ON THE CHARACTER RING OF A FINITE GROUP

by

Cédric Bonnafé

Abstract. — Let G be a finite group and let k be a sufficiently large finite field. Let $\mathcal{R}(G)$ denote the character ring of G (i.e. the Grothendieck ring of the category of $\mathbb{C}G$ -modules). We study the structure and the representations of the commutative algebra $k \otimes_{\mathbb{Z}} \mathcal{R}(G)$.

Contents

Introduction	5
1. Preliminaries	6
2. Modules for $K\mathcal{R}(G)$ and $k\mathcal{R}(G)$	7
3. Principal block	11
4. Some invariants	13
5. The symmetric group	15
6. Dihedral groups	17
7. Some tables	19
References	23

Introduction

Let G be a finite group. We denote by $\mathcal{R}(G)$ the *Grothendieck ring* of the category of $\mathbb{C}G$ modules (it is usually called the *character ring* of G). It is a natural question to try to recover properties of G from the knowledge of $\mathcal{R}(G)$. It is clear that two finite groups having the same character table have the same Grothendieck rings and it is a Theorem of Saksonov [S] that the converse also holds. So the problem is reduced to an intensively studied question in character theory: recover properties of the group through properties of its character table.

In this paper, we study the k-algebra $k\mathcal{R}(G) = k \otimes_{\mathbb{Z}} \mathcal{R}(G)$, where k is a splitting field for G of positive characteristic p. It is clear that the knowledge of $k\mathcal{R}(G)$ is a much weaker information than the knowledge of $\mathcal{R}(G)$. The aim of this paper is to gather results on the representation theory of the algebra $k\mathcal{R}(G)$: although most of the results are certainy well-known, we have not found any general treatment of these questions. The blocks of $k\mathcal{R}(G)$ are local algebras which are parametrized by conjugacy classes of p-regular elements of G. So the simple $k\mathcal{R}(G)$ -modules are parametrized by conjugacy classes of p-regular elements of G. Moreover, the dimension of the projective cover of the simple module associated to the conjugacy class of the p-regular element $g \in G$ is equal to the number of conjugacy classes of p-elements in the centralizer $C_G(g)$. We also prove that the radical of $k\mathcal{R}(G)$ is the kernel of the decomposition map $k\mathcal{R}(G) \to k \otimes_{\mathbb{Z}} \mathcal{R}(kG)$, where $\mathcal{R}(kG)$ is the Grothendieck ring of the category of kG-modules (i.e. the ring of virtual Brauer characters of G).

²⁰⁰⁰ Mathematics Subject Classification. — primary 19A31; secondary 19A22.

We prove that the block of $k\mathcal{R}(G)$ associated to the p'-element g is isomorphic to the block of $k\mathcal{R}(C_G(g))$ associated to 1 (such a block is called the *principal block*). This shows that the study of blocks of $k\mathcal{R}(G)$ is reduced to the study of principal blocks. We also show that the principal block of $k\mathcal{R}(G)$ is isomorphic to the principal block of $k\mathcal{R}(H)$ whenever H is a subgroup of p'-index which controls the fusion of p-elements or whenever H is the quotient of G by a normal p'-subgroup.

We also introduce several numerical invariants (Loewy length, dimension of Ext-groups) that are partly related to the structure of G. These numerical invariants are computed completely whenever G is the symmetric group \mathfrak{S}_n (this relies on previous work of the author: the descending Loewy series of $k\mathcal{R}(\mathfrak{S}_n)$ was entirely computed in [**B**]) or G is a dihedral group and p = 2. We also provide tables for these invariants for small groups (alternating groups \mathfrak{A}_n with $n \leq 12$, some small simple groups, groups PSL(2, q) with q a prime power ≤ 27 , exceptional finite Coxeter groups).

NOTATION - Let \mathcal{O} be a Dedekind domain of characteristic zero, let \mathfrak{p} be a maximal ideal of \mathcal{O} , let K be the fraction field of \mathcal{O} and let $k = \mathcal{O}/\mathfrak{p}$. Let $\mathcal{O}_{\mathfrak{p}}$ be the localization of \mathcal{O} at \mathfrak{p} : then $k = \mathcal{O}_{\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{\mathfrak{p}}$. If $x \in \mathcal{O}_{\mathfrak{p}}$, we denote by \bar{x} its image in $\mathcal{O}_{\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{\mathfrak{p}} = k$. Throughout this paper, we assume that k has characteristic p > 0 and that K and k are splitting fields for all the finite groups involved in this paper. If n is a non-zero natural number, $n_{p'}$ denotes the largest divisor of n prime to p and we set $n_p = n/n_{p'}$.

If F is a field and if A is a finite dimensional F-algebra, we denote by $\mathcal{R}(A)$ its Grothendieck group. If M is an A-module, the radical of M is denoted by Rad M and the class of M in $\mathcal{R}(A)$ is denoted by [M]. If S is a simple A-module, we denote by [M:S] the multiplicity of S as a chief factor of a Jordan-Hölder series of M. The set of irreducible characters of A is denoted by Irr A.

We fix all along this paper a finite group G. For simplification, we set $\mathcal{R}(G) = \mathcal{R}(KG)$ and Irr $G = \operatorname{Irr} KG$ (recall that K is a splitting field for G). The abelian group $\mathcal{R}(G)$ is endowed with a structure of ring induced by the tensor product. If $\chi \in \mathcal{R}(G)$, we denote by χ^* its dual (as a class function on G, we have $\chi^*(g) = \chi(g^{-1})$ for any $g \in G$). If R is any commutative ring, we denote by $\operatorname{Class}_R(G)$ the space of class functions $G \to R$ and we set $\mathcal{RR}(G) = \mathbb{R} \otimes_{\mathbb{Z}} \mathcal{R}(G)$. If X is a subset of G, we denote by $1_X^R : G \to R$ the characteristic function of X. If R is a subring of K, then we simply write $1_X = 1_X^R$. Note that 1_G is the trivial character of G. If $f, f' \in \operatorname{Class}_K(G)$, we set

$$\langle f, f' \rangle_G = \frac{1}{|G|} \sum_{g \in G} f(g^{-1}) f'(g).$$

Then Irr G is an orthonormal basis of $\operatorname{Class}_{K}(G)$. We shall identify $\mathcal{R}(G)$ with the sub- \mathbb{Z} -module (or sub- \mathbb{Z} -algebra) of $\operatorname{Class}_{K}(G)$ generated by Irr G, and $K\mathcal{R}(G)$ with $\operatorname{Class}_{K}(G)$. If $f \in \mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$, we denote by \overline{f} its image in $k\mathcal{R}(G)$.

If g and h are two elements of G, we write $g \sim h$ (or $g \sim_G h$ if we need to emphasize the group) if they are conjugate in G. We denote by g_p (resp. $g_{p'}$) the p-part (resp. the p'-part) of g. If X is a subset of G, we set $X_{p'} = \{g_{p'} \mid g \in X\}$ and $X_p = \{g_p \mid g \in X\}$. If moreover X is closed under conjugacy, the set of conjugacy classes contained in X is denoted by X/\sim . In this case, $1_X^R \in \text{Class}_R(G)$. The centre of G is denoted by Z(G).

REMARK - We have recently discovered that some of the questions investigated in this paper were already studied by M. Deiml in his Ph.D. Thesis [**D**, Chapter 3]. More precisely, most of the results of our Section 2 were already proved by M. Deiml.

1. Preliminaries

1.A. Symmetrizing form. — Let

$$\begin{array}{cccc} \tau_G : & \mathcal{R}(G) & \longrightarrow & \mathbb{Z} \\ & \chi & \longmapsto & \langle \chi, 1_G \rangle_G \end{array}$$

denote the canonical symmetrizing form on $\mathcal{R}(G)$. The dual basis of Irr G is $(\chi^*)_{\chi \in \operatorname{Irr} G}$. It is then readily seen that $(\mathcal{R}(G), \operatorname{Irr} G)$ is a based ring (in the sense of Lusztig [L, Page 236]).

If R is any ring, we denote by $\tau_G^R : R\mathcal{R}(G) \to R$ the symmetrizing form $\mathrm{Id}_R \otimes_{\mathbb{Z}} \tau_G$.

1.B. Translation by the centre. — If $\chi \in \operatorname{Irr} G$, we denote by $\omega_{\chi} : Z(G) \to \mathcal{O}^{\times}$ the linear character such that $\chi(zg) = \omega_{\chi}(z)\chi(g)$ for all $z \in Z(G)$ and $g \in G$. If $z \in Z(G)$, we denote by $t_z : K\mathcal{R}(G) \to K\mathcal{R}(G)$ the linear map defined by $(t_z f)(g) = f(zg)$ for all $f \in K\mathcal{R}(G)$ and $g \in G$. It is clear that $t_{zz'} = t_z \circ t_{z'}$ for all $z, z' \in Z(G)$ and that t_z is an automorphism of algebra. Moreover,

$$t_z \chi = \omega_\chi(z) \chi$$

for every $\chi \in \operatorname{Irr} G$. Therefore, t_z is an isometry which stabilizes $\mathcal{OR}(G)$. If R is a subring of K such that $\mathcal{O} \subset R \subset K$, we still denote by $t_z : R\mathcal{R}(G) \to R\mathcal{R}(G)$ the restriction of t_z . Let $\overline{t}_z = \operatorname{Id}_k \otimes_{\mathcal{O}} t_z : k\mathcal{R}(G) \to k\mathcal{R}(G)$. This is again an automorphism of k-algebra. If z is a p-element, then $\overline{t}_z = \operatorname{Id}_{k\mathcal{R}(G)}$.

1.C. Restriction. — If $\pi : H \to G$ is a morphism of groups, then the restriction through π induces a morphism of rings $\operatorname{Res}_{\pi} : \mathcal{R}(G) \to \mathcal{R}(H)$. If R is a subring of K, we still denote by $\operatorname{Res}_{\pi} : R\mathcal{R}(G) \to R\mathcal{R}(H)$ the morphism $\operatorname{Id}_R \otimes_{\mathbb{Z}} \operatorname{Res}_{\pi}$. We denote by $\operatorname{Res}_{\pi} : k\mathcal{R}(G) \to k\mathcal{R}(H)$ the reduction modulo \mathfrak{p} of $\operatorname{Res}_{\pi} : \mathcal{OR}(G) \to \mathcal{OR}(H)$. Recall that, if H is a subgroup of G and π is the canonical injection, then Res_{π} is just $\operatorname{Res}_{H}^{G}$. In this case, Res_{π} will be denoted by $\operatorname{Res}_{H}^{G}$. Note the following fact:

(1.1) If π is surjective, then $\overline{\text{Res}}_{\pi}$ is injective.

