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Abstract. — Relying on classical studies of H.S. Vandiver and P. Furtwängler, we intend to
lay the foundations of a new global cyclotomic approach to Fermat’s Last Theorem (FLT) for
p > 3 and to a stronger version called “ Strong Fermat’s Last Theorem ” (SFLT), by introducing
an infinite number of auxiliary cyclotomic fields of the form Q(µq−1) for q 6= p a prime.

We show that the existence of nontrivial counterexamples to SFLT implies strong constraints
on the arithmetic of the fields Q(µq−1) with respect to Čebotarev’s density theorem in suitable
canonical Abelian p-extensions. Further investigations (of an analytic or a geometric nature)
would be necessary to lead to a proof of SFLT. Our results imply sufficient conditions for the
non-existence of nontrivial solutions of the SFLT equation and suggest various conjectures.

We prove for instance that if there exist infinitely many primes q, q 6≡ 1 (mod p), qp−1 6≡ 1
(mod p2) such that for q | q in Q(µq−1), q1−c is of the form ap (α) for some ideal a and some
α ≡ 1 (mod p2) (where c is the complex conjugation), then Fermat’s Last Theorem holds for p.

Résumé. — À partir de travaux classiques de H.S. Vandiver et P. Furtwängler, nous posons les
bases d’une nouvelle approche cyclotomique globale du dernier théorème de Fermat pour p > 3
et d’une version plus forte appelée “ Strong Fermat’s Last Theorem ” (SFLT), en introduisant
une infinité de corps cyclotomiques auxiliaires de la forme Q(µq−1) pour q 6= p premier.

Nous montrons que l’existence de contre-exemples non triviaux à SFLT implique de fortes
contraintes sur l’arithmétique des corps Q(µq−1) au niveau du théorème de densité de Čebo-
tarev dans certaines p-extensions abéliennes canoniques. Des investigations supplémentaires
(analytiques ou géométriques) seraient nécessaires pour conduire à une preuve de SFLT. À
partir de là, nous donnons des conditions suffisantes de non existence de solutions non triviales
à l’équation associée à SFLT et formulons diverses conjectures.

Nous prouvons par exemple que s’il existe une infinité de nombres premiers q, q 6≡ 1 (mod p),
qp−1 6≡ 1 (mod p2), tels que pour q | q dans Q(µq−1), on ait q1−c = ap (α) avec α ≡ 1 (mod p2)
(où c est la conjugaison complexe), alors le dernier théorème de Fermat est vrai pour p.
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1. Introduction

This paper is devoted to the study of the following phenomenon. Consider the maximal
Abelian extension Qnr of Q, unramified (= non-ramified) at a given prime p > 2.
By class field theory we have Qnr

=
⋃
n, p-nQ(µn). Then denote by HQnr [p] the maximal p-

ramified (i.e., unramified outside p) p-elementary (Abelian) extension of Qnr; this p-extension
is equal to

⋃
n, p-nHQ(µn)[p] where HQ(µn)[p] is the maximal p-ramified p-elementary extension

of Q(µn).
We have found that any nontrivial solution (u, v) of a classical diophantine equation, associ-
ated to Fermat’s equation for p > 2, and called the SFLT equation (1), implies some constraints
on the law of decomposition, in HQnr [p]/Qnr, of every prime q 6= p, q - uv.
These constraints may be characterized at some finite levels n via the law of decomposition
of q in a canonical family Fn of conjugate p-cyclic sub-extensions of HQ(µn)[p]/Q(µn), where
n | q − 1 is the order of v

u modulo q; see Theorem 3.3 on the computations of some canonical
pth power residue symbols. Its interpretation in terms of Frobenius automorphisms in Fn
leads to Theorem 6.6 and a specific use leads to Theorem 5.1 (stated in the abstract).
Some methods needed to prove these connections stem from techniques of Vandiver and
Furtwängler, who, using a different viewpoint from ours, try to give a classical cyclotomic
proof of Fermat’s Last Theorem (FLT). Our perspective is global, in contrast to previous
studies of the classical literature that are local at p.
Of course the problem is now empty for Fermat’s equation, except if we wish to prove FLT in
this way; but we shall see that for the SFLT equation, the result is unknown for p > 3 (but
conjecturally similar) and, moreover, leads to infinitely many solutions for p = 3. We shall
show that the case p = 3 is exceptional and this we shall explain in Subsection 5.3 and in
Section 8.

2. Generalities on the method – The ω-SFLT equation

2.1. Prerequisites on Fermat’s Last Theorem. — Let p be an odd prime, and let a, b, c
be pairwise coprime nonzero integers such that

ap + bp + cp = 0 .

If p | abc (second case of FLT), we assume that p divides c.
We can find for instance in [Gr1], [Ri], [Wa1] the following easy properties concerning such
a speculative counterexample to FLT, where ζ is a primitive pth root of unity, K := Q(ζ),
p := (ζ − 1)Z[ζ], and NK/Q is the norm map in K/Q. For a detailed proof, a more complete
bibliography, and an analysis of the classical cyclotomic approach to FLT, we refer to [Gr1].
Let ν ≥ 0 be the p-adic valuation of c. We have:

a+ b = cp0 (resp. pνp−1cp0) and NK/Q(a+ b ζ) = cp1 (resp. p cp1) , if ν = 0 (resp. ν > 0) ,

(1) Equation in coprime integers u, v, of the form (u + v ζ)Z[ζ] = pδ wp1, where ζ := e2iπ/p, p := (ζ − 1)Z[ζ]

(see Conjecture 2.4); this formulation is equivalent to NQ(ζ)/Q(u + v ζ) = pδ wp1 with w1 = NQ(ζ)/Q(w1). The
important condition g.c.d. (u, v) = 1 implies δ ∈ {0, 1} and p - w1.
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with −c = c0 c1 (resp. pνc0 c1), and p - c0 c1.
By cyclic permutation, since p - ab, we have the following analogous relations

b+ c = ap0, NK/Q(b+ c ζ) = ap1, with − a = a0 a1,

c+ a = bp0, NK/Q(c+ a ζ) = bp1, with − b = b0 b1 .

We have:

(a+ b ζ)Z[ζ] = cp1 (resp. p cp1) if ν = 0 (resp. ν > 0), with NK/Q(c1) = c1Z ,

where c1 is an integer ideal of K prime to p, and the analogous relations

(b+ c ζ)Z[ζ] = ap1, with NK/Q(a1) = a1Z ,

(c+ a ζ)Z[ζ] = bp1, with NK/Q(b1) = b1Z .

All prime divisors of the positive numbers a1, b1, c1 are congruent to 1 modulo p.

Remark 2.1. — If ν ≥ 1, then α := a+c ζ
a+c ζ−1 is a pseudo-unit (i.e., (α) is the pth power of

an ideal), congruent to 1 modulo pp. Hence from [Gr1], Theorem 2.2, Remark 2.3 (ii), α is
locally a pth power in K, which implies α ≡ 1 (mod pp+1), then c (ζ−ζ−1)

a+c ζ−1 ≡ 0 (mod pp+1),
whence c ≡ 0 (mod p2). This applies to the equation (u + v ζ)Z[ζ] = wp

1 of Conjecture 2.4
when p |u with α = u ζ−1+v

u ζ+v (resp. p | v with α = u+v ζ
u+v ζ−1 ) and shows that p2 |u (resp. p2 | v).

Lemma 2.2. — We can find a permutation (x, y, z) of (a, b, c) such that the following con-
gruences hold:
(i) First case of FLT, p > 3,

x− y 6≡ 0, x+ y 6≡ 0 (mod p),

y − z 6≡ 0, y + z 6≡ 0 (mod p),

z + x 6≡ 0 (mod p) .

(ii) First case of FLT, p = 3,

x− y ≡ y − z ≡ z − x ≡ 0 (mod 3),

x+ y ≡ y + z ≡ z + x ≡ ±1 (mod 3) .

(iii) Second case of FLT, p ≥ 3 (y ≡ 0 (mod p)),

x− y 6≡ 0, x+ y 6≡ 0 (mod p),

y − z 6≡ 0, y + z 6≡ 0 (mod p),

z − x 6≡ 0, z + x ≡ 0 (mod p) .

Proof. — Consider the differences a− b, b− c, c− a in the first case of FLT. If two of them
are divisible by p, we obtain a ≡ b ≡ c 6≡ 0 (mod p), then since ap + bp + cp = 0 implies
a+ b+ c ≡ 0 (mod p), we get 3 a ≡ 0 (mod p) which leads to p = 3. So, if p > 3, there exist
two differences having the first required property, say, x− y, y − z.
The second condition is satisfied for any sum and any p ≥ 3.
The case p = 3 in the first case of FLT is obvious since a ≡ b ≡ c ≡ ±1 (mod 3).
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In the second case of FLT, we take y = c ≡ 0 (mod p) so that all conditions in (iii) are
satisfied. Then x+ y ζ and z + y ζ are p-primary pseudo-units with p2 | y.

Remark 2.3. — For p ≥ 3 in the first case, the condition z−x ≡ 0 (mod p) implies 2p−1 ≡ 1
(mod p2) since xp + yp + zp = 0 implies yp + 2 zp ≡ 0 (mod p2).

2.2. Statement of a conjecture stronger than FLT. — We have stated in [Gr1] a
conjecture which implies FLT and which does not follow from Wiles’s proof; we recall here its
statement, which will be called the Strong Fermat’s Last Theorem (SFLT).

Conjecture 2.4. — Let p be an odd prime, let ζ be a primitive pth root of unity, and set
K = Q(ζ) and p = (ζ − 1)Z[ζ]. Then the equation

(u+ v ζ)Z[ζ] = pδ wp
1

in coprime integers u, v, where δ is any integer ≥ 0 and w1 is any integral ideal of K, has no
solution for p > 3 except the trivial ones for which u+ v ζ = ±1, ±ζ, ±(1 + ζ), or ±(1− ζ).

We note that necessarily δ ∈ {0, 1} (depending on whether u + v is prime to p or not) and
that w1 is necessarily prime to p.
This SFLT equation is equivalent to the equation

NK/Q(u+ v ζ) = pδ wp1 ,

with δ ∈ {0, 1} and w1 ∈ 1 + pZ, for which we have the relation w1 Z = NK/Q(w1). This
is classical and a detailed proof will be given in the proof of Lemma 2.17 (Subsection 2.6),
where we also give another equivalent equation.
The difference between FLT and SFLT is as follows. A solution (u, v, w) of Fermat’s equation
up + vp + wp = 0 comes from a solution of (u+ v ζ)Z[ζ] = pδ wp

1 (with the same u, v) if and
only if there exists w0 ∈ Z such that u + v = wp0 (resp. pνp−1wp0) if δ = 0 (resp. δ = 1),
since NK/Q(u+ v ζ) = pδ wp1, giving w := −w0w1 (resp. −pνw0w1) for a solution of Fermat’s
equation.
As for FLT, we can speak of the first case of the conjecture or of the equation when

u v (u+ v) 6≡ 0 (mod p)

and of the second case when
u v ≡ 0 (mod p)

(which implies u or v ≡ 0 (mod p2) as in the case of the Fermat equation); then the case

u+ v ≡ 0 (mod p)

will be called the special case of SFLT (it corresponds to the equation with δ = 1).
In the first case of SFLT for p > 3, we do not necessarily have u − v 6≡ 0 (mod p); for
p = 3, u v (u + v) 6≡ 0 (mod 3) implies u ≡ v ≡ ±1 (mod 3), hence u − v ≡ 0 (mod 3); see
Remark 2.6 below.

Publications mathématiques de Besançon - 2012/2



Georges Gras and Roland Quême 51

Remark 2.5. — If u−v ≡ 0 (mod p), then α := uζ+v
u+vζ is a pseudo-unit congruent to 1 modulo

pp; so, from [Gr1], Theorem 2.2, Remark 2.3 (ii), α is locally a pth power, which implies first
α ≡ 1 (mod pp+1), and next (u−v)(ζ−1)

u+vζ ≡ 0 (mod pp+1), hence u − v ≡ 0 (mod p2). This
is valid in the Fermat case if z − x ≡ 0 (mod p) (under the necessary condition 2p−1 ≡ 1
(mod p2)), and we then have z − x ≡ 0 (mod p2).

In the sequel we shall assume, for a hypothetical solution (x, y, z) of Fermat’s equation, that
the conditions of Lemma 2.2 are satisfied (i.e., x − y and y − z are prime to p when p > 3,
and p | y in the second case).
In this case we have two similar counterexamples to the above SFLT conjecture:

(x+ y ζ)Z[ζ] = zp1, (y + z ζ)Z[ζ] = xp1

(first or second case of SFLT). A third counterexample to SFLT is:

(z + x ζ)Z[ζ] = yp1 (first case if p - y), (z + x ζ)Z[ζ] = p yp1 (special case if p | y) .

More precisely, for p > 3, the first case of SFLT implies the first case of FLT, both the second
and the special case of SFLT imply the second case of FLT, and FLT holds as soon as the
first and second case, or the first and special case of SFLT, hold.

Remark 2.6. — Conjecture 2.4 is false for p = 3 since for ζ = j of order 3 we have the six
families of parametric formulas which exhaust the solutions:

u+ v j = jh (j − 1)δ (s+ t j)3, s, t ∈ Z, s+ t 6≡ 0 (mod 3), g.c.d. (s, t) = 1,

and 0 ≤ h < 3, δ ∈ {0, 1}. These solutions concern all the cases: (2)

– first case (for which u− v ≡ 0 (mod 9)):
• (u, v) = (−s3 − t3 + 3s2t,−s3 − t3 + 3st2), from u+ v j = j2 (s+ t j)3;

– second case (for which u or v ≡ 0 (mod 9)):

• (u, v) = (3st2 − 3s2t, s3 + t3 − 3s2t), from u+ v j = j (s+ t j)3;
• (u, v) = (s3 + t3 − 3st2, 3s2t− 3st2), from u+ v j = (s+ t j)3;

– special cases (for which u+ v ≡ 0 (mod 3)):
• (u, v) = (−s3 − t3 − 3s2t+ 6st2, s3 + t3 − 6s2t+ 3st2), from u+ v j = (j − 1) (s+ t j)3;

• (u, v) = (−s3− t3 + 6s2t−3st2,−2s3−2t3 + 3s2t+ 3st2), from u+ v j = j (j−1) (s+ t j)3;

• (u, v) = (2s3 + 2t3 − 3s2t− 3st2, s3 + t3 + 3s2t− 6st2), from u+ v j = j2 (j − 1) (s+ t j)3.

The special cases are not similar since we have u+ v ≡ 0 (mod 9) for the first solution and
u+ v ≡ ±3(s3 + t3) ≡ ±3(s+ t) ≡ ±3 (mod 9) for the others.

When p = 3 we call trivial the solutions (u, v) obtained with s t (s − t) = 0, which leads to
the elements u+ v j = ±1, ±j, ±(1 + j), ±(1− j), ±(1 + 2 j), ±(2 + j).

(2) Since the parameters (s′, t′) in the expression s′ + t′j = (−j)r(s + t j), 0 ≤ r < 6, give again the solution
(u(s, t), v(s, t)) and its opposite, we can consider (s, t) up to the automorphism T ′ of order 6 defined on Z×Z
by T ′(s, t) = (t, t− s) since for r = 1, (s′, t′) = (t, t− s).
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Remark 2.7. — By contrast with the case of Fermat’s equation, we shall not take into
account the obvious symmetries of the solutions (u, v) for p = 3. This will be important in
Section 8 where we shall use the action of an automorphism T of order 6 on the set of solutions.
Similarly, for any p ≥ 3 the automorphism T0 of order 2 defined by T0(u, v) := (v, u) acts on
the set of solutions.
However, to simplify, for any p ≥ 3 a solution (u, v) will be considered up to the sign.

The considerations above indicate that to obtain a proof of SFLT, one must eliminate in a
somewhat natural way the case p = 3, which is an obstruction to the relevance of the method
developed here. We shall explain in Subsection 5.3 and in Section 8 the reasons why this case
is exceptional and finally does not matter, a priori, for the general theory; we are obliged to
differ this justification because we first need some general material.
Meanwhile, for a more comprehensive information, we shall not systematically assume p > 3
in the development of the first parts of our study.

2.3. The cyclotomic field Q(ζ) and the character ω. — We first recall some properties
of the cyclotomic field K = Q(ζ), ζ of order a prime p > 2.

Definition 2.8. — (i) Let g := Gal (K/Q) and let ω be the Teichmüller character of g, i.e.,
the character with values in µp−1(Qp) such that for sk ∈ g defined by sk(ζ) = ζk, k 6≡ 0
(mod p), ω(sk) (also denoted by ω(k)) is the unique (p− 1)th root of unity in Qp congruent
to k modulo p. This is the character of the g-module 〈 ζ 〉.
(ii) The idempotent corresponding to the character ω is

Eω := 1
p−1

∑
s∈g

ω−1(s) s = 1
p−1

p−1∑
k=1

ω−1(k) sk ∈ Zp[g] .

(iii) We denote by eω a representative in Z[g] of Eω modulo pZp[g]. We then have eω sk ≡ k eω
(mod pZ[g]) and eω (1− eω) ∈ pZ[g]. Put eω =

∑p−1
k=1 uk sk, uk ∈ Z, uk ≡ k−1

p−1 (mod p).

We have ω−1(sp−k) = −ω−1(sk) since ω(s−1) = −1; thus we may assume that up−k = −uk
for 1 ≤ k ≤ p−1

2 , so that eω = (1− s−1) e◦ω with e◦ω =
∑ p−1

2
k=1 uk sk.

In some circumstances we shall use the representative e′ω :=
∑p−1

k=1 u
′
k sk ∈ Z[g], u′k ≡ k−1

p−1

(mod p), with the conditions 0 < u′k ≤ p− 1.

Example 2.9. — For p = 3 we have Eω = 1
2(1 − s), with s = s−1. We may thus choose

eω = s− 1 as a representative with integral coefficients. Then e′ω = s+ 2.
For p = 5, we may choose eω = −1 + 2 s2− 2 s3 + s4 = −1 + 2 s+ s2− 2 s3 = (1− s2) (2 s− 1)
with s = s2. Then e′ω = 4 + 2 s+ s2 + 3 s3.

Remark 2.10. — Recall that the group of units E of K is the direct product 〈 ζ 〉 × E+,
where E+ is the group of units of the maximal real subfield K+ of K; see [Wa1], Prop. 1.5.
Thus if ε = ζh ε+, ε+ ∈ E+, we get εeω = ζh, since ζeω = ζ for any representative eω.
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2.4. The principles of the method – The fundamental relation. — The aim of this
article is to examine some properties of the arithmetic of the fields Q(µn) ⊆ Q(µq−1), n | q−1,
in relation with a nontrivial solution in coprime integers u, v of the SFLT equation

(u+ v ζ)Z[ζ] = pδ wp
1 ,

(see Conjecture 2.4) for all primes q such that q - u v and v
u modulo q is of order n prime to p.

The cases where n ≤ 2 (i.e., q |u2 − v2) are particular, especially when (u, v) is part of a
solution (x, y, z) of Fermat’s equation, and give Furtwängler’s theorems [Fur]; see Corollaries
2.15 and 2.16 to Lemma 2.14 for a generalization of Furtwängler’s theorems to the SFLT
equation, and Remark 3.5 for the classical case of Fermat’s equation; see also [Mih1] in the
context of a Nagell–Ljunggren equation, which is the particular case of the SFLT equation
with v = 1.
The cases where n is divisible by p give technical complications and are of a different nature.
Some complements in this direction are developed in [Que] where similar studies are carried
out.

Lemma 2.11. — Let u, v be arbitrary coprime integers; put Φn(u, v) :=
∏

ξ′ of order n
(u ξ′− v),

n ≥ 1, which is equal to NQ(µn)/Q(u ξ − v) for any fixed primitive nth root of unity ξ.
Let q be a prime. Then the following three properties are equivalent:
(i) q |Φn(u, v) & q - n;
(ii) q - u v & v

u is of order n modulo q;
(iii) (q, u ξ − v) is a prime ideal of Q(µn) & q ≡ 1 (mod n).

Proof. — Suppose that q |Φn(u, v) and q - n. Then q - u v since Φn(u, v) is a homogeneous
form uφ(n) ± · · · ± vφ(n) in coprime integers u, v (φ(n) is the Euler totient function).
For fixed ξ of order n, the ideal (q, u ξ − v) of the field Q(µn) is a prime ideal lying above q;
indeed, the relation q |Φn(u, v) =

∏
ξ′ of order n

(u ξ′ − v) shows that u ξ − v ∈ q for a prime ideal

q | q, of degree 1, unramified in Q(µn)/Q (since q - n). So (q, u ξ − v) = q; thus q is congruent
to 1 modulo n and v

u is of order n modulo q. This proves (i) ⇒ (ii) and (i) ⇒ (iii).
If q - u v and v

u is of order n modulo q, then un − vn ≡ 0 (mod q). From the equality
un − vn =

∏
d |n Φd(u, v) we deduce that there exists m |n such that q |Φm(u, v), which

implies q |um− vm, hence m = n by definition of the order; since we have ( vu)q ≡ v
u (mod q),

it is clear that n cannot be divisible by q, proving (ii) ⇒ (i). The implication (iii) ⇒ (i) is
immediate.

Corollary 2.12. — For given coprime integers u, v, consider the set {Φn(u, v), n ∈ N\{0}}.
(i) A given prime q divides one of the numbers Φn(u, v), n 6≡ 0 (mod q), if and only if q - u v.
When the conditions q |Φn(u, v) & q - n are satisfied, then n | q − 1 and n is unique.
(ii) For fixed n > 2, we have q |Φn(u, v) & q - n if and only if q ≡ 1 (mod n) & q - u v (u2−v2)

& v
u is of order n modulo q. (3)

(3) For n > 2, using for u v 6= 0 the inequalities (|u| − |v|)2 < (u ξ − v)(u ξ−1 − v) < (|u| + |v|)2, we see that
u ξ− v is a global unit (equivalent to Φn(u, v) = 1) if and only if u ξ− v ∈ {±1,±ξ,±(ξ+ 1),±(ξ− 1)}, except
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Definition 2.13. — Let q 6= p be a prime. Recall that K = Q(µp).
(i) Fermat quotients. Let f be the residue degree of q in K/Q and let κ = qf−1

p . Since f | p−1,
we have κ ≡ 0 (mod p) if and only if qp−1 ≡ 1 (mod p2).
The integer κ := qp−1−1

p is called the Fermat quotient of q. We have κ ≡ p−1
f κ ≡ −1

p log(q)

(mod p), where log is the p-adic logarithm.
(ii) Power residue symbols. Let us recall the definition and properties of the pth power residue
symbols

( •
•
)
in K and M := Q(µn)K, n | q − 1, with values in µp.

Let q be a prime ideal lying above q in Q(µn) (also denoted by q | q).
If α ∈ M is prime to Q | q in M , then let α be the image of α in the residue field ZM/Q '
ZK/qK ' Fqf for qK = ZK ∩ Q (indeed, q totally splits in M/K); since ZM contains a
primitive pth root of unity ζ, the image ζ of ζ is of order p (since ζ 6≡ 1 (mod Q)) and we
can put ακ = ζ

r, r ∈ Z/pZ, which defines the pth power residue symbol
(
α

Q

)
M

:= ζr.
This symbol is trivial if and only if α is a local pth power at Q (see e.g. [Gr2], I.3.2.1, Ex. 1).
With this definition, for any automorphism τ ∈ Gal(M/Q), from ακ ≡ ζ r (mod Q) one
obtains τακ ≡ τζ r (mod τQ), thus, considering ω as a character of Gal(M/Q) trivial on

Gal(M/K), we have
(
τα

τQ

)
M

= τ
(
α

Q

)
M

= ζr ω(τ) =
(
α

Q

)ω(τ)

M
. So,

(
α

τQ

)
M

=
(
τ−1α

Q

)ω(τ)

M
.

For α ∈ K and any qK | q in K, we have
(
α

qK

)
K

=
(
α

Q

)
M

for any Q | qK in M .

These relations imply
(
ζ

qK

)
K

= ζκ, which does not depend on the choice of qK | q.

We return to the context of the SFLT equation (u+ v ζ)Z[ζ] = pδ wp
1 in coprime integers u, v.

For a solution (u, v) of the above equation, set

γω := (u+ v ζ)eω .

With evident notations, in the context of a solution (x, y, z) of Fermat’s equation (see Sub-
section 2.1) we will have analogous calculations with γω := (x+ y ζ)eω satisfying the relation
(x+ y ζ)Z[ζ] = zp1, and with γ′ω := (y + z ζ)eω satisfying the relation (y + z ζ)Z[ζ] = xp1 (non-
special cases of the SFLT equation). Then in the first case (p - y), γ′′ω := (z + x ζ)eω with
the relation (z + x ζ)Z[ζ] = yp1 can be used, but z − x may be divisible by p. In the second
case (p | y), γ′′ω is of p-valuation 1 since (z+x ζ)Z[ζ] = p yp1 and this gives a special case of the
SFLT equation.
By Stickelberger’s theorem, the ω-component of the p-class group of K is trivial (it is also a
consequence of the reflection theorem, see [Gr2], II.5.4.6.3). Hence the ideal class c̀ (w1)eω

is trivial (since c̀ (w1)p = 1, this does not depend on the choice of the representative eω in
Z[g]).

if ξ (resp. −ξ) is of order `e, ` a prime, e ≥ 1, in which case ξ − 1 (resp. ξ + 1) is a uniformizing parameter
at `; but if so, necessarily q = `, (q, u ξ − v) = (ξ ∓ 1) | `, n = `e (resp. 2 `e), hence q |n, which is not allowed.
These units correspond to the trivial solutions (u, v) = ±(0, 1), ±(1, 0), ±(1, 1), ±(1,−1) of the SFLT equation
which are precisely characterized by the relation u v (u2 − v2) = 0, in which case such primes q do not exist.
This observation, obtained in two different ways, has perhaps a significant meaning for our study.
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Write weω
1 = µω Z[ζ], µω ∈ K×. Then we have

γω = εω µ
p
ω or γω = (ζ − 1)eωεω µ

p
ω

(depending on whether δ = 0 or 1), where εω ∈ E. Set π := ζ − 1.

Lemma 2.14 (The fundamental relation). — Let (u, v), with g.c.d. (u, v) = 1, be a so-
lution of the SFLT equation (u+ v ζ)Z[ζ] = pδ wp

1, and let γω = (u+ v ζ)eω .
Then there exists h ∈ Z/pZ such that γω ∈ ζh ·K×p. More precisely: (4)

(i) In the nonspecial cases (u+ v 6≡ 0 (mod p)) for p ≥ 3, we have

γω =
(
1 +

v

u+ v
π
)eω ∈ ζ v

u+v ·K×p .

(ii) In the special case (u+ v ≡ 0 (mod p)) for p > 3, we have

γω = (
u

v
+ ζ)eω = (1 +

v

u
ζ)eω ∈ ζ 1

2 ·K×p .
(iii) In the special case (u+ v ≡ 0 (mod 3)) for p = 3, we have

γω = (
u

v
+ ζ)eω = (1 +

v

u
ζ)eω ∈ ζ 1

2
+ 1

2
u+v
3 v ·K×3 .

Proof. — (i) We have (u + v ζ)eω = γω = εω µ
p
ω with εω = ζhε+, ε+ ∈ E+, for some h;

then applying again eω we obtain (u + v ζ)e
2
ω = γeωω = εeωω µeωpω ∈ ζh · K×p. Since e2

ω ≡ eω
(mod pZ[g]), we get (u+ v ζ)eω = γω ∈ ζh ·K×p.
Since u+ v ζ = (u+ v)

(
1 + v

u+v π
)
, (u+ v ζ)eω ∈ ζh ·K×p is equivalent to

(1 + v
u+v π)eω ∈ ζh ·K×p .

