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Abstra
t. � The paper is a survey of re
ent developments in the asymptoti
 theory of global�elds and varieties over them. First, we give a detailed motivated introdu
tion to the asymptoti
theory of global �elds whi
h is already well shaped as a subje
t. Se
ond, we treat in a moresket
hy way the higher dimensional theory where mu
h less is known and many new resear
hdire
tions are available.Résumé. � Cet arti
le est un survol des développements ré
ents dans la théorie asymptotiquedes 
orps globaux et des variétés algébriques dé�nies sur les 
orps globaux. Dans un premiertemps, nous donnons une introdu
tion détaillée et motivée à la théorie asymptotique des 
orpsglobaux, théorie déjà bien établie. Puis nous aborderons plus rapidement la théorie asymptotiqueen dimension supérieure où peu de 
hoses sont 
onnues et où bien des dire
tions de re
her
hesont ouvertes.1. Introdu
tion: the origin of the asymptoti
 theory of global �eldsThe goal of this arti
le is to give a survey of asymptoti
 methods in number theory andalgebrai
 geometry developed in the last de
ades. The problems that are treated by theasymptoti
 theory of global �elds (that is number �elds or fun
tion �elds) and varieties overthem are quite diverse in nature. However, they are 
onne
ted by the use of zeta fun
tions,whi
h play the key role in the asymptoti
 theory.We begin by a very well known problem whi
h lies at the origin of the asymptoti
 theoryof global �elds. Let Fr be the �nite �eld with r elements. For a smooth proje
tive 
urve Cover Fr we let Nr(C) be the number of Fr-point on C. We denote by g(C) be the genus of C.2000 Mathemati
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48 Asymptoti
 methods in number theory and algebrai
 geometryThe problem 
onsists of �nding the maximum Nr(g) of the numbers Nr(C) over all smoothproje
tive 
urves of genus g over Fr :

Nr(g) = max
g(C)=g

Nr(C).The �rst upper bound was dis
overed by André Weil in 1940s as a dire
t 
onsequen
e of hisproof of the Riemann hypothesis for 
urves over �nite �elds. He showed that Nr(C) satis�esthe inequality
Nr(C) ≤ r + 1 + 2g

√
r.Weil bound though extremely useful in many appli
ations is far from being optimal. Adramati
 sear
h for the improvements of this bound and for the examples giving lower boundson Nr(g) has begun in 1980s with the dis
overy of Goppa that 
urves over �nite �elds withmany points 
an be used to 
onstru
t good error-
orre
ting 
odes. To show how importantthe developments in this area were it su�
es to mention the names of some mathemati
ianswho turned their attention to these questions: J.-P. Serre, V. Drinfeld, Y. Ihara, H. Stark, R.S
hoof, M. Tsfasman, S. Vl duµ, G. van der Geer, K. Lauter, H. Sti
htenoth, A. Gar
ia, et
.As suggested in [Ser85℄ by J.-P. Serre the 
ases when g is small and that when g is largerequire 
ompletely di�erent treatment. That is the latter 
ase whi
h interests us in this arti
le.The �rst major result in this dire
tion was the following theorem of V. Drinfeld and S. Vl duµ[DV℄:Theorem 1.1 (Drinfeld�Vl duµ). � For any family of smooth proje
tive 
urves {Ci} over

Fr of growing genus we have
lim sup
i→∞

Nr(Ci)

g(Ci)
≤ √

r − 1.Moreover, in the 
ase, when r is a square this bound turns out to be optimal. The familiesof 
urves, attaining this bound are 
onstru
ted in many di�erent ways: modular 
urves,Drinfeld modular 
urves, expli
it iterated 
onstru
tions, et
. We refer the reader to se
tion 4for more details. This result, signi�
antly improved and then reinterpreted in terms of limitzeta fun
tions by M. Tsfasman and S. Vl duµ, lies at the very base of the asymptoti
 theoryof global �elds. We will dis
uss all this in detail in se
tion 2. It is also possible to extendthe Drinfeld�Vl duµ inequalities to the 
ase of higher dimensional varieties. This serves as akeystone in the 
onstru
tion of the higher dimensional asymptoti
 theory (see se
tion 5).We will now turn our attention to yet another sour
e of development of the asymptoti
 theory,this time in the 
ase of number �elds. Let K be an algebrai
 number �eld, that is a �niteextension of Q. We denote by nK = [K : Q] its degree, and by DK its dis
riminant. Animportant question (both on its own a

ount and due to its appli
ations in various domainsof number theory, arithmeti
 geometry and theory of sphere pa
kings) is to know the rate ofgrows of dis
riminants of number �elds. The �rst bound onDK was obtained by H. Minkowskyusing the geometry of numbers. This bound was improved more than half a 
entury later byH. Stark, J.-P. Serre and A. Odlyzko ([Sta74℄, [Ser75℄, [Odl76℄, [Odl90℄) who used analyti
methods involving zeta fun
tions. The bounds they prove are as follows:Publi
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 49Theorem 1.2 (Odlyzko). � For a family of number �elds {Ki} we have
log |DKi | ≥ A · r1(Ki) + 2B · r2(Ki) + o(nKi),where r1(Ki) and r2(Ki) are respe
tively the number of real and 
omplex pla
es of Ki. Un
on-ditionally, we 
an take A = log(4π) + γ + 1 ≈ 60.8, B = log(4π) + γ ≈ 22.3, and, assumingthe generalized Riemann Hypothesis (GRH), one 
an take, A = log(8π)+ γ+ π

2 ≈ 215.3, B =

log(8π) + γ ≈ 44.7, where γ = 0.577 is Euler's gamma 
onstant.The fa
t that GRH drasti
ally improves the results is omnipresent in the asymptoti
 theoryof global �elds. Fortunately, GRH is known for zeta fun
tions of 
urves over �nite �elds (Weilbounds) and, more generally, of varieties over �nite �elds (Deligne's theorem), whi
h allowsto have both stronger results and simpler proofs in the 
ase of positive 
hara
teristi
.M. Tsfasman and S. Vl duµ managed to generalize the above inequalities taking into a

ountthe 
ontribution of �nite pla
es of the �elds. In fa
t, the restri
tion of the so-
alled basi
inequality proven by M. Tsfasman and S. Vl duµ to in�nite primes gives us the inequalitiesof Odlyzko�Serre. If we restri
t the basi
 inequality to �nite pla
es we obtain an analogue ofthe generalized Drinfeld�Vl duµ inequality in the 
ase of number �elds. The reader will �ndmore information on this in the next se
tion of the paper.The last, but not least, problem that led to the development of the asymptoti
 theory of global�elds and varieties over them was the Brauer�Siegel theorem. Let hK denote the 
lass numberof a number �eld K and let RK be its regulator. The 
lassi
al Brauer�Siegel theorem, provenby Siegel ([Sie℄) in the 
ase of quadrati
 �elds and by Brauer ([Bra℄) in general des
ribesthe behaviour of the produ
t hKRK in families of number �elds. The initial motivation for itwas a 
onje
ture of Gauss on imaginary quadrati
 �elds, however it has got many importantappli
ations elsewhere. The theorem 
an be stated as follows:Theorem 1.3 (Brauer�Siegel). � For a family of number �elds {Ki} we have
lim
i→∞

log(hKiRKi)

log
√

|DKi |
= 1provided the family satis�es two 
onditions:(i) lim

i→∞
nKi

gKi

= 0;(ii) either GRH holds, or all the �elds Ki are normal over Q.It is possible to remove the �rst and relax the se
ond 
onditions of the theorem. The �rst steptowards it was made by Y. Ihara in [Iha83℄ who 
onsidered families of unrami�ed number�elds. A 
omplete answer (at least modulo GRH) was given by M. Tsfasman and S. Vl duµin [TV02℄ who showed how to treat this problem in the framework of the asymptoti
 theoryof number �elds, in parti
ular using the 
on
ept of limit zeta fun
tions. The 
orrespondingquestion for 
urves over �nite �elds is also of great interest sin
e it des
ribes the asymptoti
behaviour of the number of rational points on Ja
obians of 
urves over �nite �elds. All thiswill be dis
ussed in detail in the se
tion 3. Publi
ations mathématiques de Besançon - 2011