Proof of 1.1. — Indeed, if π is surjective, then $\operatorname{Res}_{\pi} : \mathcal{R}(G) \to \mathcal{R}(H)$ is injective and its image is a direct summand of $\mathcal{R}(H)$.

1.D. Radical. — First, note that, since $k\mathcal{R}(G)$ is commutative, we have

(1.2) Rad $k\mathcal{R}(G)$ is the ideal of nilpotent elements of $k\mathcal{R}(G)$.

So, if $\pi: H \to G$ is a morphism of finite groups, then

(1.3) $\overline{\operatorname{Res}}_{\pi}(\operatorname{Rad} k\mathcal{R}(G)) \subset \operatorname{Rad} k\mathcal{R}(H).$

The Loewy length of the algebra $k\mathcal{R}(G)$ is defined as the smallest natural number n such that $(\operatorname{Rad} k\mathcal{R}(G))^n = 0$. We denote it by $\ell_p(G)$. By 1.1 and 1.3, we have:

(1.4) If π is surjective, then $\ell_p(G) \leq \ell_p(H)$.

2. Modules for $K\mathcal{R}(G)$ and $k\mathcal{R}(G)$

2.A. Semisimplicity. — Recall that $K\mathcal{R}(G)$ is identified with the algebra of class functions on G. If $C \in G/\sim$ and $f \in K\mathcal{R}(G)$, we denote by f(C) the constant value of f on C. We now define $\operatorname{ev}_C : K\mathcal{R}(G) \to K$, $f \mapsto f(C)$. It is a morphism of K-algebras. In other words, it is an irreducible representation (or character) of $K\mathcal{R}(G)$. We denote by \mathcal{D}_C the corresponding simple $K\mathcal{R}(G)$ -module (dim_K $\mathcal{D}_C = 1$ and an element $f \in K\mathcal{R}(G)$ acts on \mathcal{D}_C by multiplication by $\operatorname{ev}_C(f) = f(C)$). Now, 1_C is a primitive idempotent of $K\mathcal{R}(G)$ and it is easily checked that

(2.1)
$$K\mathcal{R}(G)1_C \simeq \mathcal{D}_C.$$

Recall that

(2.2)
$$1_C = \frac{|C|}{|G|} \sum_{\chi \in \operatorname{Irr} G} \chi(C^{-1}) \chi$$

and

$$\sum_{C \in G/\sim} 1_C = 1_G.$$

Therefore:

Proposition 2.4. — We have:

- (a) $(\mathcal{D}_C)_{C \in G/\sim}$ is a family of representatives of isomorphy classes of simple $K\mathcal{R}(G)$ -modules.
- (b) Irr $K\mathcal{R}(G) = \{ ev_C \mid C \in G/\sim \}.$
- (c) $K\mathcal{R}(G)$ is split semisimple.

We conclude this section by the computation of the Schur elements (see [**GP**, 7.2] for the definition) associated to each irreducible character of $K\mathcal{R}(G)$. Since

(2.5)
$$\tau_G^K = \sum_{C \in G/\sim} \frac{|C|}{|G|} \mathrm{ev}_C,$$

we have by $[\mathbf{GP}, \text{Theorem 7.2.6}]$:

Corollary 2.6. — Let $C \in G/\sim$. Then the Schur element associated with the irreducible character ev_C is $\frac{|G|}{|C|}$.

REMARK 2.7 - If $z \in Z(G)$, then t_z induces an isomorphism of algebras $K\mathcal{R}(G)1_C \simeq K\mathcal{R}(G)1_{z^{-1}C}$.

REMARK 2.8 - If $f \in K\mathcal{R}(G)$, then $f = \sum_{C \in G \not\sim} f(C) \mathbf{1}_C$.

EXAMPLE 2.9 - The map ev_1 will sometimes be denoted by deg, since it sends a character to its degree.

2.B. Decomposition map. — Let $d_{\mathfrak{p}} : \mathcal{R}(G) \to \mathcal{R}(kG)$ denote the decomposition map. If R is any commutative ring, we denote by $d_{\mathfrak{p}}^{R} : R\mathcal{R}(G) \to R\mathcal{R}(kG)$ the induced map. Note that $\mathcal{R}(kG)$ is also a ring (for the multiplication given by tensor product) and that $d_{\mathfrak{p}}$ is a morphism of ring. Also, by [**CR**, Corollary 18.14],

$(2.10) d_{\mathfrak{p}} is surjective.$

Since $\operatorname{Irr}(kG)$ is a linearly independent family of class functions $G \to k$ (see [**CR**, Theorem 17.4]), the map $\chi : k\mathcal{R}(kG) \to \operatorname{Class}_k(G)$ that sends the class of a kG-module to its character is (welldefined and) injective. This is a morphism of k-algebras.

Now, if C is a conjugacy class of p-regular elements (i.e. $C \in G_{p'}/\sim$), we define

$$\mathcal{S}_{p'}(C) = \{g \in G \mid g_{p'} \in C\}$$

(for instance, $S_{p'}(1) = G_p$). Then $S_{p'}(C)$ is called the p'-section of C: this is a union of conjugacy classes of G. Let $\operatorname{Class}_k^{p'}(G)$ be the space of class functions $G \to k$ which are constant on p'-sections. Then, by [**CR**, Lemma 17.8], $\operatorname{Irr}(kG) \subset \operatorname{Class}_k^{p'}(G)$, so the image of χ is contained in $\operatorname{Class}_k^{p'}(G)$. But, χ is injective, $|\operatorname{Irr}(kG)| = |G_{p'}/\sim |$ (see [**CR**, Corollary 17.11]) and $\dim_k \operatorname{Class}_k^{p'}(G) = |G_{p'}/\sim |$. Therefore, we can identify, through χ , the k-algebras $k\mathcal{R}(kG)$ and $\operatorname{Class}_k^{p'}(G)$. In particular,

(2.11)
$$k\mathcal{R}(kG)$$
 is split semisimple.

8

2.C. Simple $k\mathcal{R}(G)$ -modules. — If $C \in G/\sim$, we still denote by $\operatorname{ev}_C : \mathcal{OR}(G) \to \mathcal{O}$ the restriction of ev_C and we denote by $\overline{\operatorname{ev}}_C : k\mathcal{R}(G) \to k$ the reduction modulo \mathfrak{p} of ev_C . It is easily checked that $\overline{\operatorname{ev}}_C$ factorizes through the decomposition map $d_{\mathfrak{p}}$. Indeed, if $\operatorname{ev}_C^k : k\mathcal{R}(kG) \to k$ denote the evaluation at C (recall that $k\mathcal{R}(kG)$ is identified, via the map χ of the previous subsection, to $\operatorname{Class}_k^{p'}(G)$), then

(2.12)
$$\overline{\operatorname{ev}}_C = \operatorname{ev}_C^k \circ d_{\mathfrak{p}}^k.$$

Let \mathcal{D}_C be the corresponding simple $k\mathcal{R}(G)$ -module. Let $\delta_{\mathfrak{p}} : \mathcal{R}(K\mathcal{R}(G)) \to \mathcal{R}(k\mathcal{R}(G))$ denote the decomposition map (see [**GP**, 7.4] for the definition). Then

(2.13)
$$\delta_{\mathfrak{p}}[\mathcal{D}_C] = [\bar{\mathcal{D}}_C].$$

The following facts are well-known:

Proposition 2.14. — Let $C, C' \in G/\sim$. Then $\overline{\mathcal{D}}_C \simeq \overline{\mathcal{D}}_{C'}$ if and only if $C_{p'} = C'_{p'}$.

Proof. — The "if" part follows from the following classical fact [**CR**, Proposition 17.5 (ii) and (iv) and Lemma 17.8]: if $\chi \in \mathcal{R}(G)$ and if $g \in G$, then

$$\chi(g) \equiv \chi(g_{p'}) \mod \mathfrak{p}.$$

The "only if" part follows from 2.12 and from the surjectivity of the decomposition map $d_{\mathfrak{p}}$. \Box

Corollary 2.15. — We have:

- (a) $(\mathcal{D}_C)_{C \in G_{n'}/\sim}$ is a family of representatives of isomorphy classes of simple $k\mathcal{R}(G)$ -modules.
- (b) Irr $k\mathcal{R}(G) = \{\overline{\operatorname{ev}}_C \mid C \in G_{p'}/\sim\}.$
- (c) Rad $k\mathcal{R}(G) = \operatorname{Ker} d_{\mathfrak{p}}^k$.

(d) $k\mathcal{R}(G)$ is split.

Proof. — (a) follows from 2.13 and from the fact that the isomorphy class of any simple $k\mathcal{R}(G)$ modules must occur in some $\delta_{\mathfrak{p}}[S]$, where S is a simple $K\mathcal{R}(G)$ -module. (b) follows from (a). (c)
and (d) follow from (a), (b), 2.12 and 2.11.

Corollary 2.16. — $\dim_k \operatorname{Rad}(k\mathcal{R}(G)) = |G/\sim | - |G_{p'}/\sim |$.

Corollary 2.17. — $k\mathcal{R}(G)$ is semisimple if and only if p does not divide |G|.

EXAMPLE 2.18 - Since ev₁ is also denoted by deg, we shall sometimes denote by $\overline{\text{deg}}$ the morphism $\overline{\text{ev}}_1$. If G is a p-group, then Corollary 2.15 shows that $\text{Rad} k\mathcal{R}(G) = \text{Ker}(\overline{\text{deg}})$. In this case, if 1, $\lambda_1, \ldots, \lambda_r$ denote the linear characters of G and χ_1, \ldots, χ_s denote the non-linear irreducible characters of G, then $(\overline{\lambda}_1 - 1, \ldots, \overline{\lambda}_r - 1, \overline{\chi}_1, \overline{\chi}_s)$ is a k-basis of $\text{Rad} k\mathcal{R}(G)$.

2.D. Projective modules. — We now fix a conjugacy class C of p-regular elements (i.e. $C \in G_{p'}/\sim$). Let

$$e_C = 1_{\mathcal{S}_{p'}(C)} = \sum_{D \in \mathcal{S}_{p'}(C)/\sim} 1_D.$$

If necessary, e_C will be denoted by e_C^G . If H is a subgroup of G, then

(2.19)
$$\operatorname{Res}_{H}^{G} e_{C}^{G} = \sum_{D \in (C \cap H)/\sim_{H}} e_{D}^{H}.$$

Proposition 2.20. — Let $C \in G_{\mathfrak{p}'}/\sim$. Then $e_C \in \mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$.

