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CHAPTER I 

Introduction 





1. Background 

Number theory finds its origins in the study of intégral and rational numbers, and the 
problem of finding intégral or rational numbers that satisfy some given équation. An old 
resuit on intégral numbers—usually called integers—that was already known to Euclid 
(300 B.C.) is the so called fundamental theorem of arithmetic. It states that every positive 
integer can be written as a product of prime numbers, and that this prime number décom-
position is essentially unique. Finding intégral or rational solutions to a given équation is 
a problem that was studied by Diophantos of Alexandria (250 A.D.), and his name has 
been attached to such équations. Solving diophantine équations is a notoriously difficult 
problem that has stimulated the development of new methods until our days. There is no 
général method to find the solutions to these équations, but many interesting results have 
been obtained for certain classes of équations. A diophantine équation that has acquired 
some famé even outside mathematical circles is the Fermât équation Xn + Yn = Zn. As 
to date, it is unknown whether Fermat's statement (1637) that there are no solutions in 
non-zero integers when n larger than 2 is true. 

History has shown that, even though a problem is formulated entirely in terms of 
rational numbers, it is often fruitful to admit numbers that are not necessarily rational. 
Real and complex numbers are probably the examples that most readily come to mind, 
but there are many more. For instance, many of the results on the Fermât équation were 
derived by studying the équation over the cyclotomic ûeld Q(Cn), where it can be written 

Xn = (Z - Y)(Z - (nY)(Z - C2
nY) ... (Z - C"xr). 

Here ( n dénotés a primitive n-th root of unity, i.e. a number such that (% = 1 and ^ 1 
for k — 1,2, ...,n — 1. Such a number is not rational if n > 2, and in that case the field 
Q(Cn)? which consists of elements x that can be written as 

x = a 0 + Q>iÇn + a2(l + ... + a n _ i C " - 1 

for certain rational a,-, is strictly larger than the field of rational numbers Q. The field 
Q(Cn) can be viewed as a subfield of the field of complex numbers C by taking ( n = e 2 ^ , 
but it has finite dimension as a vector space over Q and is therefore much smaller than C. It 
has been proved for many n that the Fermât équation does not have non-zero solutions X, 
Y and Z in Q(£n). Note that the Fermât équation has infinitely many non-zero solutions 
for any n if we allow them to be in C or the field of real numbers R. 

Fields like the cyclotomic field Q(Cn) that are finite dimensional as a vector space over 
the field of rational numbers Q are called algebraic number fields. They play a major rôle 
in algebraic number theory. An algebraic number field can always be obtained from Q by 



adjoining a root a of an polynomial with coefficients in Q. This means that ail elements 
of this number field can be written in the form 

x = ao + ai a + 02a2 + ... + a^a* 

with a,- in Q. 
Number fields are usually much better tools for studying arithmetical questions than 

a large field like C. The most important reason is that they allow an arithmetical theory 
that is not too différent from the arithmetic of Q as described by Euclid. This theory was 
developed in the 19-th century by mathematicians as Kummer, Kronecker and Dedekind. 

Any number field K has a ring of integers O that is defined as the intégral closure of 
the ring of ordinary integers Z. This means that O consists of those x in K that are zeroes 
of a monic polynomial with coefficients in Z. For K = Q we find O — T.. In général, O is 
a ring that contains Z, and every element of K is the quotient of two elements from O. 

Rings of integers behave somewhat differently from Z in the sense that their group of 
invertible elements may be infinité—in Z one only has {±1} as the unit group—and that 
they need not have unique prime factor décomposition. However, the structure of the unit 
group of a ring of integers O is given explicitly by the Dirichlet unit theorem, and unique 
factorization can be obtained by looking at prime ideals rather than prime elements of 
this ring. One has unique prime factor décomposition of elements in O if and only if ail 
ideals of O are principal, i.e. generated by a single element in the idéal. In général, if one 
considers the group of ail fractional 0-ideals the subgroup of principal fractional ideals is 
always of finite index. The corresponding factor group is the class group Cl of O (or of 
K). It is a finite abelian group that measures how many ideals in O are principal. Its 
order is the class number h of K. Fields with unique prime factor décomposition are the 
fields for which h = 1. 

Prime numbers from Z need no longer be prime elements in the ring of integers O of 
K. If we set i = y/— 1, the field Q( i ) has ring of integers C? = Z[i] = Z + Z • i . The prime 
numbers that are not the sum of two squares in Z, like 3, 7, 11 or 163, are prime elements 
in O. Fermât proved that these are exactly the prime numbers that are congruent to 3 
modulo 4. Ail other prime numbers, like 2 = l 2 + l 2 and 13 = 22 + 32, split in O, as is 
shown by the équations 

2 = (1 + i ) ( l - i ) = i ( l - i ) 2 and 13 = (2 + 3 i ) (2 - 3 i ) . 

Primes that remain prime in O are called inert, and primes that split into différent primes 
in O are said to be split. The prime 2, which has a square factor in C, is a ramified prime. 

For fields of the form Q( y/d), called quadratic fields, the splitting behaviour of a prime 
p depends on whether p can be represented by quadratic expressions, like X 2 + Y2 in the 



preceding example. This is part of the theory of quadratic forms, which was developed by 
Gauss (1801). It furnishes the oldest description of the class group of a quadratic field. 

The splitting of primes in fields of degree larger than 2, such as the cyclotomic fields 
Q(Cn) for n = 5 and n > 6, was initiated by Kummer (1847). It turns out that the splitting 
behaviour of a prime number p in a cyclotomic extension is particularly simple to describe: 
it only depends on the residue class of p modulo n. There are only finitely many primes 
p that divide n, and—if p = 2 is treated with care—these are exactly the primes that 
are ramified in Q(Cn)- The other prime numbers p split into a number of primes that is 
exactly the index of the subgroup generated by p mod n in the (Z/nZ)*. Here (Z/raZ)* 
dénotés the multiplicative group of integers modulo n that are coprime to n. The order 
of p mod n gives us the 'size' the primes over p. In particular, it follows that the prime 
numbers that are congruent to 1 modulo n split into the maximal number of différent 
primes. Such primes are said to split completely. The reader may check that we find the 
resuit of Fermât for Q(Cé) = Q( i )• 

It turns out that the only number fields in which the splitting of prime numbers is 
determined by congruence conditions are the fields Q(Cn) and their subfields. These fields 
have the spécial property that their automorphisms form an abelian group, i.e. a group 
in which crr = tu for ail elements a and r. Indeed, for each element a mod n in (Z/nZ)* 
there is an automorphism a a that sends („ to (ni a n d any automorphism of Q(Cn) must 
be of this form. One deduces that the automorphism group of Q(Cn) is given by 

A u t ( Q « „ ) ) = ( Z / n Z ) * , 

and this is an abelian group. A theorem due to Kronecker and Weber (1886) states that 
the cyclotomic fields and their subfields are the only number fields with this property. 

Kummer's splitting theory for cyclotomic fields was generalized by Dedekind, Kro-
necker and Hilbert to arbitrary extensions of number fields K C L rather than Q C Q(Cn)-
The theory of the automorphisms of fields in a général setting had already been developed 
by Galois (1821). Enlarging L to a 'normal' field when necessary, one can define the Galois 
group G a 1(L/K) as consisting of ail automorphisms of L that are the identity on K. If 
one excludes the finite number of primes that are ramified from considération, the splitting 
behaviour of a prime p from K in the extension L can now be described by associating 
to the prime p certain elements in Gal(L/K), called Frobenius symbols. If G a l ( L / K ) is 
abelian there is exactly one such element, the Artin symbol of p. The Artin symbol of 
a prime number p in the cyclotomic extension Q C Q(Cn) is the element crp = p mod n 
that raises ( n to the p-th power. In the général case, the Artin symbol is also character-
ized as the element in G a \ { L / K ) that in a certain sense 'raises to the power p'. Its order 
in G a \ { L / K ) gives the size of the primes over p in L, and the index of the subgroup it 
generates in G a \ { L / K ) is just the number of primes into which p splits in L. 



Led by the analogy with cyclotomic extensions, one may now ask whether the splitting 
behaviour of p in abelian extensions L of JT is determined by congruence conditions on 
the prime p, and whether this characterizes the abelian extensions of K. The positive 
answer to this question is given by class field theory, a theory developed between 1895 and 
1955 by several mathematicians including Hilbert, Weber, Takagi, Artin, Hasse, Chevalley 
and Tate. It gives an intimate connection between the arithmetic of a number field K— 
described by groups like the class group Cl of K—and the existence of certain abelian 
extensions of K. 

If the splitting behaviour of a prime number p in an extension L of Q only depends on 
p mod / , we know that L/Q is abelian, and even a subfield of the cyclotomic field Q(C/)-
Analogously, if the splitting behaviour of a prime p in an extension L oî K only depends 
on the 'residue class' of p modulo f, then L/K is an abelian extension that is a subfield 
of the ray class field H f. There is again a Kronecker-Weber theorem that asserts that 
ail abelian extensions of K are obtained as subfields of a ray class field H f. There is no 
général method to find the ray class fields H f of K explicitly in terms of K and f, except 
when K equals Q or a field Q (y/3) with d < 0. However, the Galois groups Gal(Hf / K) 
are explicitly given by class field theory. They are the ray class groups Cf that form the 
main object of study in this thesis. 

The class group Cl of the field K, which occurs as Cf for f = 1, is the simplest ray 
class group of K. Ail other class groups are larger in the sense that there is a natural 
surjection 

Cf —> Cl 

for ail f. One way to specify the structure of Cf is to describe which extension of Cl it 
gives. Homological algebra gives a formalism to describe extensions of abelian groups that 
are again abelian. If one takes for f only primes p of K, fixes an integer m and restricts 
attention to a group C'p that is slightly smaller than Cp, the extension types one obtains 
are elements of certain extension groups Ext(Cl, (Cn)) with n dividing m. The obvious 
question is: which primes p give rise to which extension classes? In this thesis, it is proved 
that the answer to such questions is given by a governing field for the extension structure. 
An extension M/K is said to be a governing field for the extension structure if the class 
of the extension C'p in the extension group Ext (Ci, (Cn)) is determined by the splitting 
behaviour of p in the extension M/K. The précisé formulation of this statement is given 
by homomorphisms from automorphism groups of M to extension groups that map Artin 
symbols over p to extension classes coming from C'p. The type of question sketched above is 
the subject of the second chapter of this thesis. It introduces a new type of extension group 
that is especially well-suited to describe extension structures that arise in the context of 
ray class groups. 

An interesting feature of the existence of a governing field is that it enables us to 



dérivé density statements for the set of primes p in i f that give rise to ray class groups 
with a given extension behaviour. These statements are based on an analytic theorem, 
due to Cebotarev (1925), which tells us how many primes p in K give rise to prescribed 
Frobenius symbols in Gal(M/K). 

The third chapter of this thesis considers ray class groups of K with respect to a prime 
from a base field k that is smaller than K. It leads to extensions of ray class groups with 
a fixed group, and methods from idelic class field theory are employed to show that these 
structures can also be described by governing fields. 

In the fourth and last chapter, our main theorem on ray class group extensions is 
applied to a problem of Cohn and Lagarias. It was in this context that the concept of a 
governing field was originally introduced. The problem consists of finding governing fields 
for certain invariants, the 2h-ranks, that determine the structure of the 2-primary part 
of the class group of the field Q(>/3p). Such fields had been found for certain values of 
k and d, and computer calculations led Cohn and Lagarias to enounce a set of conjec-
tures concerning the existence of governing fields. For k = 1 (Gauss, 1801) and k = 2 
(Rédei-Reichardt, 1934) the conjectures were already known to hold. We prove the 8-rank 
conjecture corresponding to the case k = 3. The conjectures remain open for k > 4. 

2. O ut line 

This section serves two purposes. First of ail, it introduces most of the notations and 
results from class field theory that are used throughout this thesis. Secondly, it sketches 
the results and the main ideas of the proofs in this thesis by treating several simple cases 
in some détail. In doing so, it also serves as a motivation for the more technical approach 
in the following chapters. 

We start with some basic facts from class field theory that are essential to the formulation 
of our results. More détails and proofs of ail statements can be found in [7] and [21]. 

The oldest version of class field theory (Takagi-Artin, 1927) uses the concept of cycles 
of K. A cycle of K is a formai product f = JJ pn(p) over ail primes p of K, with non-
negative intégral exponents that are almost ail zéro. The exponent is required to be at 
most one at real primes, and zéro at complex primes. Divisibility of cycles is defined in the 
obvious way. For a finite abelian extension K C L and a cycle f = n Pn(p) that is divisible 
by ail primes that ramify in K C L, one considers the Artin map 

* = • m — Gal(L/K) 

on the group J( f ) of fractional 0-ideals that have no primes occurring in f in their prime 
idéal décomposition. This map is defined as the homomorphism that sends a prime idéal 



p € 2"(f) to its Artin symbol in Gal(L/K). The main theorem of class field theory states 
that given K C L, the exponents of f at the ramifying primes can be chosen in such a way 

where <S(f), the ray modulo f, is the subgroup of J( f ) consisting of the principal ideals aO 
that are generated by an element a = 1 mod*f. This multiplicative congruence means that 
ordp(a—1) > n(p) at ail finite primes p in f, and that a is positive in the complétions of K at 
the real primes in f. A multiplicative congruence a = f3 mod*f stands for a /3 - 1 = 1 mod*f. 
The minimal cycle satisfying (2.1) is the conductor f L/K of the extension K C L. It is 
exactly divisible by the primes that ramify in i f C I , and tamely ramifying primes have 
exponent 1 in the conductor. The maximal abelian extension of K that has conductor f 
is called the ray class £eld H f of K modulo f. It is a finite extension of K, and the Artin 
map induces an isomorphism 

The group Cf is known as the ray class group modulo f. There is an inclusion reversing 
bijection between the set of abelian extensions of K inside some algebraic closure and 
the set of idéal groups of K. An idéal group of i f is a set of groups {S(f)}fgy, with 
S(f) C B(f) C 1{f). Here Bs is the canonical inverse image of Bf if f | 0 and f, g 6 and 
d consists of ail multiples of a minimal cycle, the conductor of the idéal group. Inclusions 
between idéal groups are defined by looking at représentatives B(f) modulo a common f. 
The extension K G L corresponds to the idéal group {ker^f ^/ii:}fjr/jr|f- It follows that 
every finite abelian extension of K can be obtained as a subfield of a ray class field. For 
K = Q, where the ray class fields are the cyclotomic fields and their maximal real subfields, 
this is the Kronecker-Weber theorem. 

In the spécial case that f is the trivial cycle, the ray class group modulo f is the 
ordinary class group Cl of O. It follows that Cl is canonically isomorphic to the Galois 
group Gal(H/K), where the Hilbert class ûeld H of K is the maximal abelian extension 
of K that is unramified at ail primes. Taking for f the product of the real primes of K, 
usually abbreviated to oo, one obtains an analogous statement for the strict class group 
and the strict Hilbert class ûeld, which is defined as the maximal abelian extension of K 
that is unramified at ail finite primes. 

We now come to the contents of the chapters II and III of this thesis. 
Let f and 0 be cycles of K, and suppose that f is divisible by 0. Then there is 

an inclusion He C Hj and a corresponding surjection of ray class groups Cf C0. In 

(2.1) k e r i ) D S ( f ) , 

(2.2) Cf = Z ( f ) / S ( f ) G a l ( f f f / K ) . 



particular, if we take 0 = 1 and write f = f]p we see that ail ray class fields contain 
the Hilbert class field H of K, and that there is an extension of abelian groups 

0 —• Af —» Cf —> Cl —> 0. 

Dénoté by E the unit group of O. Then the kernel A f can be given explicitly as 

(2.3) A, = S ( l ) / 5 ( f ) = ( n ( < W ( p ) ) * x n 
p|f f ini te p|f real 

[aO] » ((a mod p"(p))p, (signpa)„). 

Several natural questions about the number field K can be translated into questions 
about this extension. For instance, one might ask (Cornell [10]): for how many primes 
p does K have a cyclic extension of degree m that is totally and only ramified at p, if 
m G Z>o is fixed? An équivalent question is, for p not dividing m: for how many p is 
divisible by m and does the exact sequence 

£p : 0 —Ap/A™ —> CJA™ —> C l 0 

split? From (2.3) we see that in this case, we have to deal with extensions of CI with a 
cyclic group of order dividing m. In case K contains a primitive m-th root of unity Cm, 
there is an m-th power residue symbol at ail primes p | m that ensures that the group 
Ap/A™ is canonically isomorphic to a subgroup of (Cm)- For those p that split completely 
m it is the full group (Cm)- For these p we can view £p as an element of the 
abelian group Ext(CJ, (Cm)) that classifies ail abelian extensions of Cl with the group (Cm) 
(cf. [15, 24]). 