50 Asymptoti
 methods in number theory and algebrai
 geometryIn our introdu
tion we mostly 
onsidered the one dimensional 
ase of number �elds or fun
tion�elds. Here the theory is best developed. However, there is quite a number of results and
onje
tures for higher dimensional varieties with parti
ularly ni
e arithmeti
al appli
ations.Some of the results in this a
tively developing area are dis
ussed in se
tion 5.Let us �nally say that, despite of the fa
t that the theory of error 
orre
ting 
odes and thetheory of sphere pa
kings are just brie�y mentioned in our introdu
tion their role in the
reation of the asymptoti
 theory of global �elds is fundamental. Indeed many questionssome of whi
h were mentioned here (maximal number of points on 
urves, growth of thedis
riminants, et
.) re
eived parti
ular attention due to their relation to error-
orre
ting
odes or sphere pa
kings.2. Basi
 
on
epts and results. Tsfasman�Vl duµ invariants of in�nite global�eldsMany authors 
onsidered the behaviour of arithmeti
 data (de
omposition of primes, genus,root dis
riminant, 
lass number, regulator et
.) in families of global �elds. Tsfasman andVl duµ laid the foundation for the asymptoti
 theory of global �elds in order not to 
onsider�elds in a family, but the limit obje
t (say, a limit zeta-fun
tion) that would en
ode theinformation 
on
erning the asymptoti
s of the initial arithmeti
 data.In this se
tion we introdu
e some de�nitions and give basi
 properties of families of global�elds.2.1. Tsfasman�Vl duµ invariants. � Arguments and proofs for the results from thissubse
tion 
an be found in [TV02℄. Let us �rst de�ne the obje
ts we are to work with. Let
r be a power of a prime p, and let Fr denote the algebrai
 
losure of Fr.De�nition 2.1. � A family of global �elds is a sequen
e K = {Kn}n∈N su
h that:1. Either all the Kn are �nite extensions of Q or all the Kn are �nite extensions of Fr(t)with Fr ∩Kn = Fr.2. if i 6= j, Ki is not isomorphi
 to Kj .A tower of global �elds is a family satisfying in addition Kn ⊂ Kn+1 for every n ∈ N. Anin�nite global (resp. number, resp. fun
tion) �eld is the limit of a tower of global (resp.number, resp. fun
tion) �elds, i.e. it is the union ∞⋃

n=1
Kn.De�nition 2.2. � The genus gK of a fun
tion �eld is the genus of the 
orresponding smoothproje
tive 
urve. We de�ne the genus of a number �eld K as gK = log

√
|DK |, where DK isthe dis
riminant of K.As there are (up to an isomorphism) only �nitely many global �elds with genus smaller thana �xed real number g, we have the following proposition.Proposition 2.3. � For any family {Ki} of global �elds the genus gKi → +∞.Publi
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 51Thus, in the number �elds 
ase, any in�nite algebrai
 extension of Q is an in�nite number�eld, whereas in the fun
tion �elds 
ase, we require the in�nite algebrai
 extension of Fr(t)to 
ontain a sequen
e of fun
tion �elds with genus going to in�nity.Let us now de�ne the so-
alled Tsfasman�Vl duµ invariants of a family of global �elds.Throughout the paper, we use the a
ronyms NF and FF for the number �eld and the fun
tion�eld 
ases respe
tively. As before, the GRH indi
ation means that we assume the generalizedRiemann Hypothesis for Dedekind zeta-fun
tions.First we introdu
e some notation to be used throughout the paper:
Q the �eld Q (NF), Fr(t) (FF);
nK [K : Q];

DK dis
riminant of K (NF);
gK the genus of K (FF ), the genus of K equal to log

√
|DK | (NF );

Plf (K) the set of �nite pla
es of K;
Np the norm of a pla
e p ∈ Plf (K);
deg p logr Np (FF );
Φq(K) the number of pla
es of K of norm q;
ΦR(K) the number of real pla
es of K (NF);
ΦC(K) the number of 
omplex pla
es of K (NF).We 
onsider the set of possible indi
es for the Φq,

A =

{{
R,C, pk | p prime, k ∈ Z>0

}
(NF ){

rk | k ∈ Z>0

}
(FF )

,and Af its subset of �nite parameters {pk | p prime, k ∈ Z>0

}
.De�nition 2.4. � We say that a family K = {Ki} of global �elds is asymptoti
ally exa
tif the following limit exists for any q ∈ A :

φq := lim
i→+∞

Φq(Ki)

gKi

.It is said to be asymptoti
ally good if in addition one of the φq is nonzero, and asymptoti
allybad otherwise. The numbers φq are 
alled the Tsfasman�Vl duµ invariants of the family K.This de�nition has two origins. The �rst one is the information theory sin
e the familiesgiving good algebrai
 geometri
 
odes are those for whi
h φr exists and is big. The se
ondone is more te
hni
al and 
an be seen through Weil's expli
it formulae. For 
onvenien
e wealso put φ∞ = lim
nKi

gKi

= φR + 2φC.Being asymptoti
ally exa
t is not a restri
tive 
ondition. To be pre
ise:Proposition 2.5. � 1. Any family of global �elds 
ontains an asymptoti
ally exa
t sub-family.2. Any tower of global �elds is asymptoti
ally exa
t and the φq's depend only on the limit.Publi
ations mathématiques de Besançon - 2011



52 Asymptoti
 methods in number theory and algebrai
 geometryWe 
an thus de�ne the Tsfasman�Vl duµ invariants of an in�nite global �elds K as the invari-ants of any tower having limit K. From now on, we only 
onsider asymptoti
ally exa
t families,sin
e they provide natural framework for asymptoti
 
onsiderations. One of the problems ofthe asymptoti
 theory is to understand the set of possible {φq}. In the next propositions wedes
ribe some the general properties of the {φq}. Let us start with the basi
 inequalities:Theorem 2.6 (Tsfasman�Vl duµ). � For any asymptoti
ally exa
t family of global �elds,the following inequalities hold:
(NF −GRH)

∑

q

φq log q√
q − 1

+ (log
√
8π +

π

4
+
γ

2
)φR + (log 8π + γ)φC ≤ 1,

(NF )
∑

q

φq log q

q − 1
+ (log 2

√
π +

γ

2
)φR + (log 2π + γ)φC ≤ 1,

(FF )

∞∑

m=1

mφrm

r
m
2 − 1

≤ 1,where γ is the Euler 
onstant.This result is 
entral in what follows. For instan
e, it is used to show the 
onvergen
e ofthe limit zeta-fun
tion asso
iated to the family. It is proven using the Weil expli
it formulae,the e�e
tive Chebotarev density theorem for number �elds and the Riemann hypothesis forfun
tion �elds.In the 
ase of towers of number �elds (and of fun
tion �elds if we 
onsider suitable quantities),the degree of the extension gives an upper bound for the number of pla
es above a primenumber p:Proposition 2.7. � For an asymptoti
ally exa
t family of number �elds and any prime num-ber p the following inequality holds:
+∞∑

m=1

mφpm ≤ φR + 2φC.Let us �nally de�ne the de�
ien
y δK of an asymptoti
ally exa
t family K = {Ki} of global�elds as the di�eren
e between the two sides of the basi
 inequalities under GRH:
(NF ) δK = 1−

∑

q

φq log q√
q − 1

− (log
√
8π +

π

4
+
γ

2
)φR − (log 8π + γ)φCand

(FF ) δK = 1−
∞∑

m=1

mφrm

r
m
2 − 1

.A remarkable fa
t is that the de�
ien
y of in�nite global �elds is in
reasing with respe
t tothe in
lusion (see [Leb10℄): K ⊂ L implies δK ≤ δL. One knows that �elds of zero de�
ien
yexist in the fun
tion �elds 
ase (
.f. se
tion 4). Su
h in�nite global �elds are 
alled optimal,and they are of parti
ular interest for the information theory.Publi
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 532.2. Rami�
ation, prime de
omposition and invariants. � The pre
ise statementsand proofs of the results from this subse
tion 
an be found in [GSR℄ and [Leb10℄. TheTsfasman�Vl duµ invariants of in�nite global �elds 
ontain information on the rami�
ationand the de
omposition of pla
es in these �elds. Indeed, one sees from Hurwitz genus formulathat any �nitely rami�ed and tamely rami�ed tower of number �elds is asymptoti
ally good(be
ause it has bounded root dis
riminant). For fun
tion �elds, we have to ask in additionfor the existen
e of a split pla
e. It is not ex
luded that there exists an asymptoti
ally goodin�nite global �eld with in�nitely many rami�ed pla
es and no split pla
e, but no exampleshave been found so far. In the 
ase of fun
tion �elds, A. Gar
ia and H. Sti
htenoth provideda widely rami�ed optimal tower and an everywhere rami�ed tower of fun
tion �elds withbounded g/n is 
onstru
ted in [DPZ℄. Unfortunately, we do not know anything similar fornumber �elds.In general, we expe
t asymptoti
ally good towers to have very little rami�
ation and somesplit pla
es. The next question, �rst raised by Y. Ihara, is how many pla
es split 
ompletelyin a tower K of global �eld. It follows from the Chebotarev density theorem that the set of
ompletely split pla
es has in general a zero analyti
 density, that is
lim
s→1+

∑
p∈D Np−s

∑
p∈Plf (Q)Np

−s
= 0,where D is the set of pla
es of Q that split 
ompletely in K/Q. In the 
ase of asymptoti
allygood �elds, ∑

p∈D
Np−1 is even bounded. However, in the 
ase of asymptoti
ally bad �elds, thenumerator 
an have an in�nite limit whereas the rami�
ation lo
us is very small (but in�nite).We refer the reader to [Leb10℄ for a more detailed treatment of the above questions.3. Generalized Brauer�Siegel theorem and limit zeta-fun
tions3.1. Generalizations of the Brauer�Siegel theorem. � Now we turn our attention tothe Brauer�Siegel theorem. The in-depth study of mathemati
al tools involved in it leads toan important notion of limit zeta fun
tions whi
h plays a key role in the study of asymptoti
problems.While looking at the statement of the Brauer�Siegel theorem (theorem 1.3) one immediatelyasks a question whether the two 
onditions present in it are indeed ne
essary. It is a rightguess that the se
ond 
ondition involving normality is te
hni
al in its nature (though gettingrid of it would be a breakthrough in the analyti
 number theory sin
e it is related to theso-
alled Siegel zeroes of zeta-fun
tions � the real zeroes whi
h lie abnormally 
lose to s = 1;of 
ourse, presumably they do not exist). The se
ond 
ondition nK/ log