Proof. — Using Brauer's Theorem, we only need to prove that $\operatorname{Res}_N^G e_C^G \in \mathcal{O}_{\mathfrak{p}}\mathcal{R}(N)$ for every nilpotent subgroup N of G. By 2.19, this amounts to prove the lemma whenever G is nilpotent. So we assume that G is nilpotent. Then $G = G_{p'} \times G_p$, and G_p and $G_{p'}$ are subgroups of G. Moreover, $C \subset G_{p'}$ and $\mathcal{S}_{p'}(G) = C \times G_p$. If we identify $K\mathcal{R}(G)$ and $K\mathcal{R}(G_{p'}) \otimes_K K\mathcal{R}(G_p)$, we have $e_C^G = \mathbbm{1}_C^{G_{p'}} \otimes_{\mathcal{O}_p} e_\mathbbm{1}^{G_p}$. But, by 2.2, we have that $e_C^{G_{p'}} \in \mathcal{O}_{\mathfrak{p}}\mathcal{R}(G_{p'})$. On the other hand, $e_\mathbbm{1}^{G_p} = \mathbbm{1}_{G_p} \in \mathcal{R}(G_p)$. The proof of the lemma is complete.

Corollary 2.21. — Let $C \in G_{p'}/\sim$. Then e_C is a primitive idempotent of $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$.

Proof. — By Proposition 2.15 (a), the number of primitive idempotents of $k\mathcal{R}(G)$ is $|G_{p'}/\sim|$. So the number of primitive idempotents of $\hat{\mathcal{O}}_{\mathfrak{p}}\mathcal{R}(G)$ is also $|G_{p'}/\sim|$ (here, $\hat{\mathcal{O}}_{\mathfrak{p}}$ denotes the completion of $\mathcal{O}_{\mathfrak{p}}$ at its maximal ideal). Now, $(e_C)_{C\in G_{p'}/\sim}$ is a family of orthogonal idempotents of $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$ (see Proposition 2.20) and $1_G = \sum_{C\in G_{p'}/\sim} e_C$. The proof of the lemma is complete.

Let $\bar{e}_C \in k\mathcal{R}(G)$ denote the reduction modulo $\mathfrak{pO}_{\mathfrak{p}}$ of e_C . Then it follows from 2.12 that

(2.22)
$$d^k_{\mathfrak{p}}\bar{e}_C = 1^k_{\mathcal{S}_{p'}(C)} \in k\mathcal{R}(kG) \simeq \operatorname{Class}_k^{p'}(G).$$

Let $\mathcal{P}_C = \mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)e_C$ and $\bar{\mathcal{P}}_C = k\mathcal{R}(G)\bar{e}_C$: they are indecomposable projective modules for $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$ and $k\mathcal{R}(G)$ respectively. Then

$$\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G) = \bigoplus_{C \in G_{p'}/\sim} \mathcal{P}_C$$

and

$$k\mathcal{R}(G) = \bigoplus_{C \in G_{p'} / \sim} \bar{\mathcal{P}}_C.$$

Note also that

(2.23)
$$\dim_k k\mathcal{R}(G)\bar{e}_C = \operatorname{rank}_{\mathcal{O}_p}\mathcal{O}_p\mathcal{R}(G)e_C = |\mathcal{S}_{p'}(G)/\sim|$$

Proposition 2.24. — Let C and C' be two conjugacy classes of p'-regular elements of G. Then:

(a) $[\bar{\mathcal{P}}_C : \bar{\mathcal{D}}_{C'}] = \begin{cases} |\mathcal{S}_{p'}(C)/\sim| & \text{if } C = C', \\ 0 & \text{otherwise.} \end{cases}$ (b) $\bar{\mathcal{P}}_C / \operatorname{Rad} \bar{\mathcal{P}}_C \simeq \bar{\mathcal{D}}_C.$

Proof. — Let us first prove (a). By definition of e_C , we have

$$[K \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{P}_C] = \sum_{D \in \mathcal{S}_{p'}(G)/\sim} [\mathcal{D}_D]$$

Also, by definition of the decomposition map $\delta_{\mathfrak{p}} : \mathcal{R}(K\mathcal{R}(G)) \to \mathcal{R}(k\mathcal{R}(G))$, we have

$$\delta_{\mathfrak{p}}[K \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{P}_C] = [\bar{\mathcal{P}}_C]$$

So the result follows from these observations and from 2.13. Now, (b) follows easily from (a). \Box

2.E. More on the radical. — Let $\operatorname{Rad}_p(G)$ denote the set of functions $f \in \mathcal{O}_p\mathcal{R}(G)$ whose restriction to $G_{p'}$ is zero. Note that $\operatorname{Rad}_p(G)$ is a direct summand of the \mathcal{O}_p -module $\mathcal{O}_p\mathcal{R}(G)$. So, $k\operatorname{Rad}_p(G) = k \otimes_{\mathcal{O}_p} \operatorname{Rad}_p(G)$ is a sub-k-vector space of $k\mathcal{R}(G)$.

Proposition 2.25. — We have:

- (a) $\dim_k k \operatorname{Rad}_p(G) = |G/\sim | |G_{p'}/\sim |$.
- (b) $k \operatorname{Rad}_p(G)$ is the radical of $k\mathcal{R}(G)$.

Proof. — (a) is clear. (b) follows from 2.12 and from Corollary 2.15.

Corollary 2.26. — Let e be the number such that p^e is the exponent of a Sylow p-subgroup of G. If $f \in \operatorname{Rad} k\mathcal{R}(G)$, then $f^{p^e} = 0$.

Proof. — Let $e = e_p(G)$. If $f \in K\mathcal{R}(G)$ and if $n \ge 1$, we denote by $f^{(n)} : G \to K$, $g \mapsto f(g^n)$. Then the map $K\mathcal{R}(G) \to K\mathcal{R}(G)$, $f \mapsto f^{(n)}$ is a morphism of K-algebras. Moreover (see for instance [**CR**, Corollary 12.10]), we have

(2.27) If
$$f \in \mathcal{R}(G)$$
, then $f^{(n)} \in \mathcal{R}(G)$.

Therefore, it induces a morphism of k-algebras $\theta_n : k\mathcal{R}(G) \to k\mathcal{R}(G)$. Now, let $F : k\mathcal{R}(G) \to k\mathcal{R}(G)$, $\lambda \otimes_{\mathbb{Z}} f \mapsto \lambda^p \otimes_{\mathbb{Z}} f$. Then F is an injective endomorphism of the ring $k\mathcal{R}(G)$. Moreover (see for instance [I, Problem 4.7]), we have

(2.28)
$$F \circ \theta_p(f) = f^p$$

for every $f \in k\mathcal{R}(G)$. Since F and θ_p commute, we have $F^e \circ \theta_{p^e}(f) = f^{p^e}$ for every $f \in k\mathcal{R}(G)$. Therefore, if $\chi \in \operatorname{Rad}_p(G)$, we have

$$\bar{\chi}^{p^e} = F^e(\overline{\chi^{(p^e)}}).$$

But, by hypothesis, $g^{p^e} \in G_{p'}$ for every $g \in G$. So, if $f \in \operatorname{Rad}_p(G)$, then $f^{(p^e)} = 0$. Therefore, $\bar{f}^{p^e} = 0$. The corollary follows from this observation and from Proposition 2.25.

3. Principal block

If $C \in G_{p'}/\sim$, we denote by $\mathcal{R}_{\mathfrak{p}}(G, C)$ the $\mathcal{O}_{\mathfrak{p}}$ -algebra $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)e_{C}$. As an $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$ -module, this is just \mathcal{P}_{C} , but we want to study here its structure as a ring, so that is why we use a different notation. If R is a commutative $\mathcal{O}_{\mathfrak{p}}$ -algebra, we set $R\mathcal{R}_{\mathfrak{p}}(G, C) = R \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{R}_{\mathfrak{p}}(G, C)$. For instance, $k\mathcal{R}_{\mathfrak{p}}(G, C) = k\mathcal{R}(G)\bar{e}_{C}$, and $K\mathcal{R}_{\mathfrak{p}}(G, C)$ can be identified with the algebra of class functions on $\mathcal{S}_{p'}(C)$.

The algebra $\mathcal{R}_{\mathfrak{p}}(G, 1)$ (resp. $k\mathcal{R}_{\mathfrak{p}}(G, 1)$) will be called the *principal block* of $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$ (resp. $k\mathcal{R}(G)$). The aim of this section is to construct an isomorphism $\mathcal{R}_{\mathfrak{p}}(G, C) \simeq \mathcal{R}_{\mathfrak{p}}(C_G(g), 1)$, where g is any element of C. We also emphasize the functorial properties of the principal block.

REMARK 3.1 - If $C \in G_{p'}/\sim$ and if $z \in Z(G)$, then t_z induces an isomorphism of algebras $\mathcal{R}_{\mathfrak{p}}(G,C) \simeq \mathcal{R}_{\mathfrak{p}}(G,z_{p'}^{-1}C)$ (see Remark 2.7). Consequently, \bar{t}_z induces an isomorphism of algebras $k\mathcal{R}_{\mathfrak{p}}(G,C) \simeq k\mathcal{R}_{\mathfrak{p}}(G,z^{-1}C)$.

3.A. Centralizers. — Let $C \in G_{p'}/\sim_G$. Let $\operatorname{proj}_C^G : K\mathcal{R}(G) \to K\mathcal{R}_{\mathfrak{p}}(G,C), x \mapsto xe_C$ denote the canonical projection. We still denote by $\operatorname{proj}_C^G : \mathcal{O}_{\mathfrak{p}}\mathcal{R}(G) \to \mathcal{R}_{\mathfrak{p}}(G,C)$, the restriction of proj_C^G and we denote by $\overline{\operatorname{proj}}_C^G : k\mathcal{R}(G) \to k\mathcal{R}_{\mathfrak{p}}(G,C)$ its reduction modulo $\mathfrak{p}\mathcal{O}_{\mathfrak{p}}$.