Using [Gr1], Remark 3.4, we see that
(
1+ v

u+v π
)eω ≡ 1+ v

u+v π (mod π2), and we immediately
obtain h ≡ v

u+v (mod p). This proves (i).
(ii) Suppose that u+ v ≡ 0 (mod p). Put u

v = −1 + λ p, then u
v + ζ = π + λ p = π α, where

α := 1 + λ p
π ≡ 1 (mod πp−2).

We have γω := (u+ v ζ)eω = (1 + v
u ζ)eω = (uv + ζ)eω = πeω αeω .

From the relation (u+v ζ)Z[ζ] = (π)wp
1, we obtain (u+vζ)eω ∈ πeω ζh ·K×p for some h, thus

αeω ∈ ζh ·K×p, hence h ≡ 0 (mod p) in this case since p > 3. Then
(
1 + v

u ζ
)eω ∈ πeω ·K×p.

Put α ∼ β in K× if αβ−1 ∈ K×p. From (ζ − 1) (ζ + 1) = ζ2 − 1, we obtain

(ζ − 1)eω (ζ + 1)eω = (ζ2 − 1)eω = (ζ − 1)s2eω ∼ (ζ − 1)2eω ,

hence (ζ + 1)eω ∼ (ζ − 1)eω . Since ζ + 1 = ζ
1
2 (ζ

1
2 + ζ−

1
2 ) and ζ

1
2 + ζ−

1
2 ∈ K+, we have

(ζ + 1)eω ∼ ζ 1
2 , hence (ζ − 1)eω ∼ (ζ + 1)eω ∼ ζ 1

2 . This proves (ii).

(iii) If p = 3 in the special case, we deduce from the calculations done in the proof of (ii) that
γω = πeω αeω ∈ πeω ζh ·K×3 for some h, with α = 1 + 3λ

π and λ = u+v
3 v .

This shows that α = 1 + (ζ2 − 1) u+v
3 v ≡ 1 − π u+v

3 v (mod π2), whence the congruence h ≡
−u+v

3 v ≡ 1
2
u+v
3 v (mod 3) and γω belongs to ζ

1
2

+ 1
2
u+v
3 v ·K×3.

(4) For any rational r prime to p, in the writing ζr, r is considered as an element of (Z/pZ)×.
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In the second case of SFLT we have γω ∈ K×p (resp. ζ ·K×p) if p | v (resp. p |u) since in this
case v

u+v ≡ 0 (mod p) (resp. v
u+v ≡ 1 (mod p)).

In the special case, the condition u + v ≡ 0 (mod p2) is satisfied when (u, v) is a part of a
solution (x, y, z) = (u, y, v) or (v, y, u) of Fermat’s equation when p | y (see Subsection 2.1).

Corollary 2.15 (Generalization of the first theorem of Furtwängler)
Let (u, v), with g.c.d. (u, v) = 1, be a nontrivial solution of the SFLT equation (u+ v ζ)Z[ζ] =

pδ wp
1, and let q 6= p be a prime divisor of u v. Set κ := qf−1

p (see Definition 2.13 (i)).

(i) For p ≥ 3 in the nonspecial cases we have uκ ≡ 0 (mod p) if q |u and v κ ≡ 0 (mod p) if
q | v. Hence in the first case we have κ ≡ 0 (mod p).
(ii) For p > 3 in the special case we have κ ≡ 0 (mod p).
(iii) For p = 3 in the special case we have u−2v

3v κ ≡ 0 (mod 3) if q |u and 2u−v
3v κ ≡ 0 (mod 3)

if q | v. Hence if u+ v ≡ 0 (mod 9), then κ ≡ 0 (mod 3); if u+ v ≡ ±3 (mod 9), then κ ≡ 0
(mod 3) if q |u & 2u−v

3v ≡ 0 (mod 3), or if q | v & u−2v
3v ≡ 0 (mod 3).

Proof. — We have (u + v ζ)eω ∈ ζh · K×p with h ≡ v
u+v (mod p) in the nonspecial cases,

p ≥ 3, h ≡ 1
2 (mod p) in the special case if p > 3, and h ≡ 1

2 + 1
2
u+v
3 v (mod 3) in the special

case if p = 3.
Let qK be any prime ideal of K lying above q. We use the pth power residue symbol in K
(see Definition 2.13 (ii)).

Since u+v ζ ≡ v ζ (mod q) if q |u and u+v ζ ≡ u (mod q) if q | v, we have
(

(u+v ζ)eω

qK

)
K

= ζκ

if q |u and
(

(u+v ζ)eω

qK

)
K

= 1 if q | v. But we have
(
ζh

qK

)
K

= ζ
v

u+v
κ (resp. ζ

1
2
κ, ζ( 1

2
+ 1

2
u+v
3 v

)κ) in
the nonspecial cases (resp. in the special case p > 3, p = 3). In the nonspecial cases for q |u,
this gives v

u+v κ ≡ κ (mod p), which is equivalent to u
u+v κ ≡ 0 (mod p), hence to uκ ≡ 0

(mod p); and if q | v, we have v
u+v κ ≡ 0 (mod p), hence v κ ≡ 0 (mod p).

The special case for p > 3 yields 1
2 κ ≡ κ (resp. 1

2 κ ≡ 0) (mod p) if q |u (resp. q | v), giving
κ ≡ 0 (mod p) in any case.
For p = 3 in the special case we have (1

2 + 1
2
u+v
3 v )κ ≡ κ (mod 3) if q |u, (1

2 + 1
2
u+v
3 v )κ ≡ 0

(mod 3) if q | v, hence u−2v
3 κ ≡ 0 (mod 3) and 2u−v

3 κ ≡ 0 (mod 3), respectively.
The case u+ v ≡ 0 (mod 9) is obvious as well as the case u+ v ≡ ±3 (mod 9).

Corollary 2.16 (Generalization of the second theorem of Furtwängler)
Let (u, v), with g.c.d. (u, v) = 1, be a nontrivial solution of the SFLT equation (u+ v ζ)Z[ζ] =
pδ wp

1 and let q 6= p be a prime divisor of u2 − v2.
(i) For p ≥ 3 in the nonspecial cases, we have (u − v)κ ≡ 0 (mod p); hence κ ≡ 0 (mod p)
as soon as u− v 6≡ 0 (mod p). In particular, in the second case, κ ≡ 0 (mod p).
(ii) For p = 3 in the first case the information is empty since u ≡ v ≡ ±1 (mod 3).
(iii) For p > 3 in the special case, the information is empty.
(iv) For p = 3 in the special case we have u+v

3 v κ ≡ 0 (mod 3), hence κ ≡ 0 (mod 3) as soon
as u+ v 6≡ 0 (mod 9).
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Proof. — We have (u + v ζ)eω ∈ ζh · K×p with h ≡ v
u+v (mod p) in the nonspecial cases,

h ≡ 1
2 (mod p) in the special case if p > 3, and h ≡ 1

2 + 1
2
u+v
3 v (mod 3) in the special case if

p = 3.
This shows that (1+ v

u ζ)eω ζ−
1
2 ∈ ζh ·K×p with h ≡ −1

2
u−v
u+v (mod p) in the nonspecial cases,

h ≡ 0 (mod p) in the special case if p > 3, and h ≡ 1
2
u+v
3 v (mod 3) in the special case if p = 3.

Let qK be any prime ideal of K lying above q. If q |u2−v2, then v
u ≡ ±1 (mod q) and we get

(1 + v
u ζ)eω ζ−

1
2 ≡ (1 ± ζ)eω ζ−

1
2 (mod qK); since (1 ± ζ)eω ∼ ζ

1
2 (see proof of Lemma 2.14),

we obtain hκ ≡ 0 (mod p) in every case.
The nonspecial cases yield u−v

u+v κ ≡ 0 (mod p), hence κ ≡ 0 (mod p) if u − v 6≡ 0 (mod p).
Thus the case p = 3 is empty since u ≡ v ≡ ±1 (mod 3).
The special case for p > 3 is empty since h ≡ 0 (mod p). The special case for p = 3 gives
u+v
3 v κ ≡ 0 (mod 3).

2.5. Consequences of Lemma 2.14. — We make the following comments on the fun-
damental Lemma 2.14 and its corollaries to introduce suitable ω-cyclotomic units and the
ω-SFLT equation.

2.5.1. General study of the numbers (u + v ζ)eω , u, v ∈ Z, g.c.d. (u, v) = 1. — For arbitrary
coprime integers u, v, u v (u+ v) 6= 0, we still have

γω := (u+ v ζ)eω =
(u
v

+ ζ
)eω =

(
1 +

v

u
ζ
)eω =

(
1 +

v

u+ v
π
)eω , π := ζ − 1 ,

and also the various congruences of Lemma 2.14, γω ≡ ζh (mod π2), with h = v
u+v (nonspecial

cases, p ≥ 3), h = 1
2 (special case, p > 3), and h = 1

2 + 1
2
u+v
3 v (special case, p = 3).

Then we obtain γω ζ−h ≡ 1 (mod π2), which easily implies that γω ζ−h is a p-primary number
(use [Gr1], Lemma 3.15); but since (u+ v ζ)Z[ζ] is not in general the pth power of an ideal
this number γω ζ−h is not necessarily a global pth power. (5)

By class field theory, there exist infinitely many prime ideals qK of K, prime to u v, such that
γω ζ

−h = (1 + v
u ζ)eω ζ−h is not a local pth power at qK , except if we have a counterexample

(u, v) to SFLT in which case such primes do not exist since (1 + v
u ζ)eω ζ−h is then a global

pth power.
The pth power residue symbol (Definition 2.13 (ii)) of (1 + v

u ζ)eω ζ−h is invariant by conju-
gation of qK since (

(1 +
v

u
ζ) ζ−h

)eω κ ≡ ζ ′ (mod qK)

implies, by conjugation by sk ∈ g,
(
(1 +

v

u
ζk) ζ−k h

)eω κ ∼
(
(1 +

v

u
ζ) ζ−h

)k eω κ ≡ ζ ′k (mod sk(qK)) ,

which is equivalent (up to pth powers) to
(
(1 +

v

u
ζ) ζ−h

)eω κ ≡ ζ ′ (mod sk(qK)) .

(5) Recall that a p-primary number is not necessarily a local pth power; this is true for pseudo-units. In the
case where (u+ v ζ)Z[ζ] = wp1, Lemma 2.14 shows that γω ζ−h ∈ K×p; so in this particular case where γω ζ−h

is a pseudo-unit, hence a local pth power at p, we obtain a necessary and sufficient condition to have a global
pth power.
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So this symbol only depends on q, the prime under qK , which does not divide u v.
We suppose v

u of order n modulo q (which is equivalent to q |Φn(u, v) & q ≡ 1 (mod n) by
Lemma 2.11 and Corollary 2.12). Assume that n is prime to p.
Let q be a prime ideal lying above q in Q(µn), ξ the nth primitive root of unity such that
ξ ≡ v

u (mod q), Q a prime ideal lying above q in Q(µn)K, and qK := Q ∩ Z[ζ]. The pth
power residue symbols of (1 + v

u ζ)eω ζ−h at qK in K and of the cyclotomic unit

η1 := (1 + ξ ζ)eω ζ−h

at Q in Q(µn)K are equal (see Definition 3.2 for more information on η1).

2.5.2. Case of a solution of the SFLT equation and consequences for FLT. — In this case
both the pth power residue symbols of (1+ v

u ζ)eω ζ−h ∈ K×p at qK in K and of the cyclotomic
unit η1 = (1 + ξ ζ)eω ζ−h at Q in Q(µn)K are trivial. This fact is the starting point of our
method.
Of course h is a priori unknown (but constant with respect to q) and the local study of
(1 + ξ ζ)eω ζ−h is ineffective in general, but we may use some partial information, as the
following ones in the context of FLT.
Let (x, y, z) be a solution of Fermat’s equation (first or second case).

a) Nonspecial cases of SFLT. Take for instance u = x and v = y, which gives h = y
x+y .

• If ζ is not a local pth power at qK (which is equivalent to κ 6≡ 0 (mod p)), we consider the
pth power residue symbol at Q of η1 = (1+ξ ζ)eω ζ−

1
2 , which must be that of ζ h−

1
2 = ζ

− 1
2
x−y
x+y .

For FLT we have some informations on the differences such as x− y, y − z, which are prime
to p for p > 3 or p = 3 in the second case; in these cases a contradiction to the existence of
such a solution of Fermat’s equation is that the unit η1 be a local pth power at Q or does not
give the right symbol.
For p = 3 in the first case, we know that x ≡ y ≡ z ≡ ±1 (mod 3); so we have a contradiction
if this unit is not a local third power at Q.
• If ζ is a local pth power at qK (which is equivalent to κ ≡ 0 (mod p)), we contradict the

existence of such a solution of Fermat’s equation if the unit η1 is not a local pth power at Q.

b) Special case of SFLT. In the second case of FLT (p | y) with u = z, v = x, we use a different
argument (but of a similar nature), relying on the fact that h− 1

2 ≡ 0 (mod p) (Lemma 2.14
for p ≥ 3, since z + x ≡ 0 (mod 9) when p = 3).
c) Conclusion. Our hope in this attempt is that, since the arithmetical properties of the fields
Q(µn) ⊆ Q(µq−1) are a priori independent of the SFLT problem, they may give valuable
indications on the local properties of η1, especially in an analytic point of view. In some sense
the fields Q(µq−1) will play the role of auxiliary fields. Indeed, under a solution of the SFLT
equation, the pth power residue symbol over q of η1 is, independently of the choice of q, equal
to the pth power residue symbol of a constant power of ζ, which may be absurd.
In Section 4 we shall interpret these properties in terms of Frobenius automorphisms in
suitable canonical p-ramified Abelian p-extensions of the fields Q(µn), which will be more
suitable for analytic investigations.
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2.5.3. Historical remarks. — The cyclotomic fields, like Q(µq−1) for primes q, have been
introduced by Vandiver in some papers, such as [Van1], [Van2], [Van3], to generalize some
congruences giving Furtwängler’s theorems and Wieferich’s criteria.
To this end Vandiver considers some of the relations of Lemma 2.14. The pth power residue
symbol of cyclotomic units, constructed using the cyclotomic unit η, occurs in congruence
relations modulo p. The calculations essentially depend on the Stickelberger element

S :=
1

p

p−1∑
k=1

k s−1
k ,

related to generalized Bernoulli numbers and the annihilation of the p-class group of K, and
on the idempotents of the group algebra Fp[g].
Note that Vandiver does not make use of class field theoretical interpretations, nor of analytic
results like the Čebotarev density theorem, and, a priori, no conclusion could be deduced from
his purely local calculations at p.

Our present work is mainly global and does not take precisely into account the arithmetic of
K as in the historical researches.
For a recent critical history on FLT see [Co]. For some complements on the cyclotomic
techniques, see [He1], [He2], [Mih1], [Mih2], [Ter], [Ri], [Si]. For similar arguments using
auxiliary primes q, see [D], [Kr], and also [A–H] and [Fo], which make use of results on the
distribution of primes.

2.6. Another equivalent equation. — We have the following result, the statement of
which makes use of the representative eω = (1− s−1) e+

ω defined in Definition 2.8 (iii).

Lemma 2.17 (The ω-SFLT equation). — The equation (u+v ζ)Z[ζ] = pδ wp
1 in coprime

integers u, v (see Conjecture 2.4) is equivalent to the equation in coprime integers u, v of the
form (u+ v ζ)eω = ζ ′ µpω, where ζ ′ is any pth root of unity and µω any element of K×.
For a solution (u, v) of this second equation, necessarily ζ ′ = ζh, where h ≡ v

u+v (mod p) in
the nonspecial cases, h ≡ 1

2 (mod p) in the special case, p > 3, and h ≡ 1
2 + 1

2
u+v
3 v (mod 3)

in the special case, p = 3; then µω is necessarily prime to p.

Proof. — One direction has yet been proved (Lemma 2.14). In the other direction, consider
a solution (u, v), g.c.d. (u, v) = 1, of the second equation. The prime ideals l 6= p dividing the
ideal (u+ v ζ)Z[ζ] are of degree 1 since ζ is congruent to a rational modulo l; thus the prime
` under l splits completely in K/Q.
For each `, there is a unique l lying above ` dividing (u+v ζ)Z[ζ] (otherwise, using appropriate
conjugates of the congruence u + v ζ ≡ 0 (mod l), we would have u ≡ v ≡ 0 (mod l), a
contradiction). This implies (u + v ζ)Z[ζ] = pδ

∏
` l
α` , δ = 0 or 1, α` ≥ 1, for distinct

primes ` 6= p.
For a prime ideal l 6= p of degree 1 of K, the representation 〈 ls 〉s∈g/〈 ls 〉ps∈g of g is isomorphic
to Fp[g]. Hence, since peω = Z[ζ] and since (u + v ζ)eω Z[ζ] =

∏
` l
eω α` is a pth power by

assumption, we have α` ≡ 0 (mod p) for all `, which implies (u+ v ζ)Z[ζ] = pδ wp
1.
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Remark 2.18. — (i) Using the norm from the equality (u+ v ζ)Z[ζ] = pδ
∏
` l
α` , we obtain

the equivalence of the SFLT equation with the equation NK/Q(u+ v ζ) = pδ wp1 mentioned in
Subsection 2.2.

(ii) We call ω-SFLT equation the new equation in coprime integers u, v. The corresponding
form of the SFLT conjecture for p > 3 seems reasonable as soon as p is sufficiently large
since it asserts (for u v (u2 − v2) 6= 0) that there exists

∑p−1
k=1 λk ζ

k ∈ K, λk ∈ Q, the pth
power of which is of the form (u ζ−

v
u+v + v ζ

u
u+v )eω in the nonspecial cases and of the form

(u ζ−
1
2 + v ζ

1
2 )eω) in the special case, depending on two coefficients u, v instead of p − 1 in

general.
(iii) From a relation of the form (u′ + v′ ζ)eω = ζ ′ µpω, u′, v′ ∈ Q, we deduce the solution in
coprime integers (u, v) := 1

g.c.d. (u′,v′) (u′, v′) of the equation (u+v ζ)eω = ζ ′ µpω or of the SFLT
equation. This is this unique solution modulo Q× that we consider for the ω-SFLT equation.

Recall that for p > 3, SFLT implies FLT; if necessary we can restrict ourselves to the nonspe-
cial cases of SFLT to get the two cases of FLT. So in this paper we mainly focus on SFLT,
using the simpler ω-SFLT context which does not involve in an essential way the arithmetic
of K, the crucial point in the lack of success of the classical theory that we have analyzed in
[Gr1].

3. Utilization of the auxiliary fields Q(µq−1)

3.1. The Vandiver and Furtwängler papers revisited. — Consider a solution of the
SFLT equation (u+v ζ)Z[ζ] = pδ wp

1 in coprime integers u, v. Recall that necessarily δ ∈ {0, 1}
and w1 is prime to p (see Conjecture 2.4).
We still consider a prime q such that q - u v and such that v

u is of order n modulo q (which is
equivalent by Lemma 2.11 and Corollary 2.12 to q |Φn(u, v) & q ≡ 1 (mod n) or to the fact
that (q, u ξ− v) is a prime ideal lying above q ≡ 1 (mod n)). We assume that n is prime to p.

Consider now the following diagram, in which L := Q(µn),M := LK, andG = Gal(M/L) ' g
(we have L ∩K = Q):

ML

Q K=Q(ζ)

G

g

Definition 3.1. — The following definitions are valid for any coprime integers u, v such that
q - u v; n | q − 1 is still the order, assumed to be prime to p, of v

u modulo q.
(i) The prime ideals qρ,ξ of L = Q(µn) (see Lemma 2.11). Let q ≡ 1 (mod n) be a prime;
so it splits completely in L/Q. If q is a prime ideal of L lying above q, there exists a unique
primitive nth root of unity ξ such that ξ ≡ v

u (mod q). Conversely, if ξ is a primitive nth
root of unity, there exists a unique prime ideal q of L lying above q such that ξ ≡ v

u (mod q).
This ideal q, equal to (q, u ξ − v) := q ZL + (u ξ − v)ZL, will also be denoted by q v

u
,ξ or by

qρ,ξ (it indeed only depends on the class of ρ := v
u in (Z/qZ)×).
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(ii) The conjugacy class Cρ(q) associated with q. We associate with q a pair (ξ, q) where the
prime ideal q = q v

u
,ξ lying above q and the primitive nth root of unity ξ are characterized by

the congruence ξ ≡ v
u (mod q) in L.

This pair is defined up to Q-conjugation since ξ ≡ v
u (mod q v

u
,ξ) is equivalent to ξt ≡ v

u

(mod q tv
u
,ξ = q v

u
,ξt) for all t ∈ Gal(L/Q). We obtain this way an equivalence relation. The

class of (ξ, q) only depends on q for given u, v. We denote by C v
u

(q) or Cρ(q) this class.

For a solution (u, v) of the SFLT equation, the class Cρ(q) is ineffective among the φ(n) a priori
possible classes (φ(n) being the Euler totient function); moreover, n is also unknown.
This explains that, in some circumstances, we shall assume that q is not congruent to 1
modulo p, since otherwise, we cannot assert that the order of ρ modulo q is prime to p.

Definition 3.2 (The fundamental ω-cyclotomic unit η1). — For a given nth root of
unity ξ, n 6≡ 0 (mod p), we consider the cyclotomic number of M , associated to ξ,

η = η(ξ) := (1 + ξ ζ) ζ−
1
2 ,

where, as we have explained, 1
2 is regarded as an element of (Z/pZ)×.

We know that 1 + ξ ζ is a (cyclotomic) unit except if −ξζ is of prime power order, which is
the case if and only if ξ = −1 (i.e., n = 2), in which case 1 + ξ ζ = 1− ζ generates p.
Then we put (see Definition 2.8 (iii))

η1 := ηeω = (1 + ξ ζ)eω ζ−
1
2 ∈M .

We have η1 ∈ M+, where M+ is the maximal real subfield of M : indeed, if c is the complex
conjugation, we have

ηc1 = (1 + ξ−1 ζ−1)eω ζ
1
2 =

(
(1 + ξ ζ) ξ−1 ζ−1 ζ

1
2
)eω = (1 + ξ ζ)eω ζ−

1
2 = η1,

since ξeω = 1 and ζ ′eω = ζ ′ for any ζ ′ ∈ µp.
We note that η1 is a cyclotomic unit and that η1 ≡ 1 (mod π ZM ), where π = ζ − 1. We say
that η1 is a ω-cyclotomic unit because of the writing η1 = ηeω giving the G-module structure
defined in M×/M×p by ηs1 ∼ η

ω(s)
1 for all s ∈ G ' g (see the general case in Subsection 4.6).

Let us return to a solution (u, v) of the SFLT equation such that v
u is of order n modulo q,

for some n | q − 1 prime to p. Starting from ξ ≡ v
u (mod q), which defines q := q v

u
,ξ, and

extending q to M we obtain

η1 ≡
(
1 + v

u ζ
)eω ζ− 1

2 (mod
∏
Q | q

Q) .

We note that these prime ideals Q of M may be written Q v
u
,ξ since they lie above q v

u
,ξ; for

fixed ξ, they are conjugate under G.

Lemma 2.14 shows that
(
1 + v

u ζ
)eω = ζ

v
u+v · µpω (in the nonspecial cases, p ≥ 3) or ζ

1
2 · µpω

(in the special case, p > 3) or ζ
1
2

+ 1
2
u+v
3 v · µ3

ω (in the special case, p = 3), with µω ∈ K×.
This yields the congruences

η1 ≡ ζ−
1
2
u−v
u+v · µpω or µpω or ζ

1
2
u+v
3 v · µ3

ω (mod
∏

Q | qQ) .
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Using these congruences on η1, the Definition 2.13, 3.1, and 3.2, we obtain in the context of
SFLT the following essential result:

Theorem 3.3. — Let p be a prime ≥ 3, let K = Q(ζ) where ζ is a primitive pth root of
unity, and let p = (ζ − 1)Z[ζ]. Suppose that we have an equality (u + v ζ)Z[ζ] = pδ wp

1 with
coprime integers u, v, where δ ∈ {0, 1} and w1 is an integral ideal of K (see Conjecture 2.4).
Let q 6= p, q - u v, be a prime such that v

u is of order n modulo q, with p - n.
Set η := (1 + ξ ζ) ζ−

1
2 and η1 := ηeω , where ξ is a primitive nth root of unity. Finally let

q = (q, u ξ − v) | q in L := Q(µn). Then we have in M := LK:(
η1
Q

)
M

= ζ−
1
2
u−v
u+v

κ, for all Q | q, in the nonspecial cases (p - u+ v), p ≥ 3, (6)

(
η1
Q

)
M

= 1, for all Q | q, in the special case (p |u+ v), p > 3,
(
η1
Q

)
M

= ζ
1
2
u+v
3 v

κ, for all Q | q, in the special case, p = 3.

These relations show that
(
η1
Q

)
M

only depends on the Fermat quotient of q once u and v are

given. The class of the pairs (ηt1,Q
t), t ∈ Gal(M/K), for any choice of Q | q inM , corresponds

canonically to the class C v
u

(q) of the (ξt, qt), since we have the relation
(
η1
Q

)t
M

=
(
η1
Q

)
M

=
(
ηt1
Qt

)
M
,

where Qt | qt, and ηt1 = (1 + ξt ζ)eω ζ−
1
2 . For t 6= 1, the symbol

(
η1
Q

)
M

may be different from
(
η1
Qt

)
M

=
(
ηt

−1

1

Q

)
M

since there is no local information on 1 + ξt
−1

ζ

1 + ξ ζ
. But as we have seen,

(
η1
Qs

)
M

=
(
η1
Q

)
M

holds for any s ∈ G.

Remark 3.4. — Since for g.c.d. (u, v) = 1 the relation (u + v ζ)Z[ζ] = pδ wp
1 is equivalent

to the relation NK/Q(u+ v ζ) = pδ wp1, we deduce from u+ v ζ ≡ u (1 + ξ ζ) (mod Q) for all
Q | q = q v

u
,ξ that for n 6= 2,

NM/L(u+ v ζ) ≡ NM/L(u (1 + ξ ζ)) = up−1 1 + ξp

1 + ξ
= up−1 (1 + ξ)tp−1 (modQ)

for all Q | q, where tp is the Frobenius automorphism of p in L/Q. This implies
(

(1 + ξ)tp−1

Q

)
M

=
(
u

qK

)
K

=
(
v

qK

)
K

(
resp. =

(
pu

qK

)
K

=
(
pv

qK

)
K

)

in the nonspecial cases (resp. the special case), for all Q | q and all qK | q in K.
If n = 2 we have

(
u

qK

)
K

=
(
v

qK

)
K

=
(
p

qK

)
K

in the nonspecial cases, and
(
u

qK

)
K

=
(
v

qK

)
K

= 1

otherwise.