√
|DK | → 0 looksmu
h tri
kier. Using the inequalities from proposition 2.7 it is immediate that this 
onditionis equivalent to the fa
t that the family we 
onsider is asymptoti
ally bad.A fundamental theorem of M. Tsfasman and S. Vl duµ from [TV02℄ allows both to treat theasymptoti
ally good 
ase of the Brauer�Siegel theorem and to relax the se
ond 
ondition.Publi
ations mathématiques de Besançon - 2011



54 Asymptoti
 methods in number theory and algebrai
 geometryWe formulate it together with a 
omplementary result by A. Zykin [Zyk05℄ whi
h relaxesthe se
ond 
ondition in the asymptoti
ally bad 
ase. Before stating the result we give thefollowing de�nition:De�nition 3.1. � We say that a number �eld K is almost normal if there exists a tower
K = Kn ⊃ · · · ⊃ K1 ⊃ K0 = Q, where ea
h step Ki/Ki−1 is normal.Theorem 3.2 (Tsfasman�Vl duµ�Zykin). � Assume that for an asymptoti
ally exa
tfamily of number �elds {Ki} either GRH holds or all the �elds Ki are almost normal. Thenwe have:

lim
i→∞

log(hKiRKi)

gKi

= 1 +
∑

q

φq log
q

q − 1
− φR log 2− φC log 2π,the sum being taken over all prime powers q.For an asymptoti
ally bad family of number �elds we have φR = 0 and φC = 0 as well as φq = 0for all prime powers q, so the 
on
lusion of the theorem takes the form of that of the 
lassi
alBrauer�Siegel theorem. However, there are examples of families of number �elds where theright hand side of the equality in the theorem is either stri
tly less or stri
tly greater thanone (see [TV02℄). Let us mention one parti
ularly ni
e 
orollary of the generalized Brauer�Siegel theorem due to M. Tsfasman and S. Vl duµ: a bound on the regulators that improvesZimmert's bound (see [Zim℄, his bound 
an be written as lim inf

logRKi
gKi

≥ (log 2 + γ)φR +

2γφC).Theorem 3.3 (Tsfasman�Vl duµ). � For a family of almost normal number �elds {Ki}(or any number �elds under the assumption of GRH) we have
lim inf

logRKi

gKi

≥ (log
√
πe+ γ/2)φR + (log 2 + γ)φC.The proof of this bound is far from being trivial, it 
an be found in [TV02℄.The fun
tion �eld version of the Brauer�Siegel theorem is both easier to prove and requiresno supplementary 
onditions (like normality or GRH). In fa
t, it was obtained before the
orresponding theorem for number �elds and allowed to guess what the result for number�elds should be (for a proof see [Tsf92℄ or [TV97℄).Theorem 3.4 (Tsfasman�Vl duµ). � For an asymptoti
ally exa
t family of smooth pro-je
tive 
urves {Xi} over a �nite �eld Fr we have:

lim
i→∞

log hi
gi

= log r +

∞∑

f=1

φrf log
rf

rf − 1
,where hi = h(Xi) = |(JacXi)(Fr)| is the 
ardinality of the Ja
obian of Xi over Fr.Publi
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 55Let κK = Res
s=1

ζK(s) be the residue of the Dedekind zeta fun
tion ζK(s) =
∏
q
(1− q−s)−Φq(K)of the �eld K at s = 1. Using the residue formula (see [Lan94, Chapter VIII℄ and [TVN,Chapter III℄)

κK =
2ΦR(K)(2π)ΦC(K)hKRK

wK

√
|DK |

(NF 
ase);
κK =

hKr
g

(r − 1) log r
(FF 
ase)(here wK is the number of roots of unity in K) one 
an see that the question about thebehaviour of the ratio from the Brauer�Siegel theorem is redu
ed to the 
orresponding questionfor κK . To put it into a more general framework, we �rst seek an interpretation of thearithmeti
 quantities we would like to study in terms of spe
ial values of 
ertain zeta fun
tions,then we study the behaviour of these spe
ial values in families using analyti
 methods. Wewill see in se
tion 5 another appli
ations of this prin
iple. One also noti
es that this redu
tionstep explains the appearan
e of the GRH in the statement of the Brauer�Siegel theorem.Let us formulate yet another version of the generalized Brauer�Siegel theorem proven byLeba
que in [Leb07, Theorem 7℄. It has the advantage of being expli
it with respe
t to theerror terms, thus giving information about the Brauer�Siegel ratio on the ��nite level�.Theorem 3.5 (Leba
que). � Let K be a global �eld. Then(i) in the fun
tion �eld 
ase

log(κK log r) =
N∑

f=1

Φrf log
rf

rf − 1
− logN − γ +O

( gK

NrN/2

)
+O

(
1

N

)
;(ii) in the number �eld 
ase assuming GRH

logκK =
∑

q≤x

Φq log
q

q − 1
− log log x− γ +O

(
nK log x√

x

)
+O

(
gK√
x

)
,where γ = 0.577 . . . is the Euler 
onstant. The 
onstants in O are absolute and e�e
tively
omputable (and, in fa
t, not very big).This theorem 
an also be regarded as a generalization of the Mertens theorem (see [Leb07℄).A slight improvement of the error term (as before, assuming GRH) was obtained in [LZ℄. Anun
onditional number �eld version of this result is also available but is a little more di�
ultto state ([Leb07, Theorem 6℄). We should also note that Leba
que's approa
h leads to auni�ed proof of the asymptoti
ally bad and asymptoti
ally good 
ases of theorem 3.2 with orwithout the assumption of GRH.3.2. Limit zeta-fun
tions. � For the moment the asymptoti
 theory of global �elds lookslike a 
olle
tion of similar but not dire
tly related results. The situation is 
lari�ed immenselyby means of the introdu
tion of limit zeta fun
tions. Publi
ations mathématiques de Besançon - 2011



56 Asymptoti
 methods in number theory and algebrai
 geometryDe�nition 3.6. � The limit zeta fun
tion of an asymptoti
ally exa
t family of global �elds
K = {Ki} is de�ned as

ζK(s) =
∏

q

(1− q−s)−φq(K),the produ
t being taken over all prime powers in the number �eld 
ase and over prime powersof the form q = rf in the 
ase of 
urves over Fr.The basi
 inequalities from theorem 2.6 give the 
onvergen
e of the above in�nite produ
tfor Re s ≥ 1
2 with the assumption of GRH and for Re s ≥ 1 without it (in parti
ular, in thefun
tion �eld 
ase the in�nite produ
t 
onverges for Re s ≥ 1

2). In fa
t, the basi
 inequalitiesthemselves 
an be restated in terms of the values of limit zeta fun
tions. To formulate themwe introdu
e the 
ompleted limit zeta fun
tion:
ζ̃K(s) = es2−φRπ−sφR/2(2π)−sφCΓ

(s
2

)φR
Γ(s)φCζK(s) (NF 
ase);

ζ̃K(s) = rsζK(s) (FF 
ase).Let ξ̃K(s) = ζ̃ ′K(s)/ζ̃K(s) be the logarithmi
 derivative of the 
ompleted limit zeta fun
tion.Then the basi
 inequalities from se
tion 2 take the following form:Theorem 3.7 (Basi
 inequalities). � For an asymptoti
ally exa
t family of global �elds
K = {Ki} we have ξ̃K(12) ≥ 0 in the fun
tion �eld 
ase and assuming GRH in the number�eld 
ase and ξ̃K(1) ≥ 0 without the assumption of GRH.Let us give an interesting interpretation of the de�
ien
y in terms of the distribution of zeroesof zeta fun
tions on the 
riti
al line. In fa
t, the results we are going to state are interestingon their own. To a global �eld K we asso
iate the 
ounting measure ∆K = 1

gK

∑
ρ
δt(ρ), where

t(ρ) = Im ρ in the number �eld 
ase and t(ρ) = 1
log r Im ρ in the fun
tion 
ase; the sum istaken over all zeroes ρ of ζK(s) in the number �eld 
ase and over all zeroes ρ of ζK(s) with

t(ρ) ∈ (−π, π] in the fun
tion �eld 
ase (in the 
ase of fun
tion �elds ζK(s) is periodi
 withthe period equal to 2π/ log r), δt is the Dira
 (atomi
) measure at t. Thus we get a measure on
R in the number �eld 
ase and on R/Z in the fun
tion �eld 
ase. The asymptoti
 behaviourof ∆K was �rst 
onsidered by Lang [Lan71℄ in the asymptoti
ally bad 
ase. The followingresult is proven in [TV02, Theorem 5.2℄ and [TV97, Theorem 2.1℄.Theorem 3.8 (Tsfasman�Vl duµ). � For an asymptoti
ally exa
t family of global �elds
K = {Ki}, assuming GRH, the limit lim

i→∞
∆Ki exists in an appropriate spa
e of measures (tobe pre
ise, in the spa
e of measures of slow growth on R in the NF 
ase,and in the spa
e ofmeasures on R/Z in the FF 
ase). Moreover, the limit is a measure with 
ontinuous density