Let us now fix $g \in C$. It is well-known (and easy) that the map $C_G(g)_p / \sim_{C_G(g)} \to S_{p'}(C) / \sim_G$ that sends the $C_G(g)$ -conjugacy class $D \in C_G(g)_p / \sim_{C_G(g)}$ to the *G*-conjugacy class containing gDis bijective. In particular,

(3.2)
$$|\mathcal{S}_{p'}(C)/\sim_G| = |C_G(g)_p/\sim_{C_G(g)}|.$$

Now, let $d_g^G: K\mathcal{R}(G) \to K\mathcal{R}(C_G(g))$ be the map defined by:

$$(d_g^G f)(h) = \begin{cases} f(gh) & \text{if } h \in C_G(g)_p, \\ 0 & \text{otherwise,} \end{cases}$$

for all $f \in K\mathcal{R}(G)$ and $h \in C_G(g)$. Then $d_q^G f \in K\mathcal{R}_p(C_G(g), 1)$. It must be noticed that

(3.3)
$$d_g^G = \operatorname{proj}_1^{C_G(g)} \circ t_g^{C_G(g)} \circ \operatorname{Res}_{C_G(g)}^G = t_g^{C_G(g)} \circ \operatorname{proj}_g^{C_G(g)} \circ \operatorname{Res}_{C_G(g)}^G$$

In particular, d_g^G sends $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$ to $\mathcal{R}_{\mathfrak{p}}(C_G(g), 1)$. We denote by $\operatorname{res}_g : \mathcal{R}_{\mathfrak{p}}(G, C) \to \mathcal{R}_{\mathfrak{p}}(C_G(g), 1)$ the restriction of d_g^G to $\mathcal{R}_{\mathfrak{p}}(G, C)$. Let $\operatorname{ind}_g : K\mathcal{R}_{\mathfrak{p}}(C_G(g), 1) \to K\mathcal{R}_{\mathfrak{p}}(G, C)$ be the map defined by

$$\operatorname{ind}_g f = \operatorname{Ind}_{C_G(g)}^G (t_{g^{-1}}^{C_G(g)} f)$$

for every $f \in K\mathcal{R}_{\mathfrak{p}}(C_G(g), 1)$. It is clear that $\operatorname{ind}_g f \in \mathcal{R}_{\mathfrak{p}}(G, C)$ if $f \in \mathcal{R}_{\mathfrak{p}}(C_G(g), 1)$. Thus we have defined two maps

$$\operatorname{res}_g : \mathcal{R}_p(G, C) \to \mathcal{R}_p(C_G(g), 1)$$

$$\operatorname{ind}_g : \mathcal{R}_p(C_G(g), 1) \to \mathcal{R}_p(G, C).$$

We have:

and

Theorem 3.4. — If $g \in G_{p'}$, then res_g and ind_g are isomorphisms of \mathcal{O}_p -algebras inverse to each other.

Proof. — We first want to prove that $\operatorname{res}_g \circ \operatorname{ind}_g$ is the identity morphism. Let $f \in K\mathcal{R}_p(C_G(g), 1)$. Let $f' = t_{q^{-1}}f$ and let $x \in C_G(g)_p$. We just need to prove that

(?)
$$(\operatorname{Ind}_{C_G(g)}^G f')(gx) = f'(gx).$$

But, by definition,

$$(\operatorname{Ind}_{C_G(g)}^G f')(gx) = \sum_{\substack{h \in [G/C_G(g)]\\h(gx)h^{-1} \in C_G(g)}} f'(h(gx)h^{-1}).$$

Here, $[G/C_G(g)]$ denotes a set of representatives of $G/C_G(g)$. Since f' has support in $gC_G(g)_p$, we have $f(h(gx)h^{-1}) \neq 0$ only if the p'-part of $h(gx)h^{-1}$ is equal to g, which happens if and only if $h \in C_G(g)$. This shows (?).

The fact that $\operatorname{ind}_g \circ \operatorname{res}_g$ is the identity can be proved similarly, or can be proved by using a trivial dimension argument. Since res_g is a morphism of algebras, we get that ind_g is also a morphism of algebras.

3.B. Subgroups of index prime to p. — If H is a subgroup of G, then the restriction map $\operatorname{Res}_{H}^{G}$ sends $\mathcal{R}_{\mathfrak{p}}(G,1)$ to $\mathcal{R}_{\mathfrak{p}}(H,1)$ (indeed, by 2.19, we have $\operatorname{Res}_{H}^{G} e_{1}^{G} = e_{1}^{H}$).

Theorem 3.5. — If H is a subgroup of G of index prime to p, then $\operatorname{Res}_{H}^{G} : \mathcal{R}_{\mathfrak{p}}(G,1) \to \mathcal{R}_{\mathfrak{p}}(H,1)$ is a split injection of $\mathcal{O}_{\mathfrak{p}}$ -modules.

Proof. — Let us first prove that $\operatorname{Res}_{H}^{G}$ is injective. For this, we only need to prove that the map $\operatorname{Res}_{H}^{G} : K\mathcal{R}_{\mathfrak{p}}(G,1) \to K\mathcal{R}_{\mathfrak{p}}(H,1)$. But $K\mathcal{R}_{\mathfrak{p}}(G,1)$ is the space of functions whose support is contained in G_p . Since the index of H is prime to p, every conjugacy class of p-elements of G meets H. This shows that $\operatorname{Res}_{H}^{G}$ is injective.

In order to prove that it is a split injection, we only need to prove that the $\mathcal{O}_{\mathfrak{p}}$ -module $\mathcal{R}_{\mathfrak{p}}(H,1)/\operatorname{Res}_{H}^{G}(\mathcal{R}_{\mathfrak{p}}(G,1))$ is torsion-free. Let π be a generator of the ideal $\mathfrak{p}\mathcal{O}_{\mathfrak{p}}$. Let $\gamma \in \mathcal{R}_{\mathfrak{p}}(G,1)$ and $\eta \in \mathcal{R}_{\mathfrak{p}}(H,1)$ be such that $\pi\eta = \operatorname{Res}_{H}^{G}\gamma$. We only need to prove that $\gamma/\pi \in \mathcal{R}_{\mathfrak{p}}(G,1)$. By Brauer's Theorem, it is sufficient to show that, for any nilpotent subgroup N of G, we have $\operatorname{Res}_{N}^{G}\gamma \in \pi\mathcal{O}_{\mathfrak{p}}\mathcal{R}(N)$.

So let N be a nilpotent subgroup. We have $N = N_p \times N_{p'}$ and, since the index of H in G is prime to p, we may assume that $N_p \subset H$. Since $\operatorname{Res}^G_N \psi \in \mathcal{R}_p(N, 1) = \mathcal{O}_p \mathcal{R}(N_p) \otimes_{\mathcal{O}_p} e_1^{N_{p'}}$, we have

$$\operatorname{Res}_{N}^{G} \gamma = (\operatorname{Res}_{N_{p}}^{G} \gamma) \otimes_{\mathcal{O}_{p}} e_{1}^{N_{p'}}$$
$$= (\pi \operatorname{Res}_{N_{p}}^{H} \eta) \otimes_{\mathcal{O}_{p}} e_{1}^{N_{p'}} \in \pi \mathcal{O}_{p} \mathcal{R}(N),$$

as expected.

Corollary 3.6. — If H is a subgroup of G of index prime to p, then the map $\overline{\operatorname{Res}}_{H}^{G} : k\mathcal{R}_{\mathfrak{p}}(G,1) \to k\mathcal{R}_{\mathfrak{p}}(H,1)$ is an injective morphism of k-algebras.

Corollary 3.7. If H is a subgroup of G of index prime to p which controls the fusion of pelements, then $\operatorname{Res}_{H}^{G} : \mathcal{R}_{\mathfrak{p}}(G,1) \to \mathcal{R}_{\mathfrak{p}}(H,1)$ is an isomorphism of $\mathcal{O}_{\mathfrak{p}}$ -algebras.

 $\mathbf{13}$

Proof. — In this case, $\dim_K K\mathcal{R}_{\mathfrak{p}}(G,1) = \dim_K K\mathcal{R}_{\mathfrak{p}}(H,1)$, so the result follows from Corollary 3.6.

EXAMPLE 3.8 - Let P be a Sylow p-subgroup of G and assume in this example that P is abelian. Then $N_G(P)$ controls the fusion of p-elements. It then follows from Corollary 3.7 that the restriction from G to $N_G(P)$ induces isomorphisms of algebras $\mathcal{R}_p(G,1) \simeq \mathcal{R}_p(N_G(P),1)$ and $k\mathcal{R}_p(G,1) \simeq k\mathcal{R}_p(N_G(P),1)$. In particular, $\ell_p(G,1) = \ell_p(N_G(P),1)$.

EXAMPLE 3.9 - Let N be a p'-group, let H be a group acting on N and let $G = H \ltimes N$. Then H is of index prime to p and controls the fusion of p-elements of G. So $\operatorname{Res}_{H}^{G}$ induces isomorphisms of algebras $\mathcal{R}_{\mathfrak{p}}(G,1) \simeq \mathcal{R}_{\mathfrak{p}}(H,1)$ and $k\mathcal{R}_{\mathfrak{p}}(G,1) \simeq k\mathcal{R}_{\mathfrak{p}}(H,1)$. In particular, $\ell_{p}(G,1) = \ell_{p}(H,1)$.

3.C. Quotient by a normal p'-subgroup. — Let N be a normal subgroup of G. Let $\pi : G \to G/N$ denote the canonical morphism. Then the morphism of algebras $\operatorname{Res}_{\pi} : \mathcal{R}_{\mathfrak{p}}(G/N) \to \mathcal{R}_{\mathfrak{p}}(G)$ induces a morphism of algebras $\operatorname{Res}_{\pi}^{(1)} : \mathcal{R}_{\mathfrak{p}}(G/N, 1) \to \mathcal{R}_{\mathfrak{p}}(G, 1), f \mapsto (\operatorname{Res}_{\pi} f)e_1^G$. Note that $\operatorname{Res}_{\pi}^{(1)} e_1^{G/N} = e_1^G$. We denote by $\overline{\operatorname{Res}}_{\pi}^{(1)} : k\mathcal{R}_{\mathfrak{p}}(G/N, 1) \to k\mathcal{R}_{\mathfrak{p}}(G, 1)$ the morphism induced by $\operatorname{Res}_{\pi}^{(1)}$. Then:

Theorem 3.10. — With the above notation, we have:

- (a) $\operatorname{Res}_{\pi}^{(1)}$ is a split injection of $\mathcal{O}_{\mathfrak{p}}$ -modules.
- (b) If N is prime to p, then $\operatorname{Res}_{\pi}^{(1)}$ is an isomorphism.

