ARITHMETIC OF "UNITS" IN $\mathbb{F}_q[T]$

by

Bruno Anglès & Mohamed Ould Douh

Abstract. — The aim of this note is to study the arithmetic of Taelman's unit module for $A := \mathbb{F}_q[T]$. This module is the A-module (via the Carlitz module) generated by 1. Let P be a monic irreducible polynomial in A, we show that the "P-adic behaviour" of 1 is connected to some isotypic component of the ideal class group of the integral closure of A in the Pth cyclotomic function field. The results contained in this note are applications of the deep results obtained by L. Taelman in [10].

Résumé. — Soit \mathbb{F}_q un corps fini ayant q éléments et de caractéristique $p, q \geq 3$. Nous montrons que si P est un premier de $\mathbb{F}_q[T]$ de degré d, le p-rang de la composante isotypique associée au caractère de Teichmuller du p-sous-groupe de Sylow des points \mathbb{F}_q -rationnels de la jacobienne du P-ième corps de fonctions cyclotomique est entièrement déterminé par le "comportement P-adique" de 1.

1. Background on the Carlitz module

Let \mathbb{F}_q be a finite field having q elements, $q \geq 3$, and let p be the characteristic of \mathbb{F}_q . Let T be an indeterminate over \mathbb{F}_q , and set: $k := \mathbb{F}_q(T)$, $A := \mathbb{F}_q[T]$, $A_+ := \{a \in A, a \text{ monic}\}$. A prime in A will be a monic irreducible polynomial in A. Let ∞ be the unique place of k which is a pole of T, and set: $k_{\infty} := \mathbb{F}_q((\frac{1}{T}))$. Let \mathbb{C}_{∞} be a completion of an algebraic closure of k_{∞} , then \mathbb{C}_{∞} is algebraically closed and complete and we denote by v_{∞} the valuation on \mathbb{C}_{∞} normalized such that $v_{\infty}(T) = -1$. We fix an embedding of an algebraic closure of k in \mathbb{C}_{∞} , and thus all the finite extensions of k considered in this note will be contained in \mathbb{C}_{∞} . Let L/k be a finite extension, we denote by:

- $S_{\infty}(L)$: the set of places of L above ∞ , if $w \in S_{\infty}(L)$ we denote the completion of L at w by L_w and we view L_w as a subfield of \mathbb{C}_{∞} ,
- O_L : the integral closure of A in L,

2000 Mathematics Subject Classification. — 11R58, 11R60.

The authors thank L. Taelman and D. Thakur for fruitful discussions.

Key words and phrases. — Arithmétique des corps de fonctions, module de Carlitz, nombres de Bernoulli-Goss.

- $\operatorname{Pic}(O_L)$: the ideal class group of L,
- L_{∞} : the k_{∞} -algebra $L \otimes_k k_{\infty}$, recall that we have a natural isomorphism of k_{∞} -algebras: $L_{\infty} \simeq \prod_{w \in S_{\infty}(L)} L_w$.

1.1. The Carlitz exponential. — Set $D_0 = 1$ and for $i \ge 1$, $D_i = (T^{q^i} - T)D_{i-1}^q$. The Carlitz exponential is defined by:

$$e_C(X) = \sum_{i \ge 0} \frac{X^{q^i}}{D_i} \in k[[X]].$$

Since $\forall i \geq 0$, $v_{\infty}(D_i) = -iq^i$, we deduce that e_C defines an entire function on \mathbb{C}_{∞} and that $e_C(\mathbb{C}_{\infty}) = \mathbb{C}_{\infty}$. Observe that:

$$e_C(TX) = Te_C(X) + e_C(X)^q.$$

Thus, $\forall a \in A$, there exists a \mathbb{F}_q -linear polynomial $\phi_a(X) \in A[X]$ such that $e_C(aX) = \phi_a(e_C(X))$. The map $\phi : A \to End_{\mathbb{F}_q}(A)$, $a \mapsto \phi_a$, is an injective morphism of \mathbb{F}_q -algebras called the Carlitz module.

Let $\varepsilon_C = {}^{q-1}\sqrt{T-T^q} \prod_{j\geq 1} \left(1 - \frac{T^{q^j} - T}{T^{q^{j+1}} - T}\right) \in \mathbb{C}_{\infty}$. Then by [4] Theorem 3.2.8, we have the following equality in $\mathbb{C}_{\infty}[[X]]$:

$$e_C(X) = X \prod_{\alpha \in \varepsilon_C A \setminus \{0\}} \left(1 - \frac{X}{\alpha}\right).$$

(

Note that $v_{\infty}(\varepsilon_C) = -\frac{q}{q-1}$. Let $log_C(X) \in k[[X]]$ be the formal inverse of $e_C(X)$, i.e. $e_C(log_C(X)) = log_C(e_C(X)) = X$. Then by [4] page 57, we have:

$$log_C(X) = \sum_{i \ge 0} \frac{X^{q^i}}{L_i}$$

where $L_0 = 1$, and for $i \ge 1$, $L_i = (T - T^{q^i})L_{i-1}$. Observe that $\forall i \ge 0$, $v_{\infty}(L_i) = -\frac{q^{i+1}-q}{q-1}$. Therefore log_C converges on $\{\alpha \in \mathbb{C}_{\infty}, v_{\infty}(\alpha) > -\frac{q}{q-1}\}$. Furthermore, for α in \mathbb{C}_{∞} such that $v_{\infty}(\alpha) > -\frac{q}{q-1}$, we have: • $v_{\infty}(e_C(\alpha)) = v_{\infty}(log_C(\alpha)) = v_{\infty}(\alpha)$, • $e_C(log_C(\alpha)) = log_C(e_C(\alpha)) = \alpha$.