Chapter II investigates how the extension classes £p depend on p. As a spécial case of 
the main theorem 5.6 and its corollary 5.12 in the next chapter, we present the following 
theorem. 

2.4 Theorem. Suppose (m G K. Then there is a canonical isomorphism 

Gal(K(y/W)/K(E^m)) * Ext(CI, (Cm))-

mapping the Frobenius at a prime p \ m of K that splits completely in K(VË)/K to the 
class of the extension £p. Here E is the unit group of the ring of integers O of K, and 
W C K* consists of the elements a for which aO is an m-th power of an idéal. 
Let us sketch a proof of theorem 2.4. It is based on a homological lemma that describes 
the group of extension classes of an arbitrary abelian group with a cyclic group of order 



m. The lemma itself is proved in the next chapter (3.5). For an arbitrary abelian group 
B, it gives a canonical isomorphism 

Ext (B, ((m))—->Hc>m(j3m, (£m)), 

where Bm is the subgroup of B consisting of ail elements of order dividing m. Now take 
B = Cl. If the idéal class [a] has order m, there exists a G W that generates flm. The 
class [a] détermines fl up to multiplication by principal ideals, and a m détermines a up to 
multiplication by an element of E, so there is a canonical isomorphism Clm-—*W/EK*m. 
It follows that there is an isomorphism 

Ext (Ci , (Cm))^Eom(W/EK*m, (Cm)). 

If ( m is in K, the right hand side is isomorphic to Gal(K(\/W)/K(\/Ë)) by Kummer 
theory. Looking at the explicit form of ail isomorphisms above, one arrives at the statement 
given in the theorem. 

It follows from 2.4 that the splitting behaviour of the sequence Sp for primes p that 
split completely in is determined by the splitting behaviour of the prime p in the 
extension In fact, if one also uses the theorem with the divisors m' of m in 
place of m, this statement is even true for ail finite p \ m. The Cebotarev density theorem 
[21] now implies that ail extensions of Cl with a subgroup of (Cm) can be realized as 
extensions Sp, and that the set of primes realizing a given extension has a natural density 
that can be given explicitly. For instance, the extensions Sp of the primes p that split 
completely in 

are equidistributed over Ext(Cl, (Cm))- Note that Ext(Cl, (Cm)) is a 
non-trivial group whenever gcd(ra, #CJ) > 1. 

If we no longer require that K contains the m-th roots of unity, two problems arise. 
First of ail, we need an extension of p to K(Cm) in order to map Ap/A™ canonically into 
(Cm)- On the other hand, Kummer theory now shows that H o m ( W / E K * m , (Cm)) contains 
a subgroup isomorphic to Gal(K(Cm, \/W)/K(Cm, VË)). The extension K(Cm, VW) is not 
necessarily abelian over K, so Artin symbols of primes p are no longer uniquely determined 
in this extension: we only have Frobenius symbols at primes lying over p. The ambiguity on 
both sides is circumvented by considering extensions S<p depending on primes lying over 
p in K(Cm)- The extension class of Sp now corresponds to a conjugacy class of Frobenius 
symbols. Still, the essential feature that the extension class of Sp is determined by the 
splitting behaviour in a normal extension M of K is preserved. In the terminology of the 
previous section, we say that the structure of Sp for variable p is governed by M, or that M 
is a governing field for the extension structure. In particular, we obtain a précisé answer 
to Cornell's question: the primes p \ m that split completely in M/K are precisely those 
primes p for which K has a cyclic extension of degree m that is totally and only ramified 
at p. 



More generally, we can take Bp = ker [Cap —• Co] for an arbitrary conductor î) and try 
to generalize the preceding theorem to extensions of the type 

( 2 . 5 ) 0 — Bp/B™ —+ Ctp/B™ — * C0 — » 0. 

The results tend to be much weaker than for 0 = 1. This is due to the fact that the 
'arithmetical extensions' (2.5) have additional structure coming from the primes in î) that 
arbitrary extensions need not share. For instance, we know that the inertia groups in C® 
at the primes in 5 are isomorphic images of the corresponding inertia groups in C $p/B™. 
This imposes a certain partial splitting condition on the extensions (2.5) that is most 
conveniently described by considering ray class groups as factor groups of the idèle group 
J of K. 

The idèle group of K is the restricted product 

J = IÏP
K*> 

of the multiplicative groups of the complétions Kp at the finite and infinité primes p of K. 
The restriction is that ail but finitely many coordinates of an element a; G J lie in the unit 
group Up of the ring of integers of Kp. The group K* is diagonally embedded into J, and 
the factorgroup C = J/K* is the idèle class group of K. 

For finite p, the unit element 1 G Kp has a local base of open subgroups U^ = 1 +p fc 

(k > 0) in the topology on K*. We set U^ = Up. For archimedean p we let U<0) = k; 
and, in case p is real, U™ = KPt >0 . With this notation, a subgroup H of J is open in 
the restricted product topology if and only if there exists a cycle f = f ] P"(p) such that H 
contains the subgroup 

(2.6) Wf = n „ ^ n 0 , ) ) -

The open subgroups of the idèle class group C are those subgroups that contain the 
homomorphic image Df of for some f. A straightforward computation shows that 
there is an isomorphism 

C/D,-Z+Z(f)/S(f) 

that sends the residue class of a prime element 7TP G Kp C J in C/Df to the class of the 
finite prime p when p f f. It follows that each class of idéal groups corresponding to an 
abelian extension L/K gives rise to an open subgroup D of C. If the idéal group has a 
représentative modulo f, then Df is contained in D. The conductor of the idéal group is 
the smallest cycle f for which Z?f is contained in the corresponding open subgroup of C. 

In its idèlic form, class field theory can be formulated as the statement that there is 
an inclusing reversing bijection between the set of open subgroups of the idèle class group 



C of K and the set of abelian extensions of K (Chevalley, 1942). The open subgroup 
corresponding to L/K is the norm subgroup NL/K^L of CK- The exponent n(p) to which 
a finite prime p occurs in the conductor JL/K c a n be computed in a local extension Lq/Kp 

at p. It is the smallest non-negative integer k for which U^ C 
Returning to our sequence (2.5), we see that there is a concise way of giving the 

additional structure of such extensions: the canonical map / : J —• Co from the idèle group 
J of K onto Co factors via B™. This is not necessarily true for arbitrary extensions of 
Co with Bp/Bp, and the obstruction to this 'lifting property' exists only for the components 
of J at primes that are real or divide D. The presence of arithmetical obstructions leads 
us to introduce a new type of extension groups that classify group extensions together 
with a lift of a given homomorphism. Section 3 of this thesis defines such groups, dérivés 
some of their fondamental properties and shows their relation to the ordinary Ext-groups 
(3.1-3.4). It contains only homological algebra, and furnishes the technical basis for the 
main section of the next chapter, section 5. 

Theorem 5.6 is the main theorem of chapter II. It is a fairly général resuit on the 
extensions (2.5) in terms of our generalized extension groups. The main characteristic is 
that there always exists a normal extension that governs the structure of ray class group 
extensions. We show that for spécial choices of the parameters and under additional as-
sumptions concerning roots of unity, spécial cases as the theorem stated above are obtained 
(5.11, 5.12). It turns out that it is not easy to determine in général whether the field ex-
tensions occurring in our theorem are non-trivial, and whether the homomorphism whose 
existence is given by the theorem is in fact an isomorphism. The investigation of these 
matters leads to purely field theoretic questions that can be solved using some not too 
well known results on radical extensions (5.13). A separate section preceding section 5 is 
devoted to an exposition of these results. 

The final section of chapter II is concerned with density statements for the set of 
primes that give rise to some fixed extension type of ray class groups (6.1, 6.3). The 
main ingrédients are the results from section 5 and the theorems from field theory given in 
section 4. In particular, it gives a précisé answer to the question of Cornell we mentioned 
before. In more général situations, the resuit becomes less précisé (6.7). 

So far, our treatment of the splitting behaviour of exact sequences involving ray class 
groups has been purely algebraic. The fact that they can be thought of as representing 
certain Galois groups is the underlying motivation, but it is actually never used in the 
proofs. This is no longer the case if one takes for the prime p in (2.5) not a prime of K, 
but a prime of a subfield k of K. In that case, p factors in if as a product of primes. 
Some information is given by a formai extension 7.2 of the results in section 5 to include 
'multi-prime extensions', but this is less than we want. 



More precisely, one considers for ail primes p \ D of the subfield k G K the maximal 
abelian extension L(p) = L(p, 0, m) of K of conductor dividing Dp in which the ramification 
indices at primes over p in L(p) divide m. Then L(p) contains the ray class field Hj, of K 
of conductor 0 and there is an exact sequence 

0 — G a I ( L ( p ) / i î B ) —• Gal(L(p)/K) G a l ( # 0 / * 0 —• 0. 

The group Gal(L(p)/Hj,) is generated by the inertia groups of the primes in p, and in 
terms of ray class groups this is exactly the sequence (2.5). If the extensions for primes 
pi and p2 of k are isomorphic, there is an isomorphism Gal(L(p i) / K)-^Gal(L(p2) / K) 
of Galois groups that respects the projection onto Gal(Ht/K) and maps inertia groups at 
primes over pi to inertia groups of primes over p2. The spécial conditions about the lifting 
of décomposition groups in section 5 even imply a much stronger équivalence: they give a 
Galois isomorphism 

L(pI) ®K K^L(p2) ®K Kq 

of algebras over the local field jFTq for a finite number of primes q of K that can be 
prescribed. 

If K/k is Galois and î) is Galois invariant, the fields L(p) and Ht, are Galois over k and 
it is natural to require that we have isomorphisms for Gal(L(p)/&) and for algebras over 
the local fields kq. Note however that these are isomorphisms of not necessarily abelian 
groups, and that this introduces a behaviour of primes p that is not in an obvious way 
described by an element of an Ext-group. Of course, this does not imply that the purely 
algebraic approach of chapter II cannot be made to work. One needs that ail isomorphisms 
of Galois groups over K are in fact isomorphisms over k, and this just means that they 
have the same extension with Gal(K/k). Such extensions are described by canonical 
classes, but so far it is not clear how the algebraic formalism can force a correspondence of 
canonical classes. We therefore use an approach that explicitly constructs the isomorphism 
Gal(L(pi)/A;)-^-Gal(L(p2)/^)- In fact, we slightly redefine the extensions L(p) so as to 
have Kummer theory at our disposai (7.4). This does not essentially change the situation 
as the former extensions are contained in extensions of the new type and conversely. Our 
explicit construction can be performed if there exists an element x oi K that satisfies 
various local conditions. If and are primes over pi and p2 in K, and 7rj and 7t2 

are prime elements at these primes in the idèle group J of K, the condition requires that 
X1ÏI-ÏÏ21 be contained in a certain open subgroup of J. By class field theory, this simply 
means that tyi and have the same Artin symbol in a corresponding abelian extension 
M of K, so we once more arrive at a governing field theorem (8.1) for the structure of the 
extensions L(p)/k. This governing field construction, which is the core of chapter III, can 
be found in section 8. 



The last chapter of this thesis contains an application of our governing field results to prove 
a conjecture of Cohn and Lagarias concerning the 8-rank of the (strict) class group of a 
quadratic order C(A). We discuss these conjectures in the remaining part of this section. 

For any integer A = 0,1 mod 4 that is not a perfect square, the quadratic order of 
discriminant A is the ring 

r A + \ / Â i 

It is a subring of finite index / in the ring of integers O of the quadratic field Q( VÂ), and 
there exists an integer d such that 

A = f2d and G A = Z + / • Z [——jj—-] — Z + f-G. 

The integer d in this équation is the discriminant of the quadratic field Q( A/Â). It is 
the integer without odd square factors that satisfies Q ( y / d ) = Q (VÂ) 

and either d = 
1 mod 4 or d = 8,12 mod 16. Discriminants A that have / = 1 are called fundamental 
discriminants. The order O A is said to be real quadratic if A > 0, and imaginary quadratic 
if A < 0. 

The strict idéal class group C( A) of the quadratic order G A is defined as the factor 
group JA /"PA , where 2A is the group of invertible C'A-ideals and VA is the group of those 
principal ideals aOa that are generated by an element a G Q ( V d ) that has positive norm 
in Q. Factoring out by the subgroup of ail principal ideals, one obtains the ordinary idéal 
class group. The strict idéal class group coincides with the ordinary idéal class group for 
imaginary quadratic orders and for real quadratic orders having a unit of negative norm. 
In real quadratic orders having units of positive norm only, the kernel of the canonical 
map from C( A) onto the ordinary class group has order two and is generated by the class 
of the idéal \/Â • G a- If / = 1, then A = d and C( A) is also known as the narrow or strict 
class group of Q ( V d ) . 

Its order is the strict class number of Q( \fd). 
The class group C(A) was originally introduced by Gauss as a group of équivalence 

classes of primitive intégral binary quadratic forms of discriminant A. It was inspired by 
old problems concerning the représentations of integers by quadratic forms. In Gauss's 
définition, the class group of quadratic forms of discriminant A is the set of SL 2(Z)-orbits 
of primitive quadratic forms aX2 + bXY + cY2 G Z[X,Y] of discriminant A — b2 — 4ac. 
Primitivity means that gcd(o, b, c) = 1, and S 1/2(2) acts on the right on the set of forms 
F = aX2 + bXY + cY2 by 

F-(U V)=F(uX + vY,wX + xY). 
\ w x J 

If A < 0, one restricts to quadratic forms in which the coefficient a of X2 is positive. The 
set of orbits of quadratic forms of discriminant A has a group structure since there is a 



natural bijection to C( A) that is given by 

[aX2 + bXY + cY2] *—+ [Z • a + Z • 
2 

when a > 0, and 

[aX2 + bXY + cY2] 4—• [(Z • a + Z • & • VZ] 
Z 

when a < 0 and A > 0. 
If p is a rational prime number and F = aX2 -f bXY + cY2 is a quadratic form that 

assumes the value p on Z x Z, then F is said to represent p. Replacing F by an équivalent 
form when necessary, one can assume that F(1,0) = p. Then A = b2 — Apc, so A is a 
square modulo p and the middle coefficient of .F is a square root of A modulo p. From the 
bijection given above, one sees that the idéal class corresponding to the class of F contains 
an idéal of norm p. Conversely, an idéal of norm p gives rise to a quadratic form that 
represents p in the corresponding class of quadratic forms. 

The description of C( A) by means of quadratic forms is mainly useful for computa-
tional purposes [23]. From a theoretical point of view, the idéal class description is usually 
to be preferred. 

Being a finite abelian group, C(A) can be written as a product of a group of odd 
order and a 2-group, its 2-primary part. The group of odd order is not easily described as 
a function of A, and not very much has been proved about its structure. The 2-primary 
part, however, turns out to be a manageable object that has been studied extensively. Like 
any finite abelian 2-group, it can be characterized up to isomorphism by giving its 2 k-rank 
for k > 1. The 2fc-rank of a finite abelian group G is defined as the number of factors 
2 in the index [G2* 1 : G2*]. Thus, the 2fc-rank of a product of cyclic groups of orders 
mi, TO2,..., mr is exactly the number of i for which m, is divisible by 2k. It is obvious that 
r2k+i < r2k, and that r2* = 0 for k sufficiently large. 

The computation of the 2-rank of the class group C(A) goes back to Gauss. Taking 
squares in C(A), one obtains an exact sequence 

0 —> C(A)2 —» C(A) -^C(A) —+ C(A)/C(A)2 — 0 , 

which shows that the order of C(A)/C(A)2 equals the order of the 2-torsion subgroup 
C(A)2. Eléments in C(A)2 are called ambiguous forms or ambiguous idéal classes. Gauss 
determined their number and showed that the 2-rank of C( A) is equal to or one or two less 
than the number of distinct prime factors in the discriminant A. 

The same resuit can be obtained by genus theory, which describes the factor group 
C(A)/C(A)2 as a Galois group Gal( i / 2 /J f ) for a field H2 that is abelian over Q. Combined 
with the previous approach, it leads to a description of the 4-rank r 4 since 

r4 = dimF2(ker[C(A)2 —» C(A)/C(A)2]). 



For the 8-rank, the corresponding équation is 

(2.7) r$ = dimF2(ker[C(A)2 —* C(A)/C(A)4]), 

so one would like to describe the extension H±/K that has C(A)/C(A)4 as its Galois group. 
The field H4 is normal, but not necessarily abelian over Q, and its generators are not as 
easily given as for #2- However, sufficient information can sometimes be obtained by 
looking at an appropriate subfield. 