Proof. — (a) The injectivity of $\operatorname{Res}_{\pi}^{(1)}$ follows from the fact that $(G/N)_p = G_p N/N$. Now, let I denote the image of $\operatorname{Res}_{\pi}^{(1)}$. Since $\operatorname{Res}_{\pi}(\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G/N))$ is a direct summand of $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$, we get that $\operatorname{Res}_{\pi}(\mathcal{R}_{\mathfrak{p}}(G/N,1)) = (\operatorname{Res}_{\pi}^{(1)} e_1^{G/N}) \operatorname{Res}_{\pi}(\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G/N))$ is a direct summand of $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$. Since $I = e_1^G \operatorname{Res}_{\pi}(\mathcal{R}_{\mathfrak{p}}(G/N,1))$ and $e_1^G = e_1^G \operatorname{Res}_{\pi}(e_1^{G/N})$, we get that $I = e_1^G \operatorname{Res}_{\pi}(\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G/N))$ is a direct summand of $\mathcal{O}_{\mathfrak{p}}\mathcal{R}(G)$, as desired.

(b) now follows from (a) and from the fact that the map π induces a bijection between G_p/\sim_G and $(G/N)_g/\sim_{G/N}$ whenever N is a normal p'-subgroup.

4. Some invariants

We introduce in this section some numerical invariants of the k-algebra $k\mathcal{R}(G)$ (more precisely, of the algebras $k\mathcal{R}_{\mathfrak{p}}(G, C)$): Loewy length, dimension of the Ext-groups.

4.A. Loewy length. — If $C \in G_{p'}/\sim$, we denote by $\ell_p(G, C)$ the Loewy length of the k-algebra $k\mathcal{R}_p(G, C)$. Then, by definition, we have

(4.1)
$$\ell_p(G) = \max_{C \in G_{p'}/\sim} \ell_p(G, C).$$

On the other hand, by Theorem 3.4, we have

(4.2) If
$$C \in G_{p'}/\sim$$
 and if $g \in C$, then $\ell_p(G,C) = \ell_p(C_G(g),1)$.

The following bound on the Loewy length of $k\mathcal{R}(G)$ is obtained immediately from 2.23 and 3.2:

(4.3)
$$\ell_p(G) \leq \max_{C \in G_{p'}/\sim} |\mathcal{S}_{p'}(C)/\sim| = \max_{g \in G_{p'}} |C_G(g)_p/\sim_{C_G(g)}|.$$

We set $S_p(G) = \max_{C \in G_{p'}/\sim} |\mathcal{S}_{p'}(C)/\sim|$.

EXAMPLE 4.4 - The inequality 4.3 might be strict. Indeed, if $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, then $\ell_2(G) = 3 < 4 = S_2(G)$.

EXAMPLE 4.5 - If $S_p(G) = 2$, then $\ell_p(G) = 2$. Indeed, in this case, we have that p divides |G|, so $k\mathcal{R}(G)$ is not semisimple by Corollary 2.17, so $\ell_p(G) \ge 2$. The result then follows from 4.3.

4.B. Ext-groups. — If $i \ge 0$ and if $C \in G_{p'}/\sim$, we set

 $\operatorname{ext}_{p}^{i}(G,C) = \dim_{\mathbb{F}_{p}} \operatorname{Ext}_{k\mathcal{R}(G)}^{i}(\bar{\mathcal{D}}_{C},\bar{\mathcal{D}}_{C}).$

Note that $\operatorname{ext}_{p}^{i}(G, C) = \dim_{\mathbb{F}_{p}} \operatorname{Ext}_{k\mathcal{R}_{p}(G, C)}^{i}(\overline{\mathcal{D}}_{C}, \overline{\mathcal{D}}_{C})$. So, if $g \in C$, it follows from Theorem 3.4 that

(4.6)
$$\operatorname{ext}_p^i(G,C) = \operatorname{ext}_p^i(C_G(g),1).$$

4.C. Subgroups, quotients. — The next results follows respectively from Corollaries 3.6, 3.7 and from Theorem 3.10:

Proposition 4.7. — Let H be a subgroup of G of index prime to p and let N be a normal subgroup of G. Then:

- (a) $\ell_p(G, 1) \leq \ell_p(H, 1)$.
- (b) If H controls the fusion of p-elements, then $\ell_p(G, 1) = \ell_p(H, 1)$ and $\operatorname{ext}_p^i(G, 1) = \operatorname{ext}_p^i(H, 1)$ for every $i \ge 0$.
- (c) $\ell_p(G/N, 1) \leq \ell_p(G, 1).$
- (d) If |N| is prime to p, then $\ell_p(G,1) = \ell_p(H,1)$ and $\operatorname{ext}^i_p(G,1) = \operatorname{ext}^i_p(H,1)$ for every $i \ge 0$.

4.D. Direct products. — We study here the behaviour of the invariants $\ell_p(G, C)$ and $\operatorname{ext}_p^1(G, C)$ with respect to taking direct products. We first recall the following result on finite dimensional algebras:

Proposition 4.8. — Let A and B be two finite dimensional k-algebras. Then:

- (a) $\operatorname{Rad}(A \otimes_k B) = A \otimes_k (\operatorname{Rad} B) + (\operatorname{Rad} A) \otimes_k B.$
- (b) If $A / \operatorname{Rad} A \simeq k$ and $B / \operatorname{Rad} B \simeq k$, then

 $\operatorname{Rad}(A \otimes_k B) / \operatorname{Rad}(A \otimes_k B)^2 \simeq (\operatorname{Rad} A) / (\operatorname{Rad} A)^2 \oplus (\operatorname{Rad} B) / (\operatorname{Rad} B)^2.$

Proof. — (a) is proved for instance in [**CR**, Proof of 10.39]. Let us now prove (b). Let θ : (Rad A) \oplus (Rad B) \rightarrow Rad($A \otimes_k B$)/Rad($A \otimes_k B$)², $a \oplus b \mapsto \overline{a \otimes_k 1 + 1 \otimes_k b}$. By (a), θ is surjective and (Rad A)² \oplus (Rad B)² is contained in the kernel of θ . Now the result follows from dimension reasons (using (a)). □

Proposition 4.9. — Let G and H be two finite groups and let $C \in G_{p'}/\sim$ and $D \in H_{p'}/\sim$. Then

$$\ell_p(G \times H, C \times D) = \ell_p(G, C) + \ell_p(H, D) - 1$$

and

$$\operatorname{ext}_p^1(G \times H, C \times D) = \operatorname{ext}_p^1(G, C) + \operatorname{ext}_p^1(H, D).$$

Proof. — Write $A = k\mathcal{R}_{\mathfrak{p}}(G, C)$ and $B = k\mathcal{R}_{\mathfrak{p}}(H, D)$. It is easily checked that $k\mathcal{R}_{\mathfrak{p}}(G \times H, C \times D) = A \otimes_k B$. So the first equality follows from Propositon 4.8 (a) and from the commutativity of A and B. Moreover $A/(\operatorname{Rad} A) \simeq k$ and $B/(\operatorname{Rad} B) \simeq k$. In particular

$$\dim_k \operatorname{Ext}^1_A(A/\operatorname{Rad} A, A/\operatorname{Rad} A) = \dim_k(\operatorname{Rad} A)/(\operatorname{Rad} A)^2.$$

So the second equality follows from Proposition 4.8 (b).

4.E. Abelian groups. — We compute here the invariants $\ell_p(G, 1)$ and $\operatorname{ext}_p^1(G, 1)$ whenever G is abelian. If G is abelian, then there is a (non-canonical) isomorphism of algebras $k\mathcal{R}(G) \simeq kG$. Let us first start with the cyclic case:

(4.10) if G is cyclic, then
$$\ell_p(G) = |G|_p + 1$$
 and $\operatorname{ext}_p^1(G, 1) = \begin{cases} 1 & \text{if } p \text{ divides } |G|_p \\ 0 & \text{otherwise.} \end{cases}$

Therefore, by Proposition 4.9, we have: if G_1, \ldots, G_n are cyclic, then

(4.11)
$$\ell_p(G_1 \times \dots \times G_n) = |G_1|_p + \dots + |G_n|_p - n + 1.$$

and

(4.12)
$$\operatorname{ext}_p^1(G_1 \times \cdots \times G_n) = |\{1 \leq i \leq n \mid p \text{ divides } G_i\}|.$$

5. The symmetric group

In this section, and only in this section, we fix a non-zero natural number n and a prime number p and we assume that $G = \mathfrak{S}_n$, that $\mathcal{O} = \mathbb{Z}$ and that $\mathfrak{p} = p\mathbb{Z}$. Let $\mathbb{F}_p = k$. It is well-known that \mathbb{Q} and \mathbb{F}_p are splitting fields for \mathfrak{S}_n . For simplification, we set $\mathcal{R}_n = \mathcal{R}(\mathfrak{S}_n)$ and $\overline{\mathcal{R}}_n = \mathbb{F}_p \mathcal{R}(\mathfrak{S}_n)$. We investigate further the structure of $\overline{\mathcal{R}}_n$. This is a continuation of the work started in [**B**] in which the description of the descending Loewy series of $\overline{\mathcal{R}}_n$ was obtained.