(6) In the first case of SFLT for p > 3 we may have u− v ≡ 0 (mod p) (hence u− v ≡ 0 (mod p2)) but not in
the FLT context applied with (u, v) = (x, y) or (y, z). If p = 3, we have u− v ≡ 0 (mod 9) in the first case.
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3.2. Application to Fermat’s equation. — From a solution (x, y, z) of Fermat’s equa-
tion, we get the three relations (same notations as in Subsection 2.2)

(x+ y ζ)Z[ζ] = zp1, (y + z ζ)Z[ζ] = xp1, (z + x ζ)Z[ζ] = pδ yp1 , δ ∈ {0, 1} .
For p > 3, the conditions p - x2 − y2, p - y2 − z2 in the first and second cases, and the
conditions p - z + x in the first case, are satisfied by the choice of the notation (Lemma 2.2).
If the order of y

x (resp. of z
y ) is ≤ 2, i.e., when q |x2 − y2 (resp. q | y2 − z2), then we have

M = K, Q = qK | q in K, and ξ = ±1. Since η1 = (1 ± ζ)eω ζ−
1
2 = 1, we get from Theorem

3.3
ζ
− 1

2
x−y
x+y

κ
= 1 (resp. ζ

− 1
2
y−z
y+z

κ
= 1) .

Then these two values of n again give the second theorem of Furtwängler [Fur] in the context
of FLT for p > 3, i.e., when q |x2 − y2 (resp. q | y2 − z2), we then have ζκ = 1, hence κ ≡ 0
(mod p); see Corollaries 2.15 and 2.16 generalizing the FLT context to the SFLT one.
The same conclusion holds in the first case of FLT under the complementary condition p - z−x
when q | z2 − x2 (in the second case of FLT this does not work for (z, x) since for the special
case (u = z, v = x) the symbol is trivial).

Remark 3.5 (Furtwängler’s theorems and FLT). — (see e.g. [Gr1], Appendix or [Ri],
IX, 3). Let (x, y, z) be a solution of Fermat’s equation for p > 3, under the conditions of
Lemma 2.2.
(i) Recall that the first theorem of Furtwängler, which implies Wieferich’s criteria, asserts
that for any prime q 6= p, if q | z (resp. x, resp. y in the first case), then κ ≡ 0 (mod p).
Of course, if q |x+ y (resp. y+ z, resp. z+x in the first case), then from Subsection 2.1 with
obvious notations, q | z0 (resp. x0, resp. y0 in the first case), and we then have κ ≡ 0 (mod p)
from the first theorem of Furtwängler. We can call it the first part of the second theorem of
Furtwängler. We can call second part of the second theorem of Furtwängler the statement
that if q |x− y (resp. y − z), then κ ≡ 0 (mod p).
(ii) If q | z (resp. x, resp. y in the first case) when q 6≡ 1 (mod p), then from Subsection 2.1,
q | z0 (resp. x0, resp. y0 in the first case). We deduce from this that qp |x + y = zp0 (resp.
y+ z = xp0, resp. z+x = yp0 in the first case). This means, since q - x y (resp. y z, resp. z x in
the first case), that y

x (resp. z
y , resp.

x
z in the first case) is of order 2 modulo q, which again

proves the first part of the second theorem of Furtwängler and that κ ≡ 0 (mod p).
Note that the two results above are not independent in the case q 6≡ 1 (mod p). For some
more remarks on Furtwängler’s theorems, see [Que].
(iii) As a consequence, if we choose q 6≡ 1 (mod p) such that κ 6≡ 0 (mod p), we then have
q - xyz in the first case of FLT, and q - zx in the second case of FLT. Thus, under these
assumptions on q, the hypothesis q - xyz (in the first case) or q - zx (in the second case) are
useless for the development of our method and give effective criteria in practice for the first
case (as we shall show in Remark 6.11).
It remains to consider the case when q divides y in the second case (i.e., p | y). When q 6≡ 1
(mod p) and q | y0, then q | z + x; we obtain that q - z x and q | z + x but we cannot conclude,
except that the root ξ′′ associated to x

z is −1. To eliminate the case q | y in the second case
we must suppose q large enough, a condition which is ineffective.
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(iv) In any case of FLT we have the following result (see [Ri], IV.3 for the proof): if q 6= p
divides y and does not divide z + x then q ≡ 1 (mod p2).
This result is valid (by cyclic permutation of x, y, z) only in the first case of FLT since it may
happen that p (in pν p−1yp0) is not a pth power modulo q.

Let (x, y, z) be a solution of Fermat’s equation. From Theorem 3.3 and the fact that in the
second case for p = 3 we have z + x ≡ 0 (mod 9) (special case of SFLT for the solution
(u, v) = (z, x) where we know that u+ v ≡ 0 (mod 9)), we obtain:

Corollary 3.6. — Let q 6= p be a prime such that q - xyz. Let n, n′, n′′ be the orders modulo q
of y

x ,
z
y ,

x
z , respectively, that we assume to be prime to p. Let ξ, ξ′, ξ′′ ∈ Q(µq−1), of orders

n, n′, n′′, and let q, q′, q′′ in L = Q(µn), L′ = Q(µn′), L′′ = Q(µn′′), constructed from y
x ,

z
y ,

x
z , respectively, according to Definition 3.1 (i).
Consider the corresponding ω-cyclotomic units η1, η′1, η

′′
1 (Definition 3.2).

Then we have:

(i) First case of FLT, p > 3:
(η1

Q

)
M

= ζ
− 1

2
x−y
x+y

κ
,
( η′1
Q′

)
M ′

= ζ
− 1

2
y−z
y+z

κ
,
( η′′1
Q′′

)
M ′′

= ζ−
1
2
z−x
z+x

κ,
with x− y 6≡ 0 and y − z 6≡ 0 (mod p).

(ii) First case of FLT, p = 3:
(η1

Q

)
M

=
( η′1
Q′

)
M ′

=
( η′′1
Q′′

)
M ′′

= 1.

(iii) Second case of FLT, p ≥ 3:
(η1

Q

)
M

= ζ−
1
2
κ,

( η′1
Q′

)
M ′

= ζ
1
2
κ,

( η′′1
Q′′

)
M ′′

= 1.

Remark 3.7. — (i) Suppose that we are in the first case of FLT for p > 3; let q 6= p be
a prime such that κ 6≡ 0 (mod p), and let n and n′ be the orders of y

x and z
y modulo q.

Assume moreover that p - nn′; we observe that we have n, n′ > 2 by the second theorem of
Furtwängler, and that q - xyz by Remark 3.5 (i) on the first theorem of Furtwängler.

If we find, for independent reasons, that at least one of the symbols
(
η1
Q

)
M

or
(
η′1
Q′

)
M ′

is
trivial, we get a contradiction (cf. Corollary 3.6 (i)). However reasoning on the third symbol
does not work since z − x can be divisible by p.
(ii) For p = 3 in the first case, all the right hand sides are trivial and a contradiction arises
as soon as an independent fact implies that one of these symbols is nontrivial (cf. Corollary
3.6 (ii)).
(iii) In the second case for p ≥ 3, when κ 6≡ 0 (mod p), we know that q - xz. Since p - nn′, we
also have p - n′′. The symbol

(
η′′1
Q′′

)
M ′′

is trivial (cf. Corollary 3.6 (iii)), thus a contradiction
arises otherwise.
To carry out, with the other two nontrivial symbols associated to ξ and ξ′, arguments similar
to those we used in the first case, we need the condition q - y, and therefore we must suppose
q large enough. In practice, to get a contradiction, we need the existence of infinitely many q
(with κ 6≡ 0 (mod p)) such that at least one of the symbols

(
η1
Q

)
M
,
(
η′1
Q′

)
M ′

is trivial.
(iv) If κ ≡ 0 (mod p), in any case all the symbols are trivial in Corollary 3.6. Thus to obtain
a contradiction, we need to find nontrivial symbols in an independent way for infinitely many
such q.

Publications mathématiques de Besançon - 2012/2



Georges Gras and Roland Quême 65

(v) We can use the above remarks to give the following reciprocal statements; for the sake
of simplicity we restrict ourselves to p > 3. Suppose that every solution (x, y, z) of Fermat’s
equation satisfies the conventions of Lemma 2.2.

Let ξ be a primitive nth root of unity with p - n, η1 := (1 + ξ ζ)eω ζ−
1
2 , and let q ≡ 1 (mod n)

be a prime. Consider an arbitrary fixed ideal q | q in L := Q(µn), then any Q | q in M := LK.
We suppose that we are given coprime integers u, v, such that q - u v and v

u ≡ ξ (mod q).

• If κ 6≡ 0 (mod p) and
(
η1
Q

)
M

= 1, then we have:

If u + v 6≡ 0 (mod p), (u, v) cannot be a part of a solution (x, y, z) = (u, v, z), (v, u, z),
(x, v, u), or (x, u, v) of Fermat’s equation.
• If κ 6≡ 0 (mod p) and

(
η1
Q

)
M
6= 1, then we have:

If u + v ≡ 0 (mod p), (u, v) cannot be a part of a solution (x, y, z) = (u, y, v) or (v, y, u) of
the second case of Fermat’s equation.
• If κ ≡ 0 (mod p) and

(
η1
Q

)
M
6= 1, then we have:

The pair (u, v) cannot be a part of a solution (x, y, z) of any case of Fermat’s equation.

Proposition 3.8. — Let (x, y, z) be a solution of Fermat’s equation. Let q - xyz be a prime
such that the orders n, n′, n′′ modulo q of y

x ,
z
y ,

x
z , respectively, are prime to p. Write

q =: 1 + d pr, with r ≥ 0 and p - d, and let L̃ := Q(µd). Let moreover ξ, ξ′, ξ′′, of orders n,
n′, n′′, defining the fields L, L′, L′′, respectively.
Then there exist a prime ideal q̃ | q in L̃ and t′, t′′ ∈ Gal(L̃/Q) such that the two following
congruences hold:
(i) ξ′t

′ ≡ −1− 1
ξ (mod q̃);

(ii) ξ′′t′′ ≡ −1
ξ+1 (mod q̃).

Proof. — Since L, L′, L′′ are subfields of L̃, taking prime ideals q̃0, q̃′0, q̃′′0 of L̃ lying above
the prime ideals q y

x
,ξ, q zy ,ξ′ , qxz ,ξ′′ , respectively, we have

ξ ≡ y
x (mod q̃0), ξ′ ≡ z

y (mod q̃′0), ξ′′ ≡ x
z (mod q̃′′0) .

The ideals q̃′0 and q̃′′0 are conjugate to q̃0, so that there exist t′, t′′ ∈ Gal(L̃/Q) such that

ξ ≡ y
x , ξ

′ t′ ≡ z
y , ξ

′′t′′ ≡ x
z (mod q̃0).

Writing xp + yp + zp = 0 as
(
x
y

)p
+
(
z
y

)p
= −1, we obtain ξ−p + (ξ′t

′
)p ≡ −1 (mod q̃0).

Since p - d, we can use the inverse of the Frobenius automorphism tp of p in L̃/Q for which
ξtp = ξp, which easily leads to the relation (i) (for q̃ := t−1

p (q̃0)).

From the obvious relation ξ′′ t′′ξ′t′ξ ≡ 1 (mod q̃0), which implies the equality ξ′′t′′ξ′t′ξ = 1,
we proves (ii) since ξ 6= −1 (indeed, ξ = −1 means x+ y = zp0 ≡ 0 (mod q), i.e., q | z, which
is excluded; similarly, ξ′ 6= −1 and ξ′′ 6= −1).

Corollary 3.9. — Let m = l.c.m. (n′, n′′). If m > 3 we have φ(m) >
log(q)

log(3)
, where φ is the

Euler totient function.
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Proof. — We have ξ′′ t′′ + ξ′−t
′
+ 1 ≡ 0 (mod q̃); hence, since ξ′′ t′′ + ξ′−t

′
+ 1 ∈ Q(µm) by

definition of m, we get NQ(µm)/Q(ξ′′t
′′

+ ξ′−t
′

+ 1) = q N , N ≥ 1 (the case when N = 0 is
equivalent to ξ = ξ′t

′
= ξ′′t

′′ ∈ {j, j2} and implies m = 3).
Since NQ(µm)/Q(ξ′′t

′′
+ ξ′−t

′
+ 1) < 3φ(m), we get N < 1

q 3φ(m), which proves the corollary.

The same results hold for m′ = l.c.m. (n, n′′) and m′′ = l.c.m. (n, n′).

Corollary 3.10. — We can choose the representative pairs (ξ, q y
x
,ξ), (ξ′, q z

y
,ξ′), (ξ′′, qx

z
,ξ′′)

of the classes C y
x
(q), C z

y
(q), Cx

z
(q) in such a way that ξ′ ≡ −1 − 1

ξ (mod q̃) and ξ′′ ≡ −1
ξ+1

(mod q̃) for a suitable q̃ of L̃ lying above each of the ideals q y
x
,ξ, q zy ,ξ′ , qxz ,ξ′′ .

With such a choice, we have ξ ξ′ ξ′′ = 1.

3.3. Computation of the Fp-dimension of a group of units. — Since η1 is considered
as an element of (EM/E

p
M )eω , it is necessary to make precise the Fp-dimension of this group.

The computation is the same for any odd character χ.

Proposition 3.11. — LetM = LK, where L = Q(µn) (n > 2, p - n) and K = Q(µp), p > 2.
Let EM be the group of units of M and let χ = ωk be an odd character of Gal(M/L) ' g.
Then the Fp-dimension of (EM/E

p
M . µp)

eχ is equal to 1
2 [L : Q] = 1

2 φ(n).

Proof. — Set Γ := Gal(M/Q) = G ⊕ H where G := Gal(M/L) and H := Gal(M/K). Let
Γ̂ = Ĝ⊕Ĥ be the group of irreducible characters of Γ; for any ψ ∈ Γ̂, let Eψ be the idempotent

Eψ :=
1

|Γ |
∑
σ∈Γ

ψ−1(σ)σ ∈ Cp[Γ] .

If ψ = ωi · θ, ωi ∈ Ĝ, 1 ≤ i ≤ p− 1, θ ∈ Ĥ, then Eψ = Eωi · Eθ.
From the Dirichlet–Herbrand theorem on units (see e.g. [Gr2], I.3.7) we know that the p-adic
representation Cp ⊕ (Cp ⊗ZEM ) is given by the representation of permutation

Cp[Γ]
1

2
(1 + c) =

⊕
ψ even

Cp[Γ] Eψ .

Then, since the character χ is odd, (Cp⊕ (Cp⊗ZEM ))Eχ =
(
Cp⊗ZEM

)Eχ is the representation⊕
ψ even

Cp[Γ] Eψ · Eχ.

Put ψ = ωi · θ; then Eψ = Eωi · Eθ and Eψ · Eχ = 0 except if i = k. In the direct sum above,
ψ runs through the products χ θ, with θ odd since ψ must be even. Then we have

(
Cp ⊗ZEM

)Eχ '
⊕

θ∈Ĥ, odd

Cp[Γ] Eχ. θ ,

which shows that the Cp-dimension of
(
Cp ⊗ZEM

)Eχ is equal to 1
2 [L : Q].

This completes the proof of the proposition since Eχ ≡ eχ (mod pZp[g]).

In particular, we observe that the Fp-dimension of (EM/E
p
M · µp)eω is equal to 1

2 [L : Q],
thus that the subgroup of (EM/E

p
M · µp)eω generated by the images of the units ηt1,

t ∈ Gal(M/K)/〈 t−1 〉, is of Fp-dimension less than or equal to 1
2 [L : Q] = 1

2 φ(n).
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4. The ω-cyclotomic units η1 – The extensions Fξ/L, HL/L, and Fn/L

In this section we use some classical elements of Kummer theory with base field M and of the
decomposition of a Kummer extension over a subfield of M ; then, we interpret the previous
results in terms of Abelian p-ramification over the fields Q(µn).

4.1. The ω-cyclotomic unit η1 and the extension M( p
√
η1)/M . — We consider, inde-

pendently of any solution of the SFLT equation, the cyclotomic number

η := (1 + ξ ζ) ζ−
1
2 ,

where ξ is a primitive nth root of unity with p - n, and the ω-cyclotomic unit η1 := ηeω . We
have η1 ∈ M := LK, where L = Q(µn), and η1 is real (see Definition 3.2). We exclude the
cases n ≤ 2 for which η1 ∈ K×p.

Lemma 4.1. — For any n > 2, the extension M( p
√
η1)/M is p-ramified, cyclic of degree p.

Proof. — Since η1 is a unit, the extension M( p
√
η1)/M is p-ramified (i.e., unramified out-

side p). Put π = ζ − 1; since p is not ramified in M/K, π is still an uniformizing parameter
at p in M . We have η ≡ 1 + ξ +

1

2
(ξ − 1)π (mod π2) giving, by the usual computation,

η1 := ηeω ≡ 1 +
1

2

ξ − 1

ξ + 1
π (mod π2) ;

since n > 2, ξ − 1

ξ + 1
is a local unit at p, showing that η1 is not p-primary. Thus in particular,

the extension M( p
√
η1)/M is cyclic of degree p.

Kummer theory shows that the conductor of M( p
√
η1)/M is the modulus pp extended to M

(see [Gr2], II.1.6.3). In some sense, M( p
√
η1)/M is maximally wildly p-ramified and has the

same conductor as M( p
√
ζ)/M .

Remark 4.2. — This extension does not depend on the choice of ζ since we have, for any k
prime to p,

(
(1 + ξ ζk) (ζk)−

1
2
)eω =

(
(1 + ξ ζ) ζ−

1
2
)sk eω ∼

(
(1 + ξ ζ) ζ−

1
2
)k eω = ηk1

from the relation sk eω ≡ k eω (mod pZ[g]), giving the same radical.

4.2. The Abelian extension Fξ/L. — By definition of the character ω, whose reflect is
ω∗ = χ0 (the unit character), the extension M( p

√
η1)/M is splitted over L = Q(µn) by means

of a cyclic p-ramified extension Fξ, of degree p over L (i.e., FξM = M( p
√
η1)).

This extension only depends on ξ of order n. The family (Fξ′)ξ′ of order n is canonical.
Since η1 is real, η1 = (1 + ξ−1 ζ−1)eω ζ

1
2 which defines the same extension as (1 + ξ−1ζ)eω ζ−

1
2

as we have seen in Remark 4.2. Then we get Fξ = Fξ−1 .

In the cases n ≤ 2, we have L = Q, η1 ∈ K×p, and F±1 = Q (hence F1 = F2 = Q).
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For any t ∈ Gal(L/Q) we have the relation Fξt = t . Fξ, where by abuse of notation t . Fξ
means t′. Fξ for any Q-automorphism t′ of Fξ extending t; indeed, we have in the same way
t′( p
√
η1) = p

√
ηt1 (up to a pth root of unity) where ηt1 = (1 + ξt ζ)eω ζ−

1
2 . (7)

Suppose now that we have chosen a prime q such that q ≡ 1 (mod n), p - n, and let q be a
prime ideal lying above q in L; later, we shall have q = q v

u
,ξ when ξ is associated to the usual

integers u, v, but in this subsection q is arbitrary.
Consider the symbol

(
η1
Q

)
M

which is independent of the choice of Q | q in M ; this symbol is
trivial if and only if the image of η1 in the multiplicative group of the residue field ZM/Q ' Fqf
is a pth power, thus if and only ifQ splits inM( p

√
η1)/M (Hensel’s Lemma) which is equivalent

to the splitting of q in Fξ/L (see Subsection 5.4 for an explicit computation).

4.3. Class field theory and p-ramification. — In this subsection we recall some class
field theory results concerning the Abelian p-ramification over L.
Let HL be the maximal Abelian p-ramified p-extension of L := Q(µn) in the case n > 2,
p - n (so that L is an imaginary cyclotomic field of even degree, unramified at p); HL contains
all the extensions Fξ′ , ξ′ of order n, the cyclotomic Zp-extension L∞ = LQ∞ of L which is
Abelian over Q, and 1

2 [L : Q] other independent Zp-extensions of L.
Since q totally splits in L/Q, the decomposition field of q in L∞/Q is Le := LQe, where
Qe ⊂ Q∞ is the unique subfield of degree pe over Q such that qf =: 1 + pe+1d, e ≥ 0, p - d.
For instance, L1 = LQ1 where Q1 is the cyclic subextension of degree p of Q(µp2).
Note that e = 0 is equivalent to κ 6≡ 0 (mod p) (Definition 2.13 (i)).
Let HL[p] ⊆ HL be the maximal p-elementary p-ramified extension of L. We consider its
Galois group as a vector space over Fp. Its dimension is given by the following Šafarevič
formula (see e.g. [Gr2], II.5.4.1 (ii)):

dimFp(Gal(HL[p]/L)) = dimFp(VL/L
×p) + 1

2 [L : Q] + 1 ,

where VL is the group of pseudo-units of L (i.e., elements α ∈ L such that (α) is the pth
power of an ideal) which are local pth powers at each place dividing p in L.

Lemma 4.3. — The conductor of HL[p]/L is equal to the modulus (p2) of L.

Proof. — From Hensel’s Lemma, since p > 2 is not ramified in L/Q (p - n by assumption),
the modulus (p2) is sufficient for any α ∈ L×, α ≡ 1 (mod p2), to be locally a pth power,
hence a local norm, at each place dividing p in L (use [Gr2], II (c) for the computation of
these local conductors). It is also necessary since the ramification is tame.

Thus HL[p] is contained in the ray class field L(p2) and this yields

Gal(HL[p]/L) ' I/IpR ,
where I is the group of fractional ideals of L, prime to p, and R is the ray group modulo p2,
i.e.,

{
(α) ∈ I, α ≡ 1 (mod p2)

}
.

(7) We use the same notations for the elements of the Galois groups Gal(M/K) and Gal(L/Q), then for
G = Gal(M/L) and g = Gal(K/Q), and similarly for Gal(M( p

√
η1)/M) and Gal(Fξ/L).
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4.4. The extension Fn/L. — For n > 2, we can consider the biquadratic extension
M/L+K+; then M+ is the subfield of M of relative degree 2, distinct from LK+ and from
L+K. Let t−1 be the element of order 2 of Gal(M/L+K) and s−1 ∈ G be the element of
order 2 of Gal(M/LK+). The complex conjugation in M is c = s−1 t−1 as generator of
Gal(M/M+). Since we have the relations ηc1 = η1, η

s−1

1 = ηeω · s−1 = η−1
1 , giving the relation

η
t−1

1 = η−1
1 , we deduce that

Gal(M( p
√
η1)/L+K) ' Gal(Fξ/L

+) ' D2p ,

the diedral group of order 2p. (8)

In other words, Gal(L/L+) = 〈 t−1 〉 = {1, t−1} acts on Gal(Fξ/L) by σt−1 := t′−1 · σ · t′−1 =

σ−1 for all σ ∈ Gal(Fξ/L) and any extension t′−1 of t−1 in Gal(Fξ/L
+).

It will be necessary to consider the compositum of the extensions M( p
√
η1) when ξ of order n

defining η1 varies. Indeed, in the situation of a nontrivial solution (u, v) of the SFLT equation,
for q - uv such that v

u is of order n modulo q, the root ξ such that ξ ≡ v
u (mod q) for fixed

q | q (i.e., the class C v
u

(q)), is ineffective and the properties of all the possible symbols
(
η1
Q

)
M

can be studied in this extension.
Let Fn be the compositum of the corresponding extensions Fξ′ , ξ′ of order n, so that Fn is also
the compositum of the Fξt , t ∈ Gal(M/K), for fixed ξ; since ηt−1

1 = η−1
1 (or Fξ = Fξ−1), we can

consider the ηt1 with t modulo 〈 t−1 〉. We have the equality FnM = M
(
p

√
〈 ηt1 〉t mod <t−1>

)
.

Then as above Gal(L/L+) acts on Gal(Fn/L) by σt−1 = σ−1 for all σ ∈ Gal(Fn/L), hence
by σ

1
2

(1+t−1) = 1 for all σ ∈ Gal(Fn/L), using the group algebra Fp[Gal(L/L+)] (this will be
useful in Subsection 4.5).

Lemma 4.4. — The Galois closure of Fξ over Q is Fn which is linearly disjoint from L∞/L.

Proof. — Over the field K, the Galois closure of M( p
√
η1) is given by the Kummer radical

〈 ηt1 〉t mod <t−1> with ηt1 = (1 + ξt ζ)eω ζ−
1
2 , giving the first part of the lemma.

The relation L1 ⊆ Fn should be equivalent to M( p
√
ζ ) ⊆M

(
p

√
〈 ηt1 〉t mod <t−1>

)
, then to the

existence of a relation of the form
∏

t mod <t−1>
(ηt1)λt = ζ µp, λt ∈ Z, µ ∈M×; but since the left

member is real, the use of the complex conjugation implies ζ2 ∈M×p, which is absurd.

Remark 4.5. — The Fp-dimension of the above radical depends on the group of relations∏
t mod <t−1>

(ηt1)λt ∈M×p; this yields (see Subsection 4.1)
∏

t mod <t−1>

(
1 +

1

2

ξt − 1

ξt + 1
π
)λteω ≡ 1 +

( ∑
t mod <t−1>

λt
1

2

ξt − 1

ξt + 1

)
π (mod π2) .

(8) Let A := Gal(M/L+) = G ⊕ 〈 t−1 〉. Let χ1 be the character of A defined by χ1(s) = 1 for all s ∈ G
and χ1(t−1) = −1. Put χ = ω χ1; is is easy to see that χ is the character of the radical 〈 η1 〉M×p/M×p as
A-module, since η1 = ηeω and η

t−1
1 = η−1

1 . From Kummer’s duality, the character of Gal(M( p
√
η1)/M) is

χ∗ := ω χ−1 = χ1 proving that Gal(M( p
√
η1)/L+) ' G×Gal(Fξ/L

+), with Gal(Fξ/L
+) ' D2p.

We also have Gal(M( p
√
η1)/M+) ' D2p.

Publications mathématiques de Besançon - 2012/2



70 Vandiver papers on cyclotomy revisited and Fermat′s Last Theorem

Thus if the numbers ξt − 1

ξt + 1
, t mod 〈 t−1 〉, are linearly independent modulo p, we get the

dimension 1
2 [L : Q] and dimFp(Gal(Fn/L)) = 1

2 [L : Q] = 1
2φ(n).

Since η1 is a cyclotomic unit of M , the classical study of the whole group of cyclotomic units
of M may give the exact Fp-dimension of the radical (see [Wa1], Chap. 8); but this study
depends, in a complicate manner, on the Galois group of M/Q and the law of decomposition
of the prime divisors of n in this extension (see Section 7 for an overview).

4.5. Canonical decomposition of Gal(HL[p]/L). — For L := Q(µn), n > 2, consider the
finite Galois group CL := Gal(HL[p]/L) as a module over Fp[Gal(L/L+)]. Write

CL = C+
L ⊕ C−L , with C+

L := C
1
2

(1+t−1)

L , C−L := C
1
2

(1−t−1)

L .

We denote by H−L [p] the subfield of HL[p] fixed by C+
L and by H+

L [p] the subfield of HL[p] fixed
by C−L . We then have Fn ⊆ H−L [p], L1 ⊆ H+

L [p] (see Subsection 4.4), and the diagram:

HL[p]H+
L [p]

L H−L [p]

C−L

C+
L

Lemma 4.6. — Put VL := VL/L
×p (see Subsection 4.3) and VL = V

+
L ⊕V

−
L as above. Then

V
+
L ' VL+/(L+)×p giving

dimFp(C
+
L ) = dimFp(V

+
L ) + 1; dimFp(C

−
L ) = dimFp(V

−
L ) + 1

2 [L : Q] .

Proof. — Since p 6= 2, we have C+
L ' Gal(HL+ [p]/L+) for which the Šafarevič formula is

dimFp(C
+
L ) = dimFp(V

+
L ) + 1, proving the lemma.

When the order of the group C−L is minimal (which is equivalent to dimFp(V
−
L ) = 0) then

Fn = H−L [p] if and only if the ηt1, t ∈ Gal(M/K)/〈 t−1 〉, are independent in M×/M×p.