1.2. Torsion points. — We recall some basic properties of cyclotomic function fields. For a nice introduction to the arithmetic properties of such fields, we refer the reader to [7] Chapter 12. Let P be a prime of A of degree d. Set $\Lambda_P := \{\alpha \in \mathbb{C}_{\infty}, \phi_P(\alpha) = 0\}$. Note that the elements of Λ_P are integral over A, and that Λ_P is a A-module via ϕ which is isomorphic to $\frac{A}{PA}$. Set $\lambda_P = e_C\left(\frac{\varepsilon_C}{P}\right)$, then λ_P is a generator of the A-module Λ_P . Let $K_P = k(\Lambda_P) = k(\lambda_P)$. We have the following properties:

- K_P/k is an abelian extension of degree $q^d 1$,
- K_P/k is unramified outside P, ∞ ,
- let $R_P = O_{K_P}$, then $R_P = A[\lambda_P]$,
- if $w \in S_{\infty}(K_P)$, the completion of K_P at w is equal to $k_{\infty}(\varepsilon_C)$, in particular the decomposition group at w is equal to the inertia group at w and is isomorphic to \mathbb{F}_q^* , furthermore $|S_{\infty}(K_P)| = \frac{q^d - 1}{q - 1}$,
- K_P/k is totally ramified at P and the unique prime ideal of R_P above P is equal to $\lambda_P R_P$.

Let $\Delta = \text{Gal}(K_P/k)$. For $a \in A \setminus PA$, we denote by σ_a the element in Δ such that $\sigma_a(\lambda_P) = \phi_a(\lambda_P)$. The map: $A \setminus PA \to \Delta$, $a \mapsto \sigma_a$ induces an isomorphism of groups:

$$\left(\frac{A}{PA}\right)^* \simeq \Delta.$$

1.3. The unit module and the class module. —

Let R be an A-algebra, we denote by C(R) the \mathbb{F}_q -algebra R equipped with the A-module structure induced by ϕ , i.e. $\forall r \in C(R), T \cdot r = \phi_T(r) = Tr + r^q$. For example, the Carlitz exponential induces the following exact sequence of A-modules:

$$0 \longrightarrow \varepsilon_C A \longrightarrow \mathbb{C}_{\infty} \longrightarrow C(\mathbb{C}_{\infty}) \longrightarrow 0.$$

Let L/K be a finite extension, then B. Poonen has proved in [6] that $C(O_L)$ is not a finitely generated A-module. Recently, L. Taelman has introduced in [8] a natural sub-A-module of $C(O_L)$ which is finitely generated and called the unit module associated to L and ϕ . First note that the Carlitz exponential induces a morphism of A-modules: $L_{\infty} \to C(L_{\infty})$, and the kernel of this map is a free A-module of rank $|\{w \in S_{\infty}(L), \varepsilon_C \in L_w\}|$. Now, let us consider the natural map of A-modules induced by the inclusion $C(O_L) \subset C(L_{\infty})$:

$$\alpha_L: C(O_L) \longrightarrow \frac{C(L_\infty)}{e_C(L_\infty)}$$

- L. Taelman has proved the following remarkable results ([8], Theorem 1, Corollary 1):
 - $U(O_L) := \text{Ker}(\alpha_L)$ is a finitely generated A-module of rank

$$[L:k] - | \{ w \in S_{\infty}(L), \varepsilon_C \in L_w \} |,$$

the A-module (via ϕ) $U(O_L)$ is called the unit module attached to L and ϕ ,

• $H(O_L) := \operatorname{Coker}(\alpha_L)$ is a finite A-module called the class module associated to L and ϕ .

Set:

$$\zeta_{O_L}(1) := \sum_{I \neq (0)} \frac{1}{\left[\frac{O_L}{I}\right]_A} \in k_{\infty},$$

where the sum is taken over the non-zero ideals of O_L , and where for any finite A-module M, $[M]_A$ denotes the monic generator of the Fitting ideal of the finite A-module M. Then, we have the following class number formula ([9], Theorem 1):

$$\zeta_{O_L}(1) = [H(O_L)]_A [O_L : e_C^{-1}(O_L)],$$

where $[O_L : e_C^{-1}(O_L)] \in k_{\infty}^*$ is a kind of regulator (see [9] for more details).

2. The unit module for $\mathbb{F}_q[T]$

2.1. Sums of polynomials. — In this paragraph, we recall some computations made by G. Anderson and D. Thakur ([2] pages 183, 184).