We first introduce some notation. Let Part(n) denote the set of partitions of n. If $\lambda = (\lambda_1, \ldots, \lambda_r) \in Part(n)$ and if $1 \leq i \leq n$, we denote by $r_i(\lambda)$ the number of occurences of i as a part of λ . We set

$$\pi_p(\lambda) = \sum_{i=1}^n \left[\frac{r_i(\lambda)}{p}\right]$$

where, for $x \in \mathbb{R}$, $x \ge 0$, we denote by [x] the unique natural number $m \ge 0$ such that $m \le x < m+1$. Note that $\pi_p(\lambda) \in \{0, 1, 2, \ldots, [n/p]\}$ and recall that λ is *p*-regular (resp. *p*-singular) if and only if $\pi_p(\lambda) = 0$ (resp. $\pi_p(\lambda) \ge 1$). We denote by \mathfrak{S}_{λ} the Young subgroup canonically isomorphic to $\mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_r}$, by 1_{λ} the trivial character of \mathfrak{S}_{λ} , and by c_{λ} an element of \mathfrak{S}_{λ} with only *r* orbit in $\{1, 2, \ldots, n\}$. Let C_{λ} denote the conjugacy class of c_{λ} in \mathfrak{S}_n . Then the map $\operatorname{Part}(n) \to \mathfrak{S}_n/\sim$, $\lambda \mapsto C_{\lambda}$ is a bijection. Let $W(\lambda) = N_{\mathfrak{S}_n}(\mathfrak{S}_{\lambda})/\mathfrak{S}_{\lambda}$. Then

(5.1)
$$W(\lambda) \simeq \prod_{i=1}^{n} \mathfrak{S}_{r_i(\lambda)}.$$

In particular, $\pi_p(\lambda)$ is the *p*-rank of $W(\lambda)$, where the *p*-rank of a finite group is the maximal rank of an elementary abelian subgroup. Now, we set $\varphi_{\lambda} = \operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_n} 1_{\lambda}$. An old result of Frobenius says that

(5.2)
$$(\varphi_{\lambda})_{\lambda \in \operatorname{Part}(n)}$$
 is a \mathbb{Z} -basis of \mathcal{R}_n

(see for instance [**GP**, Theorem 5.4.5 (b)]). Now, if $i \ge 1$, let

$$\operatorname{Part}_{p}^{\geq i}(n) = \{\lambda \in \operatorname{Part}(n) \mid \pi_{p}(\lambda) \geq i\}$$

$$\operatorname{Part}_{p}^{i}(n) = \{\lambda \in \operatorname{Part}(n) \mid \pi_{p}(\lambda) = i\}.$$

Then, by $[\mathbf{B}, \text{Theorem A}]$, we have

and

(5.3)
$$(\operatorname{Rad} \overline{\mathcal{R}}_n)^i = \bigoplus_{\lambda \in \operatorname{Part}_n^{(i)}(n)} \mathbb{F}_p \bar{\varphi}_{\lambda}$$

Let $\operatorname{Part}_{p'}(n)$ denote the set of partitions of n whose parts are prime to p. Then the map $\operatorname{Part}_{p'}(n) \to G_{p'}/\sim, \lambda \mapsto C_{\lambda}$ is bijective. We denote by $\tau_{p'}(\lambda)$ the unique partition of n such that $(c_{\lambda})_{p'} \in C_{\tau_{n'}(\lambda)}$. If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, the partition $\tau_{p'}(\lambda)$ is obtained as follows. Let

$$\lambda' = (\underbrace{(\lambda_1)_{p'}, \dots, (\lambda_1)_{p'}}_{(\lambda_1)_p \text{ times}}, \dots, \underbrace{(\lambda_r)_{p'}, \dots, (\lambda_r)_{p'}}_{(\lambda_r)_p \text{ times}}).$$

Then $\tau_{p'}(\lambda)$ is obtained from λ' by reordering the parts. The map $\tau_{p'}$: Part $(n) \to \operatorname{Part}_{p'}(n)$ is obviously surjective. If $\lambda \in \operatorname{Part}_{p'}(n)$, we set for simplification $\mathcal{R}_{n,p}(\lambda) = \mathcal{R}_{p\mathbb{Z}}(\mathfrak{S}_n, C_\lambda)$ and $\overline{\mathcal{R}}_n(\lambda) = \mathbb{F}_p\mathcal{R}_{p\mathbb{Z}}(\mathfrak{S}_n, C_\lambda)$. In other words,

$$\mathbb{Z}_{p\mathbb{Z}}\mathcal{R}_n = \bigoplus_{\lambda \in \operatorname{Part}_{p'}(n)} \mathcal{R}_{n,p}(\lambda)$$

 $\overline{\mathcal{R}}_n = \bigoplus_{\lambda \in \operatorname{Part}_{p'}(n)} \overline{\mathcal{R}}_n(\lambda)$

and

are the decomposition of $\mathbb{Z}_{p\mathbb{Z}}\mathcal{R}_n$ and $\overline{\mathcal{R}}_n$ as a sum of blocks. We now make the result 5.3 more precise:

Proposition 5.4. — If $\lambda \in \operatorname{Part}_{p'}(n)$ and if $i \ge 0$, then

$$\dim_{\mathbb{F}_p} \left(\operatorname{Rad} \overline{\mathcal{R}}_n(\lambda) \right)^i = |\tau_{p'}^{-1}(\lambda) \cap \operatorname{Part}_p^{\geqslant i}(n)|.$$

Proof. — If λ and μ are two partitions of n, we write $\lambda \subset \mu$ if \mathfrak{S}_{λ} is conjugate to a subgroup of \mathfrak{S}_{μ} . This defines an order on $\operatorname{Part}(n)$. On the other hand, if $d \in \mathfrak{S}_n$, we denote by $\lambda \cap {}^d\mu$ the unique partition ν of n such that $\mathfrak{S}_{\lambda} \cap {}^d\mathfrak{S}_{\mu}$ is conjugate to \mathfrak{S}_{ν} . Then, by the Mackey formula for tensor product (see for instance [**CR**, Theorem 10.18]), we have

(1)
$$\varphi_{\lambda}\varphi_{\mu} = \sum_{d \in [\mathfrak{S}_{\lambda} \setminus \mathfrak{S}_{n}/\mathfrak{S}_{\mu}]} \varphi_{\lambda \cap d_{\mu}}.$$

Here, $[\mathfrak{S}_{\lambda} \setminus \mathfrak{S}_n / \mathfrak{S}_{\mu}]$ denotes a set of representatives of the $(\mathfrak{S}_{\lambda}, \mathfrak{S}_{\mu})$ -double cosets in \mathfrak{S}_n . This shows that, if we fixe $\lambda_0 \in \operatorname{Part}(n)$, then $\bigoplus_{\lambda \subset \lambda_0} \mathbb{Z} \varphi_{\lambda}$ and $\bigoplus_{\lambda \subseteq \lambda_0} \mathbb{Z} \varphi_{\lambda}$ are sub- $\mathcal{R}(G)$ -module of $\mathcal{R}(G)$. We denote by $\mathcal{D}_{\lambda}^{\mathbb{Z}}$ the quotient of these two modules. Then

(2)
$$K \otimes_{\mathbb{Z}} \mathcal{D}_{\lambda}^{\mathbb{Z}} \simeq \mathcal{D}_{C_{\lambda}}.$$

This follows for instance from [GP, Proposition 2.4.4]. Consequently,

(3)
$$k \otimes_{\mathbb{Z}} \mathcal{D}_{\lambda}^{\mathbb{Z}} \simeq \bar{\mathcal{D}}_{C_{\lambda}}.$$

It then follows from Proposition 2.14 that

(4)
$$k \otimes_{\mathbb{Z}} \mathcal{D}_{\lambda}^{\mathbb{Z}} \simeq k \otimes_{\mathbb{Z}} \mathcal{D}_{\mu}^{\mathbb{Z}} \text{ if and only if } \tau_{p'}(\lambda) = \tau_{p'}(\mu)$$

Now the Theorem follows from easily from (3), (4) and 5.3.

Now, if $\lambda \in \operatorname{Part}_{p'}(n)$, then $C_{\mathfrak{S}_n}(w_{\lambda})$ contains a normal p'-subgroup N_{λ} such that $C_{\mathfrak{S}_n}(w_{\lambda})/N_{\lambda}$ is isomorphic to $W(\lambda)$. We denote by 1^n the partition $(1, 1, \ldots, 1)$ of n. It follows from Theorem 3.4 and Theorem 3.10 that

(5.5)
$$\mathcal{R}_{n,p}(\lambda) \simeq \mathcal{R}_{p\mathbb{Z}}(W(\lambda), 1) \simeq \bigotimes_{i=1}^{n} \mathcal{R}_{r_i(\lambda), p}(1^{r_i(\lambda)})$$

and

(5.6)
$$\overline{\mathcal{R}}_n(\lambda) \simeq \overline{\mathcal{R}}(W(\lambda), 1) \simeq \bigotimes_{i=1}^n \overline{\mathcal{R}}_{r_i(\lambda)}(1^{r_i(\lambda)}).$$

We denote by $\text{Log}_p n$ the real number x such that $p^x = n$. Then:

Corollary 5.7. — If $\lambda \in \operatorname{Part}_{p'}(n)$, then

$$\operatorname{ext}_{p}^{1}(\mathfrak{S}_{n}, C_{\lambda}) = \sum_{i=1}^{n} [\operatorname{Log}_{p} r_{i}(\lambda)]$$
$$\ell_{p}(\mathfrak{S}_{n}, C_{\lambda}) = \pi_{p}(\lambda) + 1.$$

Let us show the first equality. By Proposition 5.4, we are reduced to show that $|\tau_{p'}^{-1}(1^n) \cap \operatorname{Part}_p^1(n)| = [\operatorname{Log}_p n]$. Let $r = [\operatorname{Log}_p n]$. In other words, we have $p^r \leq n < p^{r+1}$. If $1 \leq i \leq r$, write $n - p^i = \sum_{j=0}^r a_{ij}p^j$ with $0 \leq a_{ij} (the <math>a_{ij}$'s are uniquely determined). Let

$$\lambda(i) = (\underbrace{p^r, \dots, p^r}_{a_{ir} \text{ times}}, \dots, \underbrace{p^i, \dots, p^i}_{a_{ir} \text{ times}}, \underbrace{p^{i-1}, \dots, p^{i-1}}_{(p+a_{i-1,r}) \text{ times}}, \underbrace{p^{i-2}, \dots, p^{i-2}}_{a_{i-2,r} \text{ times}}, \dots, \underbrace{1, \dots, 1}_{a_{0r} \text{ times}}).$$

The result will follow from the following equality

(*)
$$\tau_{p'}^{-1}(1^n) \cap \operatorname{Part}_p^1(n) = \{\lambda(1), \lambda(2), \dots, \lambda(r)\}$$

So let us now prove (*). Let $I = \{\lambda(1), \lambda(2), \dots, \lambda(r)\}$. It is clear that $I \subset \tau_{p'}^{-1}(1^n) \cap \operatorname{Part}_p^1(n)$. Now, let $\lambda \in \tau_{p'}^{-1}(1^n) \cap \operatorname{Part}_p^1(n)$. Then there exists a unique $i \in \{1, 2, \dots, r\}$ such that $r_{p^{i-1}}(\lambda) \ge p$. Moreover, $r_{p^{i-1}}(\lambda) < 2p$. So, if we set $r'_{p^j} = r_{r_j}(\lambda)$ if $j \ne i-1$ and $r'_{p^{i-1}} = r_{p^{i-1}}(\lambda) - p$, we get that $0 \le r'_{p^j} \le p-1$ and $n-p^i = \sum_{j=0}^r r'_{p^j} p^j$. This shows that $r'_{p^j} = a_{ij}$, so $\lambda = \lambda(i)$.