MK(t) = Re ξ̃K
(
1
2 + it

)
.Of 
ourse, the expression for MK(t) 
an be written expli
itly using the invariants φq. Letus note two important 
orollaries of the theorem. First, we get an interpretation for thePubli
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 57de�
ien
y δK = ξ̃K
(
1
2

)
= MK(0) as the asymptoti
 number of zeroes of ζKi(s) a

umulatingat s = 1

2 . Se
ond, the theorem shows that for any family of number �elds zeroes of theirzeta-fun
tions get arbitrarily 
lose to s = 1
2 (and, in a sense, we even know the rate at whi
hzeroes of ζKi(s) approa
h to this point).3.3. Limit zeta-fun
tions and Brauer�Siegel type results. � Let us turn our at-tention to the Brauer�Siegel type results. The formulae from theorems 3.2 and 3.4 
an berewritten as lim

i→∞
logκKi
gKi

= log ζK(1). Furthermore, using the absolute and uniform 
onver-gen
e of in�nite produ
ts for zeta fun
tions for Re s > 1, Tsfasman and Vl duµ prove in[TV02, Proposition 4.2℄ that for Re s > 1 the equality lim
i→∞

log ζKi
(s)

gKi
= log ζK(s) holds. Infa
t, this equality remains valid for Re s < 1 (at least if we assume GRH in the number �eld
ase). The proof of the next theorem 
an be found in [Zy10℄ in the number �eld 
ase and in[Zyk11℄ in the fun
tion �eld 
ase (where the same problem is treated in a broader 
ontext).Theorem 3.9 (Zykin). � For an asymptoti
ally exa
t family of global �elds K = {Ki} for

Re s > 1
2 we have

lim
i→∞

log((s− 1)ζKi(s))

gKi

= log ζK(s) (NF 
ase assuming GRH);
lim
i→∞

log((rs − 1)ζKi(s))

gKi

= log ζK(s) (FF 
ase).The 
onvergen
e is uniform on 
ompa
t subsets of the half-plane {s | Re s > 1
2}.The 
ase s = 1 of theorem 3.9 is equivalent to the Brauer�Siegel theorem and 
urrent te
h-niques does not allow to treat it in full generality without the assumption of GRH. Thusgetting un
onditional results similar to theorem 3.9 looks ina

essible at the moment. Theanalogue of the above result for s = 1

2 is 
onsiderably weaker and one has only an upperbound:Theorem 3.10 (Zykin). � Let ρKi be the �rst non-zero 
oe�
ient in the Taylor series ex-pansion of ζKi(s) at s = 1
2 , i. e. ζKi(s) = ρKi

(
s− 1

2

)rKi+o
((
s− 1

2

)rKi
)
. Then in the fun
tion�eld 
ase or in the number �eld 
ase assuming that GRH is true, for any asymptoti
ally exa
tfamily of global �elds K = {Ki} the following inequality holds:

lim sup
i→∞

log |ρKi |
gKi

≤ log ζK

(
1

2

)
.The interest in the study of the asymptoti
 behaviour of zeta fun
tions at s = 1

2 is partlymotivated by the 
orresponding problem for L-fun
tions of ellipti
 
urves over global �elds,where this value is related to deep arithmeti
 invariants of the ellipti
 
urves via the Bir
h�Swinnerton-Dyer 
onje
ture. We refer the reader to se
tion 5 for more details. The questionwhether the equality holds in theorem 3.10 is rather deli
ate. It is related to the so 
alledlow-lying zeroes of zeta fun
tions, that is the zeroes of ζK(s) having small imaginary partPubli
ations mathématiques de Besançon - 2011
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 geometry
ompared to gK . It might well happen that the equality lim
i→∞

log |ρKi
|

gKi
= log ζK(12) does nothold for all asymptoti
ally exa
t families K = {Ki} sin
e the behaviour of low-lying zeroesis known to be rather random. Nevertheless, it might hold for �most� families (whatever itmight mean).To illustrate how hard the problem may be, let us remark that Iwanie
 and Sarnak studieda similar question for the 
entral values of L-fun
tions of Diri
hlet 
hara
ters [IS99℄ andmodular forms [IS00℄. They manage to prove that there exists a positive proportion ofDiri
hlet 
hara
ters (modular forms) for whi
h the logarithm of the 
entral value of the
orresponding L-fun
tions divided by the logarithm of the analyti
 
ondu
tor tends to zero.The te
hniques of the evaluation of molli�ed moments used in these papers are rather involved.We also note that, to our knowledge, there has been no investigation of low-lying zeroes of

L-fun
tions of growing degree. It seems that the analogous problem in the fun
tion �eld 
asehas neither been very well studied.Let us indi
ate that the 
orresponding question for the logarithmi
 derivatives of zeta fun
tionshas a negative answer. Indeed, the fun
tional equation implies that lim
i→∞

ζ′Ki
(1/2)

ζKi
(1/2) = 1 for anyfamily of fun
tion �elds Ki. However, the logarithmi
 derivative of the limit zeta fun
tion

ζK(s) at s = 1
2 equals one only for asymptoti
ally optimal families (
.f. theorem 3.7).As a 
orollary of theorem 3.9 one 
an obtain a result on the asymptoti
 behaviour of Euler�Krone
ker 
onstants.De�nition 3.11. � The Euler�Krone
ker 
onstant of a global �eld K is de�ned as γK =

c0(K)
c−1(K) , where ζK(s) = c−1(K)(s− 1)−1 + c0(K) +O(s− 1).In [Iha06℄ Y. Ihara made an extensive study of the Euler-Krone
ker 
onstants of global �elds,in parti
ular, he obtained an asymptoti
 formula for their behaviour in families of 
urves over�nite �elds. A 
omplementary result in the number �eld setting was obtain in [Zy10℄ as a
orollary of theorem 3.9. In fa
t the theorem 3.9 gives that in asymptoti
ally exa
t familiesthe 
oe�
ients of the Laurant series at s = 1 of the logarithmi
 derivatives ζ ′Ki

(s)/ζKi(s) tendto the 
orresponding 
oe�
ients of the Laurant series expansion of the logarithmi
 derivativeof the limit zeta fun
tion. For zeroes 
oe�
ient this be
omes:Corollary 3.12 (Ihara�Zykin). � Assuming GRH in the number �eld 
ase and un
ondi-tionally in the fun
tion �eld 
ase, for any asymptoti
ally exa
t family of global �elds {Ki} wehave
lim
i→∞

γKi

gKi

= −
∑

q

φq
log q

q − 1
.For the sake of 
ompleteness let us mention an expli
it analogue of theorem 3.9 obtained in[LZ℄:Theorem 3.13 (Leba
que�Zykin). � For any global �eld K, any integer N ≥ 10 and any

ǫ = ǫ0 + iǫ1 su
h that ǫ0 = Re ǫ > 0 we havePubli
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 59(i) in the fun
tion �eld 
ase:
N∑

f=1

fΦrf

r(
1
2
+ǫ)f − 1

+
1

log r
· ZK

(
1

2
+ ǫ

)
+

1

r−
1
2
+ǫ − 1

= O

(
gK
rǫ0N

(
1 +

1

ǫ0

))
+O

(
r

N
2

)
;(ii) and in the number �eld 
ase assuming GRH:

∑

q≤N

Φq log q

q
1
2
+ǫ − 1

+ ZK

(
1

2
+ ǫ

)
+

1

ǫ− 1
2

=

= O

( |ǫ|4 + |ǫ|
ǫ20

(gK + nK logN)
log2N

N ǫ0

)
+O

(√
N
)
.3.4. Some other topi
s related to limit zeta-fun
tions. � Let us �nally state somerelated results on the asymptoti
 properties of the 
oe�
ients of zeta fun
tions. For themoment they are only available in the fun
tion �eld 
ase (see [TV97℄). Let K/Fr(t) bea fun
tion �eld and let ζK(s) =

∞∑
m=1

Dmr
−ms be the Diri
hlet series expansion of the zetafun
tion of K. One knows that Dm is equal to the number of e�e
tive divisors of degree m onthe 
orresponding 
urve. We have the following results on the asymptoti
 behaviour of Dm :Theorem 3.14 (Tsfasman�Vl duµ). � For an asymptoti
ally exa
t family of fun
tion�elds K = {Ki} and any real µ > 0 we have

lim
i→∞

logD[µg](Ki)

gKi

= min
s≥1

(µs log q + log ζK(s)).Moreover, the minimum 
an be evaluated expli
itly via φq (
.f. [TV97, Proposition 4.1℄).Theorem 3.15 (Tsfasman�Vl duµ). � For an asymptoti
ally exa
t family of fun
tion�elds K = {Ki}, any ǫ > 0 and any m su
h that Dm
g ≥ µ1 + ǫ we have

logDm(Ki)

hKi

=
qm−g+1

q − 1
(1 + o(1))for g → ∞, o(1) being uniform in m. Here µ1 is the largest of the two roots of the equation