Remark 4.7. — The group of pseudo-units YL :=
{
α ∈ L×, (α) = ap

}
, containing VL, is

elucidated by the following obvious exact sequence

1 −→ EL −−−→ YL −−−→ pC̀ L −→ 1 ,

where C̀ L is the p-class group of L, pC̀ L the subgroup of C̀ L of classes killed by p, YL :=

YL/L
×p, EL is the group of units of L, and EL = EL/EL ∩ L×p ' EL/EpL.

For L+ we get the analogous exact sequence

1 −→ EL+ −−−→ YL+ −−−→ pC̀ L+ −→ 1 .

We have, with the usual notations ±, the relations E+
L ' EL+ and E−L = 1, so that Y −L ' pC̀ −L

and V −L ⊆ Y
−
L only depends on the minus part of the p-class group of L and is often trivial.

The group V
+
L ' VL+ ⊆ YL+ depends on the p-class group of L+ (in general trivial) and

more essentially on the subgroup of units of L+ locally pth power at p; but ε ∈ EL+ is a local
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pth power at each place dividing p if and only if εp
fp−1 ≡ 1 (mod p2), where fp | 1

2φ(n) is the
residue degree of p in L+, which is also very rare, giving often a trivial V +

L .

Remark 4.8. — Suppose that the group VL is trivial. Then we get dimFp(C
+
L ) = 1 and

dimFp(C
−
L ) = 1

2 [L : Q]. This situation is by definition equivalent to the p-rationality of the
field L (see e.g. [Gr2], IV.3.5, for some equivalent conditions).
In this case HL is the compositum of the Zp-extensions of L which is of the form H+

LH
−
L

where H+
L = L∞ is the cyclotomic Zp-extension of L and H−L the compositum of 1

2 [L : Q]
independent relative Zp-extensions of L (i.e., which are pro-diedral over L+).
Then HL[p] is the compositum of the first levels of these Zp-extensions, the extension H+

L [p] is
L1, and H−L [p]M may be the Kummer extension defined by the radical generated by the ηt1,
t modulo 〈 t−1 〉, as soon as its Fp-dimension is 1

2 [L : Q] (see Proposition 3.11).

Remark 4.9. — It may be useful to introduce the extension A−n ⊆ H−L [p] of L such that

A−nM = M
(
p

√
E+ eω
M

)
, where E+

M = EM+ is the subgroup of real units of M ; A−n contains Fn
and is of degree p

1
2
φ(n) over L. Then An := A−nL1, with A−n ∩L1 = L where L1M = M( p

√
ζ ),

is such that AnM = M
(
p
√
EeωM

)
since EM = E+

M ⊕ 〈 ζ 〉. So, An allows us to control the
values of κ as well as the laws of decomposition in Fn/L.

4.6. Case of an odd character χ 6= ω. — We now consider an odd character χ of g
distinct from ω. Then χ = ωk, k odd, k 6≡ 1 (mod (p − 1)), which excludes the case p = 3.
As in the case where k = 1, we can represent modulo p the corresponding idempotent Eχ by
an element in Z[g] of the form eχ = (1− s−1) e◦χ, e◦χ ∈ Z[g] (see Subsection 2.3).

We suppose that the χ-class group of K is trivial (i.e., C̀ EχL = 1 ). A necessary and sufficient
condition for this assumption to hold is that the Bernoulli number Bp−k be prime to p (see e.g.
[Gr1], Section 2, for more details). Then for any relation of the form (u + v ζ)Z[ζ] = pδ wp

1
in coprime integers u, v (see Conjecture 2.4), we immediately have

(u+ v ζ)eχ = µpχ, µχ ∈ Z[ζ] ,

since any χ-unit of K (i.e., of the form εeχ for a unit ε) is trivial for χ odd distinct from ω.
Moreover (ζ − 1)eχ is a χ-unit, hence trivial.
Lemma 2.17 is valid for the character χ, and the two equations in coprime integers u, v:

(u+ v ζ)Z[ζ] = pδ wp
1 and (u+ v ζ)eχ = µpχ with µχ ∈ K×,

are equivalent under the assumption that the χ-class group of K is trivial. So they are
equivalent to the ω-SFLT equation.
For χ 6= ω odd, when the χ-class group of K is trivial, the relation (u+ v ζ)eχ = µpχ may be
called the χ-SFLT equation associated to SFLT.
As in the previous subsections, let q 6= p be a prime such that q - u v and v

u is of order n
modulo q, i.e., q |Φn(u, v) & q ≡ 1 (mod n) (see Lemma 2.11 and Corollary 2.12); we assume
n prime to p. Let ξ be of order n and let q := q v

u
,ξ | q in L = Q(µn).

Let η = (1 + ξ ζ) ζ−
1
2 (see Definition 3.2). Set ηk := ηeχ ∈ M , where M := LK; then

ηk = (1 + ξ ζ)eχ ∈M+, since ζeχ = 1. Thus ηs−1

k = η
t−1

k = η−1
k , and ηk = 1 when n ≤ 2.

Publications mathématiques de Besançon - 2012/2



72 Vandiver papers on cyclotomy revisited and Fermat′s Last Theorem

We deduce the fundamental congruence

ηk ≡
(
1 + v

u ζ
)eχ = µpχ (mod

∏
Q | q

Q) in M .

We then have the relation
(
ηk
Q

)
M

= 1, for all Q | q, so that, in this situation, a contradiction
to the existence of a nontrivial solution of the SFLT equation would be that this symbol is
nontrivial for some q. Here the value of κ does not matter.
This criterion may be used for any odd character χ 6= ω such that the χ-class group of K is
trivial. In some sense this is similar to the case κ ≡ 0 (mod p) of the preceding case χ = ω,
the symbols being trivial independently of q (see Remark 3.7 (iv, v)).

By Kummer’s duality, the extension M( p
√
ηk)/M is splitted by a p-cyclic extension over the

extension Lχ∗ := LKχ∗ , where χ∗ = ω1−k and Kχ∗ is the subfield of K fixed by the kernel of
χ∗; this field Kχ∗ is real. Of course, Lχ∗ = L if and only if Kχ∗ = Q, i.e., χ = ω.
But unfortunately, the corresponding extensions M( p

√
ηk)/L are metabelian (non-Abelian)

extensions and are not associated with intrinsic arithmetic properties of the field L. Meanwhile
it is possible, replacing Q by Kχ∗ , to work in the Abelian extension M( p

√
ηk)/Lχ∗ which is

a compositum of the form Fχ∗, ξ .M where Fχ∗, ξ is p-ramified cyclic of degree p over Lχ∗ .
Subsection 4.2 was devoted to the case χ = ω, where Fχ∗, ξ = Fχ0, ξ was denoted by Fξ.
This point of view has the following specificities:
(i) In contrast with the case χ = ω, the base field Kχ∗ depends on p and on the choice of χ;
moreover it is related to the arithmetic of K and one of our goal was to avoid this aspect.
(ii) Any class field theory interpretation in terms of Frobenius automorphisms will have to do
with the Abelian p-ramification over the fields Lχ∗ := Kχ∗(µn) for which the Fp-dimension of
Gal(HLχ∗ [p]/Lχ∗) is not comparable to that of the radical generated by the conjugates of ηk.
Indeed, we easily have (see Subsections 3.3, 4.5)

dimFp
(
Gal(H−Lχ∗ [p]/Lχ∗)

)
≥ 1

2
φ(n) [Kχ∗ : Q],

dimFp
(
Gal
(
M
(
p

√
〈 ηtk 〉t mod <t−1>

)/
M
))
≤ 1

2
φ(n) .

So we are obliged to consider a suitable “ χ∗-subextension ” of H−Lχ∗ [p]/Q to get compatible
dimensions. But this context is still related to the arithmetic of K.
In other words, a “ philosophical ” approach indicates that, by its nature, the SFLT equation
is essentially related to the universal base field Q corresponding to the reflect of the character
ω (i.e., the unit character), hence to the properties of the corresponding extensions Fξ/L.
But clearly, many generalizations of our method are available, with similar techniques.

4.7. Conclusion. — We have established, from Corollary 3.6 and Remark 3.7, that, under
a solution (x, y, z) of Fermat’s equation for p > 3, for infinitely many particular primes q in
the case κ 6≡ 0 (mod p), using the classes Cr(q), Cr′(q), Cr′′(q) (see Definition 3.1 (ii)), where
r := y

x , r
′ := z

y , r
′′ := x

z , we get the following: there exist privileged pairs

(Fξ, qr, ξ), (Fξ′ , qr′,v′), (Fξ′′ , qr′′, ξ′′) ,
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defined up to conjugation, with p-cyclic p-ramified extensions Fξ/L, Fξ′/L′, Fξ′′/L′′ and prime
ideals qr, ξ, qr′, ξ′ , qr′′, ξ′′ of the subextensions L = Q(ξ), L′ = Q(ξ′), L′′ = Q(ξ′′) of Q(µq−1),
respectively, for which:
(i) in the first case, qr, ξ, qr′, ξ′ are inert in Fξ/L, Fξ′/L′, respectively,
(ii) in the second case, qr, ξ, qr′, ξ′ are inert in Fξ/L, Fξ′/L′, qr′′, ξ′′ splits in Fξ′′/L′′, respectively.
In the case κ ≡ 0 (mod p), for all the above pairs, the ideals split in the corresponding
extensions.
This situation may be in contradiction, for most primes q, since the global arithmetical prop-
erties of the auxiliary fields Q(µq−1) are independent of the Fermat problem.
More precisely, a general philosophy is that the decomposition groups of prime ideals in
Galois extensions do not fulfill any other laws than standard ones, and may be analyzed in a
statistical point of view (see Section 6 for a direct study of these aspects).
About this, we shall explain in Subsection 5.3 and in Section 8 that the case p = 3 is precisely
an exceptional counterexample to the above claim, since some constraints do exist; but we shall
show that these constraints are not in contradiction with statistical considerations because of
the structure of the infinite set of parametric solutions of the case p = 3.

One may object that Fξ comes from the radical
〈

(1 + ξ ζ)eω ζ−
1
2

〉
M×p over M , which is

associated to a problem of SFLT type, and in a standard algebraic point of view the above
circumstances on the laws of decomposition may be equivalent to a contradiction to SFLT.
Thus it will be necessary to obtain some analytic or geometric informations on the split-
ting of q in the Abelian extensions HL[p]/L, L := Q(µn) (especially in the canonical family
(Fξ′/L)ξ′ of order n) so as to prove that the above particularities do not exist.
Of course we strongly think to a suitable application of density theorems. For this we refer
to [Se1], [Se2], which contain most general results and applications.

5. Sufficient conditions implying Fermat’s Last Theorem

In this section, from Theorem 3.3 and from the results of Subsection 4.3, we study a sufficient
condition implying FLT in the two cases; this condition only involves congruential properties
of prime ideals lying above q in Q(µq−1). Next, we shall examine some weaker forms of this
condition.

5.1. The most radical form of this condition. — We suppose that p > 3 and that the
primes q considered are such that f > 1 & κ := qf−1

p 6≡ 0 (mod p). Thus any divisor n of
q − 1 is prime to p.
For a nontrivial solution (u, v) of the SFLT equation in the nonspecial cases, we shall use
Corollaries 2.15 (i) and 2.16 (i) on Furtwängler’s theorems to obtain, respectively, that:
(i) q - uv in the first case, and similarly in the second case supposing q large enough,
(ii) the order n of v

u modulo q is > 2 under the assumption u − v 6≡ 0 (mod p) in the first
case, and assuming q large enough in the second case.
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In the same way, from a solution (x, y, z) of Fermat’s equation (with the conventions of Lemma
2.2) we shall use Remark 3.5 on Furtwängler’s theorems to obtain that q - xyz (supposing q
large enough in the second case).

Then the FLT case comes from the SFLT one (in the nonspecial cases) since the differences
u − v := ±(x − y) or ±(y − z) are by definition nontrivial modulo p under a solution of
Fermat’s equation; hence the condition n > 2 of the point (ii) is satisfied.

So we can consider a nontrivial solution (u, v) of the SFLT equation (with u2 − v2 6≡ 0
(mod p)) and a prime q of the above form. Then q - u v and ρ := v

u is of order n > 2 modulo
q (which is equivalent to q - uv(u2 − v2)).

For a primitive nth root of unity ξ, we consider the pair (ξ, qρ,ξ) defined up to Q-conjugation
in L := Q(µn), hence the class Cρ(q) (see Definition 3.1). Let Qρ,ξ be any prime ideal of
M := LK lying above qρ,ξ. Then the integer n, the class Cρ(q) or the class of the pair
(η1,Qρ,ξ) where η1 = (1 + ξ ζ)eω ζ−

1
2 ∈M+, are unknown.

Let q | q fixed arbitrarily in L and let Q | q in M . If we ensure that
(
η1
Qt

)
M

= 1 for all

t ∈ Gal(M/K)/〈 t−1 〉, then in particular for the “ right ” value of the pair (η1,Q
t) (i.e., such

that qt = qρ,ξ), we get
( η1

Qρ,ξ

)
M

= ζ−
1
2
u−v
u+v

κ = 1 ,

giving u− v ≡ 0 (mod p) which is absurd.

Since
(
η1
Qt

)
M

=
(
ηt

−1

1

Q

)
M
, the triviality of all the symbols means that q totally splits in Fn/L;

then all the conjugates of q have the same property since Fn/Q is Galois. In other words, q
totally splits in Fn/Q.

The problem is to know if there exist infinitely many such primes q with Fn in the splitting
field of q in HL[p]/L, for all n | q − 1, n > 2. If so, this will prove FLT unconditionally and
SFLT in the nonspecial cases, under the condition u− v 6≡ 0 (mod p).

Since Fn ⊆ H−L [p], a sufficient condition to have the total splitting of q in Fn is that the
Frobenius automorphism ϕ of q in HL[p]/L be an element of C+

L , which is equivalent to
ϕt−1 = ϕ, hence to ϕt−1−1 = 1. Note that ϕ is of order p since its restriction to L1 is of order
p by assumption.

The image of ϕ ∈ CL by the isomorphism Gal(HL[p]/L) ' I/IpR of class field theory (see
Subsection 4.3), is given by the class of q in I/IpR; thus the condition ϕt−1−1 = 1 is equivalent
to qt−1−1 ∈ IpR, i.e.,

qt−1−1 = ap (α), α ≡ 1 (mod p2) ,

for an ideal a of L.

We must realize this for any divisor n > 2 of q − 1.

For ñ := q − 1, L̃ := Q(µq−1), we assume that the above condition q̃ t̃−1−1 = ãp (α̃), α̃ ≡ 1

(mod p2), is satisfied (for q̃ | q in L̃/Q).
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Then let n | q − 1, n > 2; since L = Q(µn) is imaginary, L+ is fixed by the restriction t−1 of
t̃−1 to L, and taking the norm N

L̃/L
we get

N
L̃/L

(q̃ t̃−1−1) = N
L̃/L

(ã)p N
L̃/L

(α̃) .

Since q is totally split in L̃, we have by definition N
L̃/L

(q̃) = q for some q | q in L, and
the above relation is of the form qt−1−1 = ap (α), with α ≡ 1 (mod p2), as expected; this
coherent choice of the ideals q is possible since the required condition of splitting at each level
is independent of the choice of the ideal.
So the whole condition for our purpose is given by the condition for n = q−1 and L = Q(µq−1).
We have obtained the following criterion, where c is the complex conjugation:

Theorem 5.1. — Let p be a prime > 3. If there exists a prime q 6= p, q 6≡ 1 (mod p),
qp−1 6≡ 1 (mod p2), such that for any prime ideal q | q in Q(µq−1), we have the relation
q1−c = ap (α) for an ideal a and an element α of Q(µq−1) with α ≡ 1 (mod p2), then the
first case of FLT (and the first case of the SFLT equation (u + v ζ)Z[ζ] = wp

1 under the
supplementary condition u− v 6≡ 0 (mod p)) holds for p.
The second case of FLT (and unconditionally of SFLT) holds for p as soon as there exist
infinitely many such primes q.

Remark 5.2. — (i) Since the multiplicative groups of the residue fields of L at p are of order
prime to p, in any writing ap (α) we can suppose α = 1 + p β, β p-integer of L.
(ii) The condition q1−c = ap (α), α ≡ 1 (mod p2), is equivalent to q1−c = ap (1 + p β), where
β ≡ β+ (mod p) for a p-integer β+ of L+; indeed, this last condition implies q2(1−c) =

a(1−c)p (1 + p β)1−c where (1 + p β)1−c ≡ 1 + p (1 − c)β ≡ 1 (mod p2), which leads to the
result thanks to a Bézout relation between 2 and p.
(iii) The condition q1−c = ap (α), α ≡ 1 (mod p2), is also equivalent to q = b1+ca′p (α′),
α′ ≡ 1 (mod p2); indeed, from q1−c = ap (α) we get q2 = q1+cap (α).
(iv) The condition q1−c = ap (α), α = 1 + p β, is satisfied as soon as the class of q1−c is of
order prime to p, a weaker condition which holds in general. Next, it remains to check the
stronger condition β ≡ β+ (mod p) implying the theorem.

Proposition 3.11 shows that Fq−1/Q(µq−1) is of degree less or equal to 1
2φ(q − 1). So, if the

torsion group VQ(µq−1) is trivial, the equality Fq−1 = H−Q(µq−1)[p] is possible and the sufficient
condition of Theorem 5.1 for the total splitting of q in Fq−1 is also necessary.
From the Čebotarev density theorem, there exist infinitely many prime ideals l of Q(µq−1)
such that their Frobenius automorphisms ϕl lie in C+

Q(µq−1) (at least of dimension 1); the
problem is to be sure that there is no obstruction to the fact that it is sometimes possible for
l = q | q. An important fact is precisely that there exists an obvious obstruction for p = 3 to
the existence of such primes q totally split in H−Q(µq−1)[p]. This is the subject of Subsections
5.3 and 8.1. Meanwhile, this obstruction seems to be specific of the case p = 3.
Such a set of primes q would be of Dirichlet density 0, as for the set of primes q, such that
the ring Z[µq−1] contains a principal ideal of norm q, a result proved by Lenstra in [Len],
Cor. 7.6.
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Theorem 5.1 may be of empty use due to an excessive condition on the primes q. So we intend,
in the forthcoming subsection, to try to give a weaker form of this result (see Conjecture 5.4).

5.2. Some related viewpoints. — We shall examine if some effective (or numerical) as-
pects allow us to justify the method of proof of FLT based on Theorem 5.1 for p > 3.

5.2.1. A diophantine approach. — In this first approach, we fix q and q̃ | q in L̃ = Q(µq−1),

and we try to find some suitable values of p for which ϕ̃ :=
(
H−
L̃

[p]/L̃

q̃

)
∈ C+

L̃
.

Let k be the order of the class of q̃ in L̃; put q̃k = (α̃). Suppose that we find d > 0 such that
α̃d ≡ α̃+ (mod p2), for some prime p such that p - k d, and some α̃+ ∈ L̃+; then α̃d(1−c) ≡ 1
(mod p2) giving a solution of the problem for the prime p. Then d may be chosen a posteriori
as a suitable divisor of the order of the multiplicative group of the residue field of L̃ at p.
We have not necessarily q 6≡ 1 (mod p) & qp−1 6≡ 1 (mod p2).
Of course this relation looks like the general problem of the Fermat quotients of algebraic
numbers as studied by Hatada in [Hat]. Considering the work of Hatada and others, a
serious conjecture would be that there exist infinitely many solutions p for any fixed q.
Since the numerical values of p are out of range of any computer, this conjectural property is
not of a practical use, but connect FLT to deep properties of algebraic numbers.

Meanwhile, we have found the following example which gives a very partial illustration but
shows that there is, a priori, no systematic obstruction for this question.

Example 5.3. — Let q = 5 and p = 463. We then have L = Q(µ4) = Q(i), where i :=
√
−1,

and q = (2 + i). We see that q is totally inert in K (i.e., f = 462) and that p is also inert
in L. We obtain the following numerical informations:

• (5463−1 − 1)/463 6≡ 0 (mod 463) (i.e., κ 6≡ 0 (mod p)),

• (2 + i)463+1 ≡ 43990 (mod 4632).

This immediately implies q1−c =
(2 + i

2− i
)
and q(p+1)(1−c) =

(2 + i

2− i
)p+1 ≡ 1 (mod p2), giving

the relation q1−c = ap (α) with a = qc−1 and α ≡ 1 (mod p2), proving the first case of FLT
for p = 463.

5.2.2. A weaker form of Theorem 5.1. — In a slightly different point of view, we must consider
that in general, for a solution (u, v) of the SFLT equation for fixed p, the order n of vu modulo
q may be a strict divisor of q − 1, even if it is obvious directly that n tends to infinity with q
(Corollary 3.9).
Let m be an integer > 2 such that p - m. Put K1 := KQ1 = Q(µp2), L := Q(µm). Then
H−L [p]/Q (see Section 4) and K1/Q are linearly disjoint. Let ϕ1 ∈ Gal

(
H−L [p]K1/H

−
L [p]
)
of

order pf , f | p − 1. From the Čebotarev density theorem, there exist infinitely many primes
q such that, for a suitable Q1 | q in H−L [p]K1, the Frobenius automorphism of Q1 satisfies the

equality
(
H−L [p]K1/Q

Q1

)
= ϕ1. Since H−L [p]K1/L is Abelian we have ϕ1 =

(
H−L [p]K1/L

q1

)
, where

q1 = Q1∩ZL, and by conjugation this yields
(
H−L [p]K1/L

q

)
∈ Gal

(
H−L [p]K1/H

−
L [p]
)
, for all q | q

in L, since Gal
(
H−L [p]K1/H

−
L [p]
)
is normal in Gal

(
H−L [p]K1/Q

)
.
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This implies the following properties:
• q ≡ 1 (mod m) (since q splits in L/Q),
• qf 6≡ 1 (mod p2) (since q is inert in K1/K),
• q totally splits in H−L [p]/L.

Thus the condition q1−c = ap(α), α ≡ 1 (mod p2), is satisfied for any prime ideal q | q in
L = Q(µm) but not necessarily for q̃ | q in L̃ = Q(µq−1); indeed, the Frobenius automorphism
of q in HL[p]/L fixes H−L [p] but this is not necessarily true for the Frobenius automorphism of
q̃ in H

L̃
[p]/L, giving possible inertia of q̃ in H−

L̃
[p]/L̃H−L [p].

The order of v
u modulo q is n | q − 1 and not necessarily m, and the obvious analogue of

Theorem 5.1 only applies if n |m.
In other words, we try to replace the order q − 1, probably too big under the condition that
the Frobenius automorphism of q̃ lies in C+

L̃
, L̃ := Q(µq−1), by a strict divisor mq of q−1, for

infinitely many q for which we hope that the Frobenius automorphism of the corresponding
ideal q of Q(µmq) lies in C+

Q(µmq ).
Then, under the existence of a nontrivial solution (u, v) of the SFLT equation in the nonspecial
cases (with the condition u − v 6≡ 0 (mod p) in the first one), there is an obstruction to the
existence of a pair (q,mq) (mq | q−1, with the Frobenius automorphism of q in C+

Q(µmq )) such
that the order of v

u modulo q is a divisor n of mq.
Of course, to get a contradiction to the existence of (u, v), it is sufficient to find a prime
q - u v (u2 − v2) with κ 6≡ 0 (mod p), totally split in H−L [p]/L for L = Q(µn), where the order
n of v

u modulo q is a small divisor of q − 1.
The verification of the condition q - u v is ineffective (except when Furtwängler’s theorems
apply) and such a criterion must be replaced by the existence of infinely many primes q such
that the order of v

u modulo q is a small divisor of q − 1.
These remarks may constitute a way of access to a proof of FLT by means of analytic inves-
tigations and we can propose the following general conjecture, independent of SFLT, which
covers the above discussion.

For any prime q 6= p, set L̃ = Q(µq−1) and denote by Sq the set of places of L̃ dividing q;
since q totally splits in L̃/Q, we have |Sq | = φ(q − 1). Then call HSq

L̃
[p]/L̃ the maximal

subextension of H
L̃

[p]/L̃ in which q totally splits.

Conjecture 5.4. — Let p be a prime > 2. Let ρ be a rational distinct from 0 and ±1.
Then there exist an infinite number of primes q, such that q 6≡ 1(mod p) & qp−1 6≡ 1(mod p2),
for which L̃Fn ⊆ H−Sq

L̃
[p], where n | q − 1 is the order of ρ modulo q (see Subsection 4.4).

Note that since q totally splits in L̃/Q, the condition “ L̃Fn ⊆ H
−Sq
L̃

[p] ” is equivalent to the
condition “ q totally splits in Fn/Q ”.
If Conjecture 5.4 is true, it applies to any rational ρ associated to a nontrivial solution (u, v)
(with u − v 6≡ 0 (mod p)) of the SFLT equation in the nonspecial cases and then gives
a contradiction (the fact that we must only consider the nonspecial cases is sufficient for
Fermat’s equation).

Publications mathématiques de Besançon - 2012/2



78 Vandiver papers on cyclotomy revisited and Fermat′s Last Theorem

The existence of infinitely many primes q satisfying the conditions of Theorem 5.1 is equivalent
to the conjecture with the supplementary very strong condition H−

L̃
[p] ⊆ HSq

L̃
[p].

See [Gr2], II.5.4.1 (ii), for the computation of dimFp
(
Gal(H

−Sq
L̃

[p]/L̃)
)
which essentially de-

pends on the group of Sq-units of L̃ locally pth powers at each place dividing p.

The existence of such inclusions L̃Fn ⊆ H−Sq
L̃

[p], n | q − 1, depends on two phenomena:

(i) The order of magnitude of the primes q ≡ 1 (mod m), totally split in Fm/Q, obtained by
Čebotarev density theorem in the extensions Fm/Q, as shown above in 5.2.2.

(ii) The minimal possible value of the order n modulo q of a given rational ρ, by comparison
with q, since n tends to infinity with q.

Example 5.5. — For p = 5, m = 4, we have L = Q(i), and an obvious family of ideals q of
L such that q1−c = (α), α ≡ 1 (mod 25), is given by the expression

q = (e+ 5a+ 25b i)Z[i], 1 ≤ e < 5, a, b ∈ Z,

e, a, b being such that (e+ 5a)2 + (25b)2 is a prime q.

The primes q < 10000, q 6≡ 1 (mod 5) and q4 6≡ 1 (mod 25), of the above form, are the
following ones: 769, 1109, 1409, 2069, 2389, 2789, 3229, 3329, 3989, 5309, 5689, 6469, 6709,
7069, 7829, 8329, 8369, 8429.

Taking q = 769, the pairs of coprime integers u, v, such that u−v 6≡ 0 (mod 5) and 62u−v ≡ 0
(mod 769), cannot be a solution of the SFLT equation for p = 5; indeed, 62 is of order 4 modulo
769, and 769 is totally split in F4/Q by construction.

Such construction of a list of primes q does exist for any prime p and any m > 2, and the
question is the following: p, u, and v being given, is it possible to find in such infinite lists of
primes (corresponding to arbitrary values of m), a prime q for which the order of vu modulo q
is a divisor of m (which is equivalent to q |um − vm)? For each m > 2, only a finite number
of q in the list can be solution.

The existence of one solution (m, q) gives the proof of the first case of FLT for p and the
existence of infinitely many solutions (m, q) gives a complete proof of FLT for p.

5.3. Simplest cubic fields – Obstruction for a total splitting of q in H−
L̃

[3]/L̃. —
Independently of the existence of nontrivial solutions of the SFLT equation for p = 3, we
intend to identify the obstruction giving, for p = 3, an empty Theorem 5.1.