Let X, Y be two indeterminates over k. We define the polynomial $\Psi_k(X) \in A[X]$ by the following identity:

$$e_C(Xlog_C(Y)) = \sum_{k \ge 0} \Psi_k(X) Y^{q^k}$$

We have that $\Psi_0(X) = X$ and for $k \ge 1$:

$$\Psi_k(X) = \sum_{i=0}^k \frac{1}{D_i(L_{k-i})^{q^i}} X^{q^i}.$$

For $a = a_0 + a_1T + \dots + a_nT^n$, $a_0, \dots, a_n \in \mathbb{F}_q$, we have:

$$\phi_a(X) = \sum_{i=0}^n [a] X^{q^i},$$

where $\begin{bmatrix} a \\ i \end{bmatrix} \in A$ for $i = 0, \dots, n$, $\begin{bmatrix} a \\ 0 \end{bmatrix} = a$ and $\begin{bmatrix} a \\ n \end{bmatrix} = a_n$. But since $e_C(aX) = \phi_a(e_C(X))$, we deduce that for $k \ge 1$:

$$\Psi_k(X) = \frac{1}{D_k} \prod_{a \in A(d)} (X - a),$$

where A(d) is the set of elements in A of degree strictly less than k. In particular:

$$\Psi_k(X+T^k) = \Psi_k(X) + 1 = \frac{1}{D_k} \prod_{a \in A_{+,k}} (X+a),$$

where $A_{+,k}$ is the set of monic elements in A of degree k. Now for $j \in \mathbb{N}$ and for $i \in \mathbb{Z}$, set:

$$S_j(i) = \sum_{a \in A_{+,j}} a^i \in k.$$

Note that the derivative of $\Psi_k(X)$ is equal to $\frac{1}{L_k}$. Therefore we get:

$$\frac{1}{L_k} \frac{1}{\Psi_k(X) + 1} = \sum_{a \in A_{+,k}} \frac{1}{X + a}.$$

Thus:

$$\frac{1}{L_k} \frac{1}{\Psi_k(X) + 1} = \sum_{n \ge 0} (-1)^n S_k(-n - 1) X^n.$$

But:

$$\Psi_k(X) \equiv \frac{1}{L_k}X \mod X^q.$$

Therefore:

$$\forall k \ge 0, \text{ for } c \in \{1, \cdots, q-1\}, \ S_k(-c) = \frac{1}{L_k^c}.$$

But observe that we also have:

$$\frac{1}{L_k} \frac{1}{\Psi_k(X) + 1} = \sum_{n \ge 0} (-1)^n S_k(n) X^{-n-1}.$$

But:

$$\frac{1}{\Psi_k(X)+1} \equiv 0 \pmod{X^{-q^k}}.$$

Therefore:

$$\forall k \ge 0, \text{ for } i \in \{0, \cdots, q^k - 2\}, S_k(i) = 0$$

The Bernoulli-Goss numbers, B(i) for $i \in \mathbb{N}$, are elements of A defined as follows:

- B(0) = 1,
- if $i \ge 1$ and $i \not\equiv 0 \pmod{q-1}$, $B(i) = \sum_{j\ge 0} S_j(i)$ which is a finite sum by our previous discussion,
- if $i \ge 1$, $i \equiv 0 \pmod{q-1}$, $B(i) = \sum_{j \ge 0} jS_j(i) \in A$.

We have:

Lemma 2.1. — Let P be a prime of A of degree d and let $c \in \{2, \dots, q-1\}$. Then:

$$B(q^d - c) \equiv \sum_{k=0}^{d-1} \frac{1}{L_k^{c-1}} \pmod{P}$$

Proof. — Note that $q^d - c$ is not divisible by q - 1 and that $1 \le q^d - c < q^d - 1$. Thus:

$$B(q^{d} - c) = \sum_{k=0}^{d-1} S_{k}(q^{d} - c).$$

Now, for $k \in \{0, \dots, d-1\}$, we have:

$$S_k(q^d - c) \equiv S_k(1 - c) \pmod{P}.$$

The lemma follows by our previous computations.

We will also need some properties of the polynomial Ψ_k :

$Lemma \ 2.2$. —

1) Let X, Y be two indeterminates over k. We have:

$$\forall k \ge 0, \ \Psi_k(XY) = \sum_{i=0}^k \Psi_i(X) \Psi_{k-i}(Y)^{q^i}.$$

2) For $k \ge 0$, we have:

$$\psi_{k+1}(X) = \frac{\Psi_k(X)^q - \Psi_k(X)}{T^{q^{k+1}} - T}$$

Proof. —

1) Recall that we have seen that:

$$\forall a \in A, \ \phi_a(X) = \sum_{k \ge 0} \Psi_k(a) X^{q^k}.$$

Furthermore, for $a \in A$:

$$e_C(aXlog_C(Y)) = \phi_a(e_C(Xlog_C(Y))).$$

Thus, for all $a \in A$:

$$\forall k \ge 0, \ \Psi_k(aX) = \sum_{i=0}^k \Psi_i(a) \Psi_{k-i}(X)^{q^i}.$$

The first assertion of the lemma follows. 2) For all $a \in A$, we have:

$$\phi_a(TX + X^q) = T\phi_a(X) + \phi_a(X)^q.$$

Thus, for all $a \in A$:

$$\forall k \ge 0, \ \psi_{k+1}(a) = \frac{\Psi_k(a)^q - \Psi_k(a)}{T^{q^{k+1}} - T}.$$