µ

2
+ µ logr

µ

2
+ (2− µ) logr

(
1− µ

2

)
= −2 logr ζK(1).We should note that o(1) from theorem 3.15 is additive whereas most of the previous resultswere estimates of multipli
ative type (they 
ontained logarithms of the quantities in question).It would be interesting to know whether there exist analogues of the above results in thenumber �eld 
ase.Let us 
on
lude by refering the reader to the Se
tion 6 of [TV02℄ for a list of open questions.Publi
ations mathématiques de Besançon - 2011



60 Asymptoti
 methods in number theory and algebrai
 geometry4. Examples4.1. Towers of modular 
urves. � Let us begin with the examples of asymptoti
allyoptimal families of 
urves over �nite �elds 
oming from towers of modular 
urves. The �rst
onstru
tions were 
arried out by Ihara ([Iha81℄), Tsfasman�Vl duµ�Zink ([TVZ℄). Theresear
h in this dire
tion was 
ontinued by N. Elkies and many others. Let us des
ribe several
onstru
tions.4.1.1. Classi
al modular 
urves. � Let us start with the 
onstru
tion of towers of modular
urves whi
h leads to asymptoti
ally optimal in�nite fun
tion �elds. For further information,we refer the reader to [TV92, Chapter 4℄. It is well known that the modular group Γ(1) =

PSL2(Z) a
ts on the Poin
aré upper half-plane h by (
a b

c d

)
· z =

az + b

cz + d
. We �x a positiveinteger N and we de�ne the prin
ipal 
ongruen
e subgroup of level N by

Γ(N) =

{
γ ∈ Γ(1) | γ ≡

(
1 0

0 1

)
mod N

}
.

Γ(N)⊳ Γ(1) and Γ(1)/Γ(N) is isomorphi
 to PSL2(Z/NZ). In parti
ular,
[Γ(1) : Γ(N)] =





N3

2

∏
ℓ|N

(
1− ℓ−2

) si N ≥ 3

6 si N = 2.We also put Γ0(N) =

{
γ ∈ Γ(1) | γ ≡

(∗ ∗
0 ∗

)
mod N

}
, so that Γ(N) ⊂ Γ0(N). We have

[Γ(1) : Γ0(N)] = N
∏

ℓ|N

(
1− ℓ−1

)
.Let now Γ be a 
ongruen
e subgroup, that is, any subgroup of Γ(1) 
ontaining Γ(N). The mostimportant 
ase for us is Γ = Γ(N) or Γ0(N). The set YΓ = Γ\h is equipped with an analyti
stru
ture, but is not 
ompa
t. To 
ompa
tify it we add points at in�nity (named 
usps):

Γ(1) a
ts naturally on P1(Q) and we put XΓ = (Γ\h) ∪ (Γ\P1(Q)). This way it be
omes a
onne
ted Riemann surfa
e 
alled modular 
urve. We let X(N) = XΓ(N), X0(N) = XΓ0(N),

Y (N) = YΓ(N) and Y0(N) = XΓ0(N).If Γ′ ⊂ Γ ⊂ Γ(1), there is a natural proje
tion from XΓ′ → XΓ, whi
h allows us to 
omputethe genus of the modular 
urve using the 
overing (the fun
tion j is in fa
t the j-invariant ofthe ellipti
 
urve C/(Z+ zZ)):
XΓ

// XΓ(1)
∼
j

// P1(C)via the Hurwitz formula. For instan
e,
gX(N) = 1 +

(N − 6)[Γ(1) : Γ(N)]

12N
.Publi
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 61It 
an be shown that Y (1) 
lassi�es isomorphism 
lasses of 
omplex ellipti
 
urves and that
Y0(N) 
lassi�es pairs (E,CN ), E being a 
omplex ellipti
 
urve and CN being a 
y
li
 sub-group of E of order N.Now, to 
onstru
t towers of 
urves de�ned over �nite �elds, we need to take redu
tions ofour modular 
urves modulo primes. If S is a s
heme and E → S is an ellipti
 
urve, the setof se
tions E(S) is an abelian group. Let EN (S) denote the points of order dividing N in
E(S). We 
all a level N stru
ture an isomorphism αN : EN (S) → (Z/NZ)2. One 
an provethat there exists a smooth a�ne s
heme Y (N) over SpecZ[1/N ] 
lassifying the isomorphism
lasses of pairs (E,αN ) 
onsisting of an ellipti
 
urve E/SpecZ[1/N ] together with a level Nstru
ture αN on E. One 
an prove that this 
urve is a model of Y (N) over SpecZ[ζN , 1/N ],where ζN is a primitive N th-root of 1. There is also a model of Y0(N) over SpecZ[1/N ] andthis �
oarse� moduli spa
e 
lassi�es pairs 
onsisting of an ellipti
 
urve together with a 
y
li
subgroup of order N. Models for X(N) and X0(N) 
an also be obtained in su
h a way thatthey be
ome 
ompatible with those for Y (N) and Y0(N). These 
urves have good redu
tionover any prime ideal not dividing N. Moreover, the 
urve X0(N) 
an be de�ned over Q andhas good redu
tion at any prime number not dividing N. Let p be su
h prime. We denoteby C0,N the 
urve over Fp2 obtained by redu
tion of X0(N) mod p. The 
urve X(N) 
anbe de�ned over the quadrati
 sub�eld of Q(ζN ) and has good redu
tion at all the primesnot dividing N. Let CN be the redu
tion of X(N) at a prime, i. e. a 
urve over Fp2. One
an see that the genus of X0(N) and of X(N) is preserved under redu
tion. The pointsof these 
urves 
orresponding to supersingular ellipti
 
urves are Fp2-rational and there are
[Γ(1) : Γ(N)]

12
(p− 1) of them on CN . This leads to the following theorem:Theorem 4.1. � (Ihara, Tsfasman�Vl duµ�Zink) Let ℓ be a prime number not equal to p.The families {Cℓn} and {C0,ℓn} satisfy φp2 = p− 1 and therefore are asymptoti
ally optimal.Note that the result for C0,ℓn 
an be dedu
ed immediately from the 
orresponding result for

Cℓn .4.1.2. Shimura modular 
urves. � Similar results on Shimura 
urves allow us to 
onstru
tdire
tly asymptoti
ally optimal families over Fr with r = q2 = p2m, p prime. To do so,following Ihara, we start with a p-adi
 �eld kp with N(p) = q = pm. Let Γ be a torsion-freedis
rete subgroup of G = PSL2(R)× PSL2(kp) with 
ompa
t quotient and dense proje
tionto ea
h of the two 
omponents of G (su
h Γ's exist). Ihara proved the following results thatrelate the 
onstru
tion of optimal 
urves to (anabelian) 
lass �eld theory, and therefore areof great interest for us:Theorem 4.2. � (Ihara [Iha08℄) To any subgroup Γ of G with the above properties one 
anasso
iate a 
omplete smooth geometri
ally irredu
ible 
urve X over Fr of genus ≥ 2, togetherwith a set Σ 
onsisting of (q− 1)(g− 1) Fr-rational points of X su
h that there is a 
anoni
alisomorphism (up to 
onjuga
y) from the pro�nite 
ompletion of Γ to Gal(KΣ/K) where KΣPubli
ations mathématiques de Besançon - 2011
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 methods in number theory and algebrai
 geometrydenotes the maximal unrami�ed Galois extension of the fun
tion �eld K of X in whi
h all thepla
es 
orresponding to the points of Σ are 
ompletely split.An easy 
omputation leads to the following result:Corollary 4.3. � For any square prime power r, there is a tower of 
urves de�ned over Frwith φr = √
r − 1.In fa
t, the ellipti
 modular 
urves X(N) that we 
onstru
ted in the previous se
tion 
orre-spond to Γ = PSL2(Z[1/p]) and its prin
ipal 
ongruen
e subgroups of level N.4.1.3. Drinfeld modular 
urves. � The appli
ability of Drinfeld modular 
urves to the prob-lem of 
onstru
tion of optimal 
urves has been known sin
e late 80's. The results we are goingto dis
uss next 
an be found in [TV92℄.Let L be a �eld of 
hara
teristi
 p and let L{τ} denote the ring of non-
ommutative polyno-mials in τ, 
onsisting of expressions of the form n∑

i=0

aiτ
i, ai ∈ L, with multipli
ation satisfying

τ · a = ap · τ for any a ∈ L. Let A = Fr[T ].A Drinfeld module is an Fr-homomorphism φ : A→ L{τ}, a 7→ φa satisfying a few te
hni
al
onditions. Let γ be the map γ : A → L sending a ∈ A to the term of φa of degree zero.Noti
e that φ is determined by φT and γ by γ(T ). We 
onsider only Drinfeld modules of rank
2 that is we assume that φT is a polynomial in τ of degree 2 and we put φT = γ(T )+gτ+∆τ2