More precisely, this obstruction shows that for all prime q such that q ≡ −1 (mod 3) & κ 6≡ 0
(mod 3), the total splitting of q in H−Q(µq−1)[3]/Q is not possible (see Subsection 8.1 for a more
precise viewpoint using explicitly the solutions).

Over Q, the well-known polynomial

X3 − τ X2 − (3− τ)X + 1, τ ∈ Z ,
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of discriminant (τ2− 3τ + 9)2, defines the simplest cyclic cubic field introduced by D. Shanks
in [Sh]. (9) So we can consider the analogous polynomial over L = Q(µn), n > 2, n 6≡ 0
(mod 3), taking τ := 3 ξ−1 where ξ is a primitive nth root of unity,

P shξ := X3 − 3 ξ−1X2 − 3 (1− ξ−1)X + 1 ,

for which we denote by F shξ the corresponding cyclic cubic extension of L. The discriminant
of P shξ is 81 (ξ2 − ξ + 1)2 giving a 3-ramified extension since ξ2 − ξ + 1 is a unit. Using
the classical results on Kummer theory that we recall in Subsection 6.3, we obtain that
F shξ K = M

(
3
√

(1 + ξ j)e′ω
)
with the representative e′ω = s+ 2 instead of eω = s− 1, s = s−1.

By comparison, the polynomials defining Fξ from η1 = (1+ξ j)eωj−
1
2 or η′1 = (1+ξ j)e

′
ωj−

1
2 ∼

η1 are

Pξ := X3 − 3X +
ξ2 − 4ξ + 1

ξ2 − ξ + 1
or X3 − 3 (ξ2 − ξ + 1)X + ξ3 + 1 .

Let c be the complex conjugation; then we have

ηsh1 := (1 + ξ j)e
′
ω ; (ηsh1 )c ∼ ηsh1 j

1
2 ; ηsh1

+ := ηsh1
1+c
2 ∼ ηsh1 j−

1
2 = η1; ηsh1

− := ηsh1
1−c
2 ∼ j 1

2 ,

which are independent in M×/M×3 (see Section 4).
So if we denote by F shξ , cF shξ , Fξ, L1 the four cyclic cubic extensions of L contained in the fields

M
(

3

√
ηsh1
)
, M

(
3

√
(ηsh1 )c

)
, M

(
3

√
ηsh1

+
)
, M

(
3

√
ηsh1
−), respectively, we know that Fξ ⊆ H−L [3]

is diedral over L+, that L1 ⊆ H+
L [3], and we compute that cF shξ = F shξ−1 ; so the polynomial

P shξ−1 := X3 − 3 ξ X2 − 3 (1− ξ)X + 1 is the simplest cubic polynomial defining c F shξ .
Hence we have the following schema:

L1Fξ

Fξ

F shξ

F shξ−1

L1

L

Let q = (q, ξ − e) be a prime ideal lying above q in L, where e ∈ Z is of order n modulo q
(thus e 6≡ ±1 (mod q) since n > 2). Then q splits in Fξ/L if and only if it is inert in F shξ /L

and in F shξ−1/L since it is inert in L1/L (κ 6≡ 0 (mod 3)), thus if and only if P shξ and P shξ−1 are
irreducible modulo q, hence if and only if (where e is the image of e in Fq)

P she := X3 − 3 e−1X2 − 3 (1− e−1)X + 1 and P she−1 := X3 − 3 eX2 − 3 (1− e)X + 1

are irreducible in Fq[X].

But P she is reducible in Fq[X] if and only if e = e(a) ∈ A :=
{ 3a(a− 1)

a3 − 3a+ 1
, a ∈ Fq\{0, 1}

}
(we

have a3 − 3a + 1 6= 0 since q ≡ −1 (mod 3)). We compute that e(a) = e(b) if and only if

(9) There is an abundant literature on the cubic case and on the search of this kind of fields defined by similar
polynomials of small degree depending linearly on a parameter; see for instance [Gmn], [Le], [ScW], [Wa2].
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b = a, b = 1− a−1, or b = (1− a)−1, which are distinct since q ≡ −1 (mod 3), so that there
are exactly q−2

3 distinct solutions e in F×q ; they are of orders > 2 since ±1 /∈ A.
Since P she reducible implies P sh

e−1 irreducible for e 6= ±1, one obtains q − 1− 2− 2 q−2
3 = q−5

3

values of e (of orders n > 2) such that P she and P sh
e−1 are irreducible.

So q = (q, ξ−e) is inert in Fξ/L for q−1− q−5
3 = 2

3 (q+1) values of e; which gives 2
3 (q+1)−2

values of e of orders n > 2 and so q−2
3 pairs (e, e−1) since we know that Fξ = Fξ−1 .

Of course, instead of the above method we could have count the number of irreducible poly-
nomials Pe = X3 − 3 (e2 − e+ 1)X + e3 + 1; but this does not seem directly accessible.
For instance, for q = 23, the 7 pairs (e, e−1) solutions are

(2, 12), (3, 8), (4, 6), (5, 14), (7, 10), (11, 21), (15, 20) .

As a consequence, none of these primes q ≥ 5 can totally split in H−
L̃

[3]/L̃ for L̃ := Q(µq−1)

since there is a nontrivial inertia in H−L [3]/L, for various L = Q(µn), n | q − 1. So, for p = 3,
Theorem 5.1 cannot apply (see Subsection 8.1 for more details).
For p > 3, the situation is of a different nature if we assume that the SFLT equation has a
finite number of solutions, which is equivalent to consider Conjecture 5.4 for a fixed ρ, because,
as we have seen in Subsection 5.2 (5.2.2), we can hope a weaker form of Theorem 5.1.
Moreover, for p > 3, the coefficients of the analogous polynomials P she or Pe have increasing
degrees in e so that the number of irreducible Pe may be small regarding q.
The experimentation shows that a splitting in Fq[X] of the polynomial Pe (associated to the
splitting of (q, ξ − e) in Fξ), is possible for small values of the order n of e. For instance, for
p = 5, ρ = 5

7 , q = 419, we have ρ ≡ 300 (mod 419) and the order of e = 300 is n = 11.

5.4. Explicit formula for the pth power residue symbol
(η1
Q

)
M
. — Let q 6= p be a

prime and let n be such that p - n. Let ξ be a primitive nth root of unity and let q be any
prime ideal of L = Q(µn) lying above q. We do not assume that q - n.
We consider the real ω-cyclotomic unit η1 := (1 + ξ ζ)eω ζ−

1
2 ∈M = LK (see Definition 3.2).

Recall that for n ≤ 2, η1 ∈ K×p, so we assume n > 2.
Let c be the complex conjugation. We suppose in this subsection that the ideal class of q1−c

is the pth power of a class of L, which is equivalent to q1−c = ap (α) for an ideal a of L and an
α ∈ L× such that α ≡ 1 (mod p) (see Remark 5.2). This assumption is stable by conjugation
of q. So we get q1−c = ap (1 + p β), β p-integer of L.
Taking the absolute norm leads to NL/Q(1 + p β) = NL/Q(a)−p ≡ 1 (mod p2). Thus since
NL/Q(1 + p β) ≡ 1 + pTrL/Q(β) (mod p2), where TrL/Q is the absolute trace, we obtain
TrL/Q(β) ≡ 0 (mod p). This remark will be used later.
We note that, as for the context of Theorem 5.1, if q − 1 =: d pr, r ≥ 0, p - d, and if the
analogous condition q̃1−c = ãp (1 + p β̃) is satisfied for q̃ | q in L̃ = Q(µd), then it is satisfied
for any ideal q = N

L̃/L
(q̃) in L = Q(µn), n | d; we then have β ≡ Tr

L̃/L
(β̃) (mod p).

In M we have ( η1

(q)1−c

)
M

=
( η1∏

Q | qQ
1−c

)
M

=
∏
Q | q

( η1

Q1−c

)
M

=
(η1

Q

)2 p−1
f

M
,
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where f is the residue degree of q in K/Q; indeed, η1 being real, we have
( η1

Q1−c

)
M

=
(η1

Q

)
M
.
( η1

Qc

)−1

M
=
(η1

Q

)
M
.
(η1

Q

)−c
M

=
(η1

Q

)2

M
,

hence the result since the symbol of η1 does not depend on the choice of Q lying above q.
But

(
η1

(q)1−c

)
M

=
(

η1
(ap) (α)

)
M

=
(
η1
(α)

)
M
. Then using the general pth reciprocity law (see e.g.

[Gr2], II.7.4.4) we obtain, since η1 is a unit,
(η1

α

)
M

=
(η1

α

)
M

( α
η1

)−1

M
=
∏
P | p

(
η1, α

)−1

P
,

product over the prime ideals P of M lying above p; since M/L is totally ramified at p, we
shall write by abuse

(
η1, α

)
p
for these Hilbert symbols, where p | p in L, knowing that they are

defined on M× ×M× with values in µp (in the literature, two definitions are possible, which
give the Hilbert symbol or its inverse; this is the case with the reference [Ko] used below, by
comparison with ours, see e.g. [Gr2], II.7.3.1).
Thus we have obtained (η1

Q

)
M

=
∏
p | p

(
η1, α

) f
2
p
.

We now refer to the Brückner–Vostokov explicit formula proved in [Ko], 6.2, Th. 2.99, by
giving some details for the convenience of the reader, and using similar notations.
Consider the uniformizing parameter π := ζ − 1 of the completions MP of M at P | p | p. The
inertia field is Lp. We need the formal series t(x) := 1 − (1 + x)p, such that t(π) = 0, for
which t(x)−1 is the Laurent series

− 1

xp

(
1− p

(c1
x

+ · · ·+ cp−1

xp−1

)
+ p2

(c1
x

+ · · ·+ cp−1

xp−1

)2 − · · ·
)
,

where the ci are integers.
We associate with η1 ≡ 1 + θ π (mod π2), where θ := 1

2
ξ−1
ξ+1 (see Subsection 4.1), and with

α = 1 + p β, the series
F (x) ≡ 1 + θ x (mod (x2)),

G(x) := 1 + p β (a constant series) ,

such that F (π) ≡ η1 (mod π2) and G(π) = α. Recall that log is the p-adic logarithm and
dlog the logarithmic derivative; so dlog(G) = 0 giving

(F,G) = − 1

p2
· log

( Gp

σp(G)

)
· dlog(σp(F )) ,

where σp is the Frobenius automorphism in Lp/Qp extended to series by putting σp(x) := xp.
Thus σp(G) = 1 + p σp(β), σp(F ) ≡ 1 + σp(θ)x

p (mod (x2p)), giving

log
( Gp

σp(G)

)
≡ −p σp(β) (mod p2)

dlog(σp(F )) ≡ p σp(θ)x
p−1 (mod (x2p, p x2p−1)) ,

and finally
(F,G) ≡ σp(θ β)xp−1 (mod

(
p xp−1, x2p−1,

x2p

p

)
) .
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Then the residue of t(x)−1 (F,G) is that of

− 1

xp
σp(θ β)xp−1 = − 1

x
σp(θ β) (mod

( p
x
, xp−1,

xp

p

)
) ,

hence it is −σp(θ β) (mod p) since the generator xp

p
of the above ideal gives rise to a residue

only with a term of the form c0
xp+1

of t(x)−1 (to give c0
p x

) in which case c0 is a multiple of p2

(see the expression of t(x)−1). To conclude we have to take the absolute local trace, which
eliminates the action of the Frobenius automorphism and gives

TrMP/Qp(−θ β) = (p− 1) TrLp/Qp(−θ β) ≡ TrLp/Qp(θ β) (mod p) .

Then
(
η1, α

)
p

= ζ
−TrLp/Qp

(
1
2
ξ−1
ξ+1

β
)

because of our definition of the Hilbert symbol, and
∏
p

(
η1, α

)
p

= ζ
−∑

p TrLp/Qp

(
1
2
ξ−1
ξ+1

β
)

= ζ
−TrL/Q

(
1
2
ξ−1
ξ+1

β
)
, the global trace being the sum of

the local ones. We have 1

2

ξ − 1

ξ + 1
β =

(1

2
− 1

ξ + 1

)
β, so the final expression of the trace is

−TrL/Q
( β

ξ + 1

)
since that of β is zero modulo p. This yields

(
η1
Q

)
M

=
∏
p

(
η1, α

) f
2
p

= ζ
1
2
f TrL/Q

(
β
ξ+1

)
.

We have obtained the following explicit formula.

Theorem 5.6. — Let q 6= p be a prime, let n be such that n > 2 and p - n. Let ξ be a
primitive nth root of unity and let q be any prime ideal of L = Q(µn) lying above q.
Let us assume that the class of q1−c (where c is the complex conjugation) is the pth power of
a class, which is equivalent to q1−c = ap (1 + p β) for an ideal a of L and β p-integer of L. (10)

Put η1 := (1 + ξ ζ)eω ζ−
1
2 (see Definition 3.2). Then for any Q | q in M := LK we have

(
η1
Q

)
M

= ζ
1
2
f TrL/Q

(
β
ξ+1

)
,

where f is the residue degree of q in K/Q and TrL/Q the absolute trace in L/Q.

This gives again the situation of Theorem 5.1 when β ≡ β+ (mod p), β+ ∈ L+, since we then
have TrL/Q

( β
ξ+1

)
≡ TrL+/Q

( β+

ξ+1 + β+

ξ−1+1

)
= TrL+/Q(β+) ≡ 0 (mod p), since TrL/Q(β) ≡ 0

(mod p).
This theorem confirms that the class field theory properties of the fields Q(µn) are inde-
pendent of the SFLT problem. Meanwhile, under a nontrivial solution (u, v) of the SFLT
equation, for suitable values of q and for ξ of order n (the order of ρ := v

u modulo q), the
quantity TrL/Q

(βρ,ξ
ξ+1

)
, where βρ,ξ corresponds to qρ,ξ, is imposed, which yields infinitely many

conditions.
But as usual we need to explain how the case p = 3 interferes appropriately with the arithmetic
of the fields Q(µn) (see Section 8).

(10) As we know, this condition is also equivalent to q = b1+ca′p (1 + p β′) for ideals a′, b of L and β′ p-integer
of L. It is satisfied as soon as the class of q1−c is of order prime to p.
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Remark 5.7. — Suppose, as in Theorem 5.6, that q1−c = ap (1+p β) for an ideal a of L and
β p-integer of L = Q(µn), with n | q − 1 such that n > 2 and p - n.
(i) To obtain that q totally splits in Fn/L, we study the equivalent condition

(
ηt1
Q

)
M

= 1 for
all t ∈ Gal(M/K)/〈 t−1 〉; from the theorem this is equivalent, for all t ∈ Gal(L/Q)/〈 t−1 〉, to

TrL/Q
( β

ξt + 1

)
= TrL/Q

( βt−1

ξ + 1

)
≡ 0 (mod p) .

This can be written in the following two forms
∑

τ∈Gal(L/Q)

βτ

ξtτ + 1
≡ 0 (mod p), for all t ∈ Gal(L/Q)/〈 t−1 〉 .

∑
τ∈Gal(L/Q)

βt
−1τ

ξτ + 1
≡ 0 (mod p), for all t ∈ Gal(L/Q)/〈 t−1 〉 .

So we obtain two linear systems (with “ variables ” βτ and 1
ξτ+1 , respectively), whose matrices

have φ(n) columns and 1
2 φ(n) lines; the rank over Fp of the first matrix (less than or equal

to 1
2 φ(n)) leads to a more precise approach of the required conditions on β; the condition

β ≡ β+ (mod p) is sufficient (use the second system) but not necessary as soon as the rank
of the matrix is less than 1

2 φ(n).
(ii) Let Z ′L be the ring of p-integers of L. Then the knowledge of the image of β in Z ′L/pZ

′
L

summarizes all the needed local properties of η1 at p. Since Z ′L/pZ
′
L is the product of the

residue fields of L at the primes p | p in L, any analytic approach is available.
The trace map Z ′L/pZ

′
L −→ Fp is surjective and its kernel of index p in Z ′L/pZ

′
L.

Example 5.8. — Take p = 5, q 6= 5 a prime congruent to 1 modulo 4, and n = 4. Set
as usual q = a2 + b2; then q = (a + i b) and q4 = (A + i B), with A = a4 + b4 − 6 a2b2,
B = 4 ab(a2 − b2). We then have

q1−c = q5(1−c)
(
A− i B
A+ i B

)
=: q5(1−c)(1 + 5β

)
.

Since A + i B ≡ 1 (mod 5), we get A ≡ 1 and B ≡ 0 (mod 5), and a straightforward
computation gives

β ≡ −8 i ab(a2 − b2)

5
and

β

i+ 1
≡ −4 (i+ 1) ab(a2 − b2)

5
(mod 5) ,

which yields 1
2TrL/Q

( β

i+ 1

)
≡ −1

2
8 ab(a2 − b2)

5
(mod 5), hence

(
η1
Q

)
M

= ζf
ab(a2−b2)

5 .

So the symbol is trivial if and only if ab(a2 − b2) ≡ 0 (mod 25). We find the values q = 313
(a = 13, b = 12), q = 317 (a = 14, b = 11), . . .
For q = 457 (a = 21, b = 4), we have κ ≡ 0 (mod 5). A case with 25 | ab is given by q = 641
(a = 25, b = 4).
The symbol is nontrivial for the values q = 13 (a = 3, b = 2) where

(
η1
Q

)
M

= ζ4, q = 17

(a = 4, b = 1) where
(
η1
Q

)
M

= ζ3, . . .
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6. Decomposition law of q in HQ(µq−1)[p]/Q(µq−1) and conjectures

In this section we study in full generality the situations that we have encountered in the
previous sections.

6.1. Law of ρ-decomposition relative to the family Fn and Main Theorem. — Let
p > 2 be a prime and let ρ = v

u , with g.c.d. (u, v) = 1, be a rational distinct from 0 and ±1;
this is equivalent to u v (u2− v2) 6= 0. Since u, v play a symmetrical role, it would be actually
better to consider that ρ ∈ Q ∪ {∞} and that it is taken distinct from ∞, 0,±1.
For now we do not suppose any relation of SFLT type between u and v.

For any prime q 6= p let f be the residue degree of q in K := Q(µp) and let κ := qf−1
p .

Note that we have the relation (see Definition 2.13 (i))

κ :=
qp−1 − 1

p
≡ p− 1

f
κ ≡ −1

p
log(q) (mod p) .

We consider the infinite set of primes

Qρ :=
{
q prime, q - u v (u2 − v2) & the order of ρ modulo q is prime to p

}
.

For q ∈ Qρ, let n be the order of ρ modulo q. From Lemma 2.11 and Corollary 2.12, q ∈ Qρ
is equivalent to q ≡ 1 (mod n) & q |Φn(u, v) & n > 2 prime to p. It is also equivalent to
q ≡ 1 (mod n) & n > 2 prime to p & q := (q, u ξ − v) (ξ of order n) prime ideal of Q(µn)
lying above q.
The prime ideal q is also denoted by qρ,ξ as in the previous sections.
We associate with q the class Cρ(q) (see Definition 3.1) defined by the pair (ξ, q), up to
Q-conjugation.
We consider the fields L := Q(µn) and M := LK which only depend on q (for fixed ρ).
Of course, the classes Cρ(q1) and Cρ(q2) corresponding to different primes q1 and q2, are relative
to the fields L(1) = Q(µn1), n1 | q1 − 1, and L(2) = Q(µn2), n2 | q2 − 1, and one of the main
problems would be to try to connect the two situations.
From the construction of the extensions Fξ and Fn ⊆ H−L [p] given in Subsections 4.2 and 4.4
via the real ω-cyclotomic unit

η1 := (1 + ξ ζ)eω ζ−
1
2 ,

the pair (Fξ, qρ,ξ) is defined up to Q-conjugation since (tFξ, q
t
ρ,ξ) = (Fξt , qρ,ξt) corresponds

to (ξt, qρ,ξt); thus the class of the pair (Fξ, qρ,ξ) (or similarly of the pair (η1,Qρ,ξ | qρ,ξ))
characterizes the class Cρ(q) and reciprocally. Recall that Fξ = Fξ−1 is diedral over L+.
The following lemma is elementary but gives details on the action of Gal(L/Q) on the Frobe-
nius automorphism of qρ,ξ in Fξ/L.

Lemma 6.1. — Let ρ be a rational distinct from 0 and ±1 and let (ξ, qρ,ξ) be a representative
pair of the class Cρ(q) associated to q ∈ Qρ.
Let ϕρ,ξ :=

(
Fξ/L

qρ,ξ

)
be the Frobenius automorphism of the ideal qρ,ξ = (q, u ξ − v) in Fξ/L.

(i) Then ϕρ,ξt :=
(
Fξt/L

qρ,ξt

)
= ϕtρ,ξ := t′ . ϕρ,ξ . t′−1 for all t ∈ Gal(L/Q).

(ii) If t = t−1, then ϕρ,ξ−1 = ϕ
t−1

ρ,ξ = t′−1. ϕρ,ξ . t
′−1
−1 = ϕ−1

ρ,ξ in Gal(Fξ/L).
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Proof. — From the defining congruence ϕρ,ξ (α) ≡ αq (mod qρ,ξ) for all integers α of Fξ, we
get t′ . ϕρ,ξ (α) ≡ t′(α)q (mod qρ,ξt), for any Q-isomorphism t′ of Fξ such that t′|L = t. Put
t′(α) =: β ∈ Fξt ; this yields t′ . ϕρ,ξ . t′−1(β) ≡ βq (mod qρ,ξt) for all integers β of Fξt , proving
the lemma by uniqueness of the Frobenius automorphism.
The case of t−1 is obvious since Fξ/L+ is diedral.

The Frobenius automorphism of qρ,ξ in Fξ/L also defines the class Cρ(q) since we have
(ξt, ϕtρ,ξ) = (ξt, ϕρ,ξt) by conjugation. This leads to give the following definitions.

Definition 6.2. — Let ρ := v
u , with g.c.d. (u, v) = 1, be a rational, distinct from 0 and ±1.

For any n > 2 prime to p, let L = Q(µn), M = LK, and for ξ of order n, let Fξ be such that

FξM = M
( p√

(1 + ξ ζ)eω ζ−
1
2

)
. Put

Qρ :=
{
q prime, q - u v (u2 − v2) & the order of ρ modulo q is prime to p

}
.

(i) The symbols
[
F∗/L

q∗

]
ρ
. For any prime q ∈ Qρ, let n | q − 1 be the order of ρ modulo q; for

qρ,ξ = (q, u ξ − v) | q, we consider the class of Frobenius automorphisms
(
Fξt/L

qρ,ξt

)
=
(
Fξ/L

qρ,ξ

)t
, t ∈ Gal (L/Q) ,

that we normalize in the following way depending on κ := qf−1
p ≡ f log(q)

p (mod p):

– if κ 6≡ 0 (mod p), we put
[
F∗/L

q∗

]
ρ

:=
((

Fξt/L

qρ,ξt

) p
log(q)

)
t∈Gal (L/Q)

;

– if κ ≡ 0 (mod p), we put
[
F∗/L

q∗

]
ρ

:=
((

Fξt/L

qρ,ξt

))
t∈Gal (L/Q)

.

(ii) The canonical family Fn. For any n > 2 prime to p, call Fn the canonical family

(Fξt)t∈Gal(L/Q) = (Fξ′)ξ′ of order n

defining Fn ⊆ H−L [p] as the compositum of the Fξt , t ∈ Gal(L/Q).

(iii) Law of ρ-decomposition of q for Fn. The symbol
[
F∗/L

q∗

]
ρ
is called, by abuse of language,

the law of ρ-decomposition of q for the family Fn. If
[
F∗/L

q∗

]
ρ

= 1
(
resp.

[
F∗/L

q∗

]
ρ
6= 1

)
, we

speak of ρ-splitting (resp. ρ-inertia) of q for Fn.

Remark 6.3. — The terminology “ρ-decomposition of q for Fn ” is justified by what follows,
where n is the order of ρ modulo q ∈ Qρ and L = Q(µn), n assumed > 2.
For fixed ξ of order n we look at the law of decomposition, in Fξ/L, of the only prime ideal
qρ,ξ = (q, u ξ − v); this ideal, which then depends on the class of ρ modulo q, is one of the
φ(n) prime ideals of L lying above q. These prime ideals are the ideals qi := (q, ξ − ei), for
the φ(n) integers ei of order n modulo q; then the law of decomposition of q in the whole
extension Fn/Q is characterized by means of the values of the φ(n) Frobenius automorphisms(
Fξ/L

qi

)
, i = 1, ..., φ(n). Indeed, these Frobenius automorphisms satisfy, for all t ∈ Gal(L/Q)

and all i = 1, ..., φ(n), the relations
(
Fξt/L

qi

)
=
(
Fξ/L

qt
−1

i

)t
=
(
Fξ/L

qj

)t
, for some j depending on i
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and t, which proves the claim. In fact we need less than 1
2 φ(n) informations since we have the

relations
(
Fξ/L

q
t−1

i

)
=
(
Fξ/L

qi

)−1
(Lemma 6.1 (ii)) and possibly some others if [Fn : L] < 1

2 φ(n).

Here we only look at the Frobenius automorphism
(
Fξ/L

qi0

)
such that ei0 ≡ ρ (mod q). So

qi0 = qρ,ξ and by Lemma 6.1 (i) the knowledge of the Frobenius automorphism of qρ,ξ in
Fξ/L does not depend, up to conjugation, on the choice of ξ of order n; which defines the
ρ-decomposition for Fn.
Remark that n is uniquely determined as soon as q is selected in Qρ.

The above symbol, depending on ρ, is for each q relative to a universal family Fn, over Q(µn),
which is independent of any hypothetic nontrivial solution of the SFLT equation.

Let σ be a generator of Gal(Fξ/L); the automorphism
(
Fξ/L

qρ,ξ

) p
log(q)

(
resp.

(
Fξ/L

qρ,ξ

) )
is of the

form σr, r ∈ Z/pZ, so that the symbol
[
F∗/L

q∗

]
ρ
is the family

(
σt
)r
t∈Gal(L/Q)

=
(
t . σ . t−1

)r
t∈Gal(L/Q)

.

Thus the symbol
[
F∗/L

q∗

]
ρ
can take p − 1 nontrivial values (called the cases of ρ-inertia of q

for Fn, when r 6≡ 0 (mod p)) and a trivial one (the ρ-splitting of q for Fn).
In the previous sections, for infinitely many values of q in the case κ 6≡ 0 (mod p), we have
used, as a contradiction to the existence of a solution (x, y, z) of Fermat’s equation for p > 3,
the splitting of q v

u
,ξ in Fξ (taking (u, v) = (x, y) or (y, z)). This is equivalent to the ρ-splitting

of q ∈ Qρ for Fn, with ρ := v
u , hence to

[
F∗/L

q∗

]
ρ

= 1.

Same remark for a solution (u, v) of the SFLT equation in the nonspecial cases under the
condition u− v 6≡ 0 (mod p).

Remark 6.4. — In a probabilistic point of view, the ρ-splitting for Fn of a fixed q ∈ Qρ has
a probability around 1

p , and we can hope a strong incompatibility for analytic reasons since
Qρ is infinite.
If we ask that q be totally split in Fn, this means that each q | q splits in Fξ = Fξ−1 (for any

fixed ξ) and the probability is around
(

1
p

) 1
2
φ(n) which tends to 0 rapidly with q →∞.