As an example, take for C( A) the class group of the imaginary quadratic field K = 
Q(V~P)> w ^ h p > 2 a rational prime number. If p = 3 mod 4, the discriminant of Q( \/—p) 
is prime and its class number is odd. Therefore, we shall further assume that p = 1 mod 4 
and study the 2-primary part of C = C(—4p). In this case we have H. 2 = Q( i ; \fv)-, s o 

r2 = 1 and the 2-primary part of C is cyclic. 
The field i f 4 is an unramified extension of degree < 2 of H2, and it is normal over 

Q( i ). It cannot be cyclic of order 4 over Q( i ) because there is a ramification group at p in 
Gal(iT4/Q( i ) of order 2 that is not Gal(H±/H2). Consequently, H4 is a Galois extension 
of Q( i ) with a group that is an elementary abelian 2-group. Since H4 is unramified over 
H2 = Q( i , ^fp), it must be a subfield of the ray class field of Q ( i ) modulo (p). As the 
class group Cl is trivial for Q( i ), the ray class group of Q( i ) modulo (p) is given by (2.3) 

r = ( * ; x * ; ) / i m < i ) 

Here kn and k^ are the residue class fields at the primes 7r and 7r over p in Q(i ) . As 
Gal(i?4/Q( i )) is of exponent 2, it is the surjective image of T / T 2 . It is clear that 
# ( T / r 2 ) < 4. We thus have 

r4 = l [ f f 4 : Q ( i , V ? ) ] = 2 [JET4 : Q( i ) ] = 4 

= • # ( T / T 2 ) = 4 

i is a square in kn and k% 

—1 is a 4-th power modulo p 

p splits completely in Q(\/—1) = Q((8)-

The converse is also true, since # ( T / T 2 ) = 4 implies that there is a V4-extension F of 
Q( i ) containing Q( i , y/p) that is ramified at 7r and 7f only. The ramification indices at 
these primes cannot exceed two since the ramification is tame, so F is a normal unramified 
extension of degree 4 of Q( \/—p), hence equal to 

Assume now that r4 = 1, i.e. p = 1 mod 8. In order to find the 8-rank of C, we use 
the fact that the prime idéal p2 in Q( that lies over 2 is non-principal—there is no 
element of norm 2—but its square is. As the 2-torsion subgroup of C is cyclic it is generated 



by the class [P2]• In this case, (2.7) tells lis that the order of the cyclic group C is divisible 
by 8 if and only if there is an element of order 2 that is a 4-th power, and we find 

r8 = 1 ^ [J>2] e c 4 

p2 has a trivial Artin symbol in C/C4 

P2 splits completely in H±/Çl(y/—p) 

•<=>• ( 1 + i ) splits completely in H 4 / Q ( i ) 

•4=4» (1 + i ) has a trivial Artin symbol in T / T 2 

1 + y/— 1 is a square modulo p 

p splits completely in Q(Cs5 v/ï~+T). 

Note that the choice of y/—l modulo p in the penultimate condition is irrelevant as the 
product (1 + N / = l ) ( l - > /=ï ) - 2 is a square modulo p. We have found a characterization 
of the primes for which 8 divides the class number of Q( \/—p) that goes back to Barrucand 
and Cohn [1]. 

Summarizing, we see that the 2-, 4- and 8-ranks of the class group of Q( \/—p) only 
depend on the splitting behaviour of p in the extension Q(Cs; V l + i ) /Q. This means that 

1) is a governing field for the 2-, 4- and 8-ranks of the class group of Q( V^p). 
The existence of a governing field in the example above directly implies that the set 

of primes p for which the ranks r 2 , r4 and rg of the class group of Q ( \ /—p) have prescribed 
values has a natural density inside the set of ail prime numbers. More precisely, the 
Cebotarev density theorem shows that r2 = 1 for 1/2 of the primes, — 1 for 1/4 of the 
primes and r8 = 1 for 1/8 of the primes. 

This example rises two natural questions. First, one might ask whether there exist 
governing fields that determine the 16-rank or even higher 2-power ranks of Q( y/—p). 
Secondly, one might wonder whether the situation above is spécial for the fields Q( y/—p), 
or that one parameter families of fields as Q( \/2p) exhibit a similar behaviour. More 
generally, one can pose the question for the class groups C(Dp) for some fixed D and 
variable primes p for which Dp = 0,1 mod 4. 

In their général form, the Cohn-Lagarias conjectures [9] assert that the answer to both 
questions is positive. 

2.8 Conjecture (Cohn-Lagarias) . Let D jà 2 mod 4 be an arbitrary integer, and w a 
power of 2. Then there exists a normal extension M/Q such that the w-rank of the class 
group C(Dp) for odd primes p \ D satisfying Dp = 0,1 mod 4 only depends on the Artin 
class of p in M/ Q. 

For w = 2, the truth of the conjecture is a direct conséquence of Gauss's results: the 
2-rank of C(Dp) simply does not depend on p. For w = 4, the conjecture is true for ail 



fondamental discriminants D by a resuit of Rédei and Reichardt [29, 30]. For w > 16, the 
conjecture is not even known to hold for a single value of D, and so far there is not much 
evidence supporting it. 

The study of the 8-rank of quadratic class groups originated with work of Rédei [31, 
32], who proved that for each intégral triple (a,b,c) with a > b > c > 0, there exist 
infinitely many real quadratic fields for which = a, = b and = c. Many papers on 
the subject have appeared since then. An especially large number of criteria concerning 
the 8-rank of class groups with cyclic 2-primary part has been derived, usually in terms 
of the solutions of certain Diophantine équations (E. Brown [3, 4, 5], H. Hasse [13, 14], 
P. Kaplan [16, 17], H. Koch & W. Zink [20]). A considérable part of the literature still 
uniquely uses Gauss's early 19-th century terminology of quadratic forms. The governing 
field approach to the problem starts with the already mentioned paper of Barrucand and 
Cohn [1]. The most satisfactory results in this direction have been obtained by Morton [25, 
26, 27, 28]. The conjecture 2.8 for the 8-rank has been proved by him for spécial classes 
of fondamental discriminants D. His methods do not furnish an obvious dependence on D 
of the governing fields that are obtained. 

The main resuit of chapter IV, theorem 10.4, is a slightly sharpened version of the 
following theorem. 

2.9 Theorem. Let D pÉ 2 mod 4 be an arbitrary non-zero integer, and deûne K by 

K — Q(y/q : q \ D is a fundamental prime power discriminant). 

Then the isomorphism type of C(Dp)/C(Dp)8 for primes p satisfying Dp = 0,1 mod 4 
only depends on the Frobenius class of p in the maximal abelian extension of K that is 
unrami£ed outside 2D • oo and has a Galois group of exponent 2 over K. 

Note that we obtain the governing field from our example if we set D = —4. 
The idea in the proof of 2.9 is that one knows the 8-rank of C(Dp) if one knows the 

structure of C(Dp)/C(Dp)i and the canonical image of the 2-torsion subgroup C(Dp) 2 in 
C(Dp)/C(Dp)4. Indeed, one can rewrite (2.7) as 

r8 = r2 - dimF2(im[C(£>p)2 — C{Dp)/C{Dpf\). 

Just as in the case D = —4 considered above, the field H(p) that is invariant under 
C(Dp)4 is abelian of exponent 2 over a field Kp that does not depend on p. Moreover, its 
conductor over Kp equals Dp, where î) is some fixed cycle depending on D. This means 
that the extensions H(p)/Q are subextensions of extensions L(p)/Q that we have studied 
in chapter III. One deduces that the structure of C(Dp)/C(Dp)4 is determined by the 
splitting behaviour of p in some governing field. Moreover, the formalism in chapter III 



allows us to take into account the local behaviour at a finite set of rational primes. In 
section 9, we describe class groups of quadratic orders by class field theory and reformulate 
classical results on their 2-torsion subgroup in order to show that the 2-torsion of C(Dp) 
cornes from the inertia groups of primes over D and oo (lemma 9.8). We can then use the 
governing field theorem 8.1 for the extensions L(p) with local conditions at the primes in 
D • oo to prove that there exists a governing field for the structure of C(Dp)/C(Dp)i plus 
the canonical image of the 2-torsion. By what we said above, this gives the Cohn-Lagarias 
conjecture for the 8-rank. 

If D has only few distinct prime factors, one can often find more précisé descriptions 
of the 8-rank than that from 2.9. For instance, the argument we gave for D = —4 is easily 
adapted to treat the case of fundamental discriminants that have cyclic 2-class groups 
[35]. The situation is more complicated when r 2 > 1. To give an idea of the methods that 
can be employed for small D, we conclude this chapter by an example that shows how to 
compute the 8-rank for D = —21, using explicit descriptions of C(Dp)/C(Dp)4 and C(Dp)2 
as sketched above. It proves a conjecture based on computational evidence in [9]. See also 
[28]. 

2.10 Theorem. Let p = 3 mod 4 be a prime number. Then the 4-rank of C(—21p) equals 
1 unless p = 7 or = —(£)= 1, when it is 0. The 8-rank of C(—21p) is 1 if and only if p 
split s completely in one of following fields: 

Mi = Q(\/—3, V7, 

M2 = Q( V3, V7, ^2(7 + V2Ï)) 

M3 = y j - 3 + 2 \ /^3) . 

Proof . Write C for C(—21p). For p = 3 and p = 7 the group C is cyclic of order respectively 
4 and 2, so the theorem holds for these values of p. We will further assume p > 7. 

The discriminant —21 p of K = Q(>/—21 p) has three distinct prime factors, so ac-
cording to standard theory that will be recalled in section 9 one has r2 = 2. It also gives 
H2 = Q ( y / = 3 , \/—7, V=P) = K(y/=5, \/—7) and 

C/C2 S Gai 

The 2-torsion group C2 is also a Klein four group V4. As there are no elements in OK of 
norm 3, 7 or 21, the primes p3 and fa in K lying over 3 and 7 have order 2 in the class 
group and generate C2. The 4-rank of C equals 

r4 = dimF2(ker[C2 —• C/C2]). 



As p3 is inert in K(y/—7)/K, it is not in this kernel and one has r4 < 1. 
Suppose first that ( p = 1, so p splits in Q(\/7). In this case, p7 splits completely in 

#2 = K(y/^3,y/—p), so [PT] generates ker[C2 —»• C/C2]) and r4 = 1. We see that 

r$ = dimF2(ker[C2 —• C/C4]) 

equals 1 if and only if p7 splits completely in H±/K. This splitting behaviour can be 
treated by class field theory over a field F = K-21 = Q(\/—3, y/—7) that does not depend 
on p. 

The field F is a totally complex biquadratic field of class number one. Its fundamental 
unit e = (V—3 + y/—7)/2 has a square (—5 — \/2T)/2 that is a fundamental unit in the 
real subfield Q(\ /2 l ) . As 1 — e2 = (7 + \ /21)/2 is an element of norm 7 in Q(\/2Ï) , we see 
that (1 — e) generates a prime idéal over 7 in F. We arrive at 

= 1 (1 — e) splits completely in H±/F. 

As H2 = F(y /—p) and H±/H2 is unramified, H^/F is a ^-extension of conductor p. By 
(2.3), the ray class group modulo p over F is isomorphic to 

T = ( o F / p o F y / ( - I , E ) - ( F ; 2 X F ; A ) / ( - I , E > . 

We have T / T 2 = Ga\(Hi/F) , so the last équivalence can be rewritten as 

rs = 1 1 — e is a square in Of/pOf = Fp2 x Fp2. 

If p splits in Q(\ /—3), then we can take the norm to this field and find 

= 1 NFjQ(v/r,3)(l — e) = 2 — a/—3 is a square in FP 

p splits completely in Mi /Q. 

If this is not the case, p splits in Q(\ /2Ï) and taking the norm ^p/^Vrî) gives 

rs = 1 <=> N f /Q ( a /2Î)(1 - e) = (7 + \ /2Ï ) /2 is a square in Fp 

p splits completely in M2/Q. 

This proves the theorem for the primes that satisfy (j) = 1. 
Suppose now that = — 1, so that p splits in Q(\/—7)/Q. Then p7 is inert in 

K{\f~P)lK-> s o [P3] a,nd [P7] are both non-trivial in C/C2. In order for the 4-rank to be 
non-zero the only other element [ P 3 P 7 ] of order 2 must be trivial in C/C2. As P3P7 is 
équivalent to the prime r = (\/—21p)p^"1pf1 over p in C, we now have 

r4 = 1 t splits completely in K(y/^3, y/^7)/K 

p splits completely in Q(\/—3, y/—7). 



As before, we dérivé that 

rs = 1 <==> t splits completely in H t / K . 

This time, we have to look at the splitting behaviour of a prime lying over p. As such 
primes are ramified in H 4 / F we cannot use the method above. Instead, we will use explicit 
generators for HWe can further assume that = 1, so p splits in the ring of integers 
Z[Cs] of QCx/^) as P = 7T7T. 

The décomposition field of P3 in Ht/K is quadratic over of K(y/Tp) = Q(a/~3, y/Tp) 
and does not contain y/— 7. It follows that Ht/K(y/Tp) is an unramified V^-extension. 
The norm map —» CIQ^^T-^ is trivial, and this implies by class field theory 
that Gal(K(y/Tp)/Q(y/—3)) acts on Gal(Ht/K(y/Tp)) by inversion. One deduces that 
Gal(i?4/Q(\/—3)) is the direct product of V4 and the inertia group of some prime dividing 
7p, i.e. elementary abelian of type 2 x 2 x 2 . Using (2.3) once more, we find that H4 is 
the maximal elementary abelian 2-extension of Q( A / — 3 ) of conductor dividing 7p. It can 
be given explicitly as 

H* = Q(N/=3, 7, ^ ( 2 + 7 = 3 ) ) , 

where the prime element ir\p in Z ^ ] has to be chosen such that 7r (2 + = 1 mod 4. 
Writing 7T = a + bÇ and 2 + \J—3 = 3 + 2£, one sees that this cornes down to a = 3 mod 4 
and 6 = 2 mod 4. One obtains 

r$ = 1 •£=>• r splits completely in Ht/K 

<==ï W splits completely in 7r(2 + y/^3)) / 

As C = C4 i s a square modulo 7f, the quadratic character of 7r modulo W equals that of 

C?r - (W = a(C - C) = 

The équation p = nW = a2 — ab + b2 gives quadratic symbols 
-a\ (—a\ 

Q \ P / Q V ^ / Q ( v / = 3 ) 

so we have 

r8 = 1 
Q(-/=ï) 

V^3(2 + ^ 3 ) ^ 

( \ / ~3 (2 + = 1 

V P / q 
p splits completely in M3/Q. 

This finishes the proof of 2.10. 





CHAPTER II 

On the structure of ray class groups 





3. Generalized group extensions . 

In the preceding chapter, we discussed the need for a type of extension groups that classify 
group extensions admitting the lift of some given homomorphism. In this section we 
introduce such generalized Ext-groups. Their définition is similar to the définition of the 
ordinary Ext-groups Ext(B,A) given in [15] or [24]. Here Ext(£?, A) is defined as a set 
of isomorphism classes of extensions 0—yA—>E—>B—>0oîB with A in the category 
of abelian groups, and an explicit addition formula for extensions is written down. We 
modify this procédure in the following way. 

3.1. Déf init ion. Let A be an abelian group and f : C —• B a homomorphism of abelian 
groups. Then an extension (E, <j>) of A with f is a commutative diagram of abelian groups 

y <t> 

0 E 

Two extensions (E\, (j>i) and (E2,(f)2) are sadd to be isomorphic if there exists an isomor-
phism j : E1 —> E2 that induces the identity on A and B and satisfies j o = cf>2. The 
set of isomorphism classes of extensions of A with f is denoted by Ext( /; A). 

When C = 0, the set Ext( /; A) can be identified with the underlying set of the ordinary 
extension group Ext(J3,.A). It turns out that for any / , the set Ext(/; A) can be equipped 
with a natural abelian group structure such that the natural map Ext(/; A) —> Ext(Z?, A) 
becomes a group homomorphism. 

In order to define a group structure, we first observe that the functor Ext(/; —) is 
co variant in its second argument. That is, given / : C —• B and a homomorphism of 
abelian groups a : A\ —• A2, there is a natural map a* : E x t ( / ; A i ) — E x t ( / ; A 2 ) 
that sends the class of an extension (E , <j>) in Ext(/; A\ ) to the class of the ûbred sum 
(A2 -h^x E, 0 © <f>) in Ext(/; A2). Here the fibred sum is defined as 

A2 +Al E = (A2 © E) / {(a(Œl), -ai)}ffli eAx' 

It is the push-out of a : Ai —> A2 and the inclusion map A\ —• E. 
Analogously, given A and f2 : C2 —> B2, a transformation (J3,7) of /1 to f2—by this 

we mean a commutative diagram 

Ca ^ Bi 

h B, 



—gives rise to a natural map Ext(/2 ; A) —> Ext(/i ; A). In this case the class of an extension 
(E,(f>) in Ext(/2; A) is sent to the class of the fibred product (E Xg2 Bi,(<f> o 7 , / i ) ) in 
Ext(/ i; A). The fibred product is defined by 

E x B2 B1 = {(e,6i) € Ex Bu ir(e) = /?(&i)}, 

where 7r is the homomorphism E —> B2. It is the pull-back of n and (3. 
In order to define the sum of the classes of two extensions (E\,<f>i) and (E2,<f>2) in 

Ext(/; A), we consider the extension (Ei © E2,<f>i © <£2) of A © A with / © / : C © C 
B © B. Transform this to an extension of A with / by subsequently taking (in arbitrary 
order) the push-out induced by the addition map V : A © A —» A and the pull-back 
induced by the 'diagonal embedding' A : / — • / © / . The class of the resulting extension 
V* A*(Ei © E2, fa © (f>2) is the required sum in Ext(/; A). 