(∆ 6= 0). More generally, one 
an de�ne Drinfeld modules over any A-s
heme S.Just as in the 
lassi
al 
ase, given a proper ideal I of A, one 
an de�ne a level I stru
tureon φ. There is an a�ne s
heme M(I) of �nite type over A that parametrizes pairs (φ, λ),where φ is a Drinfeld module over S and λ is a level I stru
ture. The s
heme M(I) has a
anoni
al 
ompa
ti�
ation: there exists a unique s
heme M(I) 
ontaining M(I) as an opendense subs
heme, whose �bres over SpecA[I−1] are smooth 
omplete 
urves. The group
GL2(A/I) a
ts naturally on M(I) by operating on the stru
tures of level I and this a
tionextends to M(I).From now on, let I be a prime ideal generated by a polynomial of degree m prime to q − 1.Now, 
onsider the smooth 
omplete (redu
ible) 
urve X(I) = M(I) ⊗A Fq over Fq. Notethat the A-algebra stru
ture on Fq is obtained through the redu
tion mod T. Consider thesubgroup

Γ0(I) =

{(
a b

c d

)
∈ GL2(A) | c ∈ I

}and let Γ0(I) be the image of this subgroup in GL2(A/I). Finally, we 
onsider the smooth
omplete absolutely irredu
ible 
urve X0(I) = X(I)/Γ0(I). The image of M(I) −M(I) in
X0(I) 
onsists of two Fq-rational points. Moreover, the following result holds.Theorem 4.4. � The family {X0(I)}, where I is a prime ideal of A generated by a poly-nomial of degree prime to q − 1, is an asymptoti
ally exa
t family of 
urves de�ned over Fq,satisfying φq2 = q − 1 and thus is optimal.Publi
ations mathématiques de Besançon - 2011



Philippe Leba
que and Alexei Zykin 63Moreover, N. Elkies proved in [Elk℄ that the family of 
urves Ẋ0(T
n) whi
h parametrizesnormalized Drinfeld modules (γ(T ) = 1,∆ = −1) with a level T n stru
ture is asymptoti
allyoptimal. He also related it to the expli
it towers of Gar
ia and Sti
htenoth dis
ussed in thenext subse
tion.4.2. Expli
it towers. � In the last �fteen years, Gar
ia, Sti
htenoth and many othersmanaged to 
onstru
t asymptoti
ally good towers expli
itely in a re
ursive way. Their in-terest 
omes from 
oding theory for su
h towers provide asymptoti
ally good 
odes via the
onstru
tion of Goppa. Let us give an example of su
h expli
it towers.Theorem 4.5. � (Gar
ia�Sti
htenoth) Let r = q2 be a prime power. The tower {Fn} de�nedre
ursively starting from the rational fun
tion �eld F0 = Fr(x0) using the relations Fn+1 =

Fn(xn+1), where
xqn+1 + xn+1 =

xqn

xq−1
n + 1

,satis�es φr = √
r − 1 and thus is optimal.If the 
ardinality of the ground �eld is not a square no towers with φr = √

r − 1 are known.However, there exist optimal towers in the sense that they have zero de�
ien
y. Su
h towers
an be 
onstru
ted starting from an expli
it tower over a bigger �eld using a des
ent argument(see Ballet�Rolland [BR℄ for the details) or using modular towers.Let us now say a word about Elkies modularity 
onje
ture. Elkies' work shows that most ofthe re
ursive examples of Gar
ia and Sti
htenoth 
an be obtained by �nding equations forsuitable modular towers. This made him formulate the following 
onje
ture:Conje
ture 4.6 (Elkies). � Any asymptoti
ally optimal tower is modular.Finally, let us note that there are other interesting 
onstru
tions leading to expli
it asymptot-i
ally good towers of fun
tion �elds. As an example we mention the paper [BB℄ by P. Beelenand I. Bouw who use Fu
hsian di�erential equations to produ
e optimal towers over Fq2.4.3. Class�eld towers. � As it was said in se
tion 2, tamely rami�ed in�nite extensions ofglobal �elds with �nitely many rami�ed pla
es and with 
ompletely split pla
es give examplesof asymptoti
ally good towers. Given a global �eld K, it is natural to 
onsider the maximalextension of K unrami�ed outside a �nite set of pla
es S, in whi
h pla
es from a set T are
ompletely split. But these extensions are very hard to understand. The maximal ℓ-extensionsare mu
h easier to handle. These extensions are the limits of the ℓ-S-T -
lass �eld towers of
K.For a global �eld K, two sets of �nite pla
es S and T (T 6= ∅(FF )) of K, and a prime number
ℓ, 
onsider the maximal abelian ℓ-extension HT

S,ℓ(K) of K, unrami�ed outside S and in whi
hthe pla
es from T are split (in the 
ase of fun
tion �elds the assumption on T to be non-emptyis made in order to avoid in�nite 
onstant �eld extensions). Consider the tower re
ursively
onstru
ted as follows: K0 = K, Ki+1 = HT
S,ℓ(Ki). All the extensions Ki/K are Galois,Publi
ations mathématiques de Besançon - 2011
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 methods in number theory and algebrai
 geometryand we denote by GT
S (K, ℓ) the Galois group Gal(

⋃
i
Ki,K). A su�
ient 
ondition for thistower to be in�nite is given by the Golod�Shafarevi
h theorem: if G is a �nite ℓ-group then

dimFℓ
H2(G,Fℓ) >

1
4 dimFℓ

H1(G,Fℓ)
2. This allows to 
onstru
t asymptoti
ally good in�niteglobal �elds. The following result is at the base of many 
onstru
tions of 
lass �eld towerswith pres
ribed properties:Theorem 4.7. � [Tsfasman�Vl duµ [TV02℄ (NF), Serre [Ser85℄ , Niederreiter�Xing [NX℄(FF)℄ Let K/k be a 
y
li
 extension of global �elds of degree ℓ. Let T (k) be a �nite set of nonar
himedean pla
es of k and let T (K) be the set of pla
es above T (k) in K. Suppose in thefun
tion �eld 
ase that GCD{ℓ,deg p, p ∈ T (K)} = 1. Let Q be the rami�
ation lo
us of K/k.Let

(FF ) C(T,K/k) =#T (k) + 2 + δℓ + 2
√

#T (K) + δℓ,

(NF ) C(T,K/k) =#T (K)− t0 + r1 + r2 + δℓ + 2− ρ+

2
√

#T (K) + ℓ(r1 + r2 − ρ/2) + δℓ,where δℓ = 1 if K 
ontains the ℓ-root of unity, and 0 otherwise, t0 is the number of prin
ipalideals in T (k), r1 = ΦR(K), r2 = ΦC(K) and ρ is the number of real pla
es of k whi
hbe
ome 
omplex in K. Suppose that #Q ≥ C(T,K/k). Then K admits an in�nite unram�ed
ℓ-T (K)-
lass �eld tower.One 
an 
onstru
t su
h 
y
li
 extension using the Grunwald-Wang theorem (and sometimeseven expli
itly by hand) and dedu
e the following result:Corollary 4.8 (Leba
que). � Let n be an integer and let t1, ..., tn be prime powers (NF)(powers of p (FF)). There exists an in�nite global �eld (both in the number �eld and fun
tion�eld 
ases) su
h that φt1 , ..., φtn are all > 0.Another way to produ
e asymptoti
ally good in�nite 
lass �eld towers is to use tamely rami�edinstead of unrami�ed 
lass �eld towers. This is the subje
t of [HM01℄ and [HM02℄.The question of �nding asymptoti
ally good towers with given Tsfasman�Vl duµ invariantsequal to zero is more di�
ult. A related question is to �nd out whether an in�nite globalextension realizes the maximal lo
al extension at a given prime. Using results of J. Labute[Lab℄ and A. S
hmidt [S
h℄, the following theorem is proven:Theorem 4.9 (Leba
que [Leb09℄). � Let P = {p1, . . . , pn} ⊂ Plf (Q). Assume that forany i = 1, . . . , n we have ni distin
t positive integers di,1, . . . , di,ni . Let I ⊂ Plf (Q) be a �niteset of �nite pla
es of Q su
h that I ∩ P = ∅. There exists an in�nite global �eld K su
h that:1. I ∩ Supp(K) = ∅,2. For any i = 1, . . . , n, and any j = 1, . . . , ni, φ

pi,Np
di,j
i

= φ∞
nidi,j

> 0.3. One 
an expli
itly estimate φ∞ and the de�
ien
y in terms of P, I, ni and dij .The φp,q are invariants generalizing the 
lassi
al φq : they 
ount the asymptoti
 number ofprimes of norm q above a given prime p (see [Leb10℄ for a de�nition). In the 
ase of Q theyPubli
ations mathématiques de Besançon - 2011
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oin
ide with the 
lassi
al ones. This extension is obtained as the 
ompositum of a �niteextension of Q with pres
ribed positive Φ
pi,Npi

di,j > 0 and an in�nite 
lass �eld tower QP
S (ℓ)satisfying the K(π, 1) property of A. S
hmidt.4.4. Bounds on the de�
ien
y. � We have already seen that, using towers of modular
urves, one 
an produ
e in�nite fun
tion �elds over Fr with zero de�
ien
y. If r is a square,there are even towers with φr = √

r−1. In the 
ase of number �elds no zero de�
ien
y in�nitenumber �elds are known. In fa
t we doubt that the 
lass �eld theory (whi
h is for now theonly method to produ
e asymptoti
ally good in�nite number �elds) 
an ever give su
h �eld.Let us quote here the example with the smallest known de�
ien
y due to F. Hajir and Ch.Maire [HM02℄.Let k = Q(ξ), where ξ is a root of f(x) = x6 + x4 − 4x3 − 7x2 − x+ 1. Consider the element
η = −671ξ5 + 467ξ4 − 994ξ3 +3360ξ2 +2314ξ − 961 ∈ Ok. Let K = k(