Let us now show the second equality fo the Corollary. By Proposition 5.4, we only need to show that $|\tau_{p'}^{-1}(1^n) \cap \operatorname{Part}_p^{[n/p]}(n)| \ge 1$. But in fact, it is clear that $\tau_{p'}^{-1}(1^n) \cap \operatorname{Part}_p^{[n/p]}(n) = \{1^n\}$. \Box

Corollary 5.8. — We have

$$\dim_{\mathbb{F}_p} \left(\operatorname{Rad} \overline{\mathcal{R}}_n(1^n) \right)^{\lfloor n/p \rfloor} = 1$$

and $\dim_{\mathbb{F}_p} \operatorname{Ext}^{1}_{\overline{\mathcal{R}}_n}(\overline{\mathcal{D}}_{1^n}, \overline{\mathcal{D}}_{1^n}) = [\operatorname{Log}_p n].$

In particular, $\ell_p(\mathfrak{S}_n, 1) = \ell_p(\mathfrak{S}_n) = [n/p].$

Proof. — This is just a particular case of the previous corollary. The first equality has been obtained in the course of the proof of the previous corollary. \Box

6. Dihedral groups

Let $n \ge 1$ and $m \ge 0$ be two natural numbers. We assume in this section, and only in this subsection, that $G = D_{2^n(2m+1)}$ is the dihedral group of order $2^n(2m+1)$ and that p = 2.

Proposition 6.1. — If $n \ge 1$ and $m \ge 0$ are natural numbers, then

$$\ell_2(D_{2^n(2m+1)}, 1) = \begin{cases} 2 & \text{if } n = 1, \\ 3 & \text{if } n = 2, \\ 2^{n-2} + 1 & \text{if } n \ge 3. \end{cases}$$

and

$$\operatorname{ext}_{2}^{1}(D_{2^{n}(2m+1)}, 1) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n = 2, \\ 3 & \text{if } n \ge 3. \end{cases}$$

Proof. — Let N be the normal subgroup of G of order 2m + 1. Then $G \simeq D_{2^n} \ltimes N$. So, by Proposition 4.7 (d), we may, and we will, assume that m = 0. If n = 1 or 2 the the result is easily checked. Therefore, we may, and we will, assume that $n \ge 3$.

Write $h = 2^{n-1}$. We have

$$G = \langle s, t \mid s^2 = t^2 = (st)^h = 1 \rangle$$

Let $H = \langle st \rangle$ and $S = \langle s \rangle$. Then $|H| = 2^{n-1} = h$ and $G = S \ltimes H$. We fix a primitive *h*-th root of unity $\zeta \in \mathcal{O}^{\times}$. If $i \in \mathbb{Z}$, we denote by ξ_i the unique linear character of H such that $\xi_i(st) = \zeta^i$. Then Irr $H = \{\xi_0, \xi_1, \ldots, \xi_{h-1}\}$, and $\xi_0 = 1_H$.

Since $n \ge 3$, h is even and, if we write h = 2h', then $h' = 2^{n-2}$ is also even. For $i \in \mathbb{Z}$, we set

$$\chi_i = \operatorname{Ind}_H^G \xi_i.$$

It is readily seen that $\chi_i = \chi_{-i}$, that $\chi_{i+h} = \chi_i$ and that

(6.2)
$$\chi_i \chi_j = \chi_{i+j} + \chi_{i-j}.$$

Let ε (resp. ε_s , resp. ε_t) be the unique linear character of order 2 such that $\varepsilon(st) = 1$ (resp. $\varepsilon_s(s) = 1$, resp. $\varepsilon_t(t) = 1$). Then

$$\chi_0 = \mathbf{1}_G + \varepsilon,$$

$$\chi_{h'} = \varepsilon_s + \varepsilon_t,$$

and, if h' does not divide i,

 $\chi_i \in \operatorname{Irr} G.$

Moreover, $|\operatorname{Irr} G| = h' + 3$ and

Irr
$$G = \{1_G, \varepsilon, \varepsilon_s, \varepsilon_t, \chi_1, \chi_2, \dots, \chi_{h'-1}\}.$$

Finally, note that

(6.3)
$$\varepsilon_s \chi_i = \varepsilon_t \chi_i = \chi_{i+h'}.$$

Let us start by finding a lower bound for $\ell_2(G)$. First, notice that the following equality holds: for all $i, j \in \mathbb{Z}$ and every $r \ge 0$, we have

(6.4)
$$(\bar{\chi}_i + \bar{\chi}_j)^{2^r} = \bar{\chi}_{2^r i} + \bar{\chi}_{2^r j}.$$

Proof of 6.4. — Recall that $\bar{\chi}_i$ denotes the image of χ_i in $k\mathcal{R}(G)$. We proceed by induction on r. The case r = 0 is trivial. The induction step is an immediate consequence of 6.2.

Note also the following fact (which follows from Example 2.18):

(6.5) If
$$i \in \mathbb{Z}$$
, then $\bar{\chi}_i \in \operatorname{Rad} k\mathcal{R}(G)$.

Therefore,

(6.6)

$$\ell_2(G) \ge 2^{n-2} + 1.$$

Proof of 6.6. — By 6.4, we have immediately that $(\bar{\chi}_0 + \bar{\chi}_1)^{2^{n-2}} = \bar{\chi}_0 + \bar{\chi}_{h'} \neq 0$ and, by 6.5, $\bar{\chi}_0 + \bar{\chi}_1 \in \operatorname{Rad} k\mathcal{R}(G)$.

By Example 2.18, we have

(6.7)
$$(\overline{1}_G + \overline{\varepsilon}_s, \overline{\chi}_0, \overline{\chi}_1, \dots, \overline{\chi}_{h'})$$
 is a k-basis of $\operatorname{Rad} k\mathcal{R}(G)$.

By 6.3 and 6.2, we get that

(6.8)
$$(\bar{\chi}_i + \bar{\chi}_{i+2})_{0 \leqslant i \leqslant h'-2} \text{ is a } k \text{-basis of } (\operatorname{Rad} k\mathcal{R}(G))^2.$$

This shows that $\operatorname{ext}_p^1(G) = 3$, as expected. It follows that, if $n \ge 3$ and $2 \le i \le 2^{n-2} + 1$, then

(6.9)
$$\dim_k \left(\operatorname{Rad} k \mathcal{R}(D_{2^n}) \right)^i = 2^{n-2} + 1 - i$$

Proof of 6.9. — Let $d_i = \dim_k (\operatorname{Rad} k \mathcal{R}(D_{2^n}))^i$. By 6.8, we have $d_2 = 2^{n-2} - 1$. By 6.6, we have $d_{2^{n-2}} \ge 1$. Moreover, $d_1 > d_2 > d_3 > \ldots$ So the proof of 6.9 is complete.

In particular, we get:

(6.10) If
$$n \ge 3$$
, then $\left(\operatorname{Rad} k\mathcal{R}(D_{2^n})\right)^{2^{n-2}} = k(\overline{1}_{D_{2^n}} + \overline{\varepsilon} + \overline{\varepsilon}_s + \overline{\varepsilon}_t)$.

and $\ell_2(D_{2^n}) = 2^{n-2} + 1$, as expected.

7. Some tables

For $0 \leq i \leq \ell_p(G) - 1$, we set $d_i = \dim_k(\operatorname{Rad} k\mathcal{R}(G))^i$. Note that $d_0 = |G/\sim|$ and $d_0 - d_1 = |G_{p'}/\sim|$. In this section, we give tables containing the values $\ell_p(G)$, $\ell_p(G, 1)$, $S_p(G)$, $\operatorname{ext}_p^1(G, 1)$ and the sequence (d_0, d_1, d_2, \ldots) for various groups. These computations have been made using GAP3 [GAP3].

These computations show that, if G satisfies at least one of the following conditions:

- (1) $|G| \leq 200;$
- (2) G is a subgroup of \mathfrak{S}_8 ;
- (3) G is one of the groups contained in the next tables;

then $\ell_p(G,1) = \ell_p(N_G(P),1)$ (here, P denotes a Sylow p-subgroup of G). Note also that this equality holds if P is abelian (see Example 3.8).

Question. Is it true that $\ell_p(G, 1) = \ell_p(N_G(P), 1)$?

The first table contains the datas for the the exceptional Weyl groups, the second table is for the alternating groups \mathfrak{A}_n for $5 \leq n \leq 12$, the third table is for some small finite simple groups, and the last table is for the groups PSL(2, q) for q a prime power ≤ 27 .

G	G	p	$\ell_p(G)$	$S_p(G)$	d_0, d_1, d_2, \ldots	$\ell_p(G,1)$	$\operatorname{ext}_p^1(G,1)$
$W(E_6)$	51840	2	5	10	25, 19, 9, 3, 1	5	3
	$2^7.3^4.5$	3	4	5	25, 13, 4, 1	4	2
		5	2	2	25, 2	2	1
$W(E_7)$	2903040	2	7	24	60, 52, 35, 18, 7, 3, 1	7	4
	$2^{10}.3^4.5.7$	3	4	5	60, 30, 8, 2	4	2
		5	2	2	60, 6	2	1
		7	2	2	60, 2	2	1
$W(E_8)$	696729600	2	8	32	112, 100, 68, 36, 17, 7, 3, 1	8	5
	$2^{14}.3^5.5^2.7$	3	5	8	112, 65, 24, 7, 2	5	2
		5	3	3	112, 17, 2	3	1
		7	2	2	112, 4	2	1
$W(F_4)$	1152	2	5	14	25, 21, 12, 4, 1	5	4
	$2^7.3^2$	3	3	4	25, 11, 2	3	2
$W(H_3)$	120	2	3	4	10, 6, 1	3	2
	$2^3.3.5$	3	2	2	10, 2	2	1
		5	3	3	10, 4, 2	3	1
$W(H_4)$	14400	2	4	7	34, 24, 9, 1	4	3
	$2^6.3^2.5^2$	3	3	3	34, 11, 2	3	1
		5	5	6	34, 20, 11, 4, 2	5	2