Lemma 2.3. — Let P be a prime of A of degree d. We have:

$$\phi_P(X) = \sum_{k=0}^d [{}^P_k] X^{q^k},$$

where $\begin{bmatrix} P \\ 0 \end{bmatrix} = P$ and $\begin{bmatrix} P \\ d \end{bmatrix} = 1$. Then, for $k = 0, \cdots, d-1, P$ divides $\begin{bmatrix} P \\ k \end{bmatrix}$ and:

$$\frac{[{}^{P}_{k}]}{P} \equiv \frac{1}{L_{k}} \pmod{P}.$$

Proof. — Since $[{}^{P}_{k}] = \Psi_{k}(P)$, the lemma follows from the second assertion of Lemma 2.2.

If we combine Lemma 2.1 and Lemma 2.3, we get:

Corollary 2.4. — Let P be a prime of A of degree d. Then:

$$\phi_{P-1}(1) \equiv PB(q^d - 2) \pmod{P^2}.$$

Remark 2.5. — D. Thakur has informed the authors that the congruence in Corollary 2.4 was already observed by him in [11].

2.2. The unit module for $\mathbb{F}_{q^n}[T]$. — Set $k_n = \mathbb{F}_{q^n}(T)$ and $A_n = \mathbb{F}_{q^n}[T]$. In this paragraph we will determine $U(A_n)$ and $H(A_n)$. We have:

$$k_{n,\infty} = k_n \otimes_k k_\infty = \mathbb{F}_{q^n}((\frac{1}{T})).$$

Let φ be the Frobenius of $\mathbb{F}_{q^n}/\mathbb{F}_q$, recall that k_n/k is a cyclic extension of degree n and its Galois group is generated by φ . Set $G = \operatorname{Gal}(k_n/k)$ and let $\alpha \in \mathbb{F}_{q^n}$ which generates a normal basis of $\mathbb{F}_{q^n}/\mathbb{F}_q$. Then A_n is a free A[G]-module of rank one generated by α . Note that:

$$k_{n,\infty} = A_n \oplus \frac{1}{T} \mathbb{F}_{q^n}[[\frac{1}{T}]].$$

By the results of Paragraph 1.1:

$$log_C(\alpha) \in \mathbb{F}_{q^n}[[\frac{1}{T}]]^*,$$

and:

$$e_C\left(\frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]]\right) = \frac{1}{T}\mathbb{F}_{q^n}[[\frac{1}{T}]]$$

Now:

$$k_{n,\infty} = \bigoplus_{i=0}^{n-1} k_{\infty} log_C(\alpha^{q^i}).$$

Thus:

$$k_{n,\infty} = \frac{1}{T} \mathbb{F}_{q^n}[[\frac{1}{T}]] \oplus \bigoplus_{i=0}^{n-1} A \log_C(\alpha^{q^i})$$

Let $\mathfrak{S}_n(A)$ be the sub-A-module of $C(A_n)$ generated by \mathbb{F}_{q^n} , then $\mathfrak{S}_n(A)$ is a free A-module of rank *n* generated by $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$. We have:

$$e_C(k_{n,\infty}) = \mathfrak{S}_n(A) \oplus \frac{1}{T} \mathbb{F}_{q^n}[[\frac{1}{T}]].$$

Thus:

$$U(A_n) = A_n \cap e_C(k_{n,\infty}) = \mathfrak{S}_n(A),$$

and:

$$H(A_n) = \frac{C(k_{n,\infty})}{C(A_n) + e_C(k_{n,\infty})} = \{0\}.$$

In particular, for n = 1, we get $U(A) = \mathfrak{S}_1(A)$ = the free A-module of rank one generated (via ϕ) by 1 and $H(A) = \{0\}$.

Let $F \in k_{\infty}[G]$ be defined by:

$$F = \sum_{i=0}^{n-1} \left(\sum_{j \equiv i \pmod{n}} \frac{1}{L_j} \right) \varphi^i.$$

Then:

$$e_C^{-1}(A_n) = \bigoplus_{i=0}^{n-1} A \log_C(\alpha^{q^i}) = FA_n$$

Write $n = mp^{\ell}$, where $\ell \ge 0$ and $m \not\equiv 0 \pmod{p}$. Let $\mu_m = \{x \in \mathbb{C}_{\infty}, x^m = 1\}$ which is a cyclic group of order m. Then we can compute Taelman's regulator (just calculate the "determinant" of F):

$$[A_n : e_C^{-1}(A_n)] = \left((-1)^{m-1} \prod_{\zeta \in \mu_m} \left(\sum_{i=0}^{n-1} \left(\sum_{j \equiv i \pmod{n}} \frac{1}{L_j} \right) \zeta^i \right) \right)^{p^t}.$$