√
η). F. Hajir and Ch.Maire prove using a Golod�Shafarevi
h like result that K admits an in�nite tamely rami�edtower satisfying δ ≤ 0.137 . . . .5. Higher dimensional theoryIn this se
tion we will mostly 
onsider the fun
tion �eld 
ase sin
e most of the results weare going to mention are unavailable in the number �eld 
ase. However, we will give somereferen
es to the number �eld 
ase as well.5.1. Number of points on higher dimensional varieties. � The question about themaximal number of points on 
urves over �nite �elds has been extensively studied by numerousauthors. The analogous question for higher dimensional varieties has re
eived 
omparativelylittle attention most probably due to its being signi�
antly more di�
ult.As for the 
urves, we have the so-
alled Weil bound whi
h is in this 
ase a famous theoremof Deligne. Similarly, this bound is not optimal and the general framework for improving itis provided by the expli
it formulae. In the 
ase of 
urves over Fr Oesterlé managed to �ndthe best bounds available through the te
hniques of expli
it formulae for any given r 6= 2 (see[Ser85℄). A de
ade later the 
ase of arbitrary varieties over �nite �elds was treated by G.La
haud and M. A. Tsfasman in [Tsf95℄ and [LT℄. Let us reprodu
e here the main resultsfrom [LT℄. To do so we will have to introdu
e some notation 
on
erning varieties over �nite�elds.Let X be a non-singular absolutely irredu
ible proje
tive variety of dimension d de�ned overa �nite �eld Fr. We put Xf = X ⊗Fr Fqr and X = X ⊗Fr Fr. Let Φrf = Φrf (X) be thenumber of points of X having degree f . Thus, for the number Nf of Frf -points of the variety

Xf we have the formula Nf =
∑
m|f

mΦrm. We denote by bs(X) = dimQl
Hs(X,Ql) the l-adi
Betti numbers of X.The family of inequalities proven in [LT℄ has a doubly positive sequen
e as a parameter. Letus introdu
e the 
orresponding notation. To a sequen
e of real numbers v = (vn)n≥0 wePubli
ations mathématiques de Besançon - 2011
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 methods in number theory and algebrai
 geometryasso
iate the family of power series ψm,v(t) =
∞∑
n=1

vmnt
n. We denote ψv(t) = ψ1,v(t) andlet ρv be the radius of 
onvergen
e of this power series. A doubly positive sequen
e v issu
h a sequen
e that 0 ≤ vn ≤ v0 for all n, v0 = 1 and for any z ∈ C, |z| < 1 we have

1 + 2Reψv(t) ≥ 0.We will also need the fun
tions Fm,v(k, t) =
∞∑
s=0

(−1)sψm,v(r
−kst) =

∞∑
n=1

vmntmn

1+r−mnk , Fv(k, t) =

F1,v(k, t). We let Av(z) = −min
|t|=z

Reψv(t) and denote I(k) = {i | 1 ≤ i ≤ 2d − 1, i 6= k, i 6=
2d− k} the set of indi
es. We have the following inequalities:Theorem 5.1 (La
haud�Tsfasman). � For any odd integer k, 1 ≤ k ≤ d, any doublypositive sequen
e v = (vn)n≥0 with ρv > qk/2 and any M ≥ 1 we have

M∑

m=1

mΦrm(X)ψm,v(r
−(2d−k)/2) ≤ ψv(r

−(2d−k)/2) + ψv(r
k/2) +

bk
2
+

+
∑

i odd,i6=k

biAv(r
−(i−k)/2) +

∑

i even biψv(r
−(i−k)/2),and

M∑

m=1

mΦrm(X)Fm,v(d− k, r−(2d−k)/2) ≤ Fv(d− k, r−(2d−k)/2) + Fv(d− k, rk/2)+

+
bk
2

+
∑

i∈I(k)
biFv(d− k, r−(i−k)/2).For example, taking the se
ond inequality with ψv(t) = t

2 we get the 
lassi
al Weil bound,taking the �rst one with ψv(t) = t
1−t we get (asymptoti
ally) a dire
t generalization of theDrinfeld�Vl duµ bounds. These inequalities are not straightforward to apply. We refer thereader to [LT℄ for more details on how to make good 
hoi
es of the doubly positive sequen
e.Unfortunately, in the 
ase of dimension d ≥ 2 the optimal 
hoi
e of v is unknown.The asymptoti
 versions of these inequalities 
an be easily dedu
ed from theorem 5.1 on
eone introdu
es proper de�nitions. For a variety X let b(X) = max

i=0,...,d
bi(X) be the maximumof its l-adi
 Betti numbers.De�nition 5.2. � A family of varieties {Xj} is 
alled asymptoti
ally exa
t if the limits

φrf = lim
j→∞

Φ
rf

(Xj)

b(Xj )
and βi = lim

j→∞
bi(Xj)
b(Xj )

exist. It is asymptoti
ally good if at least one of φrfis di�erent from zero.We 
an state the following 
orollary of theorem 5.1:Corollary 5.3. � In the notation of theorem 5.1 for an asymptoti
ally exa
t family of vari-eties one hasPubli
ations mathématiques de Besançon - 2011
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M∑

m=1

mφrmψm,v(r
−(2d−k)/2) ≤ βk

2
+

∑

i odd,i6=k

βiAv(r
−(i−k)/2) +

∑

i evenβiψv(r
−(i−k)/2),and

M∑

m=1

mφrmFm,v(d− k, r−(2d−k)/2) ≤ βk
2

+
∑

i∈I(k)
βiFv(d− k, r−(i−k)/2).Taking parti
ular examples of the sequen
e v one gets more tra
table inequalities (see [LT℄).5.2. Brauer�Siegel type 
onje
tures for abelian varieties over �nite �elds. � One
an ask about the possibility of extending the Brauer�Siegel theorem to the 
ase of varietiesover �nite �elds. The question is not as easy as it might seem. First, mimi
king the proof oftheorem 3.4 one gets a result about the asymptoti
 behaviour of the residues of zeta fun
tionsof varieties at s = d (see [Zyk09℄). Su
h a result would be interesting if there was a reasonableinterpretation for this residue in terms of geometri
 invariants of our variety.Two other approa
hes were suggested by B. Kunyavskii and M. Tsfasman and by M. Hindryand A. Pa
he
o. Both of them have for their starting points the Bir
h and Swinnerton-Dyer(BSD) 
onje
ture whi
h expresses the value at s = 1 of the L-fun
tion of an abelian variety interms of 
ertain arithmeti
 invariants related to this variety. However, the situation with theasymptoti
 behaviour of this spe
ial value of the L-fun
tions is mu
h less 
lear than before.Let us begin with the approa
h of Kunyavskii and Tsfasman.Let K/Fr be a fun
tion �eld and let A/K be an abelian variety over K. We denote by

XA := |X(A/K)| the order of the Shafarevi
h�Tate group of A, and by RegA the determinantof the Mordell�Weil latti
e of A (see [HP℄ for de�nitions). Note that in a 
ertain sense XAand RegA are the analogues of the 
lass number and of the regulator respe
tively. Kunyavskiiand Tsfasman make the following 
onje
ture 
on
erning families of 
onstant abelian varieties(see [KT℄):Conje
ture 5.4. � Let A0 be a �xed abelian variety over Fr. Take an asymptoti
ally exa
tfamily of fun
tion �eds K = {Ki} and put Ai = A0 ×Fr Ki. Then
lim
i→∞

logr(Xi ·Regi)
gi

= 1−
∞∑

m=1

φrm(K) logr
|A0(Frm)|

rm
.This 
onje
ture is a
tually stated as theorem in [KT℄. Unfortunately the 
hange of limits inthe proof given in [KT℄ is not justi�ed thus the proof 
an not be 
onsidered a valid one. Infa
t the �aw looks very di�
ult to repair as the statement of the theorem 
an be redu
ed(via a formula due to J. Milne, whi
h gives the BSD 
onje
ture in this 
ase) to an equalityof the type lim

i→∞
log ζKi

(s)

gKi
= log ζK(s) at a given point s ∈ C with Re s = 1

2 (in fa
t s belongsto a �nite set of points depending on A0). As we have already mentioned in the dis
ussionfollowing theorem 3.10 this question does not look a

essible at the moment.Publi
ations mathématiques de Besançon - 2011
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 methods in number theory and algebrai
 geometryLet us turn our attention to the approa
h of Hindry and Pa
he
o. They treat the 
ase in somesense �orthogonal� to that of Kunyavskii and Tsfasman. Here is the 
onje
ture they make in[HP℄:Conje
ture 5.5. � Consider the family {Ai} of non-
onstant abelian varieties of �xed di-mension over the �xed fun
tion �eld K. We have
lim
i→∞

log(Xi · Regi)
logH(Ai)