3.2 Propos i t ion . Under the définition of addition of extension classes 

[(Eufa)} + [(£2,^2)] = [V*A*(Ei © E2,4>\ © (fo)] 

given above, the set Ext( /; A) has a natural abelian group structure. The unit element in 
the group Ext ( / ; A) is the class of the split extension (A® B, 0 © / ) . 

Proof . The vérification that the addition is well defined on Ext( / ; A) and that it induces 
an abelian group structure on Ext(/; A) is essentially the same as the corresponding vér-
ification for the ordinary Ext-groups. The latter is written out in détail in [24, III.2], so 
there is no need to repeat the argument here. • 

The following theorem gives some fundamental properties of the groups Ext(/; A). It uses 
the fact that the ordinary Ext-functor Ext(—, A) is the right derived functor of Hom(—, A). 

3.3 Theorem. Let A be an abelian group and / : C - t f l a homomorphism of abelian 
groups. 
(a) There is a natural exact sequence 

Hom (B ,A) Hom (C,A) —• Ext(/; A) —> E x t ( B , A ) —• Ext(C,A). 

Here the first and the last homomorphisms are induced by f , the second maps g G 
Hom(C, .A) to the class of the extension (A @B, ( g , f )) and the third is the canonical 
map. 

(b) If f is surjective, there is a canonical isomorphism 

Ext( / ;A) Hom(ker/, A) 

that maps the class of (E,(f>) to < |̂ker/ : ker / —> A C E. 



(c) If f is injective and cok / dénotés the cokernel of f , there is a canonical isomorphism 

E x t ( f ; A ) Ext(cok / , A) 

that maps the class of (E, <f>) to the class of the extension 0 —• A —• E/<f>[C] —> cok f —> 
0. 

Proof . (a) For exactness at Ext(B, ^4), we observe that the upper sequence in the diagram 

0 —> A —• EXbC —> C —> 0 

id 

E 0. 

is split if and only if there is a retract homomorphism C —• E X B C • If <f> : C E is 
the composition of this homomorphism with the projection to the first coordinate, this 
amounts to saying that the lower sequence comes from the element (E,<f>) G Ext(/; A). 

Exactness at Ext(/; A): an extension of A with / is split if and only if it is of the form 

>/ g®f 

A®B 

for some g 6 Hom(C,.A). This means exactly that it is the image of the homomorphism 
g G Hom(C, A) in our sequence. 

Exactness at Hom(C, A): a homomorphism g G Hom(C, A) gives rise to the trivial 
element in Ext( / ;A) if and only if there is an isomorphism % A. © B—yA © B that 
respects the embedding A —• A © B and the projection A © B —> B and satisfies g © / = 
X o (0 © / ) G Hom(C, A © B). Since *(a,6) = (o + h(b),b) for some h G Hom(£, A), this 
means exactly that g = hf for some h G Hom(5, ^4). 

(b) Let x '• Ext ( f ' ,A ) —> Hom(ker/, A) be the given map. Apply Hom(—,^4) to the 
short exact sequence 0 —* ker/ —> C —> B —> 0, form the long exact Ext-sequence and 
compare with the sequence in (a). 

Hom(B,A) Hom(C,A) 

id id 

Hom (B, A) Hom (C,A) 

Ext ( / ;A) 

x 

Hom(ker/, A) 

Ext ( 5 , A) Ext(C,A) 

id id 

Ext(B,A) Ext(C,A) 

By the five lemma, we are done if we can show that x makes the diagram commute. For 
the square to the left of x? this is immediate from the définition of the map Hom(C, A) —• 



Ext(/; A). For the square to the right, we consider for an extension (E, <f>) of A with / the 
diagram 

ker / —y C B —• 0 0 

<£|ker/ id 

0 > A • E • B • 0, 

which shows that E is the push-out of (j)|ker / and ker/ —> C. By the explicit description 
[24, III.3] of Hom(ker/, A) -*• Ext(B, A), tliis implies that the class of E in Ext(A,B) is 
the image of <^>|ker/. 

As a conséquence of the proof, we note that x has an inverse x~l '• Hom(ker/, A) 
-^-•Ext(/;A) that maps g £ Hom(ker/,A) to the class of the extension ( A + k e r / C , 0 + i d c ) 
in E x t ( f ; A ) . 

(c) By the same argument for 0 —> C —• B —> cok / —• 0, we obtain 

Hom (B,A) Hom(C, A) 

- i - i 

Hom(£, A) Hom(C, A) 

Ext (f-,A) 

Ext (cok f,A) 

Ext(B,A) 

id 

Ext (B,A) 

Ext(C,A) 

id 

Ext(C, A) 

and we verify that the given map x : Ext (cok / , A) —> Ext (f',A) makes the diagram 
commute. For the square to the left of this cornes down to the observation that for any 
g G Hom(C, A), the extension (A © B)/(—g, f)[C] of cok / with A is the push-out of g and 
/ . For the square to the right, the diagram 

^ <f> 

id 

E 

E / m cok / 0 

shows that E can be viewed as the pull-back of E/<f>[C] —• c o k / and B —• cok / . This is 
just the commuting of the square under considération. 

Here the inverse map : Ext (cok / , A)-^->Ext(/; A) maps the class of an extension 
Ê in Ext(cok / , A) to the class of (Ê x c o k/ B,(0,f)) in E x t ( f ; A ) . 

This finishes the proof of 3.3. • 

Parts (b) and (c) of the preceding theorem show that the groups Ext( / ;A) are easily 
expressed in terms of Hom-groups and ordinary Ext-groups in case / is either surjective or 
injective. In général, one can 'enlarge the domain of / ' such that (b) becomes applicable. 
More precisely, the result is as follows. 



3.4 Theorem. Let A be an abelian group and f : C —• B a homomorphism of abelian 
groups. If F is a free abelian group and f : C x F —• B is a surjective homomorphism 
that extends f , there is an isomorphism 

Ext(/; A) cok [Hom(F, A)-^Hom(ker f',A)] 

with g induced by the projection ker/ ' C C x F F. Under this isomorphism, the class of 
an extension (E, <f>) in Ext(/; A) is mapped to the residue class of </>'|ker/' : ker/' —> A C E 
for an extension (E,(f>') of f with A that extends (E,<f>). 

Proof . Application of the snake lemma to the commutative diagram 

0 CxF 

r 

0 

cok / 0. 

0 —• B —• B 

furnishes an exact sequence 

0 — • ker / —• ker/ ' —• F 

Taking homomorphisms to A, we obtain 

0 —> Hom(cok f,A) —> Hom(F, A) -^Hom(ker / ' , A) 

We have an isomorphism Hom(ker/', A) = Ext(/ ' ; A) by theorem 3.4(b), and a natural 
map Ext(/'; A) —» Ext(/;^4) that is surjective because F is free. We claim that their 
combination leads to an exact sequence 

Hom(cok / , A) — • Hom (F, A) —»• Hom(ker/',A) —> Ext(/; A) —• 0. 

Thus, we have to check which extensions of / ' by A lead to the trivial extension of A 
by / . For such extensions, the extension group is the split extension A © B and there 
exists g : F —• A such that the lift % : C x F 
g(x) © f'(c, x). From the commutative diagram 

0 ker/' — 

tflker/' 

CxF 

A® B 

A © B of / ' sends (c,x) e C x F to 

f B 

id 

B 

0 

0, 

we see that this implies that the extension cornes from the homomorphism g : F —> A, 
and that, conversely, any homomorphism g : F —• A gives rise to the trivial extension in 
Ext(/; A). • 



We conclude this section with a proof of the resuit on ordinary Ext-groups that was used 
in the preceding chapter to sketch a proof of theorem 2.4. 

3.5 Theorem. Let B be an abelian group and A a cyclic group of order m. Dénoté by 
Bm the subgroup of m-torsion elements of B. Then there is an isomorphism 

E x t ( B , A ) H o m ( B m , A ) , 

that is functorial in A and B and sends the class of an extension 0 —• A —• E —>B 0 to 
the homomorphism Bm —» A that maps (3 G Bm to m7r-1(/?) G A C E. 

Proof . Choose a free présentation 0 —>/?—> F-^B —> 0 of B. Standard homology gives 
the first isomorphism in 

Ext(J3, A) £ cok [Hom(.F, A) Hom(i2,A)] 

S cok [Hom(F/roF, A) H o m ( R / m R , A)} 

£ Hom(ker [R/mR F/mF),A). 

The second isomorphism is clear from the fact that A is of exponent m, for the third 
isomorphism one should observe that the injectivity of A as a Z/mZ-module implies that 
Hom(—, A) is an exact functor on Z/mZ-modules. 

The snake lemma applied to the diagram 

0 —> R —» F —> B —v 0 

0 —> R —> F —> B —>0 

shows that we have an isomorphism ker [R/mR —• F/mF] that sends b G Bm to 
the residue class of mf-1 (b) in R/mR. The theorem follows immediately. • 

Other proof of 3.5. This proof—for B finitely generated—shows that 3.6 is an isomor-
phism by identifying both groups with the dual of Hom(S,^4). 

First take B — A. Then Ext (A, À) and Hom(A, 4̂) are both cyclic of order m, and 
the kernel of the map Ext (A, A) —> Hom(A, A) is just the class of the split extension. It 
follows that the theorem holds in this case. For the général case, write t for the map in 
the theorem and consider the diagram 

Ext (£ ,A) ® z Hom(A,£) —> E x t ( A ^ ) 

Hom(i?m ,A) <g>z Hom(A,f?) —• Hom(A, A). 



For the upper horizontal arrow we use the fact that Ext(—, A) is contravariant to define 
a homomorphism Ext(B, A) —> Ext (A, A) for each element g of Hom(A, B). If g induces 
the zéro map, then 0 —* ker g —> A —»• B gives 

Ext (B,A) —• Ext(.A, A)-^Ext(ker g, A) —• 0, 

so Ext(A, A) = Ext(kerflr, A) and g = 0. Since Ext(B,^4) and Hom(A, B) both have order 
#Bm—for Ext(jB, A) this follows from the case that B is cyclic—we conclude that we have 
a perfect pairing that identifies Ext(i?, A) with the dual of Hom(yl, B). 

It is even easier to verify that the lower horizontal arrow, that sends f ® g to the 
composition f o g ç, Hom(yl, A), is also a perfect pairing that identifies Hom(i?m, A) with 
the dual of Hom(A, B). 

AU arrows are functorial, so we are done if we can show that the diagram commutes. 
Take the class £ of an extension 0 —* A —• —• 0 and a homomorphism g G 
Hom(A,5) . Then the image of £ ® g in Ext(^4, A) is the extension class of the top row in 

h 0 

id 

ExbA 

E B 

0 

0. 

In Hom(A, A) this corresponds to the map a i—• mh~1(a). Taking the image the other way 
around, we arrive at the homomorphism a i—> rmr ~1g(a). Looking at the diagram, we see 
that these homomorphisms coincide. • 

4. Three theorems from field theory 

We start with a resuit that is due to Schinzel [33]. 

4.1 Theorem. Let K be a field, m a positive integer not divisible by char (K) and w the 
number of m-th roots of unity in K. Let L be the splitting field of Xm — a over K for 
some a G K. Then one has 

L/K is abelian aw É F . 

Proof . If aw = bm for some b E K, then a = (bm/w for some w-th root of unity Ç and 
L/K is a subextension of the abelian extension K(\/b,ÇWTn)/K. It follows that L/K is 
abelian. 

For the converse, take a G G a l(L/K) and suppose a acts on a primitive m-th root of 
unity Cm by <r((m) = ( m ^ . For arbitrary r G Gai (L/K) and a £ L satisfying am = a the 
assumption that G a l ( L / K ) is abelian implies that 

rcr(a) _ / r ( a ) \ _ /r(o:)\fc(<T) _ r (a k ( < t ) ) 
a(a) ~ a \ a ) ~ \ a ) ~ ak(0) ' 



so the element / a ( a ) is invariant under ail r G Gal(L/K), whence in K. It follows 
that its m-th power a * ^ - 1 is in Km. 

We conclude that av is in Km, where v dénotés the greatest common divisor of m 
and ail numbers k(cr) — 1, a G Gal(L/K). As ((v) is exactly the set of Gal(L/if )-invariant 
m-th roots of unity, we have v = w. • 

Remark. The proof of the implication in 4.1 can also be phrased in terms of cohomol-
ogy. If L/K is Galois with group G and Cm is in L, Hilbert 90 furnishes an isomorphism 

(L*m n K*)/K*m^Hx{G, (Cm)) 

that sends the class of am G L*m fl K* to the class of the cocycle r r(a)/a. The proof 
given above shows that such cocycles are annihilated by k(a) — 1 when G = Gal(L/K) is 
abelian. Alternatively, one can prove directly that H1 (G, (Cm)) is annihilated by k(a) — 1 
by observing that the action of a on this group via an inner automorphism of G and via the 
natural action on (Cm) coincide [7, IV 4.3]: the first action is trivial because G is abelian, 
the second raises to the power k(cr), so k(a) — 1 kills ail elements. 

Our next resuit, due to Kneser, is useful in determining the degree of radical extensions of 
a field K. The problem cornes down to finding the degree of K(M)/K for subgroups M 
of the multiplicative group of the separable closure of K that are of finite index over K*. 
Obviously, one has [ K ( M ) : K) < [M : K*]. If M/K* has exponent m and K contains a 
primitive m-th root of unity, K(M)/K is a Kummer extension and equality holds. On the 
other hand, it is easily seen that cyclotomic extensions can give rise to strict inequality. 

4.2 Theorem. Let K be a field with separable closure Ksep, and suppose M is a subgroup 
of K*ep containing K* such that [M : K*] < oo. Then one has 

[K(M) : K] = [M : K*] 

if and only if the following conditions are satisfied: 
(1) if p is an odd prime dividing [M : if*] and M contains a primitive p-th root of unity 

Cp, then one has Cp G K; 
(2) If C4 is a primitive 4-th root of unity and M contains 1 + C4, then one has C4 G K. 

Proof . Kneser's original paper [19] has a short proof. See also [18]. • 

We give an application of 4.2 that will prove to be useful in section 6. It is a degree 
computation for certain radical extensions of a number field K. For W a subset of a 
field K, we dénoté by K(\/W) the extension of K that is obtained by adjoining to K ail 
elements o: in an algebraic closure of K for which am G W. 



4.3 Proposi t ion. Let K be a number field, and r the free rank of the unit group E of 
its ring of integers. Suppose l is an odd prime, and L = K( lVË) for some integer k > 1. 
Then 

f Zfc(r+1> if Q G K; 

In particular, i f l does not divide 2 • A(K/Q) one has [L : K] = (l - l ) / f c( r+ 1)- 1 . 
For L = K(C2k » 2VË) the degree is given by 

( 2fc(r+1) if Ci e K; 

Here a,K,k = 1 if ail 2 k - th roots of unity in K(C4) are of the form e/ë, with e a unit in 
K(C4) and e its K-conjugate, and a,K,k = 2 otherwise. 

Proof . If Cl ê K, Kneser's theorem gives 

[L : K) — [K* • 'VË : K*] = fy/Ë : 'VË n K*} = fy/Ë : E] = lk(r+1\ 

This also works for 1 = 2 when £4 G K. 

If Cl 0 Ki we apply Kneser's theorem over K(Ci) to obtain 

[L : #«,)] = l'VË : lVË n # « , ) * ] = fy/Ë : E] • fVË n : E)~\ 

Let <7 be a generator of G a \ ( K ( C i ) / K ) . Then the homomorphism 
•VËNK(CI)* ^ (CI*) NK(CI)* 

a 1—> a(a)/a 

has kernel E, so ['y/Ë n K(Ci)* : E] is bounded by the order of ((,*) n K(Ci)*. The 
latter group intersects E in { l } , so the inclusion (C/*) H K(Ci)* C 'VË fl K(Ci) shows 
that we have equality. The desired formula follows immediately. If Z -t" A(K/Q) we have 
[ # ( C 0 : K] = 1 — 1 and ( f r ) Cl K(C,) = (Cl). 