Thus, Taelman's class number formula becomes in this case:

$$\zeta_{A_n}(1) = \left((-1)^{m-1} \prod_{\zeta \in \mu_m} \left(\sum_{i=0}^{n-1} \left(\sum_{j \equiv i \pmod{n}} \frac{1}{L_j} \right) \zeta^i \right) \right)^{p^c}.$$

In particular, we get the following formula already known by Carlitz:

$$\zeta_A(1) = \log_C(1).$$

2.3. The *P*-adic behavior of "1". — Let *P* be a prime of *A* of degree *d*. Let \mathbb{C}_P be a completion of an algebraic closure of the *P*-adic completion of *k*. Let v_P be the valuation on \mathbb{C}_P such that $v_P(P) = 1$. For $x \in \mathbb{R}$, we denote the integer part of *x* by [*x*]. Let $i \in \mathbb{N} \setminus \{0\}$ and observe that $v_P(T^{q^i} - T) = 1$ if *d* divides *i* and $v_P(T^{q^i} - T) = 0$ otherwise. Therefore:

• for $i \ge 0$, $v_P(L_i) = [i/d]$,

• for
$$i \ge 0$$
, $v_P(D_i) = \frac{q^i - q^{i - [i/d]d}}{q^d - 1}$.

This implies that $log_C(\alpha)$ converges for $\alpha \in \mathbb{C}_P$ such that $v_P(\alpha) > 0$, and that $e_C(\alpha)$ converges for $\alpha \in \mathbb{C}_P$ such that $v_P(\alpha) > \frac{1}{q^d - 1}$. Furthermore, for $\alpha \in \mathbb{C}_P$ such that $v_P(\alpha) > \frac{1}{q^d - 1}$, we have:

- $v_P(e_C(\alpha)) = v_P(log_C(\alpha)) = v_P(\alpha),$
- $e_C(log_C(\alpha)) = log_C(e_C(\alpha)) = \alpha.$

Lemma 2.6. — Let A_P be the P-adic completion of A. There exists $x \in A_P$ such that $\phi_P(x) = \phi_{P-1}(1)$ if and only if $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$.

Proof. — First assume that $\phi_{P-1}(1) \not\equiv 0 \pmod{P^2}$. By Lemma 2.3, we have that $v_P(\phi_{P-1}(1)) = 1$, and therefore $\phi_P(X) - \phi_{P-1}(1) \in A_P[X]$ is an Eisenstein polynomial. In particular $\phi_{P-1}(1) \not\in \phi_P(A_P)$.

Now, let us assume that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$. Then $v_P(\log_C(\phi_{P-1}(1))) = v_P(\phi_{P-1}(1))$. Therefore, there exists $y \in PA_P$ such that:

$$log_C(\phi_{P-1}(1)) = Py.$$

Set $x = e_C(y) \in PA_P$. We have:

$$\phi_P(x) = e_C(Py) = e_C(\log_C(\phi_{P-1}(1))) = \phi_{P-1}(1).$$

Remark 2.7. — Since 1 is an Anderson's special point for the Carlitz module, the above lemma can also be deduced by Corollary 2.4 and the work of G. Anderson in [1].

3. Hilbert class fields and the unit module for $\mathbb{F}_q[T]$

Let P be a prime of A of degree d. Recall that K_P is the Pth-cyclotomic function field, i.e. the finite extension of k obtained by adjoining to k the Pth-torsion points of the Carlitz module. Let R_P be the integral closure of A in K_P and let Δ be the Galois group of K_P/k . Recall that Δ is a cyclic group of order $q^d - 1$ (see Paragraph 1.2). Recall that the unit module U(A) is the free A-module (via ϕ) generated by 1 (see Paragraph 2.2).

3.1. Kummer theory. — We will need the following lemma:

Lemma 3.1. — The natural morphism of A-modules: $\frac{U(A)}{P.U(A)} \longrightarrow \frac{C(K_P)}{P.C(K_P)}$ induced by the inclusion $U(A) \subset C(K_P)$, is an injective map.

Proof. — Recall that $K_{P,\infty} = K_P \otimes_k k_\infty$. Let $Tr : K_{P,\infty} \to k_\infty$ be the trace map. Now let $x \in U(A) \cap P.C(K_P)$. Then there exists $z \in K_P$ such that $\phi_P(z) = x$. Since $e_C(K_{P,\infty})$ is A-divisible, we get that $z \in U(R_P)$. Thus $Tr(z) \in U(A)$. But:

$$-x = \phi_P(Tr(z))$$

Therefore $x \in P.U(A)$.