G	G	p	$\ell_p(G)$	$S_p(G)$	d_0, d_1, d_2, \ldots	$\ell_p(G,1)$	$\operatorname{ext}_p^1(G,1)$
\mathfrak{A}_5	60	2	2	2	5, 1	2	1
	$2^2.3.5$	3	2	2	5, 1	2	1
		5	3	3	5, 2, 1	3	1
\mathfrak{A}_6	360	2	3	3	7, 2, 1	3	1
	$2^3.3^2.5$	3	3	3	7, 2, 1	3	1
		5	3	3	7, 2, 1	3	1
\mathfrak{A}_7	2520	2	3	3	9, 3, 1	3	1
	$2^3.3^2.5.7$	3	3	3	9, 3, 1	3	1
		5	2	2	9,1	2	1
		7	3	3	9, 2, 1	3	1
\mathfrak{A}_8	20160	2	4	5	14, 6, 2, 1	4	2
	$2^6.3^2.5.7$	3	3	3	14, 6, 2	3	1
		5	3	3	14, 3, 1	2	1
		7	3	3	14, 2, 1	3	1
\mathfrak{A}_9	181440	2	4	5	18, 8, 3, 1	4	2
	$2^6.3^4.5.7$	3	4	6	18, 10, 3, 1	4	3
		5	3	3	18, 4, 1	2	1
		7	2	2	18, 1	2	1
\mathfrak{A}_{10}	1814400	2	5	7	24, 12, 6, 2, 1	5	2
	$2^7.3^4.5^2.7$	3	4	6	24, 13, 4, 1	4	3
		5	3	3	24, 4, 1	3	1
		7	3	3	24, 3, 1	2	1
\mathfrak{A}_{11}	19958400	2	5	7	31, 17, 8, 3, 1	5	2
	$2^7.3^4.5^2.7.11$	3	4	5	31, 16, 6, 1	4	2
		5	3	3	31, 6, 1	3	1
		7	3	3	31, 4, 1	2	1
		11	3	3	31, 2, 1	3	1
\mathfrak{A}_{12}	239500800	2	6	10	43, 25, 13, 6, 2, 1	6	2
	$2^9.3^5.5^2.7.11$	3	5	8	43, 22, 9, 2, 1	5	3
		5	3	3	43, 10, 2	3	1
		7	3	3	43, 5, 1	2	1
		11	3	3	43, 2, 1	3	1

G	G	p	$\ell_p(G)$	$S_p(G)$	d_0, d_1, d_2, \ldots	$\ell_p(G,1)$	$\operatorname{ext}_p^1(G,1)$
GL(3,2)	168	2	3	3	6,2,1	3	1
	$2^3.3.7$	3	2	2	6,1	2	1
		7	3	3	6, 2, 1	3	1
SL(2,8)	504	2	2	2	9,1	2	1
	$2^3.3^2.7$	3	5	5	9, 4, 3, 2, 1	5	1
		7	4	4	9, 3, 2, 1	4	1
SL(3,3)	5616	2	5	5	12, 5, 3, 2, 1	5	1
	$2^4.3^3.13$	3	3	3	12, 3, 1	3	1
		13	5	5	12, 4, 3, 2, 1	5	1
SU(3,3)	6048	2	6	7	14, 9, 6, 4, 2, 1	6	2
	$2^5.3^3.7$	3	3	3	14, 5, 1	3	1
		7	3	3	14, 2, 1	3	1
M ₁₁	7920	2	5	5	10, 5, 3, 2, 1	5	1
	$2^4.3^2.5.11$	3	2	2	10, 2	2	1
		5	2	2	10,1	2	1
		11	3	3	10, 2, 1	3	1
PSp(4,3)	25920	2	4	5	20, 12, 5, 1	4	2
	$2^6.3^4.5$	3	5	7	20, 14, 8, 3, 1	5	2
		5	2	2	20,1	2	1
M_{12}	95040	2	4	7	15, 9, 3, 1	4	3
	$2^6.3^3.5.11$	3	3	3	15, 4, 1	3	1
		5	2	2	15, 2	2	1
		11	3	3	15, 2, 1	3	1
J_1	175560	2	2	2	15, 4	2	1
	$2^3.3.5.7.11.19$	3	2	2	15, 4	2	1
		5	3	3	15, 6, 3	3	1
		7	2	2	15, 1	2	1
		11	2	2	15, 1	2	1
		19	4	4	15, 3, 2, 1	4	1
M_{22}	443520	2	4	5	12, 5, 2, 1	4	2
	$2^7.3^2.5.7.11$	3	2	2	12,2	2	1
		5	2	2	12,1	2	1
		7	3	3	12, 2, 1	3	1
	60.4000	11	3	3	12,2,1	3	1
J_2	604800	2	4	5	21, 11, 3, 1	4	2
	$2^7.3^3.5^2.7$	3	3	3	21, 7, 1,	3	1
		5 7	5	5	21, 10, 6, 2, 1	$5 \\ 2$	1
IIO	44950000		2	2	21,1		1
HS	$\begin{array}{c} 44352000\\ 2^9.3^2.5^3.7.11\end{array}$	2	5	9	24, 15, 8, 3, 1	5	3
	2.3.3	3	2	2	24,5	2	1
		5	$\begin{vmatrix} 3\\2 \end{vmatrix}$	4	24, 8, 2	$\frac{3}{2}$	2
		7		2	24,1	2 3	1
		11	3	3	24, 2, 1	ა	1

G	G	p	$\ell_p(G)$	$S_p(G)$	d_0, d_1, d_2, \ldots	$\ell_p(G,1)$	$\operatorname{ext}_p^1(G,1)$
PSL(2,2)	6	2	2	2	3,1	2	1
$\simeq \mathfrak{S}_3$	2.3	3	2	2	3,1	2	1
PSL(2,3)	12	2	2	2	4,1	2	1
$\simeq \mathfrak{A}_4$	$2^2.3$	3	3	3	4, 2, 1	3	1
PSL(2,4)	60	2	2	2	5, 1	2	1
$\simeq PSL(2,5)$	$2^2.3.5$	3	2	2	5, 1	2	1
$\simeq \mathfrak{A}_5$		5	3	3	5, 2, 1	3	1
PSL(2,7)	168	2	3	3	6, 2, 1	3	1
	$2^3.3.7$	3	2	2	6, 1	2	1
		7	3	3	6, 2, 1	3	1
PSL(2,8)	504	2	2	2	9,1	2	1
	$2^3.3^2.7$	3	5	5	9, 4, 3, 2, 1	5	1
		7	4	4	9, 3, 2, 1	4	1
PSL(2,9)	360	2	3	3	7, 2, 1	3	1
$\simeq \mathfrak{A}_6$	$2^3.3^2.5$	3	3	3	7, 2, 1	3	1
		5	3	3	7, 2, 1	3	1
PSL(2,11)	660	2	2	2	8,2	2	1
	$2^2.3.5.11$	3	2	2	8,2	2	1
		5	3	3	8, 2, 1	3	1
	1000	11	3	3	8, 2, 1	3	1
PSL(2,13)	1092	2	2	2	9,2	2	1
	$2^2.3.7.13$	3	2	2	9,2	2	1
		7	4	4	9, 3, 2, 1	4	1
DCL(0, 1C)	4090	13	3	3	9,2,1	3	1
PSL(2, 16)	4080 $2^4.3.5.17$	2		2	17,1		1
	2.3.3.17	$\frac{3}{5}$	35	3 5	17, 5, 2	2 3	1 1
		17	9	9	$17, 6, 4, 2, 1 \\17, 8, 7, 6, 5, 4, 3, 2, 1$	9	1
PSL(2, 17)	2448	$\frac{1}{2}$	5	5	11, 3, 7, 0, 3, 4, 5, 2, 1 $11, 4, 3, 2, 1$	5	1
I DL(2, 17)	$2^{4.3}$	3	5	5	11, 4, 3, 2, 1 11, 4, 3, 2, 1	5	1
	2.0.11	17	3	3	11, 4, 5, 2, 1 11, 2, 1	3	1
PSL(2, 19)	3420	2	2	2	12,3	2	1
102(2,10)	$2^2.3^2.5.19$	3	5	5	12, 0 12, 4, 3, 2, 1	5	1
		5	3	3	12, 4, 0, 2, 1 12, 4, 2	3	1
		19	3	3	12, 1, 2 12, 2, 1	3	1
PSL(2, 23)	6072	2	4	4	14,5,3,1	3	1
	$2^3.3.11.23$	3	3	3	14, 4, 1	2	1
		11	6	6	14, 5, 4, 3, 2, 1	6	1
		23	3	3	14, 2, 1	3	1
PSL(2, 25)	7800	2	4	4	15, 5, 3, 1	3	1
	$2^3.3.5^2.13$	3	3	3	15, 4, 1	2	1
		5	3	3	15, 2, 1	3	1
		13	7	7	15, 6, 5, 4, 3, 2, 1	7	1
PSL(2, 27)	9828	2	2	2	16,4	2	1
	$2^2.3^3.7.13$	3	3	3	16, 2, 1	3	1
		7	4	4	16, 6, 4, 2	4	1
		13	7	7	16, 6, 5, 4, 3, 2, 1	7	1

References

- [B] C. BONNAFÉ, A note on the Grothendieck ring of the symmetric group, C. R. Math. Acad. Sci. Paris, **342** (2006), no. 8, 533–538.
- [CR] C.W. CURTIS & I. REINER, *Methods of representation theory, vol. I*, Wiley, New York, 1981; reprinted 1990 as Wiley Classics Library.
- [D] M. DEIML, Zur Darstellungstheorie von Darstellungsringen, Ph.D. Thesis (Jena, 1997).
- [DM] F. DIGNE & J. MICHEL, *Representations of finite groups of Lie type*, London math. soc. student texts **21**, Cambridge university press, 1991.
- [GAP3] MARTIN SCHÖNERT ET. AL., GAP Groups, Algorithms, and Programming version 3 release 4 patchlevel 4. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1997.
- [GP] M. GECK & G. PFEIFFER, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Math. Soc. Monographs, New series no. 21, Oxford University Press, 2000.
- [H] G. HIGMAN, The units of group-rings, Proc. London Math. Soc. 46 (1940), 231–248.
- M.I. ISAACS, Character theory of finite groups, Pure and Applied Mathematics 69, Academic Press, New York-London, 1976.
- [L] G. LUSZTIG, Leading coefficients of character values of Hecke algebras, *The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986)*, 235–262, Proc. Sympos. Pure Math. 47, Part 2, Amer. Math. Soc., Providence, RI, 1987.
- [S] A.I. SAKSONOV, The integral ring of characters of a finite group (Russian), Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1966 (1966) no. 3, 69–76.

November 8, 2006

CÉDRIC BONNAFÉ, CNRS (UMR 6623), Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France • *E-mail* : bonnafe@math.univ-fcomte.fr *Url* : http://www-math.univ-fcomte.fr/pp_Annu/CBONNAFE/