We are left with the case that L = K(£2* » 2\/Ë) and Ci & K- As above, we have 

[L : ir(C4)] = ["VË : 2VË n # « 4 ) * ] = 2*<r+1> • [2VË n : E]"1 . 

With Ga\(K(Ci)/K) = (cr), we have again a homomorphism 

<f>:>VËnK(CiT^(C2*)nK(Ci) 

with kernel E. The index 
[:2VËf)K(Ci)* : E] is bounded by the order of (Ç2k) PiK(Ci), but 

this group now intersects E in (—1). It follows that the index equals «^£#((£2* ) H K(Ci)), 



with a,K,k = 1 when <f> is surjective and a,K,k = 2 otherwise. Surjectivity of (f) means that ail 
elements in (£2*) H K(£4) have the form e/ë, with e a unit in K((4) and ë its if-conjugate. 
Note that ax,k only depends on K for k sufficiently large. • 

In the foliowing theorem, we write to dénoté the multiplicative group of a field F 
modulo its torsion elements. In other words, F# = F*/Zp, where Zp is the subgroup of 
roots of unity in F*. Note that F* C E* if F C E is an extension of F. The following 
resuit was originally proved by Van Tieghem in [36]. We give a proof that is much shorter. 
See also [18]. 

4 .4 Theorem. Let L/K be a £nite separable field extension. Then the torsion subgroup 
ofL*/K* is a finite group of order dividing [L : K]. 

Proof . Let t(L/K) be the torsion subgroup of L*/K* = L*/ZlK*. An element x mod 
Zj_,K* is in t ( L / K ) if and only if xn G K* for some integer n > 1, and this is équivalent to 
saying that any quotient of x by one of its if-conjugates is a root of unity. Looking at the 
action of the norm L —y K on t(L/K), one concludes that the group t(L/K) is annihilated 
by [L : K]. 

If L/K is abelian with group G, one takes the Galois cohomology sequence for 

0 —>ZL —y L* —• L* —• 0. 

By Hilbert 90, this gives 

0 —y Zk —• K* —• (L*f —• H\G,ZL) —» 0, 

and the argument above implies that t(L/K) = H1(G,ZL). In particular, if G is cyclic, 
generated by a, one has 

H\G,Zl) * Ê - \ G , z L ) = { x e z L : N l / k ( X ) = 1 }/Za
L-\ 

Now any subgroup of ZL is an injective limit of finite cyclic groups, and {x G ZL : 
NL/K{%) = i s annihilated by [L : K). We conclude that in this case H1(G,Zl) 

is finite cyclic of order dividing [L : K] and the theorem holds for L/K. 
If there is an intermediate field M in the extension L/K, we have an exact sequence 

0 —> t(M/K) t(L/K) —> t(L/M), 

so the theorem is true for L/K if it holds for L/M and M/K. We give two différent ways 
to finish the proof. 

First method. We may assume that there are no intermediate fields between K and 
L différent from K and L. In particular, K(ZL) = L or K(ZL) = K. If K(ZL) = L, 



the extension L/K is abelian, even cyclic of prime degree, and we are done. Let now 
K(ZL) = K. In this case t ( L / K ) is the torsion subgroup of L*/K*. We may assume that 
there exists x mod K* in L*/K* of prime order p, since otherwise t ( L / K ) = 1 and there is 
nothing to prove. Thus L = K(x) is an extension of K of degree p. As L/K is separable, 
we let L' — L(Cp) be the normal closure of L, and write K' = K((p). The extension L'/K' 

is cyclic of order p, so \t(L'/K')\ divides p. We are done if we show that the composite 
map t(L/K) —• t(L'/K) —• t(L'/K') is injective. Now the first arrow is injective, and 
the kernel of the second is isomorphic to t(K'/K). Our claim follows from the fact that 
t(L/K) has exponent p and t(K'/K) has order dividing p — 1 by the theorem for cyclic 
extensions. 

Second method. It suffices to prove the theorem for the p-part of t(L/K), with p an 
arbitrary prime. Let N be the normal closure of L over K, and H C G = Gal(N/K) 
the subgroup corresponding to L. Let Hp and Gp D Hp be p-Sylow subgroups of H and 
G, and L' and K' the corresponding fixed fields. By the solvability of p-groups, L' can 
be obtained from K' by repeated cyclic extensions of degree p, so the theorem holds for 
L'/K'. As K'/K is of degree prime top, the theorem trivially holds for K'/K if we restrict 
our attention to p-parts. It follows that the order of the p-part of t(L'/K) divides [L' : K] 
and, as [L' : L] is coprime to p, it even divides [L : K}. The same is now true for the 
subgroup t(L/K) C t(L'/K), and the proof is finished. • 

5. Main theorem 

We now come to the main resuit of this chapter, theorem 5.6. Before we can formulate 
the theorem, we need some introductory remarks that lead to a précisé description (5.5) 
of the extensions we will consider. 

Let K be a number field, D a cycle in K and m G Z >o an integer. For a finite prime 
p \ 5 in K, we let L(p) = L(p, 5, m) be the maximal abelian extension of K of conductor 
dividing Dp in which the ramification indices at primes over p in L(p) divide m. As L(p) 
contains the ray class field H o of K of conductor there is an exact sequence 

(5.1) 0 —• Gal(L(p)/Ht) —> Gal(L(p)/K) —• Gal^/K) 0. 

The group Gal(L(p)/H^) is the inertia group of the prime p. Under the Artin map J —> 
Gal(L(p)/K) on the idèle group J of K, it is the image of the unit group Up of the ring of 
integers in the local field Kp. As p divides 0p to the first power, the ramification at p is 
tame and the homomorphism Up —> Gal(L(p)/J5"0) factors via the unit group k* — Up/U<^) 

of the residue class field kp at p. Our hypothesis that the ramification indices at p divide 
m implies that Gal(L(p)/H^) is the image under the Artin map of k*/k*m. In particular, 
it is a cyclic group of order dividing m. 



We want to rewrite the exact sequence above in terms of ray class groups. As L(p) is a 
subfield of the ray class field Hop of K, we start by rewriting the surjection Gal(ffop / if ) -»• 
Gai(Hx>/K) as a surjection of ray class groups C0p —> Ca. By the argument above, the kernel 
of this map is the homomorphic image of fcp = Using the définition of the ray 
class groups, we see that the kernel equals 

{principal ideals (œ) with x = 1 mod*5 and |œ|p = 1} 
{principal ideals (x) with x = 1 mod*5p} 

Mapping ideals to the residue class of a generator that is 1 mod *0 in we obtain an 
isomorphism Y w h e r e E* dénotés the group of global units that are 1 mod * 5. 
Note however that the composition of the homomorphism fc* = —> Y induced by 
the canonical map J —> Cj>p with the isomorphism Y /imfjBo] just given sends x mod p 
to the residue class of in fcp /im[_Eo]. We have proved the foliowing. 

5.2 Lemma. Let 0 be a cycle in K and p a finite prime not in 0. Then there is an exact 
sequence 

0 —• k;/im[Ft] Cdp C0 —>• 0. 

Here Et is the group of global units that are 1 mod*D, and a sends the residue class of a 
global element x = 1 mod*5 satisfying |x|p = 1 to the class of (x) in CBp. • 

By the lemma above, we can rewrite the exact sequence of Galois groups (5.1) as 

(5.3) 0 —+ k;/(im[E9] • k*p
m) — C,p/a[k;m] — C0 — 0. 

We can view this 'arithmetical extension' as an element of an Ext-group Ext(C®,—) that 
does not depend on p if we identify the group fcp/(im[.Eî)] • fcp

m) with some fixed cyclic 
group. For any divisor n of m, one has 

n|#(fc;/(im[EB] • k;m)) <^Np = l mod n and im[£a] C 

p sphts completely in K((n,\/Ë^)/K and p \ n. 

It follows that the primes p for which the order is m are exactly those primes p f m 
that split completely in K (Cm, We will further restrict our attention to these 
primes. In order to study the behaviour of the sequence for primes p for which the order 
of fcp/(im[£?j] • kp

m) is n < m, one has to replace m by n in the définition of £(p). 
Given a prime p that splits completely in K(Cm, \fEv)/K, we choose an extension 

|p in Km = K(Cm) and consider the m-th power residue symbol on the unit group 
of the residue class field k<p at This symbol is the homomorphism k^ —> (Cm) that is 
defined by 

= .(NV-D/m m o d qj. 
\ T V m 



In accordance with the name of the symbol, the kernel consists of the m-th powers in k 
Our splitting assumption on p implies that we have an isomorphism 

k;/im[Er>] • k*p
m = k;/k*p

m = k*v/k%m (U) 

for each prime in K m . Thus, by the choice of a prime our arithmetical extension 
gives lise to a well defined element E<$ G Ext(C0, (Cm))-

If is also an extension of p to Km, there exists a E G a i ( K m / K ) such that = 
The commutative diagram / •\ 

u* n,* m VTAr, . 

~~ * (Cm) 
shows that Eay$ = Ey, where a G Gal(Km/K) acts on Ext(C0, (Cm)) via its action on (Cm)-

If we compose the natural surjection from the idèle group J of K onto Cj>p with 
the canonical map Cop —> C$, we obtain the natural surjection J C&. This implies 
that our extension (5.3) admits a lift of the canonical map J —y C0 to a homomorphism 
J —» Cop/a[&pm]. This lifting property exists for the restriction of J —• Cg to any local 
component K*, but it is spécial to our arithmetic extension only at components K * for 
which q divides 0. This is because the homomorphism K* —> Cg factors via the group 
K*/UqO T d"^\ which is isomorphic to Z at finite primes outside d and trivial at the infinité 
primes outside D. Let S be an arbitrary finite set of primes of K. Then our arithmetic 
extension has the spécial property that for any prime p \ î) outside S, it admits a lift of 
the canonical map 

(5.4) fs : S = f l K*/U, 
q e s 

(ord,(9)) 

to <j>s : S —• Cgp / a[kp
rn}. The map <f>s is the composition 

S ~ J/Wn ^ J/K*Wvp = Cn ^ Cgp/cc[k;m]. 

Here Wgp is defined as in (2.6). Note that S and f s do not change if we add the infinité 
primes outside 5 to S. We summarize the preceding discussion in the following way. 

5.5 Propos i t ion . Let K be a number field, 5 a cycle in K and m G Z>o an integer. 
Dénoté for a finite set S of primes by f s the canonical map in (5.4). Suppose p \ mD is 
a prime of K outside S that splits completely in Km(\Œg)/K. Then the isomorphism 
class of the extension (5.3) is an element € Ext(/s;(Cm)) for each prime in 
Km = K(Cm) by the identification kp/(im[Eg] • k*m) = (Cm) via (7$)m and the canonical 



lift <j>s : S —• Ct,p/a[kpm]. Under the natural action of G a l ( K m / K ) on Ext( /s; (Cm))> o n e 

has £(¥Y = £(<r<#)-

We are ready to formulate the main theorem of this chapter. 

5.6 Theorem. Let K be a number field, 0 a cycle in K and m £ Z>o an integer. Write 
Km for K (Cm ) and Er> for the group of units in OK that are 1 mod* 0. Let S be a finite 
set of primes and f s the canonical map from (5.4). Dénoté by D the set of primes in î) 
and deûne W C K* by 

W = Ws,x>,m = {x 6 K* : ordq(x) = 0 mod m for ail finite q ^ S and 

x = 1 mod*qord'(0) for ail q eD\S}. 

Then there is a canonical Gal(Km/K)-linear injection 

w : Gai (Km(y/W)/Km(y%)) — Ext ( / s ; (Cm)) 

such that for a prime in Km lying over a prime p of K not in TOD or S that splits 
completely in Km(yŒ^)/K, one has 

(V,Km(Vw)/Km) £(V) 

with as in 5.5. If ranges over the extensions of p to Km, then £(^3) ranges 
over a Gal(Km / K)-orbit in Ext (fs; (Cm))- If Cm is in K and S contains D, then u> is an 
isomorphism. 

Remarks . It should be noted that the Artin symbol (ty,Km(\/W)/Km) in 5.6 is indeed 
an element of G a i ( K m ( V W ) / K m ( V Ë ï ) ) , because ^ splits completely in Km(VËï)/Km. 
Further any element of G a i ( K m ( \ / W ) / K r n i ^ / Ë ï ) ) is of this form by the Cebotarev density 
theorem, so u) is uniquely determined by its values on Artin symbols. 

For the prime p in 5.6, there is no unique Artin symbol but only a Artin class in 
Gai (K m Cï /W) /K m (VË; ) ) , consisting of the Frobenius symbols of primes over p. It is 
a conjugacy class in Gal(Km(\/W)/K) that is an orbit under the natural action by inner 
automorphisms of G a i ( K m / K ) . We see that u> maps this class to the Ga\(Km /fT)-orbit 
consisting of the elements £(<#) for <#\p. Thus, the Artin symbol of p in G a i ( K m ( y / W ) / K ) 
and the isomorphism class of the extension (5.3) in Ext ( / s , (Cm)) are not uniquely deter-
mined in exactly the same way. 

In theorem 5.13, we will give several conditions under which a; is an isomorphism. 

Proof . The main idea is to use the isomorphism from 3.3(b) to realize the group 
Ext(/s; (Cm)) as a group of homomorphisms of the form Hom(yl, (Cm)) with A a certain 
subquotient of K*. Kummer theory can then be used to make the transition to a Galois 



group of an extension over Km. The problem is that our map f s need not satisfy the 
requirement of surjectivity that is essential for 3.3(b). Note however that f s is surjective 
if S D D and the classes of the finite primes in S generate the idéal class group of K. Our 
proof deals with this problem by 'extending' f s to a surjective map, applying 3.3(b) and 
going back to fs-

As we observed just before proposition 5.5, we may assume that S contains ail infinité 
primes outside 0. This will allow us to write 'q ^ S U D'instead of 'q ^ S U D and q finite' 
in the rest of the proof. 

Let Wj, be defined as in (2.6), and consider the subgroup T C J/W-o containing S 
defined by 

T = © K*jU(°ld<(*)) Qé S x © Z. 
qgD\S qgSuD 

It is clear that the restriction fr of the canonical map ^ : J/WQ —• Cj to T is surjective. 
If 5 D D we have T = J/Wj>. More generally, there is an exact sequence 

0 —• T —• J/Wr, —• © K;/U(°ld"W) —* 0. 
q€D\S 

As Ej, = Wj, fl K*, there is a derived sequence 

0 —* ker / T —» kerV» S K*/E* —> © K;/Uiati'W) 

q er>\s 4 

that shows that ker FR = X/ED, where 

X = {x E K* : x = l mod*qord,( l l ) for ail q G D \ S}. 

Note that X = K* if S D D. 
Analogously, the sequence 0 —> S —* T —> ©qgsuijZ —* 0 gives 

(5.7) 0—> k e r / s — • ker fr = X/Er>—• © Z—> cok fs—> 0. 
qgSuD 

This shows that ker f s — Xs/Ej,, where Xs dénotés the group of S-units in X: 

Xs = {X<EX: \X\„ = 1 if q 0 S } . 

We now apply theorem 3.4, with F = ©qgsuD Z and A = (Cm) and homomorphisms 
f = f s and / ' = fr- As ker/T = X/ED, we obtain isomorphisms 

Ext ( / s ; (Cm)) = cok[Hom( © Z, « r o » —> Hom(X/£ 0 , (Cm))] 
qgSuD 

S cok [Hom( © Z/mZ, (Cm)) — Hom(X/E 0 X"\ (Cm>)]. 
qgSuD 



If f s is surjective, (5.7) and projectivity of ©qgsuljZ show that this is the isomorphism 

(5.8) E x t ( / S ; « m ) ) ^ Eom(Xs/E1h(Cm)), 

in accordance with 3.3(b). For the général case, we use our group W = Ws,o,m and consider 
the exact sequence of Z/mZ-modules 

0 —• W/Ej,Xm —• X/EvXm —+ © Z/mZ. 
qgSuD 

Application of Hom(—, (Cm)) to this sequence gives 

Hom( © Z/mZ, (Cm)) —» H o m ( X / E d X m , (Cm)) —• H o m ( W / E 9 X m , (Cm)) —> 0 
qgSUD 

because (Cm) is injective as a Z/mZ-module. We conclude that an isomorphism 

(5.9) Ext( /S ; (Cm)) ^ H o m ( W / E * X m , (Cm)) 

is induced. Inspection of the various homomorphisms leads to the following explicit descrip-
tion. Given an extension of f s with (Cm)? lift it to an extension (E,<f>T) of /T with (Cm)-
By restriction, a homomorphism W —» (Cm) is obtained that is trivial on Ej,Xrn. Note 
that 4>T(W) for w G W does not depend on the choice of <f>T because ordq(w) = 0 mod m 
at q g S U D. In particular, for the extension class £(^3) in Ext ( f s ' , {Cm)), we have 
E = Cap/a[fcpm] and we can choose for <f>x the composition of an embedding 

T = S x © K*JUa —> S x © K:/Un x K* 
qgSuD 4 ,esuc H' v 

with the canonical map to Cip/a[kpm}. If w is an element of W, it can be multiplied by 
an element of Xm to ensure that w is a local unit at p. In that case, we see that the 
homomorphism p G Hom(W/Et>Xm , (Cm)) corresponding to £(*#) sends w to 

pv(w) = </>T((w\eD\s,qïp x ( l )p) . 