= 1,where H(Ai) is the exponential height of Ai.Using deep arguments from the theory of abelian varieties over fun
tion �elds the 
onje
ture isredu
ed in [HP℄ to the one on zeroes of L-fun
tions of abelian varieties together with the BSD
onje
ture. Hindry and Pa
he
o are a
tually fa
ed with the problem of the type dis
ussedafter theorem 3.10, this time for abelian varieties over fun
tion �elds.The following example serves as the eviden
e for the last 
onje
ture (see [HP℄):Theorem 5.6 (Hindry�Pa
he
o). � For the family of ellipti
 
urves Ed over Fr(t), wherethe 
hara
teristi
 of Fr is not equal to 2 or 3, de�ned by the equations y2+xy = x3− td, d ≥ 1and prime to r, the Tate�Shafarevi
h group X(Ed/K) is �nite and
log(Xd ·Regd) ∼ logH(Ed) ∼

d log r

6
.The proof of this theorem uses a deep result of Ulmer [Ulm02℄ who established the BSD 
on-je
ture in this 
ase and expli
itly 
omputed the L-fun
tions of Ed. This redu
es the statementof the theorem to a an expli
it (though highly non-trivial) estimate involving Ja
obi sums.The 
onje
tures 5.4 and 5.5 
an be united (though not proved) within the general asymptoti
theory of L-fun
tions over fun
tion �elds. Su
h a theory also explains why we get 1 as a limitin the se
ond 
onje
ture and a 
ompli
ated expression in the �rst one. We will sket
h someaspe
ts of the theory in the next subse
tion.The analogous problem in the number �eld 
ase has also been 
onsidered [Hin℄. Unfortunatelyin the number �eld 
ase we do not have a single example supporting the 
onje
ture.5.3. Asymptoti
 theory of zeta and L-fun
tions over �nite �elds. � The proofs ofthe results from this subse
tion as well as lengthy dis
ussions 
an be found in [Zyk11℄. Letus �rst de�ne axiomati
ally the 
lass of fun
tions we are going to work with. This resemblesthe so 
alled Selberg 
lass from the analyti
 number theory, but, of 
ourse the 
ase of fun
tion�elds is in�nitely easier from the analyti
 point of view, all fun
tions being rational (or evenpolynomial).De�nition 5.7. � An L-fun
tion L(s) over a �nite �eld Fr is a holomorphi
 fun
tion in ssu
h that for u = q−s the fun
tion L(u) = L(s) is a polynomial with real 
oe�
ients, L(0) = 1and all the roots of L(u) are on the 
ir
le of radius r− d

2 for some non-negative integer number
d whi
h is 
alled the weight of the L-fun
tion. We say that the degree of the polynomial L(u)Publi
ations mathématiques de Besançon - 2011
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que and Alexei Zykin 69is the degree of the 
orresponding L-fun
tion. A zeta fun
tion ζ(s) is a produ
t of L-fun
tionsin powers ±1 :

ζ(s) =
d∏

k=0

Lk(s)
wk ,where wk ∈ {−1, 1} and Lk(s) is an L-fun
tion of weight k.Both zeta-fun
tions of smooth proje
tive 
urves or even varieties over �nite �elds and L-fun
tions of ellipti
 surfa
es 
onsidered in the previous se
tions are 
overed by this de�nition.For the logarithm of a zeta fun
tion we have the Diri
hlet series expansion:

log ζ(s) =

∞∑

f=1

Λf

f
r−fswhi
h is 
onvergent for Re s > d

2 . In the 
ase of a variety X/Fr we have a simple interpretationfor the 
oe�
ients Λf = |X(Frf )| as the number of points on X over the degree f extensionof Fr.We are going to work with zeta and L-fun
tions asymptoti
ally, so we have to introdu
e thenotion of a family. We will 
all a sequen
e {ζk(s)}k=1...∞ =

{
d∏

i=0
Lki(s)

wi

}

k=1...∞
of zetafun
tions a family if the total degree gk =

d∑
i=0

gki tends to in�nity and d remains 
onstant.Here gki are the degrees of the individual L-fun
tions Lki(s) in ζk(s).De�nition 5.8. � A family {ζk(s)}k=1...∞ of zeta-fun
tions is 
alled asymptoti
ally exa
tif the limits
γi = lim

k→∞
gki
gk

and λf = lim
k→∞

Λkf

gkexist for ea
h i = 0, . . . , d and ea
h f ∈ Z, f ≥ 1. The family is 
alled asymptoti
ally bad if
λf = 0 for any f and asymptoti
ally good otherwise.In the 
ase of 
urves over �nite �elds the denominators of zeta fun
tions are negligible fromthe asymptoti
 point of view. In general we give the following de�nition:De�nition 5.9. � Let {ζk(s)} be an asymptoti
ally exa
t family of zeta fun
tions. De�nethe set I ⊂ {0 . . . d} by the 
ondition i ∈ I if and only if γi = 0.We de�ne ζn,k(s) = ∏

i∈I
Lki(s)

withe negligible part of ζk(s) and ζe,k(s) = ∏
i∈{0,...,d}\I

Lki(s)
wi the essential part of ζk(s). De�nealso de = max{i | i /∈ I}.De�nition 5.10. � We say that an asymptoti
ally exa
t family of zeta or L-fun
tions isasymptoti
ally very exa
t if the series

∞∑

f=1

|λf |q−
fde
2 Publi
ations mathématiques de Besançon - 2011
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 methods in number theory and algebrai
 geometryis 
onvergent.In the 
ase of 
urves or varieties the positivity of Λf automati
ally implies the fa
t thatthe 
orresponding family is asymptoti
ally very exa
t. This is of 
ourse false in general (anobvious example of a family whi
h is asymptoti
ally exa
t but not very exa
t is given by
Lk(s) = (1 − q−s)k). In general most of the results are proven for asymptoti
ally very exa
tfamilies and not just for asymptoti
ally exa
t ones.We have already noted that the 
on
ept of limit zeta fun
tions is of utmost importan
e in theasymptoti
 theory.De�nition 5.11. � Let {ζk(s)} be an asymptoti
ally exa
t family of zeta fun
tions. Thenthe 
orresponding limit zeta fun
tion is de�ned as

ζlim(s) = exp




∞∑

f=1

λf
f
q−fs


 .Now, we 
an state the generalizations of most of the results 
on
erning zeta and L-fun
tionsover �nite �elds, given in the previous se
tions. Let us begin with the basi
 inequalities. Infa
t, one should be able to write most of the inequalities from subse
tion 5.1 in this moregeneral setting. We give only the simplest statement of this type here:Theorem 5.12. � Let {ζk(s)} be an asymptoti
ally very exa
t family of zeta fun
tions. Then

wde

∞∑

j=1

λjq
− dej

2 ≤
de∑

i=0

γi
q(de−i)/2 + wi

.The Brauer�Siegel type results 
an also be proven in this setting. The following theoremin
ludes all the fun
tion �eld versions of the Brauer�Siegel type results from se
tion 3 ex
eptfor the expli
it ones (whi
h 
an also be, in prin
iple, established for general zeta and L-fun
tions).Theorem 5.13. � 1. For any asymptoti
ally exa
t family of zeta fun
tions {ζk(s)} andany s with Re s > de
2 we have

lim
k→∞

log ζe,k(s)

gk
= log ζlim(s).If, moreover, 2Re s 6∈ Z, then

lim
k→∞

log ζk(s)

gk
= log ζlim(s).The 
onvergen
e is uniform in any domain de

2 + ǫ < Re s < de+1
2 − ǫ, ǫ ∈

(
0, 12

)
.2. If {ζk(s)} is an asymptoti
ally very exa
t family with wde = 1 we have:

lim
k→∞

log |ck|
gk

≤ log ζlim

(
de
2

)
,Publi
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Philippe Leba
que and Alexei Zykin 71where rk and ck are de�ned using the Taylor series expansion ζk(s) = ck
(
s− de

2

)rk +

O
((
s− de

2

)rk+1
)
.In the 
ase of arbitrary L-fun
tions the equality in (2) does not hold in general. This meansthat the similar questions previously dis
ussed for fun
tion �elds or ellipti
 
urves over fun
-tion �elds are indeed of arithmeti
 nature.Finally we will state a result on the distribution of zeroes. Let L(s) be an L-fun
tion andlet ρ1, . . . , ρg be the zeroes of the 
orresponding polynomial L(u). De�ne θk ∈ (−π, π] by

ρk = q−d/2eiθk . One 
an asso
iate the measure ∆L = 1
g

g∑
k=1

δθk to L(s).Theorem 5.14. � Let {Lj(s)} be an asymptoti
ally very exa
t family of L-fun
tions. Thenthe limit distribution lim
j→∞

∆j exists and has a nonnegative 
ontinuous density fun
tion givenby an absolutely and uniformly 
onvergent series 1− 2
∞∑
k=1

λk cos(kx)q
− dk

2 .In the 
ase of families of ellipti
 
urves over Fr(t) P. Mi
hel provides in [Mi
℄ an expli
itestimate for the dis
repan
y in the equidistribution of zeroes and a mu
h more pre
ise estimatefor it on average.A number of open questions 
on
erning asymptoti
 properties of zeta and L-fun
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