Let $\mathfrak{U} = \{z \in \mathbb{C}_{\infty}, \phi_P(z) \in U(A)\}$. Then \mathfrak{U} is an A-module (via ϕ) and $P \mathfrak{U} = U(A)$. Therefore the multiplication by P gives rise to the following exact sequence of A-modules:

$$0 \longrightarrow \Lambda_P \oplus U(A) \longrightarrow \mathfrak{U} \longrightarrow \frac{U(A)}{P.U(A)} \longrightarrow 0$$

Set $\gamma = e_C(\frac{P-1}{P}log_C(1))$. Then $\gamma \in \mathfrak{U}$. Set $L = K_P(\mathfrak{U})$. By the above exact sequence, we observe that:

$$L = K_P(\gamma).$$

Furthermore L/k is a Galois extension and we set: $G = \operatorname{Gal}(L/K_P)$ and $\mathfrak{G} = \operatorname{Gal}(L/k)$. Let $\delta \in \Delta$ and select $\tilde{\delta} \in \mathfrak{G}$ such that the restriction of $\tilde{\delta}$ to K_P is equal to δ . Let $g \in G$, then $\tilde{\delta}g\tilde{\delta}^{-1} \in G$ does not depend on the choice of $\tilde{\delta}$. Therefore G is a $\mathbb{F}_p[\Delta]$ -module.

Lemma 3.2. — We have a natural isomorphism of $\mathbb{F}_p[\Delta]$ -modules:

$$G \simeq \operatorname{Hom}_A\left(\frac{U(A)}{P.U(A)}, \Lambda_P\right).$$

Proof. — Recall that the multiplication by P induces an A-isomorphism:

$$\frac{\mathfrak{U}}{\Lambda_P \oplus U(A)} \simeq \frac{U(A)}{P.U(A)}.$$

For $z \in \mathfrak{U}$ and $g \in G$, set:

$$\langle z,g \rangle = z - g(z) \in \Lambda_P.$$

One can verify that:

- $\forall z_1, z_2 \in \mathfrak{U}, \forall g \in G, \langle z_1 + z_2, g \rangle = \langle z_1, g \rangle + \langle z_2, g \rangle,$
- $\forall z \in \mathfrak{U}, \forall g_1, g_2 \in G, \langle z, g_1g_2 \rangle = \langle z, g_1 \rangle + \langle z, g_2 \rangle,$

- $\forall z \in \mathfrak{U}, \forall a \in A, \forall g \in G, < \phi_a(z), g \ge \phi_a(< z, g >),$
- $\forall z \in \mathfrak{U}, \forall g \in G, \forall \delta \in \Delta, \langle \widetilde{\delta}(z), \delta g \rangle = \delta(\langle z, g \rangle)$, where $\widetilde{\delta} \in \mathfrak{G}$ is such that its restriction to K_P is equal to δ ,
- let $g \in G$ then: $\langle z, g \rangle = 0 \ \forall z \in \mathfrak{U}$ if and only if g = 1.

Let $z \in \mathfrak{U}$ be such that $\langle z, g \rangle = 0 \ \forall g \in G$. Then $z \in \mathfrak{U}^G$. Thus $z \in K_P$ and $\phi_P(z) \in U(A)$. Thus, by Lemma 3.1, we get $\phi_P(z) \in P.U(A)$, and therefore $z \in \Lambda_P \oplus U(A)$.

We deduce from above that $\langle ., . \rangle$ induces a non-degenerate and Δ -equivariant bilinear map:

$$\frac{U(A)}{P.U(A)} \times G \longrightarrow \Lambda_P.$$

3.2. Class groups. — Let $\omega_P : \Delta \simeq (A/PA)^*$ be the cyclotomic character, i.e. $\forall a \in A \setminus PA, \ \omega_P(\sigma_a) \equiv a \pmod{P}$. Let $W = \mathbb{Z}_p[\mu_{q^d-1}]$, and fix $\rho : A/PA \to W/pW$ a \mathbb{F}_p isomorphism. We still denote by ω_P the morphism of groups $\Delta \simeq \mu_{q^d-1}$ which sends σ_a to
the unique root of unity congruent to $\rho(\omega_P(a))$ modulo pW. Observe that $\widehat{\Delta} := \operatorname{Hom}(\Delta, W^*)$ is a cyclic group of order $q^d - 1$ generated by ω_P . For $\chi \in \widehat{\Delta}$, we set:

- $e_{\chi} = \frac{1}{q^d 1} \sum_{\delta \in \Delta} \chi(\delta) \delta^{-1} \in W[\Delta],$
- $[\chi] = \{\chi^{p^j}, j \ge 0\} \subset \widehat{\Delta},$
- $e_{[\chi]} = \sum_{\psi \in [\chi]} e_{\psi} \in \mathbb{Z}_p[\Delta].$

Let $\operatorname{Pic}(R_P)$ be the ideal class group of the Dedekind domain R_P .

Corollary 3.3. — The $\mathbb{Z}_p[\Delta]$ -module: $e_{[\omega_P]}(\operatorname{Pic}(R_P) \otimes_{\mathbb{Z}} \mathbb{Z}_p)$ is a cyclic module. Furthermore, it is non trivial if and only if $B(q^d - 2) \equiv 0 \pmod{P}$.