With a nontrivial counterexample (u, v) to SFLT, we have, from a representative pair (ξ, qρ,ξ)
of Cρ(q), ρ := v

u , the following results proved in Theorem 3.3:
For p ≥ 3 in the nonspecial cases (u+ v 6≡ 0 (mod p)) we have, for all Q | qρ,ξ,

(η1

Q

)
M

= ζ−
1
2
u−v
u+v

κ .

In the special case (u+ v ≡ 0 (mod p)) we have, for all Q | qρ,ξ,
(η1

Q

)
M

= 1, if p > 3,
(η1

Q

)
M

= ζ
1
2
u+v
3 v

κ, if p = 3 .
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Recall that for the first case of SFLT we cannot exclude the case u−v ≡ 0 (mod p) in contrast
with FLT for (u, v) = (x, y), (y, x), (z, y), or (y, z). This explain that for SFLT (first case
and κ 6≡ 0 (mod p)) we cannot use, as a general contradiction, the ρ-splitting of q for Fn.
More precisely, we have the following lemma giving the action of the Frobenius automorphism,
which determines explicitly the law of ρ-decomposition in the SFLT context (we assume for
simplicity p > 3):

Lemma 6.5. — Let p be a prime > 3. We suppose given a nontrivial solution in coprime
integers u, v of the SFLT equation (u+ v ζ)Z[ζ] = pδ wp

1 (see Conjecture 2.4).
Let q be a prime such that q - u v, and such that the order n of ρ := v

u modulo q is prime to p.
Let Q | qρ,ξ in M , where (ξ, qρ,ξ) represents the class Cρ(q).
Let

(
M( p
√
η1 )/M

Q

)
be the Frobenius automorphism of Q in M( p

√
η1 )/M , where η1 is the ω-

cyclotomic unit (1 + ξ ζ)eω ζ−
1
2 .

(i) Nonspecial cases. If u+ v 6≡ 0 (mod p), then
(
M( p
√
η1 )/M

Q

)
. p
√
η1 = ζ−

1
2
u−v
u+v

κ · p
√
η1.

(ii) Special case. If u+ v ≡ 0 (mod p), then
(
M( p
√
η1 )/M

Q

)
· p√η1 = p

√
η1.

Proof. — From the defining congruence
(
p
√
η1

)σ ≡
(
p
√
η1

) qf
(mod Q), for the Frobenius auto-

morphism σ :=
(
M( p
√
η1 )/M

Q

)
, we get

(
p
√
η1

)σ−1 ≡
(
p
√
η1

)qf−1 ≡ η κ1 ≡
(
η1
Q

)
M

(mod Q).

Hence the result since
(
η1
Q

)
M

= ζ−
1
2
u−v
u+v

κ in the nonspecial cases and
(
η1
Q

)
M

= 1 in the
special case, as recalled above.

We now intend, in the following theorem, to translate this property into a property of the
symbol

[
F∗/L

q∗

]
ρ
, which will give the main phenomenon about the existence of a nontrivial

solution to the SFLT equation.

Theorem 6.6. — Let p be a prime > 3. We suppose given a nontrivial solution in coprime
integers u, v of the SFLT equation (u+ v ζ)Z[ζ] = pδ wp

1 (see Conjecture 2.4).
For ρ := v

u , let Qρ :=
{
q prime, q - u v (u2 − v2) & the order of ρ modulo q is prime to p

}
.

Then the symbol
[
F∗/Q(µn)

q∗

]
ρ
, where n is the order of ρ modulo q, only depends on ρ when q

varies in Qρ; for all q ∈ Qρ with κ≡ 0 (mod p), then
[
F∗/Q(µn)

q∗

]
ρ

= 1 (see Definition 6.2).

In other words, the law of ρ-decomposition of any q ∈ Qρ for Fn only depends on ρ (11).

Proof. — Let Q | qρ,ξ in M , where (ξ, qρ,ξ) represents the class Cρ(q). The Frobenius auto-

morphism of qρ,ξ in Fξ/L is given, by restriction, by the relation
(
Fξ/L

qρ,ξ

)f
=
(
M( p
√
η1 )/M

Q

)
|Fξ

.

Indeed, in the projection Gal(M( p
√
η1 )/M) −−−→ Gal(Fξ/L), the Frobenius automorphism

of Q gives the Artin symbol of the norm in M/L of Q, which is qfρ,ξ; hence the result.

(11) See Remark 6.7 where we better justify the expression “ only depends on ρ when q varies in Qρ ”, since n,
depending on ρ and q, is not constant and since the normalization of the symbol depends on q via κ
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If κ 6≡ 0 (mod p), using the relation f κ−1 ≡ −κ−1 (mod p) (see Definition 2.13 (i)) we get

by Lemma 6.5 that
(
Fξ/L

qρ,ξ

)−κ−1

=
(
M( p
√
η1 )/M

Q

)κ−1

|Fξ
only depends on ρ when q varies. This

proves the theorem in this case since −κ ≡ 1
p log(q) 6≡ 0 (mod p).

If κ ≡ 0 (mod p), we get
(
Fξ/L

qρ,ξ

)
= 1 in any case.

Remark 6.7. — Recall that Q1 is the cyclic extension of Q of degree p contained in Q(µp2)

and that L1 = LQ1. Let Fn := L1Fn and let ϕρ,ξ be the Frobenius automorphism
(
Fn/L

qρ,ξ

)
;

we know that ϕρ,ξ projects on ϕρ,ξ :=
(
Fξ/L

qρ,ξ

)
in Fξ/L and on ϕ1 :=

(
L1/L

qρ,ξ

)
in L1/L. As

in the proof of the theorem, in the projection Gal(M( p
√
ζ )/M) −−−→ Gal(L1/L), we obtain

(when κ 6≡ 0 (mod p)) that
(
L1/L

qρ,ξ

) p
log(q)

=
(
M( p
√
ζ )/M

Q

)κ−1

|L1

is independent of q because of

the equality
(
M( p
√
ζ )/M

Q

)κ−1

. p
√
ζ = ζ . p

√
ζ.

Moreover, this is independent of the choice of ξ (of order n) since for all t ∈ Gal(L/Q),
ϕρ,ξt = t′ . ϕρ,ξ . t

′−1 projects on ϕρ,ξt |L1
= t′ . ϕρ,ξ |L1

. t′−1 = t′ . ϕ1 . t
′−1 = ϕ1, in L1/L, since

Gal(L1/Q) is Abelian.

Which justifies the normalization and the fact that, in some sense, under the existence of
a nontrivial solution of the SFLT equation, the symbol

[
F∗/L

q∗

]
ρ
does not depend essentially

on q but on ρ. Of course, n and κ depend on q, but not in a deep arithmetical manner
(especially for κ taking a finite number of values modulo p) and another way to understand
this independence is the following: if q1 and q2 are two distinct primes in Qρ, giving the same
value of n and of κ 6≡ 0 (mod p), then

[
F∗/L

q1∗

]
ρ

=
[
F∗/L

q2∗

]
ρ
for Fn/L; if q1, ..., qr are such that

κi ≡ 0 (mod p), for1 ≤ i ≤ r, then we have
[
F∗/Li
qi∗

]
ρ

= 1 for Fni/Li, for 1 ≤ i ≤ r.
These facts may constitute an excessive link between these primes.

From Theorem 5.6, assuming that the class of q1−c
ρ,ξ is the pth power of a class, i.e.,

q1−c
ρ,ξ = ap (1 + p βρ,ξ) ,

for an ideal a of L and a p-integer βρ,ξ of L, then
(
η1
Q

)
M

= ζ
1
2
f TrL/Q

(
βρ,ξ
ξ+1

)
, where TrL/Q is the

absolute trace in L/Q. So with a counterexample to SFLT we must have

TrL/Q
( βρ,ξ
ξ + 1

)
≡ −f−1 u− v

u+ v
κ ≡ −u− v

u+ v

log(q)

p
(mod p) in the nonspecial cases, p ≥ 3,

TrL/Q
( βρ,ξ
ξ + 1

)
≡ 0 (mod p) in the special case, p > 3 .
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This means that, under a nontrivial counterexample (u, v) to SFLT,
(
Fξ/L

qρ,ξ

) p
log(q)

&
p

log(q)
TrL/Q

(
βρ,ξ
ξ + 1

)
, if κ 6≡ 0 (mod p),

(
resp.

(
Fξ/L

qρ,ξ

)
& TrL/Q

(
βρ,ξ
ξ + 1

)
, if κ ≡ 0 (mod p)

)
,

both equivalent to the knowledge of
[
F∗/L

q∗

]
ρ
, only depend on ρ = v

u for primes q ∈ Qρ and

are trivial when κ ≡ 0 (mod p).

Remark 6.8. — In the context of Fermat’s equation with r = y
x , r

′ = z
y , r

′′ = x
z (supposed

of orders n, n′, n′′ modulo q, prime to p), we have similar writings to those of Lemma 6.5 by
using the ω-cyclotomic units η1, η′1, η′′1 .
From the relation x + y + z ≡ 0 (mod p), the values of r′, r′′ modulo p can be computed
from r, (12) and we get the following relations valid for p ≥ 3.

(i) If κ 6≡ 0 (mod p), then
(
M( p
√
η1 )/M

Q

)κ−1

· p
√
η1 = ζ

1
2

r−1
r+1 · p

√
η1,

(
M( p
√
η′1 )/M

Q′

)κ−1

· p
√
η′1 = ζ

1
2+r · p

√
η′1,

(
M( p
√
η′′1 )/M

Q′′

)κ−1

· p
√
η′′1 = ζ−

1
2− 1

r · p
√
η′′1 , if r 6≡ 0 (mod p),

(
M( p
√
η′′1 )/M

Q′′

)κ−1

· p
√
η′′1 = p

√
η′′1 , if r ≡ 0 (mod p) .

(ii) If κ ≡ 0 (mod p), the three Frobenius automorphisms
(
M( p
√ • )/M

•
)
are trivial.

6.2. Law of ρ-decomposition relative to the family F̂n. — We still suppose p > 3.
We have, under a nontrivial solution (u, v) of the SFLT equation and under the condition
q - u v (u2 − v2), the following interpretation of the equality (Theorem 3.3):

(
η1
Q

)
M

= ζ−
1
2
u−v
u+v

κ
(
resp.

(
η1
Q

)
M

= 1
)

for any Q | qρ,ξ

in the nonspecial cases u+ v 6≡ 0 (mod p) (resp. in the special case u+ v ≡ 0 (mod p)).

Consider the ω-cyclotomic unit η̂1 := η1 ζ
1
2
u−v
u+v (resp. η̂1 := η1) in the nonspecial cases (resp.

in the special case) (see Definition 3.2).

(i) In the nonspecial cases we have η̂1 = (1 + ξ ζ)eω ζ−
1
2

+ 1
2
u−v
u+v = (1 + ξ ζ)eω ζ−

v
u+v , which is

by construction such that
(
η̂1
Q

)
M

= 1, but the unit η̂1 is not anymore real and canonical; its
definition from η1 is independent of q under a given solution of the SFLT equation.

(12) The notations r, r′, r′′ correspond to ρ = v
u
in the equation (u+v ζ)Z[ζ] = pδ wp1, for (u, v) = (x, y), (y, z)

in the nonspecial cases, then (u, v) = (z, x) in the special case; this explains the changes of notations in the
Fermat context. We obtain easily r′ ≡ −1− 1

r
, r′′ ≡ −1

r+1
(mod p).
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(ii) In the special case we have η̂1 := η1 = (1 + ξ ζ)eω ζ−
1
2 , which is real and such that(

η̂1
Q

)
M

= 1.

The extension M( p
√
η̂1 )/M is splitted over L by a p-cyclic p-ramified extension F̂ξ similar to

Fξ except that it is not diedral over L+ in the nonspecial cases.
We note that the relation η̂1 = η1 ζ

1
2
u−v
u+v in the nonspecial cases shows that F̂ξ is a subfield

of the compositum FξL1 obtained in an obvious systematic way; F̂ξ/L is still of degree p and
p-ramified since n > 2. We have F̂ξ = Fξ if and only if u2 − v2 ≡ 0 (mod p).

We still have t . F̂ξ = F̂ξt . We call F̂n the compositum of the F̂ξt , t ∈ Gal(L/Q). Hence
Fn L1 = F̂n L1. We denote, as in Definition 6.2 (ii), by F̂n the family (F̂ξ′)ξ′ of order n.
Then under a nontrivial solution (u, v) of the SFLT equation, we must have for ρ := v

u the
splitting of qρ,ξ in F̂ξ (i.e., a ρ-splitting of q for F̂n).
In other words if we define in general, as in Definition 6.2 (i), the symbol

[
F̂∗/L

q∗

]
ρ

:=
((

F̂ξt/L

qρ,ξt

) p
log(q)

)
t∈Gal(L/Q)

if κ 6≡ 0 (mod p),

[
F̂∗/L

q∗

]
ρ

:=
((

F̂ξt/L

qρ,ξt

))
t∈Gal(L/Q)

if κ ≡ 0 (mod p) ,

the analog of Theorem 6.6 is that
[
F̂∗/L

q∗

]
ρ

= 1 for all q ∈ Qρ, where

Qρ :=
{
q prime, q - u v (u2 − v2) & the order of ρ modulo q is prime to p

}
.

A contradiction would be that there exist primes q ∈ Qρ such that
[
F̂∗/L

q∗

]
ρ
6= 1, i.e., qρ,ξ

is inert in F̂ξ, which is independent of the representative pair (F̂ξt , qρ,ξt) (we then speak of
“ ρ-inertia of q for F̂n ”) and has a probability very near from p−1

p since p− 1 nontrivial values
of the symbol are possible.
Since the rational ρ, corresponding to a nontrivial solution (u, v) of the SFLT equation, is in
general ineffective, in practice we must be able to find a contradiction with any rational ρ,

distinct from 0 and ±1, for infinitely many primes q ∈ Qρ, i.e., to prove that
[
F̂∗/L

q∗

]
ρ
6= 1 for

infinitely many primes q ∈ Qρ (see Conjecture 6.10).
In the context of Fermat’s equation, we deduce from the ω-units η1, η′1, η′′1 (see Remark 6.8),
the ω-units, where r := y

x 6≡ ±1 (mod p),

η̂1 := (1 + ξ ζ)eω ζ
−r
r+1 ,

η̂′1 := (1 + ξ′ ζ)eω ζ−r−1,

η̂′′1 := (1 + ξ′′ ζ)eω ζ
1
r , if r 6≡ 0 (mod p),

η̂′′1 := (1 + ξ′′ ζ)eω ζ−
1
2 , if r ≡ 0 (mod p) ,

giving a trivial pth power residue symbol at Q, Q′, Q′′, respectively.
We have the same conclusion as above for the extensions F̂ξ/L, F̂ξ′/L′, F̂ξ′′/L′′ defined from
M
(
p
√
η̂1

)/
M , M ′

(
p
√
η̂′1
)/
M ′, M ′′

(
p
√
η̂′′1
)/
M ′′.
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Returning to SFLT with a nontrivial solution (u, v), we put, for ρ := v
u ,

Qspl
ρ :=

{
q ∈ Qρ, κ 6≡ 0 (mod p) & q has a ρ-splitting for Fn

}
,

Q̂in
ρ :=

{
q ∈ Qρ, κ 6≡ 0 (mod p) & q has a ρ-inertia for F̂n

}
.

Lemma 6.9. — Let p be a prime, p > 3. If u2 − v2 6≡ 0 (mod p) then we have Qspl
ρ ⊆ Q̂in

ρ .
If u2 − v2 ≡ 0 (mod p) then we have Qspl

ρ ∩ Q̂in
ρ = ∅.

Proof. — We know that F̂ξ is contained in the compositum L1Fξ, is distinct from L1 since
ξ 6= ±1, and that F̂ξ = Fξ if and only if u2 − v2 ≡ 0 (mod p).

Suppose that F̂ξ is distinct from Fξ; if q ∈ Qspl
ρ , qρ,ξ splits in Fξ/L and the Frobenius

automorphism of qρ,ξ in L1Fξ/L fixes Fξ and since this Frobenius automorphism must be
nontrivial in L1/L (κ 6≡ 0 (mod p)) then it projects to a nontrivial Frobenius automorphism
in F̂ξ/L. When F̂ξ = Fξ, the result is clear.

It would be interesting to examine the problem of the law of ρ-decomposition of q for Fn for
arbitrary ρ independently of any equation giving exceptional values of ρ.
The natural conjecture in this direction is the following; we consider two situations, both
implying FLT: the first one, using the family Fn, implies SFLT in the nonspecial cases under
the supplementary assumption u − v 6≡ 0 (mod p), the second one, using the family F̂n,
implies SFLT unconditionally.
To simplify the notations we still put K = Q(µp), L = Q(µn), M = LK.

Conjecture 6.10. — Let p be a prime > 3, and let ρ = v
u , with g.c.d. (u, v) = 1, be a rational

distinct from 0 and ±1. Put:
Qρ :=

{
q prime, q - u v (u2 − v2) & the order of ρ modulo q is prime to p

}
.

(i) Nonspecial cases (u + v 6≡ 0 (mod p), κ 6≡ 0 (mod p)). Let q ∈ Qρ be such that κ 6≡ 0
(mod p), let n be the order of ρ modulo q, and let Fn be the family

(
Fξ′
)
ξ′ of order n

of the

p-cyclic extensions of L in H−L [p], defined by the identity Fξ′K = M
(
p
√

(1+ξ′ ζ)eω ζ−
1
2

)
.

Say that q has a ρ-splitting for Fn if
[
F∗/L

q∗

]
ρ

= 1, i.e., qρ,ξ := (q, u ξ − v) splits in Fξ/L

(condition independent of the choice of ξ of order n).
Then the set of primes q ∈ Qρ having a ρ-splitting for Fn, is infinite.
(ii) Nonspecial and special cases with arbitrary κ. Let q ∈ Qρ, let n be the order of ρ mod-
ulo q, and let F̂n be the family

(
F̂ξ′
)
ξ′ of ordern

of the p-cyclic extensions of L in HL[p], de-

fined by the identity F̂ξ′K = M
(
p
√

(1+ξ′ ζ)eω ζ−
v

u+v
)
if u + v 6≡ 0 (mod p), and by F̂ξ′K =

M
(
p
√

(1+ξ′ ζ)eω ζ−
1
2

)
otherwise.

Say that q has a ρ-inertia for F̂n if
[
F̂∗/L

q∗

]
ρ
6= 1, i.e., qρ,ξ := (q, u ξ − v) is inert in F̂ξ/L

(condition independent of the choice of ξ of order n).

Then the set of primes q ∈ Qρ having a ρ-inertia for F̂n, is infinite.
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Remark 6.11. — Recall that to prove the first case of FLT for p, the existence of a unique
q ∈ Qρ with κ 6≡ 0 (mod p) (ρ = y

x or z
y , for a solution (x, y, z) of Fermat’s equation) having

a ρ-splitting for Fn is sufficient, in contrast with the second case which needs in practice
infinitely many such primes since ρ is ineffective.
In the first case, p - xy (x2−y2) (by Lemma 2.2) and so, if κ 6≡ 0 (mod p) then q - xy (x2−y2)
by the two theorems of Furtwängler (Corollaries 2.15, 2.16, and Remark 3.5).
Hence q ∈ Qρ as soon as κ 6≡ 0 (mod p) & q 6≡ 1 (mod p) and it is possible to check the
existence of a suitable q as follows in the spirit of Example 5.3. Let p be a large prime and let
q be a small prime (q = 5, 7, 11, ...), so that the above two conditions are in general trivially
satisfied. Then as soon as, for all n | q − 1, n > 2, the ω-cyclotomic unit η1 = (1 + ξ ζ)eω ζ−

1
2

(for fixed ξ of order n) is locally a pth power at every prime ideal q | q, the first case of FLT
is true for p.
The second case supposes to find q large enough, hence this method does not work and needs
at least analytic reasonings.

If we examine, for logical reasons, the case p = 3 for SFLT, we know that for any of the six
families of solutions (u, v) of the SFLT equation (see Remark 2.6), we have by Theorem 3.3
(supposing κ 6≡ 0 (mod 3) and defining η̂1 in an analogous way to get a trivial symbol):

(i)
(
η1
Q

)
M

= j−
1
2
u−v
u+v

κ = 1, in the first case (i.e., u v (u + v) 6≡ 0 (mod 3) which implies

u− v ≡ 0 (mod 3)), hence η̂1 = η1 and F̂ξ = Fξ;

(ii)
(
η1
Q

)
M

= j±
1
2
κ in the second case (u v ≡ 0 (mod 3)), thus η̂1 = η1 j

∓ 1
2 and F̂ξ 6= Fξ;

(iii)
(
η1
Q

)
M

= j
1
2
u+v
3 v

κ in the special case (u+ v ≡ 0 (mod 3)) for which η̂1 = η1 j
− 1

2
u+v
3 v and

F̂ξ = Fξ if and only if u+ v ≡ 0 (mod 9).

Note that F̂ξ associated to η̂1 is in general distinct from the “ simplest cyclic cubic field ” F shξ ,
associated to ηsh1 = (1 + ξ j)e

′
ω , defined in Subsection 5.3, with e′ω = s+ 2.

If u+ v ≡ 0 (mod 3) and u+ v 6≡ 0 (mod 9) then, for ρ := v
u , we get Qspl

ρ ⊆ Q̂in
ρ ; if u+ v ≡ 0

(mod 9) or u− v ≡ 0 (mod 3) then Qspl
ρ ∩ Q̂in

ρ = ∅.
We see that u − v ≡ 0 (mod 3) in case (i), u v ≡ 0 (mod 3) in case (ii); for (iii), we verify
from Remark 2.6 that ρ ∈ {−1, 2, 5} modulo 9, which leads to 1

2
u+v
3 v ∈ {0, 1, 2} modulo 3.

See Section 8 to go thoroughly into the exceptional case p = 3.

6.3. Construction of universal Abelian polynomials. — In this subsection we intend
to give equivalent conditions to those studied in the previous subsections, with a polynomial
formalism over Q.
The group g = Gal(K/Q) acts canonically on the field K(Y ) of rational fractions in the
indeterminate Y . Consider

η1(Y ) := (1 + Y ζ)eω ζ−
1
2 ∈ K(Y ) .

Then if s = sr is a generator of g we have

s .η1(Y ) :=
(
(1 + Y ζs) ζ−

1
2
s
)eω =

(
(1 + Y ζ) ζ−

1
2
)s eω=

(
(1 + Y ζ) ζ−

1
2
)reω+pΛ

,
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since sr eω= r eω + pΛ for some Λ ∈ Z[g] (see Definition 2.8 (iii)). Then we obtain

s .η1(Y ) = η1(Y )r ·
(
(1 + Y ζ) ζ−

1
2
)pΛ

.

Consider the Kummer extension K(Y )( p
√
η1(Y ) )/K(Y ); since this extension is Abelian over

Q(Y ), the K(Y )-automorphism of K(Y )( p
√
η1(Y ) ), still denoted by s, defined by

s · p
√
η1(Y ) := ( p

√
η1(Y ) )r ·

(
(1 + Y ζ) ζ−

1
2
)Λ
,

is of order p− 1 and it is a classical result that the trace Ψ :=
∑p−1

k=1 s
k · p
√
η1(Y ), denoted by

TrM/L

(
p
√
η1(Y )

)
by abuse, defines a primitive element of the subextension cyclic of degree p

contained in K(Y )( p
√
η1(Y ) )/Q(Y ), that we denote by FY , so that the specializations Y 7→ ξ

define the extensions Fξ/Q(ξ) (see Subsection 4.2).
For instance, for p = 3, eω = s − 1, s = s2, s eω = 1 − s = −eω (thus r = 2, Λ = −eω),
η1(Y ) = (1 +Y j)eωj−

1
2 = ((1 +Y j) j−

1
2 )s−1. We have Ψ =

(
(1 + Y j2) j

1 + Y j

) 1
3

+
(

(1 + Y j) j2

1 + Y j2

) 1
3 ,

for which Ψ3 =
(1 + Y j2) j

1 + Y j
+

(1 + Y j) j2

1 + Y j2
+ 3 Ψ, giving the irreducible polynomial defining FY

PY := Irr(Ψ,Q(Y )) = X3 − 3X +
Y 2 − 4Y + 1

Y 2 − Y + 1
, of discriminant

(
9 (Y 2 − 1)

Y 2 − Y + 1

)2
.

For e′ω = s + 2 instead of eω = s − 1 and η′1(Y ) := (1 + Y j)e
′
ωj−

1
2 , we obtain the monic

polynomial
X3 − 3 (Y 2 − Y + 1)X + Y 3 + 1

of Z[Y ][X] which defines the same field FY ; so, to simplify, we still denote it by PY .

For ηsh1 (Y ) := (1 +Y j)e
′
ω we obtain X3− 3 (Y 2−Y + 1)X + (Y − 2)(Y 2−Y + 1); then with

the linear transformation X 7→ Y X − 1) we get the polynomial

P shY := X3 − 3Y −1X2 − 3 (1− Y −1)X + 1

defining the field F shY , then defining, by specialization Y 7→ ξ, the “ simplest cyclic cubic
fields ” F shξ over Q(ξ) used in Subsection 5.3.

Definition 6.12. — (i) The general polynomial of degree p obtained from the Kummer
radical η1(Y ) = (1 + Y ζ)eω ζ−

1
2 , and denoted by

PY := Xp +Ap−1(Y )Xp−1 + · · ·+A0(Y ), Ai(Y ) ∈ Q(Y ) ,

will be called the universal Abelian polynomial of degree p for the SFLT problem; it defines FY .
We denote by Pξ (resp. Pρ) the Abelian polynomials obtained by the specializations Y 7→ ξ
(resp. Y 7→ ρ); Pξ define Fξ over L = Q(ξ).
(ii) The polynomial is canonical as soon as we take the unique representative e′ω =

∑
k uk sk

with 1 ≤ uk ≤ p−1, which gives η′1(Y ) := (1+Y ζ)e
′
ω ζ−

1
2 ∼ η1(Y ) and the monic polynomial,

still defining FY and still denoted PY ,

PY := Xp +Ap−1(Y )Xp−1 + · · ·+A0(Y ), Ai(Y ) ∈ Z[Y ] .

The polynomial Pξ := Xp +Ap−1(ξ)Xp−1 + · · ·+A0(ξ) still defines the extension Fξ/Q(ξ).
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(iii) We consider the monic polynomial obtained from ηsh1 (Y ) := (1+Y ζ)e
′
ω . Then a “ simplest

polynomial ”, denoted by

P shY := Xp +Ashp−1(Y )Xp−1 + · · ·+Ash0 (Y ) ,

may be deduced by linear Q(Y )-translation of the variable X minimizing the degrees in Y ; an
interesting problem would be to find a canonical expression as for p = 3 (if it exists). It defines
the cyclic p-extension of Q(Y ) denoted by F shY , hence the cyclic p-extensions F shξ /Q(ξ).

For p = 5, from η′1(Y ) = (1 + Y ζ5)e
′
ωζ
− 1

2
5 , one obtains the following polynomial defining FY :

PY = X5− 10 (Y 4− Y 3+ Y 2− Y + 1)X3 + 5 (Y 4− Y 3+ Y 2− Y + 1) (Y 2+ 2Y + 1)X2

+5 (Y 4− Y 3+ Y 2− Y + 1) (2Y 4− 7Y 3+ 7Y 2− 7Y + 2)X

+(Y 4− Y 3+ Y 2− Y + 1) (Y 6− 4Y 5+ 10Y 3− 4Y + 1) .

