.74E12 [1, 2, 25, 1]

10030425 30779392 27.2 6.59E12 [32, 5, 307, 23]
361526994851532510 70699 1069440 2191 6.65E13 [8, 61, 1, 1]
667159490914887399 1577 1098816 19622 1.58E12 [8, 1, 7, 1]

1595984 55443691 86.9 6.68E11 [47, 4, 35, 97]
674252816149274406 22664923 22702950 626 4.74E12 [15, 41, 59, 1]
1500797991496877286 9221704 13454667 151 3.80E13 [9, 202, 1, 49]
1584837449477135854 7545824 7677377 897 7.44E11 [23, 4, 31, 3]

24951070826189778270 34440 145343 72672 8.45E10 [1, 2, 1, 1]
123014221849062598515846 770953 1901416 316903 8.13E12 [2, 1, 1, 3]

Table 8. Values of (d1, d2, d3, d4) for some points on rank 7 twists.

13.2. Using visibility to bound rank. — It was suggested to us by N. Bruin that we
might use visibility (see [12] for instance) to bound the rank for some of the curves for which
we still have not found enough independent points. The idea is to find l such that Edl is
known to have positive rank rl, while one can suitably bound the 2-Selmer rank (modulo
torsion) of Ed over Q(

√
l) as sl. Then one bounds the rank Ed as ≤ sl − rl, hoping this is

less than the desired target.46 The quadratic field extension should trivialise an “unknown”
2-cover (or a pair of independent such covers), that is, one for which it is not known whether
it has points over Q.
However, in our case where we have already applied higher Selmer tests, we would have
to take more than one quadratic extension – that is, the X[4] will become X[2] at each
visibility step, and similarly for X[8] becoming X[4]. Recalling that Fisher has performed
an 8-descent pairing on our curves of interest, we would need to make X[8] visible, and thus
need to work (minimally) with a triquadratic extension.
Also, as B. Creutz pointed out to us (see [33, Proposition 4.3]), when there is full 2-torsion the
dimension of the Selmer group over Q(

√
l) increases significantly depending on the number

46In effect, one is making the X[2] of Ed visible upon passing to the quadratic field extension.

Publications mathématiques de Besançon – 2014/2



M. Watkins and S. Donnelly and N. D. Elkies and T. Fisher and A. Granville and N. F. Rogers 93

of primes dividing l. The idea is that various homogeneous spaces become everywhere locally
soluble upon making the field extension.

13.3. Quadratic twists of other curves. —The first part of the above method generalises
naturally to other curves, particularly those that have full 2-torsion. In general, we can use
SQUFOF [54, 23] to factor (u3 + auv2 + bv3) when it is less than 260, and this is somewhat
efficient. However, it is not clear to us how to compute an upper bound on the 2-Selmer rank
as simply as with Monsky’s formula. Another idea is to investigate curves with Z/2 × Z/6
torsion, where one could additionally try to exploit the 3-isogeny.
Rubinstein notes that one could also change the problem slightly: consider (say) all curves
in Cremona’s database (the maximum rank is 4) – can you find a quadratic twist of rank 8
(or rank 6 if there is no 2-torsion) of any of these? This would already say something about
Granville’s heuristic.

14. Concluding Remarks

We briefly review what we consider to be the main findings of our work.

– It seems relatively easy (though certainly nontrivial) to find rank 6 quadratic twists of the
congruent number curve. We found 577 in a nearly exhaustive search up to 250, and an
additional 909 more up to 260 (each of the latter has at least one point of small height).
• Only 352 of the 577 curves up to 250 had a point of “small” height.
• Statistics regarding rank 6 curves are still unclear as to a prediction of a growth rate
(§9.1.3).
• The ratios prediction regarding popular congruence classes of high rank twists is
qualitatively corroborated (§9.1.2).

– It seems rather difficult to find rank 7 quadratic twists. We found 23 up to 260 (we expect
this to be exhaustive, but our methods are statistical), and 4 more from points of small
height.
• Again only 15 of these 27 curves had a point of “small” height.

– We did not find a rank 8 quadratic twist of the congruent number curve.
• Our searches for a rank 8 twist are sufficiently broad (up to 270, using a Mestre-
Nagao heuristic as a filter) for this to cast doubt on some guesses about growth
rates of ranks (§10).
• However, as noted previously, the data point for r = 7 appears to be abnormally
small, which might throw off any mundane curve-fitting analysis. In particular, a
(slower) growth rate like r ∼

√
log d/ log log d is not completely rejected by the

experimental data.
• As another measure, we have searched hundreds of millions of 2-Selmer survivors for
rank 8, while for rank 7 the first curve appeared with the 4388th such survivor (see
Table 2).
• Granville gives a heuristic which, when suitably interpreted, could predict that 7 is
the largest rank in the family (§11).
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– There are other methods that could be used to try to find high rank twists.

• Foremost of these would seem to be using the rank 2 parametrisation given by Fam-
ily II in §3.2. Such a parametrisation could be a way to confound Granville’s heuristic,
in parallel with the examples in §11.5. However, even if it beats the “probabilistic”
estimate on the rank, it might only do so by 1 or 2 at most.
• The use of different search methods (§3.3) is another path to explore.

15. Electronic availability

The 27 twists of rank 7 and 1486 of (presumed) rank 6 are available for download from
http://magma.maths.usyd.edu.au/~watkins/PTS.r6r7, the format being a Magma file
that takes about 10 seconds to load, and this gives a set of (known) independent points
for each twist in the corresponding arrays RANK6 and RANK7.
Some of the code we used in this project can be downloaded from
http://magma.maths.usyd.edu.au/~watkins/CONGCODE.tar
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