As we have w = 1 mod*qord^8^ at ail primes in D \ S, this is the image under <f> : J/W^ —• 
C0p/a[fc*m] of the element ((w)q^p x ( l ) p ) . Using the fact that K*/Ex, is in the kernel of 
(f>, we arrive at 

<f>((w)^p x (l)p) = ^((l)„ép x ( w _ 1 ) P ) = a(w mod p). 

In the last équation, we used the observation preceding lemma 5.2. Finally, our identifica-
tion of kp /k*m with (C m ) implies that 

py(w) = 



From the surjection W/E^X™ WK^m/Ej,K^m we obtain an injection that is the 
lower horizontal arrow in the diagram 

Gai (Km(VW)/Km(VEd) Ext ( / s ; (Cm)) 

i 

Rora(WK*m
m/Er,K*m

m,(Cm)) — H o m ( W / E a X - , ( C m ) ) . 

The left vertical isomorphism comes from Kummer theory, the right vertical isomorphism 
has just been derived. Note that the induced injection u> is an isomorphism if and only if 

(5.10) W n E*K*m
m = E*Xm. 

This condition is trivially satisfied when Cm is in i f and S contains D, since then X = 
K* = K* m• 

We still have to show that a; satisfies the description given in the theorem. The image 
of the Artin symbol = (^,Km(y/W)/Km) G Gal(Km(VW)/Km(^)) under the left 
vertical arrow is the homomorphism 

^ ^ vyWw) ^ w ( N q } _ 1 ) / m m o d 

71Ô 

As ail m-th roots of unity are distinct modulo this congruence shows that <T<p(w) = 
p<p(w) for each p-adic unit w G W, hence for ail w G W. It follows that u) maps <r<p to 

W 
The fact that u» respects the action of Gal(Km/K) is a direct conséquence of the 

canonicity of ail arrows in this proof. Alternatively, one can check that the action on 
Gsl(Km(\/W)/Km(VË^)) and Ext( /S ; (Cm)) are the same by observing that 

uj((r^,Km(VW)/Km)) = £(T<Ç) = 

for any r G G a \ ( K m / K ) . 
This finishes the proof of theorem 5.6. • 

Remark. Suppose that m = 2 in 5.6 and that p f 5 is a real prime of K that splits 
completely in Km(VËï) — K(yfE^). Then p gives rise to an element £(p) G Ext( /s; ( - 1 ) ) 
by the sign map kp/kp2 1). As might be expected, this element is the u>-image of the 
Artin symbol ap = (p, K(VW)/K), which is by définition the element of the Galois group 
that induces the non-trivial automorphism on the local extensions K( Vw) q /Kp = C/R at 
q|p. The vérification of this fact comes down that to the fact that, in the terminology of 
the proof of 5.6, the elements Pp{w) = sign^w) and <Tp(yfw)/\fw coincide for ail w G W. 



There are other descriptions of the field K m ( 'VW) in the preceding theorem in case S 
satisfies additional conditions. 

5.11 Proposi t ion. Let W be as in 5.6, with S containing the primes in 0 and the infinité 
primes, and set M = Km(\/W). Then the following holds. 
(i) If the class group of K is generated by the classes of the finite primes in S, then 

M = Km(\/Ks), where Ks dénotés the group of S-units 

{x G K* : |x|q = 1 if q g 5} . 

(ii) If K contains the m-th roots of unity and S contains the primes dividing (m), then 
M is the maximal abelian extension of K of exponent dividing m that is unramified 
outside S. 

Proof . The conditions in (i) imply that the map f s is surjective. In that case the proof of 
5.6 is much easier: one can use équation (5.8) to see that M = Km(\/Xs), and the inclusion 
S Z) D implies Xs = Ks. Of course, one can also be prove directly that W — KsK*m. 
Indeed, suppose a has order divisible by m at ail primes not in S. Then we can write 
(a) = s • a m with s a fractional idéal built up from the finite primes in 5. By assumption, 
there is an idéal b built up from the finite primes in S that is in the same idéal class as a. 
Write (j3) = a • b - 1 , then a(3~m G Ks, as required. 

For (ii), note that any abelian extension of K is of the form K(VV) for some V C K* 
by Kummer theory. Further an extension K(^/x)/K is unramified at a prime q \ (m) • oo 
if and only if ordq(a;) = 0 mod m. The assertion follows. • 

Making the choices 3 = 1 , 5 = 0, we obtain a theorem of which 2.4 is a spécial case. 

5.12 Corollary. Let K be a number field, Cl its class group, E the unit group of the 
ring of integers of K and W the subset of elements a G K* for which (cc) is an m-th idéal 
power. Then there is a canonical Gal(Km /K)-linear injection 

Gai (Km(VW)/Km(VË)) —» Ext (Cl, (Cm)) 

that is an isomorphism when K = Km. It maps the Artin symbol of a prime of Km 

lying over a prime p \ m in K that splits completely in Km(\fË)/K to the class of the 
extension 

£p : 0 —• k;/k;m —• Cp/a[k;m] —• C —• 0, 

where k*/k*m = (Cm) via the norm residue symbol at • 

The following theorem shows that if S contains the primes in D, the hypothesis Cm G K 
in the last statement of theorem 5.6 can be substantially weakened without losing the 
isomorphy of w. 



5.13 Theorem. Suppose the set S in theorem 5.6 contains D. Then the injection 

u: Gai (Km(\/W)/Km(y%)) Ext ( / s ; (Cm)) 

in theorem 5.6 and the injection 

G a i ( K m ( V W ) / K m ( V Ë ) ) —> Ext (Ci , (Cm)) 

in 5.12 are isomorphisms in each of the following cases: 

( 1 ) Cm € K; 
( 2 ) (Cm) r\K = 1; 
(3) m is prime; 
(4) m is an odd prime power; 
(5) K contains a primitive r-th root of unity, where r is the product of ail odd primes in 

m, and a primitive 4-th root of unity in case 4 | m. 

Proof . As 5.12 is a corollary of 5.6, it suffices to look at the injection u; from 5.6. By our 
assumption on S, condition (5.10) that is necessary and sufficient for isomorphy of u> can 
be rewritten as 

EtiWnK*™) = E,K*m, 

with W = Ws,»,m and Ex, as in 5.6. Note that the inclusion D is always valid, and that 
equality follows when W D = K*m. 

For (1) there is nothing to prove. 
If (Cm) n K = 1, we use Schinzel's theorem 4.1. Take x e W n Then one has a 

if-homomorphism K(r</x) —• Km, so K C K(^/x) is abelian. It follows that x e K*m by 
4.1, and we are done. 

If m is prime we are either in case (1) or in case (2), so (3) follows immediately. 
In case (5) we have the necessary roots of unity to apply Kneser's theorem 4.2. It 

follows that 
[y/W : K*] = [Km(\/W) : K} 

and that 
[K* • : K*) = [Km(y%) : K). 

Consequently, one has [Km(VW) : i M v ^ l = • = 4(W/E^K*m), 
so that the natural map G a i ( K m ( V W ) / K m ( V Ë ï ) ) —> H o m ( W / E d K * m , (Cm)) is an iso-
morphism. This group is just Ext ( / s ; (Cm)) by (5.9). 

We finally treat case (4). If m = pk is an odd prime power, then (Cm) is cyclic and 
K fi (Cm) is either trivial or a subgroup of (Cm) containing Cp- Thus we are either in case 
(2) or in case (5). • 



The case that m is a power of 2 larger than 2 is not covered by 5.13. The following example 
shows that we do not necessarily have an isomorphism for such m, not even in the spécial 
case 5.12. 

5.14 Example . Take K = Q(\/—5) and m = 4 in 5.12. Then Ci is cyclic of order 2, 
generated by the class of the prime idéal over 2 in K, so one has W = ( 4 ) E K * i . Further 
E = ( - 1 ) , so K«/W) = K(V2,ts) = K((8) = K(tfË). The injection u> becomes 

1 = Gai (K(\/W)/K(VË)) -> Ext (Ci, (<4)) = Z/2Z, 

which is not surjective. 

Theorem 5.13 shows that the generalized Ext-group Ext( / s ; (Cm)) is appropriate in describ-
ing 'arithmetical extensions'. That is, if we take into account that arithmetical extensions 
have the spécial property of admitting lifts of décomposition groups at primes in t> by 
including such primes in S, mild conditions ensure that ail elements of E x t ( / s ; (Cm)) are 
realized as extensions of this type. One might ask to which extent the same is true for the 
ordinary Ext-group Ext(C0, (Cm))* First of ail, there is the following spécial case of 5.6. 

5.15 Theorem. Let K,m and 0 be as in 5.6, and deûne W o C K* by 

Wo = { a £ K* : a = 1 mod*Ô and ordq(a) = 0 mod m for ail finite q f 0}. 

Then there is a canonical Gal(Km/K)-linear injection 

u>': G a i ( K m ( V w ô ) / K m ( V ^ ) ) —^ Ext (C 0 , (C m ) ) 

that maps the Artin symbol of a prime of Km lying over a prime p \ mï) in K that splits 
completely in Km(\/E^)/K to the class of the extension 

0 k*/k*m Cip/a{k;m] —* C —> 0, 

where kp/kp
m = (Cm) via the norm residue symbol at It is an isomorphism if and only 

if 
WO N ER,K*M

M = ETK?^. 

Here Kx mod*o dénotés the subgroupofK* consisting of those elements x E K* that satisfy 
x = 1 mod*î). 

Proof . Take S to be empty in 5.6 and use (5.10). • 

One can compare the ordinary Ext-group to our modified Ext-group by looking at the 
explicit description of the natural map 

Ext ( /s ; (Cm)) —> Ext(Cî), (Cm)) 



for a set S containing the primes in D. If we define, in the situation of theorem 5.6, a 
subgroup W\ C K* containing W0 by 

Wi = {a G K* : ordq(a) = 0 mod m for ail finite q \ 3}, 

then (5.9) gives a natural commutative diagram 

Hom(W 1 /E„K* m , {Cm) ) -Z* E x t ( / D ; « m » 

I 
Hom { W 0 K * m l E g K * m , ( U ) ) 

Rom(Wo/E*K-mod.8, {(m)) Ext(C0, (Cm)), 

in which the first vertical arrow is surjective and the second injective. If the inclusion 
WQ H E0K*m C EvK™mod* 0 is strict, there are elements of Ext(Co, (Cm)) that cannot 
be realized by extensions (5.3) because they do not have the required lifting properties. 
Examples of this phenomenon are easily given, even if K contains the m-th roots of unity. 

If the inclusion W0K*m C W\ is strict, the extension group Ext(/i>; (Cm)) gives a finer 
équivalence relation on the structure of the extensions (5.3) than the ordinary Ext-group. 

5.16 Example . Take K = Q and m = 2 in 5.15, and choose 5 = (4) • oo. Then one has 
Cs = (Z/4Z)* Gal(Q(C4)/Q) and on the other hand W0 = Q*2 n 1\ and E„ = 1. The 
injection 

1 = Gal(K(y/WÔ)/K(-\/Ëï)) Ext(C0, ( - 1 ) ) S 1/21 

is strict. In fact, it is well known that there axe no cyclic extensions of Q of degree 4 that 
have Q(C-i ) as quadratic subfield. If we take S = oo in this case, we have Ext ( / s ; (—1)) = 1: 
the lifting property of the décomposition group of the infinité prime forces the extension 
to be split. 

We conclude this section with a reformulation of our main theorem 5.6 that will be taken 
up in the more général context of the next chapter. It expresses the fact that the field 

is a governing field for ail extensions (5.3), independent of the order of the group 
fcp/(im[F0] • k*m). It has the advantage of dealing with ail primes p \ mî> outside S at the 
same time, but lacks the sharp formulation of 5.6 in terms of a canonical injection. 

5.17 Theorem. Let K be a number field, D a cycle in K and m G 1>0 an integer. For 
each prime p of K, Write L( p) = L(p, 3, m) for the maximal abelian extension of conductor 
dividing dp of K in which the ramification indices at p divide m. Write H o for the ray 
class field of conductor î) of K. Let S be a finite set of primes of K and define W C K* by 

W = Ws,»,m = {« G K* : ordq(x) = 0 mod m for ail finite q ^ S and 

x = 1 mod*qord<(8) for ail q e D \ S } . 



If pi and p2 are primes of K not in rnd or S that have the same Frobenius class in 
G a l ( K m ( V W ) / K ) , there exists an isomorphism 

f : Gal(L(p 1 ) / iC)^Gal(L(p 2 ) / iC) 

that respects the projections onto Gal(Hi, / K) such that the following is satisfied: 
(a) when n dénotés the order of the inertia groups IPi and one takes kp./kp.n = IPi via 

the local Artin map, there is for any choice of prime elements in Kn(\/ËÏ) a 
commutative diagram / \ 

IPl =k*pi/k*pi
n ^ (Cn) 

f 

IP2 = KJK" (Cn) . 

with T G Gal(i(T(Cn)/-K") suitably chosen. 
(b) for each prime q of K in S, there is an isomorphism of K q-algebras 

such that the group actions of Gal(X(pi )/K) on L(p2) <8> Kq via this isomorphism and 
via f coincide. Here Kq is the completion of K at q. 
Conversely, primes pi and p2 of K outside md or S for which there exists an isomor-

phism f satisfying (a) and (b) have the same Frobenius class in Gai (K n(\/W)/K), where 
n is the number occurring in (a). 

Proof . Assume first that we have primes pi and p2 as above having the same Frobenius 
class in Gal(Km The order n of the group #(kp./(im[J50] • fc*.m)) is the same 
for i = 1 and i = 2 because n is the largest divisor of m for which p splits completely in 
K(Cn,ï/ËÏ)/K. Replacing 

m by n if necessary—this does not change the fields L(pi), and 
we have an inclusion Kn(y/W^s~n) C Km(y/W^s~m)—we may assume that n = m. 

By theorem 5.6 and our assumption, we can choose primes in Km such that 
= £ (^2 ) G Ext ( / s ; (Cm))- Writing down the isomorphism of group extensions in 

terms of the exact sequence of Galois groups (5.1) gives the isomorphism of Galois groups 
and condition (a) (with r = id) for this spécifié choice of If we replace the tyi by 
Gal(.Km/i;!r)-conjugates, there is a choice of r that makes the diagram commute. The 
fact that we have an isomorphism of extensions with f s implies that the isomorphism 
/ : Ga\(L(p1)/K)-^Ga\(L(p2)/K) respects the Artin map K* Ga\(L(pi)/K) for each 
q G S". Let the local field F D L(pi) be the extension of Kq that corresponds by local 
class field theory to the kernel of this map, and D{ C G; = Gal(L(pj)/iir) the image of K* 
under the Artin map. Then D,- = Gal(F/Kq) acts naturally on F, and with the natural 



left action of D; on Gj we have a Gal(L(p,)/if)-isomorphism 

L(pi)®KKq ÇÉGi M a p D i ( G i , F ) 

a®x i—> (g h-> g(a) • a;). 

Here Gi = G a i ( L ( p i ) / K ) acts on the left hand side via the first factor, and on the right 
hand side by (g<f>)(g') = <f>(g'g)- As f : GI~^G2 maps Di to D2, condition (b) follows. 

The argument for the converse is essentially the same, as the only thing we have done is 
translating the équivalence in the Ext-group from 5.6 into the existence of an isomorphism 
/ satisfying (a) and (b). • 

6. Appl icat ions 

In this section, we use the previous theorems to dérivé density statements for primes that 
give rise to a ray class group having some prescribed extension structure. 

Let i f be a number field and ra a positive integer. We start with a question that has 
been studied by G. Cornell [10]: for which primes p does K have a cyclic extension F of 
degree ra that is totally and only ramified at p, and does the set of such primes have a 
natural density inside the set of ail primes of Kl The results of the previous sections allow 
us to answer this question quite precisely for primes p t ra, because such an extension is 
then contained in the extension L(p) = .L(p,t>,ra) D K from the previous section with 
5 = 1. More precisely, the question is whether there exists a totally ramified extension of 
degree m oî K such that the compositum with the Hilbert class field H of K yields L(p). 
By looking at the corresponding exact sequence of Galois groups in the ray class group 
formulation (5.3), we see that there exists a cyclic extension of degree ra that is totally and 
only ramified at p f m if and only if k*/(im[I2]&*m) has order ra and the exact sequence 

0 —» k;/(im[E] • k;m) Cp/a[k;m] —• Cl —0 

is split. We saw already that the set of primes S satisfying the first condition is the set of 
primes splitting completely in Km{\fË)jK. In particular, its density is 

S(S) = [Km(VÊ) : K}-1 

by Cebotarev's density theorem. 