Then ηsh1 (Y ) = (1 + Y ζ5)e
′
ω , e′ω = 4 + 2 s+ s2 + 3 s3 with s = s2 yields to the polynomial

X5− 10 (Y 4− Y 3+ Y 2− Y + 1)X3 + 5 (Y 4− Y 3+ Y 2− Y + 1) (Y 2+ 2Y − 4)X2

+5 (Y 4− Y 3+ Y 2− Y + 1) (2Y 4− 2Y 3+ 2Y 2+ 3Y − 3)X

+(Y 4− Y 3+ Y 2− Y + 1) (Y 6− 9Y 5+ 10Y 4 − 10Y 3+ 5Y 2+ 6Y − 4) .

The linear transformation X 7→ Y 2X − 1− Y gives the polynomial

P shY = X5− 5Y −2X4+ 10 (−1 + Y −1− Y −2+ Y −3)X3 + 5 (1 + Y −1+ Y −2− Y −3+ Y −4)X2

+5 (2− 4Y −1+ 4Y −2− 5Y −3+ 4Y −4− 2Y −5)X + 1− 10Y −1+ 10Y −2− 10Y −3+ 10Y −4− 8Y −5

which may be regarded as a “ simplest quintic cyclic polynomial ” defining F shY .

Proposition 6.13. — Let p be a prime > 3, and let ρ = v
u , with g.c.d. (u, v) = 1, be a

rational distinct from 0 and ±1; suppose u− v 6≡ 0 (mod p). (13) Put

Qρ :=
{
q prime, q - u v (u2 − v2) & the order of ρ modulo q is prime to p

}
.

Let q ∈ Qρ. We have the following results from Definition 6.12 (i, ii) on the universal Abelian
polynomials Pρ = Xp +Ap−1(ρ)Xp−1 + · · ·+A0(ρ):
(i) Case u + v 6≡ 0 (mod p). If κ 6≡ 0 (mod p) and if Pρ is reducible modulo q, then (u, v)
cannot be a solution in the nonspecial cases of the SFLT equation (u+ v ζ)Z[ζ] = wp

1.
(ii) Case u+ v ≡ 0 (mod p). If κ 6≡ 0 (mod p) and if Pρ is irreducible modulo q, then (u, v)
cannot be a solution in the special case of the SFLT equation (u+ v ζ)Z[ζ] = pwp

1.
(iii) If κ ≡ 0 (mod p) and if Pρ is irreducible modulo q, then (u, v) cannot be a solution in
any case of the SFLT equation (u+ v ζ)Z[ζ] = pδ wp

1, δ ∈ {0, 1}.

Proof. — Let n be the order of ρ modulo q; since q ∈ Qρ, we have n > 2, n | q − 1, p - n, and
for any choice of a nth root of unity ξ, qρ,ξ := (q, u ξ − v) is a prime ideal of L lying above q
(Lemma 2.11 and Corollary 2.12).

(13) When (u, v) = (x, y) or (y, z) for a solution (x, y, z) of Fermat’s equation, this assumption is satisfied
(Lemma 2.2).
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Then ρ ≡ ξ (mod qρ,ξ) and in case (i) there exists λ ∈ Z, a root modulo q of the polynomial
Pρ, such that

Pρ(λ) = λp +Ap−1(ρ)λp−1 + · · ·+A0(ρ) ≡ λp +Ap−1(ξ)λp−1 + · · ·+A0(ξ) ≡ 0 (mod qρ,ξ) ,

since q divides the left member. This means that Pξ has the root λ modulo qρ,ξ and that qρ,ξ
splits in Fξ/L. If (u, v) is a counterexample to SFLT, Theorem 3.3 in the nonspecial cases
gives

(
η1
Qρ,ξ

)
M

= ζ−
1
2
u−v
u+v

κ 6= 1 by assumption, which is equivalent to the inertia of qρ,ξ in

Fξ/L (contradiction). The proofs of cases (ii) and (iii) are similar but inverted; we have

Pρ = Xp +Ap−1(ρ)Xp−1 + · · ·+A0(ρ) ≡ Xp +Ap−1(ξ)Xp−1 + · · ·+A0(ξ) (mod qρ,ξZL[X])

giving, by assumption on the left polynomial Pρ, that the image in ZL/qρ,ξ[X] ' Fq[X]
of Pξ = Xp + Ap−1(ξ)Xp−1 + · · · + A0(ξ) is irreducible. Thus qρ,ξ is inert in Fξ/L while(

η1
Qρ,ξ

)
M

= 1 for a solution in these cases (contradiction).

In other words, the two corresponding properties giving a proof of SFLT (under the assumption
u−v 6≡ 0 (mod p)) are the following; they can also be obtained from Lemma 2.14 considering
the expression of γωζ−

1
2 :

(a) For any rational ρ = v
u (with g.c.d. (u, v) = 1), distinct from 0 and ±1, we have:

(a1) Case u + v 6≡ 0 (mod p). There exists at least one prime q ∈ Qρ with κ 6≡ 0 (mod p)
such that Pρ is reducible modulo q.
(a2) Case u + v ≡ 0 (mod p). There exists at least one prime q ∈ Qρ with κ 6≡ 0 (mod p)

such that Pρ is irreducible modulo q.
(b) For any rational ρ = v

u (with g.c.d. (u, v) = 1), distinct from 0 and ±1, there exists at
least one prime q ∈ Qρ with κ ≡ 0 (mod p) such that Pρ is irreducible modulo q.

Of course, without an independent approach (analytic or geometric), the problem has no
solution since Pρ can be, in case (a1), a polynomial defining Q1 (the subfield of degree p of
Q(µp2)), in which case all the primes which split in Q1/Q are such that κ ≡ 0 (mod p), in
cases (a2), Pρ can be splitted over Q, and in case (b), it can define Q or Q1.
The proof of (a) implies the two cases of FLT, taking (u, v) = (x, y) or (z, y) (case (a1)). It
implies the second case of FLT, taking (u, v) = (x, z) (case (a2)).
The proof of (b) implies the two cases of FLT, taking any pair for (u, v).
This reasoning leads to the following polynomial obstructions (concerning the universal
Abelian polynomial PY ) for a proof of FLT: Let Kρ be the number field defined by the
universal Abelian polynomial

Pρ = Xp +Ap−1(ρ)Xp−1 + · · ·+A0(ρ) .

We know that Kρ/Q is a cyclic extension of degree 1 or p.

If Kρ is distinct fromQ andQ1, the Čebotarev density theorem leads to a proof of the existence
of infinitely many primes q ∈ Qρ verifying each of the conditions (a1), (a2), (b). The condition
q ∈ Qρ can be easily realized taking primes q not totally split in K/Q. In case (a1), it is
sufficient to consider KρQ(µp2) taking a Frobenius automorphism of q in KρQ(µp2)/Q which
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fixes Kρ and does not fix the fields KρQ1 and KρK. In case (a2), the Frobenius automorphism
must not fix Kρ nor Q1. In case (b), it must fix Q1 but not Kρ.
If Kρ = Q, then (a2) and (b) are of empty use since Pρ cannot be irreducible in any Fq[X];
but (a1) applies, if ρ 6≡ −1 (mod p), to the two cases of FLT.
If Kρ = Q1, then (a1) and (b) are of empty use since the assumptions on the decomposition
of q are incompatible; then (a2) applies, if ρ ≡ −1 (mod p), to the second case of FLT.
Using the nonspecial cases of SFLT to obtain the first and second cases of FLT (see (i)), then
the special case of SFLT to obtain again the second cases of FLT (see (ii)), we can state:

Corollary 6.14. — Let p be a prime > 3 and let PY = Xp + Ap−1(Y )Xp−1 + · · · + A0(Y )
be the universal Abelian polynomial (see Definition 6.12 (i, ii)), and let Pρ be the universal
Abelian polynomial of Q[X] obtained by specialization Y 7→ ρ, for any rational ρ.
(i) Fermat’s Last Theorem holds for p as soon as the following property is satisfied:

For all rationals ρ, distinct from 0 and ±1 and such that ρ 6≡ −1 (mod p), the universal
Abelian polynomial Pρ does not define the subfield Q1 of degree p of Q(µp2).
(ii) The second case of Fermat’s Last Theorem holds for p as soon as the following property
is satisfied:

For all rationals ρ, distinct from 0 and ±1 and such that ρ ≡ −1 (mod p), the universal
Abelian polynomial Pρ is irreducible over Q (i.e., has no rational roots).

The universal Abelian polynomial

PY = Xp +Ap−1(Y )Xp−1 + · · ·+A0(Y )

has the nontrivial property that Pξ = Xp+Ap−1(ξ)Xp−1+· · ·+A0(ξ) is irreducible inQ(µn)[X]
for all primitive nth root of unity ξ, n > 2, n 6≡ 0 (mod p), and defines a p-ramified cyclic
extension Fξ of Q(µn), distinct from Q(µn)Q1, satisfying to the fundamental Theorem 6.6.

7. Normic relations for cyclotomic units

In this section we give a relation between two ω-units η0
1 and η1, for instance associated with

the classes Cρ(q0) and Cρ(q) of two primes q0 and q, for which the pairs (ξ0, q
0
ρ,ξ0

), (ξ, qρ,ξ),
are such that the order n0 of ξ0 divides the order n of ξ, with the condition p - n.
Put n = n0d. We introduce the following notations:

L0 = Q(µn0), L = Q(µn), M0 = L0K, M = LK,

N := NM/M0
, η0

1 = (1 + ξ0 ζ)eω ζ−
1
2 , η1 = (1 + ξ ζ)eω ζ−

1
2 ;

to fix the notations, we suppose that ξ0 = ξd.
Since η1 is a cyclotomic unit, the action of the relative norm N on this unit is well-known and
we now recall the result in our particular context.

Proposition 7.1. — Let S be the set of distinct primes dividing d and not dividing n0.
Then we have N(η1) = (η0

1)Λ0, where Λ0 ≡ d .
∏
`∈S

(1− `−1 (t0` )
−1) (mod p), t0` ∈ Gal(M0/K)

being the Artin automorphism defined by ξt
0
`

0 := ξ`0.
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Proof. — By induction we can suppose that d is a prime `. Let ψ := ξn0 which is a primitive
`th root of unity.
(i) Case ` |n0. In this case S = ∅, [M : M0] = `, and

N(1 + ξ ζ) =
`−1∏
λ=0

(1 + ξ1+λn0ζ) =
`−1∏
λ=0

(1 + ξ ψλζ)

= 1 + ξ` ζ` = 1 + ξ0 ζ
` = (1 + ξ0 ζ)s` .

Then N(η1) = (1 + ξ0 ζ)s`eω N(ζ)−
1
2 ∼ (1 + ξ0 ζ)` eω ζ−

1
2
` = (η0

1)` since s`eω ≡ `eω (mod p).

(ii) Case ` - n0. In this case S = {`} and N(1 + ξ ζ) =
`−1∏

λ=0, λ 6=λ0
(1 + ξ1+λn0ζ), where λ0 is the

unique value modulo ` such that 1 + λ0n0 ≡ 0 (mod `), giving from the computation in (i)

N(1 + ξ ζ) =
1 + ξ` ζ`

1 + ξ1+λ0n0 ζ
=

(1 + ξ0 ζ)
s`

1 + ξµ0 ζ
,

where 1 + λ0n0 = µ `, so that µ ≡ `−1 (mod n0). Thus

N(1 + ξ ζ) =
(1 + ξ0 ζ)

s`

1 + ξ`
−1

0 ζ
=

(1 + ξ0 ζ)
s`

1 + ξ
(t0

`
)−1

0 ζ

=
(

1 + ξ0 ζ

1 + ξ
(t0

`
)−1

0 ζs
−1
`

)s`
=
(

1 + ξ0 ζ

1 + (ξ0 ζ)
(σ0

`
)−1

)s`
,

where σ0
` ∈ Gal(M0/Q) is the Artin automorphism defined by σ0

` (θ) = θ` for any pn0th root
of unity θ; thus, since σ0

` = s` t
0
` , this yields

N(1 + ξ ζ)eω ∼
(

1 + ξ0 ζ

1 + (ξ0 ζ)
(σ0

`
)−1

)` eω
=
(
1 + ξ0 ζ

)` (1−(σ0
` )−1) eω ;

from (σ0
` )
−1 eω = s−1

` (t0` )
−1 eω ≡ `−1 (t0` )

−1 eω (mod p), we get the relation N(1 + ξ ζ)eω ∼
(
1 + ξ0 ζ

)` (1−`−1(t0` )
−1) eω . Finally, since in this case [M : M0] = ` − 1 and N(ζ) = ζ`−1 =

ζ` (1−`−1 (t0` )
−1), we obtain N(η1) ∼ (η0

1)` (1−`−1 (t0` )
−1) and the proposition follows.

If for instance Λ0 is invertible modulo p, with inverse Ω0, then η0
1 ∼ N(η1)Ω0 and, over L,

we can see the extension Fn0 (compositum of the conjugates of the Fξ0) as a subfield of
Fn with the precise laws of ρ-decomposition of q0 and q studied in this paper, in which
case the properties of the corresponding Frobenius automorphisms can be compared to give
strengthened conditions.

Remark 7.2. — For ` ∈ S, let d0
` be the order of t

0
` ; then 1− `−1 (t0` )

−1 is invertible modulo
p if and only if `d0` 6≡ 1 (mod p).

8. Analysis of the case p = 3 versus p 6= 3

In this section we consider the solutions of the SFLT equation for p = 3. They are a logical
obstruction to the relevance of general statements similar to Theorem 5.1, and we have ex-
plicited this obstruction in Subsection 5.3. Moreover these solutions are also related to the law
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of ρ-decomposition of Theorem 6.6 and we intend to explain why this theorem is compatible,
for p = 3, with the classical density theorems.
The main differences between the cases p = 3 and p > 3 are the following:
(i) There is an infinite number of solutions for the case p = 3, in contrast with the case p > 3,
even though we have not proved this probable result: the finiteness of the set of solutions of
Fermat’s equation for p was known before Wiles’ proof (Faltings’ Theorem); but the SFLT
equation has, a priori, more solutions; at least we can hope that there does not exist any
parametric family of solutions.
(ii) We shall exhibit a group of automorphisms of order 12, isomorphic to Z/2Z×Z/6Z, acting
on the set of solutions for p = 3, which creates some exceptional relations of compatibility
with density theorems, then we shall prove (Theorem 8.5) that for p > 3 the corresponding
group of automorphisms is of order 2, reduced to the identity and the inversion.

8.1. Another analysis of the case p = 3 for the obstruction to Theorem 5.1. — We
have proven in Subsection 5.3 the existence of this obstruction without considering the solu-
tions of the SFLT equation. We need a more precise analysis to understand this phenomenon
and to replace Theorem 6.6 in this context; this we shall explain in Subsection 8.2.
Let (u, v), g.c.d. (u, v) = 1, be a solution of the SFLT equation, let q be a prime such that
q - uv and such that ρ := v

u is of order n modulo q, n 6≡ 0 (mod 3). Consider the prime ideal
qρ,ξ = (q, u ξ − v), where ξ is of order n. Denoting j the 3th root ζ, let η1 = (1 + ξ j)eω j−

1
2 ,

with eω = s− 1.
Put L = Q(µn) and M = LK; then recall Theorem 3.3 for p = 3:

(i) First case. We have
(
η1
Q

)
M

= j−
1
2

u−v
u+v κ= 1 for any Q | qρ,ξ in M , since u ≡ v ≡ ±1(mod 3).

(ii) Second case. We have
(
η1
Q

)
M

= j±
1
2 κ for any Q | qρ,ξ since 3 |u v.

(iii) Special case. We have
(
η1
Q

)
M

= j
1
2

u+v
3 v κ for any Q | qρ,ξ, with 3 |u + v; we have seen, at

the end of Subsection 6.2, that u+v
3 v can take any value modulo 3.

From this, we see that the existence of q totally split in H−
L̃

[3]/Q for L̃ = Q(µq−1), or at least

L̃ = Q(µm) for a large m | q − 1, may be in contradiction with the existence of the solutions
of the second and special cases when κ 6≡ 0 (mod 3). Indeed, such a solution implies the
existence of a nontrivial Frobenius automorphism of q | q in a suitable cubic cyclic extension
Fξ/L, Fξ ⊆ H−L [3].

Definition 8.1. — The following definitions and notations are valid for any p ≥ 3. Consider
the field k(Y ), where k is any field of characteristic distinct from 2 and 3. Then let T be the
automorphism of k(Y ) such that T (Y ) := 2Y−1

Y+1 .
Let η1(Y ) := (1 + Y ζ)eω ζ−

1
2 ∈ K(Y ) be the formal ω-cyclotomic unit (see Subsection 6.3).

Recall that for any p, the automorphism of inversion T0 defined by T0(Y ) := Y −1 is such that
T0(η1(Y )) = (1 + Y −1 ζ)eω ζ−

1
2 ∼ η1(Y )−1. So we shall not consider it.

We intend to prove below various properties of compatibility, for p = 3, of the automorphism
T , with the method of ω-cyclotomic units developed here.
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Proposition 8.2. — (i) The automorphism T is of order 6 and the orbit of Y is
{
Y ;

2Y − 1

Y + 1
;
Y − 1

Y
;

Y − 2

2Y − 1
;
−1

Y − 1
;
−Y − 1

Y − 2

}
.

(ii) We have for ζ = j of order 3 and for η1(Y ) = (1 + Y j)eωj−
1
2 , the formula

T i(η1(Y )) ∼ η1(Y ) j
1
2
i, 0 ≤ i < 3 (equality up to a 3th power in K(Y )) .

Proof. — The point (i) is obvious. For (ii) we have

T (η1(Y ))=
(
1 +

2Y − 1

Y + 1
j
)eωj− 1

2 = (Y + 1 + (2Y − 1)j)eωj−
1
2 = (1− j + (2j + 1)Y )eωj−

1
2 ;

since 2j+1 = j (1−j), we get finally T (η1(Y )) = (1−j)eω(1+Y j)eωj−
1
2 ; but (1−j)eω = −j 1

2 ,
hence the result in this case.
The general formula is obtained by induction noting that T 3(η1(Y )) = η1(Y ).

Now, we show that T acts on the set of solutions of the SFLT equation for p = 3 in the
following way.

Proposition 8.3. — For any coprime integers u, v, put T ( vu) =: VU in Q∪{∞}, where (U, V )
is defined up to the sign. By abuse of notation we also write T (u, v) =: (U, V ).
Then the orbit of the solution (u, v) = (−s3 − t3 + 3s2t,−s3 − t3 + 3st2) (see Remark 2.6)
gives rise to the following identities:

T 0
( v
u

)
=

v

u
=
−s3 − t3 + 3st2

−s3 − t3 + 3s2t
,

T 1
( v
u

)
=

2v − u
u+ v

=
−s3 − t3 − 3s2t+ 6st2

−2s3 − 2t3 + 3s2t+ 3st2
,

T 2
( v
u

)
=

v − u
v

=
3s2t− 3st2

s3 + t3 − 3st2
,

T 3
( v
u

)
=

v − 2u

2v − u =
−s3 − t3 + 6s2t− 3st2

s3 + t3 + 3s2t− 6st2
,

T 4
( v
u

)
=

−u
v − u =

s3 + t3 − 3s2t

3st2 − 3s2t
,

T 5
( v
u

)
=
−v − u
v − 2u

=
2s3 + 2t3 − 3s2t− 3st2

s3 + t3 − 6s2t+ 3st2
,

which leads to the six fundamental families of solutions of the SFLT equation for p = 3.

Remark 8.4. — The orbit of 0 in Q∪{∞} (i.e., the T i(0
1), 0 ≤ i < 6) is {0; −1; ∞; 2; 1; 1

2}
and corresponds to the set of the six trivial solutions of the case p = 3.
For q 6≡ 1 (mod 3), q 6= 2, all the orbits in Fq∪{∞} have six elements; indeed, all the equations
of the form ay + b

cy + d
= y, deduced from the rational fractions of Proposition 8.2 (i), reduce to

y2−y+1 = 0 which is irreducible over Fq. The orbit of 0 in Fq∪{∞} is {0; −1; ∞; 2; 1; 2
−1}.

Later on we shall assume, for technical reasons, that the image of v
u in Fq ∪ {∞} is not in

this orbit; this is equivalent to q - u v (u2 − v2) (2u− v) (u− 2v); we compute that this is also
equivalent to the analogous condition q - s t (s2 − t2) (2s− t) (s− 2t) for the parameters (s, t)
defining the solutions. Under this assumption, the orders modulo q of the T i

( v
u

)
, 0 ≤ i < 6,

are defined and > 2.
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Let q 6= 3 be a prime; we suppose q 6≡ 1 (mod 3). Call ni | q − 1 the orders modulo q of
T i
( v
u

)
=:

vi
ui
, 0 ≤ i < 6, for any solution (u, v). As usual we put, with ρi := vi

ui
,

T i
( v
u

)
=

vi
ui
≡ ξi (mod qρi,ξi = (q, ui ξi − vi)), 0 ≤ i < 6, ξi of order ni .

where we recall that the pair (ξi, qρi,ξi) is defined up to conjugation, so that we can replace
(ξi, qρi,ξi) by any conjugate (ξ′i, qρi,ξ′i) to define the class Cρi(q). To simplify the formulas we
keep the notations (u, v) = (u0, v0), ρ = ρ0, ξ = ξ0, n = n0.
Consider for instance T

( v
u

)
=

v1
u1
≡ ξ1 (mod qρ1,ξ1) noting that v

u
≡ ξ (mod qρ,ξ) of order n.

To compare the two congruences we can take a prime ideal q̃ | qρ,ξ in L̃ := Q(µq−1) and make
sure that q̃ | qρ1,ξ1 by suitable conjugation of (ξ1, qρ1,ξ1), which leads to the congruences v

u
≡ ξ

(mod q̃) and v1
u1
≡ ξ1 (mod q̃), hence ξ1 ≡ v1

u1
= T

( v
u

)
≡ T (ξ) (mod q̃).

More generally we can write, for suitable choices of the ξi,

ξi ≡ T i(ξ) (mod q̃), 0 ≤ i < 6 ,

which yields, for the units ηi1 associated to the ξi (with η0
1 = η1),

ηi1 := (1 + ξi j)
eωj−

1
2

≡ (1 + T i(ξ) j)eωj−
1
2 ≡ η1 j

1
2
i (mod Q̃), 0 ≤ i < 3

(by Proposition 8.2 (ii)), for all Q̃ lying above q̃ in M̃ := L̃K.
Thus we have

(
ηi1

Q̃

)
M̃

=
(
η1

Q̃

)
M̃

(
j

1
2
i

Q̃

)
M̃

=
(
η1

Q̃

)
M̃
j

1
2
i κ for all Q̃ | q̃, 0 ≤ i < 3 ,

proving that the three symbols never coincide when κ 6≡ 0 (mod 3).

These symbols are identical to the symbols
(
ηi1
Qi

)
Mi

, for any Qi | qρi,ξi , 0 ≤ i < 3, where

Mi = LiK, with Li = Q(µni).
This proves that if for instance qρ0,ξ0 splits in Fξ0/L0 then qρ1,ξ1 and qρ2,ξ2 are inert in Fξ1/L1

and Fξ2/L2, respectively (this happens when (u0, v0) is the solution of the first case or that of
the special case with u0 +v0 ≡ 0 (mod 9)); in other words, the three laws of ρi-decomposition,
i.e., the three symbols

[
F∗/Li
q∗

]
ρi

of Definition 6.2, yield the three possibilities when κ 6≡ 0

(mod 3). See Example 8.9.

So, since this phenomenon happens in L̃ = Q(µq−1), statements like that of Theorem 5.1 are
empty for p = 3 since q cannot be totally split in H−

L̃
[3]/L̃ (compare with Subsection 5.3).

This distribution of the three possible Frobenius automorphisms, in the context of laws of
ρi-decomposition, must be compatible with the Čebotarev density theorem. See Subsection
8.2 for this aspect and Subsection 8.3 for some numerical evidence, especially Example 8.9
and 8.13.

Returning to the general case, it is necessary to see whether such a nontrivial automorphism
T can exist for p > 3 or not. If not, this will be a favorable argument for our purpose.
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Theorem 8.5. — Let p be a prime and let K := Q(ζ) where ζ is a primitive pth root of
unity. Put g := Gal(K/Q).
Consider M := Zp ⊗ZK(Y )×, as a multiplicative Zp[g]-module, and consider the idempotent
Eω := 1

p−1

∑
s∈g ω

−1(s) s ∈ Zp[g] (see Definition 2.8 (i, ii)).

Then for p > 3 there does not exist any automorphism T of Q(Y ), distinct from the identity
and the inversion Y 7→ Y −1, such that

T
((

1 + Y ζ
)Eω) :=

(
1 + T (Y ) ζ

)Eω ∼
(
1 + Y ζλ

)Eω ζµ (equality up to a pth power inM) ,

for some λ, µ ∈ Z, λ 6≡ 0 (mod p).

Proof. — Suppose that such a nontrivial automorphism does exist and put T (Y ) =
aY + b

cY + d

with a, b, c, d ∈ Q, ad−bc 6= 0. Note that the associated matrix M =

(
a b
c d

)
is considered

in G`2(Q)/D, where D is the subgroup of scalar matrices e I2, e ∈ Q×, where I2 is the unit
matrix. In particular, T is of finite order if and only if there exists n > 0 such thatMn = e I2.

For instance, M =

(
2 −1
1 1

)
is such that M6 = −27 I2.

For simplicity we work in K(Y )×/K(Y )×p 'M/Mp and we use the representative e′ω of Eω

defined by e′ω =
p−1∑
k=1

uk sk ∈ Z[g], with 1 ≤ uk ≤ p− 1 (see Definition 2.8 (iii)).

Then from the above identity we get the relation

(cY + d+ (aY + b) ζ)e
′
ω = (1 + Y ζλ)e

′
ω ζµ. G(Y )p, G(Y ) =

A(Y )

B(Y )
∈ K(Y )× ,

with A,B ∈ K[Y ], g.c.d. (A,B) = 1, hence the polynomial identity in K[Y ]

B(Y )p (cY + d+ (aY + b) ζ)e
′
ω = A(Y )p (1 + Y ζλ)e

′
ω ζµ .

The polynomials (cY +d+(aY +b) ζ)e
′
ω and (1+Y ζλ)e

′
ω each have p−1 distinct roots of orders

of multiplicity uk, with 1 ≤ uk ≤ p − 1: indeed, for the roots yk := −d+b ζk

c+a ζk
, 1 ≤ k ≤ p − 1,

yk = yk′ is equivalent to (ad− bc) (ζk − ζk′) = 0, hence the result; the other case is trivial.

We deduce that (cY + d + (aY + b) ζ)e
′
ω and (1 + Y ζλ)e

′
ω each are prime to A and B, then

have the same roots with the same multiplicity; since the uk are distinct, we get
d+ b ζ

c+ a ζ
= ζ−λ.

Then we have to solve
ζ1−λ a+ ζ−λ c− ζ b− d = 0 .

If λ 6≡ ±1 (mod p), then 1−λ, −λ, 1, and 0 are distinct modulo p, since p > 3. So, in general,
a ≡ b ≡ c ≡ d ≡ 0 (mod p) except if we have to consider the unique relation

ζp−1 = −1− ζ − · · · − ζp−2 ;

we verify that this cannot occur since p− 2 ≥ 3.
Hence λ ≡ 1 or−1 (mod p), giving the solutions (a, b, c, d) = (1, 0, 0, 1) (identity), (a, b, c, d) =
(0, 1, 1, 0) (inversion).
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8.2. Analysis of the case p = 3 for the principle of Theorem 6.6. — We now have
to explain why the existence of a law of ρ-decomposition (i.e.,

[
F∗/L
q∗

]
ρ
independent of q in the

sense of Remark 6.7) is indeed compatible for p = 3 but conjecturally not for p > 3.