Proof. — Recall that $H(A) = \{0\}$. Note that the trace map induces a surjective morphism of A-modules $H(R_P) \to H(A)$. Therefore:

$$H(R_P)^{\Delta} = \{0\}.$$

Now, note that, $\forall \chi \in \widehat{\Delta}$, we have an isomorphism of W-modules:

$$e_{\chi}(Cl^0(K_P)\otimes_{\mathbb{Z}} W)\simeq e_{\chi^p}(Cl^0(K_P)\otimes_{\mathbb{Z}} W).$$

Thus by [3] we get that $e_{[\omega_P]}(Cl^0(K_P) \otimes_{\mathbb{Z}} \mathbb{Z}_p)$ is a cyclic $\mathbb{Z}_p[\Delta]$ -module. Furthermore, by [5], this latter module is non-trivial if and only if $B(q^d - 2) \equiv 0 \pmod{P}$. We conclude the proof by noting that:

$$e_{[\omega_P]}\left(Cl^0(K_P)\otimes_{\mathbb{Z}} \mathbb{Z}_p\right) \simeq e_{[\omega_P]}\left(\operatorname{Pic}(R_P)\otimes_{\mathbb{Z}} \mathbb{Z}_p\right).$$

Recall that $L = K_P(\gamma)$ where $\gamma = e_C\left(\frac{P-1}{P}log_C(1)\right)$. Since $\gamma \in O_L$, the derivative of $\phi_P(X) - \phi_{P-1}(1)$ is equal to P, and $e_C(K_{P,\infty})$ is A-divisible, we conclude that L/K_P is unramified outside P and every place of K_P above ∞ is totally split in L/K_P . Furthermore, by Lemma 2.6:

• if $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$, L/K_P is unramified,

• if $\phi_{P-1}(1) \neq 0 \pmod{P^2}$, L/K_P is totally ramified at the unique prime of R_P above P (see the proof of Lemma 2.6).

Let H/K_P be the Hilbert class field of R_P , i.e. H/K_P is the maximal unramified abelian extension of K_P such that every place in $S_{\infty}(K_P)$ is totally split in H/K_P . Then the Artin symbol induces a Δ -equivariant isomorphism:

$$\operatorname{Pic}(R_P) \simeq \operatorname{Gal}(H/K_P).$$

Note that $e_{[\omega_P]}G = G$, where $G = \text{Gal}(L/K_P)$. Thus the Artin symbol induces a $\mathbb{F}_p[\Delta]$ -morphism:

$$\psi: e_{[\omega_P]}\left(\frac{\operatorname{Pic}(R_P)}{p\operatorname{Pic}(R_P)}\right) \longrightarrow \operatorname{Gal}(L \cap H/K_P)$$

Therefore, by Corollary 3.3 and Lemma 3.2, we get the following result which explains the congruence of Corollary 2.4:

Theorem 3.4. — The morphism of $\mathbb{F}_p[\Delta]$ -modules induced by the Artin map:

$$\psi: e_{[\omega_P]}\left(\frac{\operatorname{Pic}(R_P)}{p\operatorname{Pic}(R_P)}\right) \longrightarrow \operatorname{Gal}(L \cap H/K_P),$$

is an isomorphism, where $L = K_P\left(e_C\left(\frac{P-1}{P}log_C(1)\right)\right)$ and H is the Hilbert class field of R_P .

3.3. Prime decomposition of units. — A natural question arises: are there infinitely many primes P such that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$?

We end this note by some remarks centered around this question.

Lemma 3.5. — Let N(d) be the number of primes P of degree d such that $\phi_{P-1}(1) \neq 0 \pmod{P^2}$. Then:

$$N(d) > \frac{1}{d}(q-1)q^{d-1} - \frac{q}{d(q-1)}q^{d/2}.$$

Proof. — Let $N_q(d)$ be the number of primes of degree d. Then:

$$N_q(d) > \frac{1}{d}q^d - \frac{q}{d(q-1)}q^{d/2}.$$

Let M(d) be the number of primes P of degree d such that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$. Set:

$$V(d) = \sum_{i=0}^{d-1} \frac{L_{d-1}}{L_i} \in A$$

Then $\deg_T V(d) = q^{d-1}$, and if P is a prime of degree d, we have by Lemma 2.3 : $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$ if and only if $V(d) \equiv 0 \pmod{P}$. Therefore:

$$M(d) \le \frac{1}{d}q^{d-1}.$$

Remark 3.6. — We have:

 $V(2) = 1 + T - T^{q}$.

Thus V(2) is (up to sign) the product of q/p primes of degree p. Therefore there exist primes P of degree 2 such that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$ if and only if p = 2, and in this case there are exactly q/2 such primes.

Set $H(X) = \sum_{i=0}^{p-1} \frac{1}{i!} X^i \in \mathbb{F}_p[X]$. Let S be the set of roots of H(X) in \mathbb{C}_{∞} . Note that |S| = p-1. Let us suppose that $S \subset \mathbb{F}_q$. Let P be a prime of A such that P divides $T^q - T - \alpha$ for some $\alpha \in \mathbb{F}_q^*$. Observe that such a prime is of degree p. Now, for $k = 0, \dots, p-1$, we have:

$$L_k \equiv \frac{1}{k!} (-\alpha)^k \pmod{P}.$$

Therefore:

$$V(p) = \sum_{i=0}^{p-1} \frac{L_{p-1}}{L_i} \equiv -\alpha^{p-1} H(\frac{-1}{\alpha}) \pmod{p}.$$

Thus there exist at least $(p-1)\frac{q}{p}$ primes P in A of degree p such that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$.