6.1 Theorem. Let K be a number ûeld, E the unit group of its ring of integers, m E Z >o 
an integer and p a finite prime of K that does not divide ra. Define W C K* by 

W = {a G K* : (a) is an m-th idéal power} 



and write S for the set of primes of K that split completely in Km(\/Ê)/K. Then there 
exists a cyclic extension of degree m of K that is totally and only ramified at p if and only 
if p splits completely in the field M = K((m,'xfW). 

If S dénotés the set of such primes, its density satisfies 

S(S) > -S(S), 
M 

where p is the order of m-torsion subgroup of the class group of i f . Equality holds when 
m is prime or an odd prime power, and also when K contains a root of unity of order r, 
with r the product of the odd primes in m and, when 4|m, a factor 4. 

Proof . In view of the remark preceding the theorem, the first statement is just a rewording 
of 5.12. For the second statement, we apply Cebotarev's density theorem to get 

*(E) = [M : i f]"1 = [M : Km{VË))~H(S). 

Again by 5.12, the degree [M : Km(VË)] = # G a l ( M / K m ( V Ë ) ) is bounded by (and in 
the cases from theorem 5.13 that are mentioned equal to) #Ext(C,(£m ) ) . It follows from 
theorem 3.5 that the latter order equals p. The result follows. • 

One can also ask for which primes p of i f the full ray class field of conductor p of i f is the 
compositum of the Hilbert class field of i f and an extension of i f that is totally ramified 
at the prime p. This comes down to studying the splitting behaviour of the exact sequence 

(6.2) 0 —» k$/im[E] —> Cp —• Ci —• 0. 

For varying p, the behaviour of this sequence cannot be described by a fixed governing 
field M as in 6.1, so it is not immediately clear that the set of primes p for which the 
sequence splits possesses a natural density. The next theorem answers the most obvious 
questions concerning the splitting behaviour of (6.2). It turns out that for any i f having a 
non-trivial class group, there is always a set of primes p of positive density for which the 
ray class field Hp is not the compositum of the Hilbert class field and an extension that is 
totally ramified at p. The complementary set of primes already has positive lower density 
for simple coprimality reasons. 

6.3 Theorem. The following holds for the exact sequence £p in (6.2). 
(a) For any integer h > 0, the set of primes p for which the order of k*/im[E] and h are 

coprime has positive density. 
(b) The set of primes p for which Ep splits has a natural density, and this density is 

positive. 
(c) If the class group C of K is non-trivial, the set of primes p for which £p does not split 

has positive density. 



(d) Suppose m > 1 divides the order of C. Then the set of primes p for which m divides 
/im[E]) and £p does not split has positive density. 

Proof . (a) Write Lk for Kk«/Ë). We have already seen in the preceding section that an 
integer k divides the order of k*/im[E] if and only if p splits completely in L k / K and does 
not divide k. Thus, the order of k*/im[E] is coprime to a given number h if and only if the 
prime p does not split completely in any of the fields Lq for which g is a prime divisor of h 
and p f î- There are only finitely many primes p dividing h, which we further exclude from 
considération since they are irrelevant for density statements. By the Cebotarev density 
theorem, the statement in (a) is now reduced to showing that there are elements in the 
Galois group Gal(Lh/K) that are not the identity on any of the fields Lq with q a prime 
divisor of h. We prove this by setting qo = 1, arranging the prime divisors of h in ascending 
order q\ < q2 < • - - < qt and showing that the inclusions 

Lqo • Lqi • Lq2 •... • Lq{_1 C Lqo • Lqi • Lq2 •... - Lqi_t - Lqi 

are strict for i = 1 , 2 , . . . , t . We note first that none of the prime factors of the degree 
[Lq : K\ exceeds q, and that q is one of them unless E is finite and 0 K. As the 
i-th inclusion is strict if qi divides [Lqi : K], we may further assume that E is finite, so 
K — Q or K is imaginary quadratic. If gt- > 5, the i-th inclusion is strict because qi has 
ramification indices over Q that are at most 2 on the left hand side and at least q, — 1 on 
the right hand side. The inclusion K C L2 is strict because £2 = — 1 G K. The inclusion 
L2 C L2L$ is strict for discriminant AK — 1, —3 and —4 by direct vérification and for 
A K < —4 because £3 ^ L2 = K( i ) . This proves (a). 

(b) Let h be the order of Cl. In view of (a), we only have to prove that the set of 
primes for which £p is split has a density at ail. We will only consider p that do not divide 
h. Write Mk for Kk{\JWk), where is the subgroup of elements of K* that generate 
fc-th idéal powers. Note that Mk D Lk- Define the infinité field extension M/K by 

00 

M = K h - r V w ^ ) = U M V ' 
1 = 0 

For each finite divisor d of h°°—the notation explains itself—we define conjugation invari-
ant subsets Ad and Bd of T — Gal(M/K) as follows. For an element rr Ç T we let 

a G Ad v\Md = id and <j\Ldq id for each prime q\h; 

cr £ Bd cr\Ld = id, <r\Md id and cr\Ldq id for each prime q\h. 

Note that each set Ad or Bd is the inverse image of a subset of Gal(Mdh/K) under the 
canonical surjection. We define A C T as the union of ail sets Ad, with d ranging over the 



finite divisors of h°°, and B likewise. Then A and B are the disjoint union of open subsets 
of T, and A n B = 0. The complément of A U B in T consists of those a G G a 1 ( M / K ) that 
are the identity on Wf2.0Lqi for at least one prime divisor q of h, so they belong to a finite 
union of closed subgroups of infinité index in T. 

Let v be the Haar measure on T, normalized such that f(T) = 1. The primes p of 
K with gcd(#(fcp/im[E]), h°°) = d such that £p splits (does not split) are exactly those 
primes that have Frobenius elements in Ad {Bj). Thus, the splitting of £p depends on 
whether the Frobenius elements of p in T are in A or in B. It is easily seen that the sets 
of primes with Frobenius in A and B have respective lower densities > u(A) and > u(B). 
We have v(A) + u(B) = 1 because i/(T \ ( i n B)) = 0, such that these lower densities are 
in fact densities, equal to v(A) and v(B). This proves (b). 

(c) Rather than deducing (c) from (d), we give a short proof. Take a prime divisor 
m of Then we have an isomorphism in corollary 5.12 by 5.13 (3). As Ext(C, (Cm)) 
is non-trivial, there is a set of primes of positive density in K for which the sequence £p 

'modulo m-th powers' has a well defined, non-trivial image in Ext(C ,(Cm)) by the choice 
of a prime over p in K m . It follows that £p does not split for these p. We know from (b) 
that the set of p for which £p does not split has a natural density, and the argument above 
shows that it is positive. 

(d) We use the argument in (c), but instead of isomorphy in 5.12, which need not 
hold for arbitrary m, we use the fact that—in the terminology of the proof of (b)—there 
are non-trivial Artin symbols in Gal(Mm/Lm). Primes p f m that have a Frobenius in 
G a l ( M m / K ) that is a non-trivial element of Gal(Mm/Lm) satisfy m\#(k*/im[E]) and 
give rise to a sequence £p that does not split. We now have to prove that the extension 
Mm D Lm has degree > 1. By Kummer theory, the degree is equal to the order of 
WmK^m/EK^m = Wm/(Wm n EK^m). We have a surjective map 

g : Wm/EK*m Wm/(Wm n EK*m
m) 

and the first group, which is isomorphic to the m-torsion subgroup in C, has order divisible 
by m by assumption. We are done if we can show that ker g has order < m. Let A C K^ 
be the subgroup of elements whose m-th power lies in K*. By van Tieghem's theorem 4.4, 
the image A& of A in has order dividing [ K m : K], and [ K m : K] < m because 
m > 1. From the inclusion 

ker g = (Wm D EK*m
m)/EK*m C (K* D EK^m)/EK*m 

and the fact that the natural surjection 

A (K* n EK*m
m)IEK*m 



factors via A/(A n ZKmK*) = A#, we conclude that #kerp < m. • 
Remarks. It is not true that there are always infinitely many primes p in i f for 
which gcd(#(kp/im[E}), h) has a prescribed value. For i f = Q( y/—2) one has K(VË) = 
KiitfË) = Q«s) , so #(k$/im[E}) is either odd or divisible by 4. 

If C is the p-primary part of C and B is realized as the p-primary part of kp/im{E] for 
a set of primes p of positive density, it does not follow that B X C is the p-primary part of 
the extension £p for infinitely many p. For i f = Q(\/—'5) one has C = Z/2Z and 

K{\fË) = K{ i ) 

K(y/W2) = K( i,V2) =K((s) = Kt(<fÊ) = K t t f w l ) 

Ks(VË) = K&(V^) = K(CI6), 

so for this K we can realize Z/4Z and Z/4Z x Z/2Z as the 2-primary part of infinitely many 
Sp, but not 1/21 x 1/21 or 1/81. 

The examples above show that there may be 'unexpected inclusions' between the fields 
Mm a.nd Lm in case the unit group JE? of i f is finite. Even if E is infinité, this may happen. 

Take if = Q(\/3 • 13, y/—3 • 7 • 61). The quadratic subfields of i f of discriminant 
—4 • 3 • 7 • 61 and —7 - 1 3 - 6 1 have class numbers 2 3 • 3 and 22 • 13, so 1%k is divisible by 
23 • 3 • 13. We claim that 

L2 C tf(Cso) C L3 •135 

so that kp/im[E] cannot have odd order if 3 and 13 divide it. Note that ail these primes 
are relevant for the splitting behaviour of £p. 

The fundamental unit e = 25 + 4\/39 of Q(\/39) is also a fundamental unit in i f , and 
one has L2 = i f ( i , \/ë). The équation 

* = Ï V f T = "QiVm/Qt 1 + e) • ( ! + e _ 1 ) ~ 2 = 4 • 13 - (1 + e - 1 ) - 2 

shows that 
L2 = K(i, \ /Ï3) = i f VÏ3) C K(C39). 

The following theorem that shows that unexpected inclusions between the fields L k can only 
arise for certain small values of k that contain some 'bad primes' to a low exponent. More 
precisely, we can find infinitely many p for which the order of k*/im[E] has a prescribed 
g-part at finitely many primes q, provided that this ç-part is sufficiently large when q is 

We write mp for the order of the group kp/im[E\. 



6.4 Theorem. Given a number ûeld K, there exists a positive integer t\2°° • A(X/Q)°° 
such that, given any two positive integers k and satisfying g c d ( i , t h e set of 
primes p for which 

gcd(rap, k°°) = s 

Las positive density. 

Proof . Let V be the set of primes dividing 2 • A(K/Q) and write Ln for Kn(ï/Ë). As in 
the proof of 6.3(a), the problem comes down to finding cr in the absolute Galois group of 
K for which 

<r\Ls = id, but (r\Lqs ^ id for each prime divisor q of k. 

Suppose first that q £ V. We claim that then for each number d that is coprime to q, 
we have 

Ld n Lqa = K. 

Observe first that K(Çqa) is the largest abelian subextension of Lq« / K. As Ld/K is 
unramified at q and K((q*)/K is totally ramified at q by our hypotheses, the largest 
abelian subextension of (Ld fl Lqa)/K is K itself. As (Ld fl Lqa)/K is solvable, the claim 
follows. (This élégant argument is taken from [22].) 

It is immediate from the définition that LmLn = ^icm(m,n)- Further Lqa ^ Lqa+1 
for q V and a > 1 by proposition 4.3. Thus, the claim above implies that Lqa is not 
contained in a compositum of fields Ld with ord3(cZ) < a when q 0 V". Consequently, we 
can further assume that ail prime divisors of k are in V. 

Let m be the product of the primes in V. As 4.3 implies that ail inclusions L qo C Lqa+i 
are strict for a sufficiently large, we can define an integer a(q) for each q (E V by 

a > a(q) Lmq«-1 ^ Lmqa. 

Note that the degrees of these extensions are powers of q. They remain strict when m is 
multiplied by some divisor of because the primes q1 ^ q in this divisor give extensions 
of both sides of the inclusion of degree coprime to q. 

Set t = n î 6 V 5 and dénoté by qi, q2,..., qr the prime divisors of k. The assump-
tion on s implies that the inclusions in 

Lg CI Lsqi C Lsqiqz C • •• C Lsq1q2...qr 

are strict. It follows that we can find an element cr in the absolute Galois group of K that 
satisfies our requirements. • 

Rather than restricting ourselves to the ray class field of K of conductor p as an extension 
of the Hilbert class field H of K, we may as well consider the ray class field Hj,p of K of 



conductor Dp as an extension of the ray class field H5 of K for arbitrary conductor î). The 
exact sequence 

(6.5) 0 —• k*p/im[Er>]^C^ —• C0 —• 0 

corresponding to this extension of Galois groups was derived in lemma 5.2. If we are only 
interested in the subfield L(p) of Hx,p in which ail ramification indices at p divide m, we 
have our familiar sequence 

(6.6) 0 —• Jb;/(im[E,] • k;m) —• Cx,p/k*p
m —• C9 —+ 0. 

We have seen in examples 5.14 and 5.16 that there are choices of m and t> such that the 
extension groups Ext(Cj>, & p / ( C m ) ) contain elements that cannot be realized by sequences 
of the form (6.6). It is not in général an easy matter to determine which extensions are 
arithmetical extensions. The proof of theorem 6.3 shows that roughly speaking, arith-
metical obstructions to group theoretically possible extension types occur when there are 
'unexpected inclusions' between the fields Lk — Kk(\/ËÔ) and Mk = j») for cer-
tain values of k. The situation is less transparent than for 0 = 1, and generalizations of 
theorem 6.3 for the sequence (6.5) are no longer true for ail choices of K and D. 

For instance, if K contains and î) is chosen (cf. 7.1) such that En C Em, then the 
order of fc*/(im[Fo] • k*m) is obviously divisible by m for ail p|m. This shows that 6.3 (a) 
can be false if one replaces E by Ex,. 

Also, 6.3 (c) can be wrong with C0 in the place of C. An example of this phenomenon 
is given by example 5.16. 

We prove that theorem 6.3 (b) holds unchanged for the sequence (6.5). 

6 .7 Theorem. Let K be a number field and £> a cycle of K. Then the set of primes p of 
K for which the ray class field Hj,p is a compositum of the ray class field H x, modulo t> of 
K and an extension of K that is totally and only ramified at p possesses a natural density 
inside the set of ail primes of K, and this density is positive. 

Proof . We may exclude the primes p that are archimedean or divide D. Then the primes 
p considered in the theorem are the primes for which the sequence (6.5) is split. The proof 
is a straightforward generalization of the proof given for 5 = 1. One only has to replace 
E by Ex, and W by the group WQ from theorem 5.15 in the définition of the fields L k and 
Mk to obtain the density resuit. Positivity is slightly more subtle because we do not have 
the équivalent of 6.3 (a) for the sequence 6.5. 

Let h be the order of Cj. In the notation from the proof of 6.3 (b), it suffices to prove 
that there is a finite divisor dlh00 for which the subset Ad of Gai(M/K) is non-empty. 
This can be done by showing that the inclusions in 

Md c MdLdqi c MdLdqiq2 C . . . C MdLdqiqi...qr 



are strict for some d\h°°, where • • • ?<7r are the prime divisors of h. 
The degree of the extensions Lq<• for q a prime number can be computed as in 4.3. We 

do not need the précisé resuit, only the fact that the extensions Lqa C Lqa+i is a non-trivial 
extension of g-power degree for a sufficiently large. This implies that the inclusions 

(*) Ld C Ldqi C Ldq1q2 C . . . C Ldq1q2...qr 

are strict for d sufficiently divisible by each of the <7,-. We may assume h\d. As the elements 
w G Wo — Wo(d) are generators of ideals ad for which [a] is a ci-torsion element in C®, we 
have WQ(d) = Er,W0(h)d/h. This implies that Md = MhLd, so we want the inclusions in 
(*) to remain strict when composites are taken with M h- As Mh/K is finite, it can only 
destroy the strictness of finitely many inclusions Lg« C Lqa+1 under taking composites 
with M h• We conclude that we obtain strict inclusions in our original chain of fields by 
taking d divisible by a sufficiently high power of each of the g,-. • 

The argument above also shows that the proof of theorem 6.4 remains valid when m p is 
taken to be the order of /im[J5a]. We see that 6.3 (a) fails when we replace E by arbitrary 
Ex,, but not the related statement 6.4. 