The following analysis suggests a suitable property of repartition (in the meaning of the Čeb-
otarev density theorem) of the values of the Frobenius automorphisms, due to the infiniteness
of the set of solutions of the SFLT equation for p = 3 and to the fact that this set is the union
of six parametric families giving complementary values of these Frobenius automorphisms.
Let q be given such that κ 6≡ 0 (mod 3). As usual, for the solutions (u, v) = (u(s, t), v(s, t))
of the SFLT equation, put ρ := v

u and call ξ any primitive nth root of unity, where n | q − 1
is the order of ρ modulo q, n assumed prime to 3.

Set η1 := (1+ξ j)eωj−
1
2 , then qρ,ξ := (q, u ξ−v), and denote by Q any prime ideal ofM = LK

lying above qρ,ξ.

Of course, in this study n is not constant when the parameters s, t defining the solution (u, v)
vary, so that the statistical analysis cannot be done over a fixed field L = Q(µn) ⊆ Q(µq−1).
This problem is probably not too tricky since the number of divisors n of q − 1 is finite, q
being fixed.
We give below the distribution of the possible cases, which is in a remarkable accordance with
the definition of the solutions of the SFLT equation; we summarize this fact by means of the
diagram of the compositum L1Fξ, L1 = LQ1; note that L1M = M( p

√
ζ).

For p = 3 the compositum L1Fξ contains L1, Fξ, and two other cubic fields, F shξ and its
conjugate c F shξ by the complex conjugation c; recall that F shξ and c F shξ = F shξ−1 are the
“ simplest cubic fields ” described in Subsection 5.3, and that Fξ/L+ is diedral, L1/L

+ Abelian,
so that L1Fξ/L

+ is Galois.
Moreover we get F̂ξ among the three extensions distinct from L1 (see Subsection 6.2). We
denote by σ a generator of Gal(Fξ/L) and call ϕρ,ξ the Frobenius automorphism of qρ,ξ in
Fξ/L. We refer to Theorem 3.3 giving

(
η1
Q

)
M

for p = 3, hence the value of the Frobenius

automorphism ϕρ,ξ in an easy way (Lemma 6.5) by projection of
(
M( 3
√
η1)/M

Q

)
in Gal(Fξ/L).

(i) First case (u v (u+ v) 6≡ 0 (mod 3)) corresponding to the relation u+ v j = j2 (s+ t j)3.

We have
(
η1
Q

)
M

= j−
1
2
u−v
u+v

κ = 1 since u− v ≡ 0 (mod 3), F̂ξ = Fξ, and the diagram:

L1Fξ

F̂ξ = Fξ

F shξ

cF shξ

L1

L ϕρ,ξ = 1

in which qρ,ξ is inert in F shξ /L, cF shξ /L, and L1/L.
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(ii) Second case (u v ≡ 0 (mod 3)) corresponding to the relations u + v j = (s + t j)3 and
u+ v j = j (s+ t j)3.
We have

(
η1
Q

)
M

= j−
1
2
u−v
u+v

κ = j±
1
2
κ = j or j2; we get F̂ξ 6= Fξ, and the two equidistributed

diagrams

L1Fξ

Fξ

F̂ξ=F shξ

cF shξ

L1

L ϕρ,ξ = σ

L1Fξ

Fξ

F̂ξ=cF shξ

F shξ

L1

L ϕρ,ξ = σ2

in which qρ,ξ is inert in Fξ/L, cF shξ /L, and L1/L.

(iii) Special case (u+v ≡ 0 (mod 3)) corresponding to the relations u+v j = jh (j−1) (s+t j)3,
0 ≤ h < 3.
We have

(
η1
Q

)
M

= j
1
2
u+v
3 v

κ = 1, j, or j2, and the three equidistributed diagrams

L1Fξ

F̂ξ=Fξ

F shξ

cF shξ

L1

L ϕρ,ξ = 1

L1Fξ

Fξ

F̂ξ=F shξ

cF shξ

L1

L ϕρ,ξ = σ

L1Fξ

Fξ

F̂ξ=cF shξ

F shξ

L1

L ϕρ,ξ = σ2

in which the decomposition of qρ,ξ assembles all the above cases.
This suggests that the infiniteness of the set of solutions of the SFLT equation and their
particular repartition into six families, is a necessary fact for the compatibility with the
Čebotarev density theorem.

8.3. Numerical data for the case p = 3. — We give some numerical experimentations,
using [PARI], in the case p = 3, to highlight the above properties of this case.
We refer to Remark 2.6 for the six expressions of the solutions of the SFLT equation; when
we speak of “ a solution (u, v) ”, we consider one of the six families (u, v) = (u(s, t), v(s, t))
with parameters s and t.

Proposition 8.6. — Let n ≥ 1 be a fixed integer not divisible by 3; for any coprime integers
u, v, let Φn(u, v) :=

∏
ξ′ of order n

(u ξ′ − v).

(i) For any odd prime q ≡ 1 (mod n), with q ≡ −1 (mod 3) & κ 6≡ 0 (mod 3), there exist
an infinite number of pairs (s, t), s, t ∈ Z with g.c.d. (s, t) = 1, s + t 6≡ 0 (mod 3), such that
q |Φn(u, v) where (u, v) := (u(s, t), v(s, t)) is any fixed family of solutions.
More precisely we have the following results:
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(i1) Let (u′, v′) := T (u, v) = (u + v, 2v − u) be the solution deduced from the action of T
(Proposition 8.3). When the images of ρ = v

u and ρ′ = v′
u′ in Fq ∪ {∞} are in F×q , the

conditions q |Φn(u, v) and q |Φn′(u
′, v′) are equivalent, where n′ is the order of ρ′ modulo q.

(i2) The prime q ≡ 1 (mod n), with q ≡ −1 (mod 3) & κ 6≡ 0 (mod 3), divides at least one
of the integers Φn(u, v), where (u, v) = (s3 + t3− 3st2, 3st(s− t)) (second case), if and only if
there exists e ∈ F×q , of order n, such that the “ simplest cubic polynomial ” (see Subsection 5.3)
P she = X3 − 3 e−1X2 − 3 (1− e−1)X + 1 splits in Fq[X].

(i3) For each e giving a splitted polynomial P she , the pairs (s, t) giving the solutions (u, v) such
that ρ := v

u ≡ e (mod q) and q |Φn(u, v), are given via the three roots θk ∈ F×q of P she , by
means of the relation s− t θk ≡ 0 (mod q), s, t ∈ Z, g.c.d. (s, t) = 1, s+ t 6≡ 0 (mod 3). The
image of ρ in F×q is in the exceptional orbit if and only if e = 2.

(ii) For any given q > 2 (q ≡ −1 (mod 3) & κ 6≡ 0 (mod 3)), there exist q−2
3 values of e, of

orders > 2, such that the polynomial P she = X3− 3 e−1X2− 3 (1− e−1)X + 1 splits in Fq[X],
then q−5

3 values of e such that P she splits and such that e is not in the exceptional orbit.

(iii) Under the assumptions n > 2, q ≡ 1 (mod n), q ≡ −1 (mod 3) & κ 6≡ 0 (mod 3), for
any of the six families of solutions (u, v), the relation q |Φn(u, v) is equivalent to the ρ := v

u -
splitting of q for the family of “ simplest cubic fields ” Fshn :=

(
F shξ′

)
ξ′ of ordern

(
i.e., equivalent

to
[
F sh∗ /L

q∗

]
ρ

= 1
)
where F shξ′ K = M

(
3
√

(1 + ξ′j)e′ω
)
(see Subsection 6.2).

Proof. — Let ξ of order n and let L = Q(µn). Since g.c.d. (s, t) = 1 and s + t 6≡ 0 (mod 3),
this yields immediately g.c.d. (u, v) = 1 for any solution (u, v) = (u(s, t), v(s, t)) among the six
families; thus u and v are not divisible by any prime q dividing Φn(u, v) which is homogeneous
of the form uφ(n) ± · · · ± vφ(n) in coprime integers u, v. So the image of ρ = v

u in Fq ∪ {∞}
lies in F×q . From Lemma 2.11 and Corollary 2.12, since q ≡ 1 (mod n), q |Φn(u, v) is thus
equivalent to the fact that ρ = v

u is of order n modulo q, hence it is equivalent to the fact
that (q, u ξ − v) =: qρ,ξ is a prime ideal lying above q in L.

We first prove that the condition q ≡ 1 (mod n) & q |Φn(u, v) is independent of the choice of
the six solutions given by the action of the powers of T on (u, v). The writings ρ, ρ′, n, n′ are
always defined except possibly if the image of ρ = v

u in Fq ∪ {∞} is in the exceptional orbit
{0; −1; ∞; 2; 1; 2

−1}, which is equivalent to q | s t (s2 − t2) (2s− t) (s− 2t), see Remark 8.4.
Meanwhile, only the cases where the image of ρ′ := v′

u′ takes the two values 0 (u − 2v ≡ 0

(mod q), ρ = 2
−1) and ∞ (u+ v ≡ 0 (mod q), ρ = −1) are not defined.

We suppose implicitly that ρ /∈ {−1; 2; 1; 2
−1}, otherwise we verify directly that if (for

instance) v
u ≡ −1 (mod q), we have Φ2(u, v) ≡ Φn0(T 2(u, v)) ≡ Φ1(T 3(u, v)) ≡ Φn0(T 4(u, v))

(mod q), where n0 | q − 1 is the order of 2 modulo q.

Then the set of solutions (ui, vi) := T i(u, v), 0 ≤ i < 6, is such that the orders modulo q of
the vi

ui
are defined and distinct from 1 and 2.

Starting from such a parametric solution (u, v), we fix some prime ideal q̃ | qρ,ξ in L̃ = Q(µq−1).
We then have u ξ − v ≡ 0 (mod q̃).
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Consider the solution (u′, v′) defined by v′
u′ := T

(
v
u

)
= 2v−u

u+v . Let ξ′ be the unique (q − 1)th
root of unity congruent to T (ξ) = 2ξ−1

ξ+1 modulo q̃ (the order n′ of ξ′ divides q − 1 and is
distinct from 1 and 2). Then we have

u′ ξ′ − v′ ≡ (u+ v)
2 ξ − 1

ξ + 1
− (2v − u)

≡ 1

ξ + 1

(
(u+ v) (2ξ − 1)− (2v − u) (ξ + 1)

)
≡ 3

ξ + 1
(u ξ − v) (mod q̃) ,

proving the equivalence of the two congruences. The result follows by induction on the powers
of T and gives the congruences ui ξi − vi ≡ 0 (mod q̃) for which vi

ui
:= T i

(
v
u

)
, ξi ≡ T i(ξ)

(mod q̃), 0 ≤ i < 6; each congruence reduces to a congruence modulo qρi,ξi in Li := Q(µni),
where qρi,ξi = q̃ ∩ ZLi and ni is the order of ξi.
The orders ni > 2 are divisors of q− 1, not necessarily equal to n (see Example 8.9). But the
conditions q |Φni(ui, vi) & ni > 2, 0 ≤ i < 6, are equivalent to each other. This proves (i1).
So we can chose any family of solutions to prove the assertions (i2) and (i3) for the non
exceptional orbit.
For instance, take the general solution of the second case (3 | v), let ξ of order n | q − 1, and
let q = qρ,ξ | q in L; then we have to study the congruence

u ξ − v = (s3 + t3 − 3 st2) ξ − 3 st(s− t) ≡ 0 (mod q) .

Put θ :=
s

t
, which yields the congruence θ3 − 3ξ−1 θ2 − 3(1− ξ−1) θ + 1 ≡ 0 (mod q).

For fixed n > 2, the φ(n) ideals of L lying above q ≡ 1 (mod n) are the (q, ξ − e), where
e ∈ Z, defined modulo q, is of order n in F×q ; so the congruence

θ3 − 3ξ−1 θ2 − 3(1− ξ−1) θ + 1 ≡ 0 (mod q = (q, ξ − e))
is equivalent to

θ3 − 3e−1 θ2 − 3(1− e−1) θ + 1 ≡ 0 (mod q)

for the choice of e ≡ ξ ≡ v
u (mod q).

When q, e are such that this congruence has a solution, there exist infinitely many (u, v) such
that q |Φn(u, v): for a root θ ∈ F×q , θ ∈ Z, of the above congruence, the parameters (s, t) are
obtained from the congruence s ≡ θ t (mod q) (see Example 8.12).
At this step we have proved (i2), (i3) for the non exceptional orbit, under the existence of e,
of order n modulo q, such that P she = X3 − 3e−1X2 − 3(1− e−1)X + 1 splits in Fq[X].

As we have seen in Subsection 5.3, this splitting happens in Fq[X] if and only if e is of the

form e(a) :=
3 a (a− 1)

a3 − 3a+ 1
, a ∈ Fq\{0, 1} giving exactly q−2

3 distinct solutions e in F×q ; they are

of orders > 2 since e = ±1 are not solutions.
We compute that the exceptional orbit is obtained for the unique value e = 2 (obtained for
a = −1, 2, 2

−1), hence the result in that case.
This proves (ii) and completes the proof of (i).
The polynomial

P shξ = X3 − 3ξ−1X2 − 3(1− ξ−1)X + 1
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defines the cyclic extension F shξ used in Subsection 5.3; it is the universal Abelian polynomial
obtained from the cubic root of (1 + ξ j)s+2 = ηsh1 up to a 3th power (Subsection 6.3).
Thus, for q ≡ 1 (mod n), the condition q |Φn(u, v) is equivalent to the ρ-splitting of q for
Fshn , where ρ := v

u or to the ρi-splitting of q for Fshni where ρi := vi
ui

= T i( vu), and ni is the
order modulo q of ρi, 0 ≤ i < 6. This proves (iii).

Remark 8.7. — For the solution (u, v) of the second case (3 | v) of SFLT, the orders 1 and 2
of vu (mod q) correspond to the congruences s3+t3−3 st2±3 st(s−t) ≡ 0 (mod q), equivalent
to the splitting of the image of X3 +1−3X±3X(X−1) in Fq[X]. These polynomials define
the field Q1; so, as by assumption κ 6≡ 0 (mod 3), we obtain that the orders 1 and 2 are never
possible.
But this property is not necessary satisfied for the solutions (ui, vi) = T i(u, v) of the orbit.
For instance, set q = 11, s = 5, t = −1 for which 2 s − t = 11. Then for the solution
(u, v) = (−s3 − t3 + 3s2t,−s3 − t3 + 3st2) (first case), we get the orbit

{
109

199
,

19

308
,
−90

109
,
−289

19
,

199

90
,

308

289

}

giving in Fq∪{∞} the exceptional orbit {−1, ∞, 2, 1, 2
−1
, 0 }; so we get Φ2(199, 109) = 11.28;

Φ10(109,−90) = 11.45365261; Φ1(19,−289) = 11.28; Φ10(90, 199) = 11.100026581.

Remark 8.8. — Consider the following diagram with η′1 = (1 + ξ j)s+2 j−
1
2 , ηsh1 := η′1 j

1
2 ,

(ηsh1 )c := η′1j
− 1

2 , where we know that M( 3
√
η′1) = M( 3

√
η1):

L1F
sh
ξ M

M( 3
√
η1)

M( 3
√
ηsh1

c)

M( 3
√
ηsh1 )

M( 3
√
j)

M

L1F
sh
ξ

Fξ

F shξ−1

F shξ

L1

L
split

inert

From the Dirichlet–Čebotarev density theorem, we get a precise result taking a Frobenius
automorphism of order 6 in L1FξM/Fξ, where L1 = LQ1, which leads to a prime q such that
q ≡ −1 (mod 3) & κ 6≡ 0 (mod 3); then we obtain the ideals qρ,ξ = (q, u ξ − v) | q where the
solutions (u, v) are obtained from the roots θ1, θ2, θ3 of the polynomial as explained in (i3).
We obtain infinitely many values of q with clearly a nonzero computable density. These primes
q give again the splitting of qρ,ξ in Fξ/L, hence its inertia in L1/L, F shξ /L, and F shξ−1/L.

This makes clear the point (i) of the proposition.

Example 8.9. — We illustrate an aspect of Proposition 8.6 with the prime q = 41 and the
solution (u, v) = (139193, 76626) of the second case obtained with the parameters (s, t) =
(−11, 43). We note that v

u ≡ 22 (mod 41).
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For e = 22 ∈ F41 the polynomial X3 − 3e−1X2 − 3(1 − e−1)X + 1 splits in F41[X] into
(X − 38) (X − 31) (X − 15) and we have chosen θ = 15 for which s− 15 t ≡ 0 (mod 41).
Using the automorphism T , we obtain the six steps

T 0(e) = e = 22 of order 40

T 0(
v

u
) =

v

u
=

76626

139193
, solution of the second case ,

T (e) = e1 = 9 of order 4

T (
v

u
) =

v1
u1

=
14059

215819
, solution of the special case ,

T 2(e) = e2 = 14 of order 8

T 2(
v

u
) =

v2
u2

=
−62567

76626
, solution of the second case ,

T 3(e) = e3 = 10 of order 5

T 3(
v

u
) =

v3
u3

=
−201760

14059
, solution of the special case ,

T 4(e) = e4 = 39 of order 20

T 4(
v

u
) =

v4
u4

=
139193

62567
, solution of the first case ,

T 5(e) = e5 = 5 of order 20

T 5(
v

u
) =

v5
u5

=
215819

201760
, solution of the special case .

As a consequence, we have
Φ40(139193, 76626) ≡ Φ4(215819, 14059) ≡ Φ8(76626,−62567) ≡
Φ5(14059,−201760) ≡ Φ20(62567, 139193) ≡ Φ20(201760, 215819) ≡ 0 (mod 41) .

We have obtained the set of orders {40, 4, 8, 5, 20}.
This implies the inertia of qρ,ξ40 in Fξ40/Q(µ40) for ρ = 76626

139193 (second case), that of qρ′,ξ5
in Fξ5/Q(µ5) for ρ′ = −201760

14059 , resp. 215819
201760 (special cases since u3 + v3 ≡ 3 (mod 9), resp.

u5 + v5 ≡ 6 (mod 9)) but the splitting of qρ′′,ξ4 in Fξ4/Q(µ4) for ρ′′ = 14059
215819 (another special

case since u1 + v1 ≡ 0 (mod 9)), and the splitting of qρ′′′,ξ20 in Fξ20/Q(µ20) for ρ′′′ = 139193
62567

(solution of the first case), which illustrates the incompatibility with statements like Theorem
5.1 for p = 3.

Example 8.10. — Let q be a prime such that κ 6≡ 0 (mod 3). Then for a divisor m > 2
of q − 1, there is not necessarily a solution (u, v) = (s3 + t3 − 3 st2, 3 st(s − t)), s, t ∈ Z,
g.c.d. (s, t) = 1, s+ t 6≡ 0 (mod 3), such that the order n of v

u modulo q is equal to m.
We have found the following numerical example with m = 5 for which L = Q(µ5) is principal.
Consider the prime q = 48738631 for which q− 1 = 2 · 3 · 5 · 163 · 9967 and κ 6≡ 0 (mod 3).
Let ξ be a primitive 5th root of unity.
Then q = (ξ2 + ξ−2 − 3− 90 (3 ξ2 + 5 ξ + 3))Z[ξ] is a prime ideal lying above q.
Since ξ2 +ξ−2−3 ∈ L+, this ideal satisfies the relation q1−c = (α)Z[ξ], α ≡ 1 (mod 9), which
means that q totally splits in H−L [3]/Q.
Concerning the solutions (u, v) = (s3+t3−3 st2, 3 st(s−t)), s, t ∈ Z, g.c.d. (s, t) = 1, s+t 6≡ 0
(mod 3), such that Φ5(u, v) ≡ 0 (mod q), we try to find the smallest values of the order n
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of v
u modulo q. The value n = 5 is by construction impossible. There is also no solution for

n = 10 since Q(µ10) = Q(µ5) = L with q totally split in H−L [3]/Q.
We find the values

n = 6 for (s, t) = (357, 42643),

n = 15 for (s, t) = (1531, 3232),

n = 163 for (s, t) = (143, 947),

n = 326 for (s, t) = (132, 883),

n = 489 for (s, t) = (79, 526),

n = 815 for (s, t) = (9, 971) . . .

As we have seen, the orders n = 1 and 2 are impossible here.

Example 8.11. — In another point of view, in the following example we fix the solution
(u, v) = (19, 18) corresponding to (s, t) = (3, 1) of the above second case and we give the order
n of vu modulo q for primes q < 3.106 with κ 6≡ 0 (mod 3), such that n < q

1
3 to limit the data.

q n q n q n q n

79 3 137 4 751 5 17341 17
46663 11 49999 13 97373 44 225751 43
352771 55 419693 13 464549 47 536609 41
809359 22 816401 52 1037471 35 1115447 41
1167937 84 1252057 104 1403627 14 1529249 32
1995781 29 2040601 25 2743501 59 2912521 39

Example 8.12. — Let q = 113 = 1 + 24 . 7. In the following example we fix n and use a
polynomial P she = X3 − 3e−1X2 − 3(1− e−1)X + 1 which splits in F113; for e = 83, of order
n = 14, its roots are 5, 28, and 46.
Recall that for ξ of order n and e ∈ Z defining the prime ideal q = (q, ξ − e) | q, the solutions
(s, t) giving q |Φn(u, v) for the corresponding solutions (u, v) = (s3 +t3−3st2, 3st(s−t)) of the
second case, are defined via the congruences s− 5t ≡ 0, s− 28t ≡ 0, s− 46t ≡ 0 (mod 113),
g.c.d. (s, t) = 1 and s+ t 6≡ 0 (mod 3).
For s− 5t ≡ 0 (mod 113) we obtain

s t Φn(u, v)

118 1 113 · 3557 · 3942401 · 744072113 · 16254128953756891
231 1 113 · 211 · 239 · 116929 · 550757191489 · 9432961248517529143
457 1 113 · 8821 · 18484859 · 4489993033 · 9077382763538364383220967
123 2 29 · 43 · 113 · 3011 · 11047 · 1005000683 · 8371388009051383
128 3 113 · 385897 · 8800908691961 · 205376563933889209
241 3 29 · 113 · 3557 · 26209 · 136067 · 2120693 · 2348198329 · 34945284137
467 3 113 · 1451130199 · 6673578443419738169458023356294472959
133 4 113 · 421 · 43270571265013 · 74514155796456659333
138 5 113 · 2577267166287809480749101354040384043
251 5 113 · 547 · 2381 · 75688397 · 318274119451 · 4136563302302243
477 5 29 · 113 · 5503 · 26385694924317373 · 3324436493654921921540503
143 6 113 · 1847609 · 2588587173822250293234785701459
148 7 29 · 1132 · 2651420630210247522480044325578753
261 7 113 · 7351 · 67651949 · 2608374259 · 9265394797 · 21291362107
487 7 43 · 113 · 127 · 379 · 2087 · 64303 · 1464961 · 23929487 · 2062162788609847841
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We observe a unique case where 1132 divides Φn(u, v).

Example 8.13. — We consider the prime q = 401 = 1+24 . 52; we give all the possible values
taken by the order of ρ := v

u modulo q, for the solutions (u, v) = (s3 + t3 − 3st2, 3st(s− t)) of
the second case.
The resolution of 3st(s− t)

s3 + t3 − 3st2
≡ ρ (mod q) is of course equivalent to get the values ρ such

that the polynomial P shρ = X3 − 3ρ−1X2 − 3(1− ρ−1)X + 1 splits modulo q.

We find that there are as expected 401−2
3 = 133 distinct values of such ρ (Proposition 8.6 (ii))

with the following repartition of the orders n:
53 for order 400; 28 for 200; 13 for 80; 12 for 100; 7 for 50 and 25; 4 for 40; 3 for 20; 2
for 10; 1 for 16, 8, 5, 4. As we know, orders 1, 2 cannot exist for the second case. The value
ρ = 2 of order 200, is associated to the exceptional orbit. These numbers are near from 1

3φ(n).

9. Conclusion

In Subsections 5.3 and 8.1, we have proved that Theorem 5.1 (or any weak form) is of empty
use for p = 3. We have justified, in Subsection 8.2, why the case p = 3 is specific for the
arithmetic of the fields Q(µn) in relation with the Abelian 3-ramification over these cyclotomic
fields and the existence of a law of ρ-decomposition in the extensions Fn/Q(µn) (Theorem 6.6);
then we have shown how the Čebotarev density theorem applies in this context.
In the two cases the infiniteness of the set of solutions was used, and probably the parametric
form of these solutions is an important fact. If we suppose that for p > 3 the set of solutions
is finite, this suggests that a result like Theorem 6.6, on the constraints fulfilled by infinitely
many primes q (due to the laws of ρ-decomposition), is a nontrivial obstruction and is likely
to lead to a proof of SFLT.
In the same way, Conjectures 5.4 and 6.10 have a particular interest.
In other words, we can hope that for p > 3 any statistical analysis of the decomposition laws
is legitimate and that it is not excluded that the two main principles of approach of the SFLT
problem that we have developed in this paper may be successful for p > 3.
However, it should be noted that Theorem 5.1 and Conjecture 5.4 are sufficient diophantine
conditions, probably too strong, and that it would be better to consider the constraints given
by the laws of ρ-decomposition of infinitely many primes q for the canonical families Fn
(see Subsection 6.1, Theorem 6.6, and Conjecture 6.10); this last aspect can be approached
from an analytic point of view with the aim to show that such constraints are impossible for
p > 3. Meanwhile, Conjecture 5.4 is more credible in an analytic point of view and depends
on supplementary informations on the order modulo q of a given rational.
About these considerations, an interesting fact would be that the case p = 3 would have,
in some sense, a reciprocal statement, namely that the infiniteness of the set of solutions
of the SFLT equation and their particular repartition into six parametric families, is in fact
necessary for the Čebotarev density theorem.
Thus for p > 3, in the same spirit as for p = 3, the set of nontrivial solutions (if nonempty)
would be necessarily infinite with some structural properties in order to be compatible with
the above principle, which seems impossible for geometric reasons (Theorem 8.5 for a part).
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See an application of this paper in: A product formula related to the diophantine equation
NQ(ζ)/Q (u+ v ζ) = wp1, p - uv (u2 − v2), Journal of Algebra, Number Theory: Advances and
Applications, 7, 2 (2012), 1–38, for which we provide here a summary:
Let u, v be coprime integers such that NQ(ζ)/Q(u+v ζ) is the pth power of an integer, where ζ := e2iπ/p. Using
the Brückner–Vostokov explicit formula, we establish a product formula for the pth power residue symbols(
η1
Q

)
M

computed in the present article.
This product formula is equivalent to the relations TrQ(ξn)/Q

(
ξn−ρ
1+ξn

1
p

log(ξn − ρ)
)
≡ 0 (mod p), for all integer

n (p - n, n - p− 1), where ξn is a primitive nth root of unity, ρ := v
u
, log is the p-adic logarithm. This allows

us to verify, for given values of p, the insolubility of the above equation under the assumption p - uv (u2− v2).
We then show that this insolubility is equivalent to the existence of an integer n (p - n, n - p − 1) such that
∑p−1
k=1

1
k
ρk TrQ(ξn)/Q

(
ξkn

1+ξ
p
n

)
6≡ 0 (mod p), constituting an alternative to Kummer–Mirimanoff congruences

without any reference to Bernoulli numbers.
For instance for p = 5 and the only possible classes ρ0 ≡ 2, 3 (mod 5), the above condition is fulfilled for
n = 3. For p = 37 and n = 8, the condition is fulfilled for all ρ0.
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