Lemma 3.7. — Let P be a prime of degree A and let $n \ge 1$. We have an isomorphism of A-modules:

$$C\left(\frac{A}{P^nA}\right) \simeq \frac{A}{P^{n-1}(P-1)A}$$

Proof. — We first treat the case n = 1. By Lemma 2.3, we have: $\phi_P(X) \equiv X^{q^d} \pmod{P}$. Therefore $(P-1)C(A/PA) = \{0\}$. Now let $Q \in A$ such that $Q.C(A/PA) = \{0\}$. Then the polynomial $\phi_O(X) \pmod{P} \in (A/PA)[X]$ has q^d roots in A/PA. Thus $\deg_T Q \geq d$. This implies that C(A/PA) is a cyclic A-module isomorphic to A/(P-1)A.

Now let us assume that $n \ge 2$. By Lemma 2.3, we have:

$$\forall a \in PA, v_P(\phi_P(a)) = 1 + v_P(a).$$

This implies that $C(PA/P^nA)$ is a cyclic A-module isomorphic to $A/P^{n-1}A$ and P is a generator of this module. The lemma follows from the fact that we have an exact sequence of A-modules:

$$0 \longrightarrow C\left(\frac{PA}{P^nA}\right) \longrightarrow C\left(\frac{A}{P^nA}\right) \longrightarrow C\left(\frac{A}{PA}\right) \longrightarrow 0.$$

We deduce from the above lemma:

Corollary 3.8. — Let P be a prime of A. Then $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$ if and only if there exists $a \in A \setminus PA$ such that $\phi_a(1) \equiv 0 \pmod{P^2}$.

This latter corollary leads us to the following problem:

Question 3.9. — Let $b \in A_+$. Is it true that there exists a prime Q of A, $Q \equiv 1 \pmod{b}$, such that $\phi_Q(1)$ is not squarefree?

A positive answer to that question has the following consequence:

Lemma 3.10. — Assume that for every $b \in A_+$, we have a positive answer to question 1. Then, there exist infinitely many primes P such that $\phi_{P-1} \equiv 0 \pmod{P^2}$.

Proof. — Let S be the set of primes P such that $\phi_{P-1}(1) \equiv 0 \pmod{P^2}$. Let us assume that S is finite. Write $S = \{P_1, \dots, P_s\}$. Set $b = 1 + \prod_{i=1}^s (P_i - 1)$ (if $S = \emptyset, b = 1$). Let Q be a prime of A such that $\phi_Q(1)$ is not squarefree and $Q \equiv 1 \pmod{b}$. Then there exists a prime P of A such that:

$$\phi_Q(1) \equiv 0 \pmod{P^2}.$$

Since $\phi_P(1) \equiv 1 \pmod{P}$, we have $P \neq Q$ and therefore $Q \in A \setminus PA$. Furthermore, for $i = 1, \dots, s, Q$ is prime to $P_i - 1$. Therefore, by Lemma 3.7, $\phi_Q(1) \not\equiv 0 \pmod{P_i^2}$. Thus $P \notin S$ which is a contradiction by Corollary 3.8.

References

- G. Anderson, Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-Series in Characteristic p, J. Number Theory 60 (1996), 165-209.
- [2] G. Anderson and D. Thakur, Tensor powers of the Carlitz module and Zeta values, Ann. of Math. 132 (1990), 159-191.
- [3] B. Angles, L. Taelman, The Spiegelungssatz for the Carlitz module; an addendum to : On a problem à la Kummer-Vandiver for function fields, preprint 2012.
- [4] D. Goss, Basic Structures of Function Field Arithmetic, Springer, 1996.
- [5] D. Goss and W. Sinnott, Class groups of function fields, Duke Math. J. 52 (1985), 507-516.
- [6] B. Poonen, Local height functions and the Mordell-Weil theorem for Drinfeld modules, Compos. Math. 97 (1995), 349-368.
- [7] M. Rosen, Number theory in function fields, Springer, 2002.
- [8] L. Taelman, A Dirichlet unit theorem for Drinfeld modules. Math. Ann. 348 (2010), 899–907.
- [9] L. Taelman, Special L-values of Drinfeld modules, Ann. of Math. 175 (2012), 369-391.
- [10] L. Taelman, A Herbrand-Ribet theorem for function fields, Invent. Math. 188 (2012), 253-275.
- [11] D. Thakur, Iwasawa theory and cyclotomic function fields, Contemp. Math. 174 (1994), 157-165.

МОНАМЕD OULD DOUH, Université de Caen, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France • *E-mail* : mohamed.douh@unicaen.fr

October 3, 2012

BRUNO ANGLÈS, Université de Caen, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France • *E-mail* : bruno.angles@unicaen.fr