CHAPTER III 

Ray class group extensions 





7. Equivalence of ray class group extensions . 

In the preceding chapter, we have considered group extensions depending on a single 
variable prime p. The theorems given there can be extended to extensions depending on 
a fixed number of primes. The proof of such a theorem consists of a réduction to the 
one-variable case based on the following lemma. We use the notation Wf from (2.6). 

7.1 Lemma. Let T be a finite set of primes of a number field K, and m a positive integer. 
Then there exists a cycle f of K that is not divisible by any of the primes in T, and for 
which ail units in E\ = E C\Wj are m-th powers in K. 

Proof . This has been proved by ChevaJley for an arbitrary finitely generated subgroup of 
K* in the place of E, see [8]. • 

We now come to our more variable generalization of 5.17. 

7.2 Theorem. Let K be a number field, 0 a cycle in K and m,t £ Z>o two posi-
tive integers. For each set of t primes pi , p2, ••• , Pt of K, write L(p\,p2,..., pt) = 
L(pi, p 2 , . . . , pt, f , m) for the maximal abelian extension of conductor dividing Ûp 1P2 • • • Pt 
of K in which the ramification indices at ail p,- divide m. Write Ho for the ray class field 
of conductor 5 of K. Let S be a finite set of primes of K and define W C K* by 

W = Ws,9,m = {» E K* : ordq(a:) = 0 mod m for ail finite q 0 S and 

x = 1 mod*qord"(9) for ail q <=D\ S}. 

I f p i> P2, • • • , Pt and p[, p'2, ..., p't are two sequences of t distinct finite primes of K 
not in md or S, and the primes p and pj have the same Artin class in Gal(Km(\/W)/K) 
for each i = 1,2,... ,t, then there exists an isomorphism 

f : Gal(L(pi, p 2 , . . . , P t ) /X)^Gal (L(p ' 1 , p'2,..., p't)/K) 

that respects the projections onto Gal(H{, / K ) such that the following is satisfied: 
(a) for i = 1 , 2 , . . . ,t, the f-image of the inertia group of p,- is the inertia group ofp\. 
(b) for each prime q of K in S, there is an isomorphism of K q-algebras 

L(p!, p2, - - -, Pt) ®K tfq = L(Pi, p'2,..., p't) <8>tf Kq 

such that the group actions of GaI(L(pi,p2,. . . ,pt)/K) on L(p\,P2,... ,pj) <8 Kq via 
this isomorphism and via f coincide. Here Kq is the completion of K at q. 

Proof . As in (5.1), there is an exact sequence 

0 —• Gal(X(pi ,p2, . . . ,pt)/Hg) Gal(.L(pi,p2,... ,pt)/K) G a 1 ( H „ / K ) 0. 



When we rewrite this sequence in terms of ray class groups, we arrive at an analogue of 
(5.3) in which the group k;/(im[Ej,] -k;m) gets replaced by ( f l U i ) / (im[Ej]n!=i "*)• 
Assume first that EQ C Em. Then our Galois group fits in an exact sequence 

t 
0 — n ( K / K m ) —^ G a i (L(PuP», — ,Pt)/K) —+ C0 —> 0. 

i = l 

Moreover, the homomorphism f s S —• Co from (5.4) admit s a canonical lift to (j>s ' 
S GaI(I/(pi , p 2 , . . . , P t ) / K ) . Dénoté by m,- the order of kp./kp.m. Then we obtain an 
element • •, V t ) G Ext(/S; U U ( C m,-)) for every choice of primes ^ P t | p i in K m i — 
K((r n i )• By functorial properties of the Ext-functor, we have a canonical isomorphism 

t t 
Ext ( / s ;n<Cmi» - n Ext(/5;(Cm,.)). 

«=i i = i 

Under this isomorphism, the extension , ̂ 2> ••••> ^Pt) corresponds to , where 
£(tyi) is an extension of the type studied in section 5. This shows that isomorphism of 
'multi-variable extensions' is the same as isomorphism of the 'one-variable extensions' for 
each of the t components. Our assumptions on the primes p j and p[- now show that 

#(k;,/k;,m) = #(k;t/k;.m) = mi 

and that G a l ( L ( p i , p 2 , . . . , p t ) / K ) and Gal(L(p'1,p2î • • ••>P't)lK) a r e isomorphic extensions 
of f s with nî=i(Cm,> f° r a suitable choice of primes and in Km{. The corre-
sponding isomorphism f between the Galois groups sends the inertia group (Cm,) at Pi in 
L(pi,p2, • • • >P<) to the inertia group at p; in Z^p'^p^,. • • property (b) follows as 
in the proof of 5.17. 

For the général case, we enlarge î) to a cycle f = 00 such that E f C Em. By lemma 
5.1, the cycle 0 can be chosen to be coprime to m5 and the primes in S. Let S ' be the 
set of primes occurring either in S or in 0. Then we know by what we just proved that 
there exists an isomorphism / satisfying the requirements of the theorem with f and S' 
instead of 0 and S whenever p,- and p; are not in mû g or S and have the same Artin class 
in Gal(iCm f> m) /K). Under this isomorphism, inertia groups at primes dividing 0 
correspond because of condition (b) for the primes in S'. If we divide out the subgroup 
generated by the inertia subgroups of primes in 0 on both sides, we obtain the isomorphism 
needed for the original problem. 

In order to show that we do not need the larger extension Km( y/Ws' j,m) °f K as a 
governing field, but only Km('^/Ws^~m)/K, we use the freedom we have in the choice of 
0. This will also free us of the restriction that p, and pj be coprime to 0. If 0i and 02 are 



coprime cycles that each satisfy the requirements for 0 above, we have, with corresponding 
définitions of S{ and fi, an equality 

Km(^Ws,!h>m) n Km(^ws,tf2>m) = 

Indeed, the intersection is unramified at ail primes occurring in 0 102 and Km(y/Ws,v,m) 
is the largest subextension of K that is unramified at the primes in 0;. 
The proof may now be finished by the generality on governing fields that follows. • 

7.3 Theorem. Let a cofinite set A of primes of K and an équivalence relation on A* be 
given, and suppose that M\ and M2 are normal extensions of K that are unramified at the 
primes in respective cofinite subsets A\ and A2 of A. If M\ and M2 are governing fields 
for the équivalence relation on A\ and A\, respectively, then fl M2 is a governing field 
for the équivalence relation on A\ U A\. 

Proof . We clearly may take t = 1. Write M — M\ fl M2 , and let p and q be primes 
in A\ U A2 that have the same Artin class in Gal(M/K). Then p is unramified in either 
M i / K or M2 / K , say in M\ / K . As A\ fl A2 is a cofinite set of primes of K, the Cebotarev 
density theorem implies that there exists p' in A\ fl A2 that has the same Artin class in 
G a l ( M i / K ) as p, which gives an équivalence p ~ p'. Analogously, q ~ q' G A\ fl A2. As 
p' and q' have the same Artin class in Ga1(M/K), we can find a prime t G A\ fl A2 that 
has the same Artin class in Gal(Mi/K) as p', and the same Artin class in Gsl(M2/K) as 
q'. Our assumptions imply that we have équivalences p' ~ t and r ~ q'. Thus p and q are 
équivalent. • 

An interesting case of 7.2 arises when we take for pi,p2?•••,Pt the prime factors in K of 
a prime p from a subfield k of K. We have to assume here that p is unramified in K/k. 
If K/k happens to be Galois, say with group T, and D is invariant under T, then the field 
L(p) = i ( p i , p 2 , . . . ,pt) is not only Galois over K, but also over the smaller field k. Note 
however that the extension L(p)/k is not necessarily abelian. 

The obvious question that arises is: is there a governing field for the structure of 
the extensions L(p)/k, when p ranges over the primes of k that are coprime to ra£> and 
A (K/k)! More precisely: define for such p the field L(p) as the maximal abelian extension 
of K of conductor dividing t>p in which the ramification indices over p divide m, and call 
pi and p2 équivalent if there exists an isomorphism of the Galois groups Gal(L(p i)/k) that 
respects the projection onto Gal(Hr,/k), and realizes analogues of 7.2(a) and (b) over k 
for a set S of primes of k. Does there exist a normal extension M/k that governs this 
équivalence relation? 

The field Km(VW) is a normal extension of k that governs these extensions in a 
weaker sense by 7.2. It only gives isomorphisms of Galois groups over K, and in 7.2(b) a 



Galois isomorphism of algebras over KQ for each prime Q of K lying over a prime in S at 
a time. 

A possible approach to this problem would be via cohomological class field the-
ory, using canonical classes. Canonical classes are elements in the cohomology groups 
H2(T,Gal(L(p)/K)) that describe the extension of T with GaI(L(p)/if) that is given by 
GaI(L(p)/fc). So far, I have not been able to deal with the problem in this way. 

A second method is to explicitly construct a group isomorphism Gal(Z<(pi)/k)-—> 
G a l ( L ( p 2 ) / k ) for pi that have the same Artin class in an extension Km(\/W)/k, using 
class field theory over K. This can be done if we consider extensions L(p)/k for which the 
L(p)Km is abelian of exponent m over Km = K((m). This restriction finds its reasons in 
the fact that extensions of exponent m over Km can be described by Kummer theory. We 
will therefore work with the maximal subfield of L(p) that satisfies this condition instead 
of L(p) itself. It should however be noted that this restriction does not affect the problem 
as far as the mere existence of a governing field is concerned: upon replacing K by H Q, our 
redefined fields L(p) contain the original fields L(p) defined over K. The governing field 
that is obtained remains unramified outside m î and S, but it will be an extension defined 
over HD instead of over K. 

Summarizing, we arrive at the following définition of équivalence of fields L(p) over 
the field k. 

7.4 Définit ion. Suppose K/k is a Galois extension of number fields with group T. Let a 
T-invariant cycle h of K, an integer m > 1 and a finite set S of primes in k be given. For 
each prime p of k, write L(p) = Lfc,i>,m(p) for the maximal abelian extension of F of K 
such that FKm/K m has exponent dividing m and FJK has conductor dividing 5p. The 
maximal subextension of L(p)/K that has conductor dividing 5 does not depend on p and 
is denoted by L. Then two finite primes pi and p2 of k that are not in S or J) and do not 
divide mAj^/k 3X6 deÊned to be (5, ra, S)-équivalent when there exists an isomorphism 

f : G^{L{p1)/k)^G^{L(p2)/k) 

that respects the projections onto Gal(L/k) such that the following is satisfied: 
(a) the f-image of the inertia group of any prime above p i is the inertia group of a prime 

above p2. 
(b) for each prime q of k in S, there is an isomorphism of k q-algebras 

L(pi)<8>fc fcq 

such that the group actions of Gal(L(pi)/k) on L(p2) ® kq via this isomorphism and 
via f coïncide. Here kq is the completion ofk at q. 



It should be pointed out that condition (b) is a strong local condition at the primes q G 5. 
If pi and p2 are équivalent in the sense of 7.4 and q splits as tf t | . . . t | in L(pi), then 

k 
L(pt)(»kkq * n ^ k . 

t=i 

and the existence of the local isomorphism in 7.4(b) implies that there exist primes 
5 i , s 2 , . . . , s k in L( p2) such that q = sfs^ . . . s | and £(j>i)t,- = L(p2)ti. As in the proof of 
theorem 5.17 we conclude that f induces isomorphisms between the inertia and décompo-
sition groups at the primes lying over q in L(p i ) and L(p2). 

The isomorphism / establishes a correspondence between the subfields of L(p \)/k 
containing k and those of L(p2)/k, where correspondence of Ei C L(pi) for i = 1 and 
2 means that / [Gal(L(pi) /Ei)] = Gel(L(p2)/E2). An important implication of 7.4(b) is 
that for an abelian subextension E\ C F\ of L(p\)/k of conductor f, the corresponding 
subextension E2 C F2 of L(p2)/k is abelian with a conductor that is locally 'equal' to f at 
primes in S upon identification of t,- and Sj in the situation above. This equality is a direct 
conséquence of the fact that the extension E\ C F\ completed at the restriction of t,- is 
isomorphic to the extension E2 C F2 completed at the restriction of s,-. These observations 
will prove to be useful in chapter IV. 

8. Construct ion of governing fields 

We will prove an existence theorem for fields governing the équivalence relation 7.4 that 
does not impose any condition on K or S. Just as in 5.11 and 5.12, there are more élégant 
descriptions of these governing fields under additional hypotheses. 

As in section 2, we let 0 0 be the product of the real primes of K. In order to avoid a 
complicated notation, the set of primes occurring either in a given set or in a certain cycle 
is denoted in a simple way, e.g. S • î • 0 0 stands for the set of primes occurring in either 
S, D or 0 0 and 5 \ S is the set of primes in î that are not in S. We will also use notations 
for sets of primes for base field and extension field alike. For instance, depending on the 
context, S can stand for the set of primes of K that lie over a prime of k that is in S. 

( k} 
The notation Up for the filtration of the local units in the completion—archimedean or 
non-archimedean—of a number field at p is as defined in section 2. 
8.1 Theorem. Let a T-invariant cycle t) of K, an integer m > 1 and a ûnite set S of 
primes in k be given, and let Km be the field obtadned from K by adjoining a primitive m-
th root of unity. Write Sm for the set of primes of k that are either in S or have extensions 
to K that ramify in Km/K. Define M to be the maximal abelian extension of Km that 
satisfies the following conditions: 
(a) Gal(M/Km) is of exponent dividing m; 



(b) M/Km is unramified outside S • (m) • 0 • oo; 
(c) for ail primes Q of Km in ((ra) • 0) \ Sm, there exists a homomorphism of Km-algebras 

M —• K o(T/^°rdû(0))) 

into the local field that is obtained from the completion of Km at Q by adjoining ail 
m-th roots of the local units in 

Q M,Q 
Then an y two primes pi and p2 of k that are not in S • (m) • A#yjfe and have the same Artin 
class in M/k are (5, m, S)-équivalent. 

We will prove a lemma that enables us to reduce to the case that K contains a primitive 
m-th root of unity. It is preceded by an elementary lemma from class field theory. 

8.2 Lemma. Let L/K be a finite abelian extension of number fields of conductor f and 
p a finite prime of K. If M/K is an arbitrary finite extension that is unramified at p, 
then LM/M is an abelian extension and the maximal divisor of the conductor of LM/M 
consisting of primes over p only equals pordp(f)# 

Proof . Let p be a finite prime of K that is unramified in M/K, and suppose k is the 
number of factors p in the conductor oî L/K. It is clear that LM/M is abelian. We have 
to prove that xk is the exact power of t dividing the conductor of LM/M for each prime 
t | p in M. This is équivalent to proving that U^ is in the kernel of the local Artin map 
for LM/M at r if and only if t > k. By class field theory [7, 21], there is a commutative 
diagram 

M* — G a i ( ( I M ) , / M t ) 

NM,/K{ 

K; — Gal(Lq/Kp). 
The vertical map between the Galois groups is injective, so it suffices to show that one has 
NMt/Kr[Ut^] = U^ for ail t > 0. As Mt/Kp is unramified, this equality is an elementary 
fact that can be found in [34, V.3 proposition 3a]. • 

8.3 Lemma. It suffices to prove 8.1 under the assumption that K = Km. 

Proof . Assume the theorem for Km, and let 5, m and S be as in 8.1. If K = Km there is 
nothing to prove, so assume that this is not the case. We then observe that the governing 
field that is given by 8.1 for ( f , m , Sm)-equivalence for the extension Km/k is exactly the 
field that 8.1 asserts to be a governing field for (0,m, 5)-equivalence for the extension 
K/k. Thus we are are done if we can show that two primes p j and p2 of k that are 
(d,m, 5"m)-equivalent for the extension Km/k are (5,m, S)-equivalent for K/k. Obviously, 
the maximal abelian extension L(pi) of K such that L(pi)Km/Km) is of exponent dividing 



m and such that L(pi)/K conductor dividing flp; is a subfield of the maximal abelian 
extension L'(pi) of Km that is of exponent dividing m and conductor dividing Dp,-. We are 
done if we can show that the isomorphism/' : Gal(L'(pi)/k)-^-+Gal(L'(p2)/k) induces the 
corresponding isomorphism f for the field extensions L(p i)/k. The maximal subextensions 
Fi/k of L'(pi)/k that axe abelian over K certainly correspond under / . The field FiKm 

is contained in L'(pi) and the conductor f F . / K equals If, j*:m/ATm at the primes that are 
unramified in K m / K by lemma 8.2. Consequently, f F . / K divides Dp,- at the primes that 
are unramified in Km/K. The fields L(pt) are the maximal subfields of Fi that are of 
conductor dividing Dp;. These fields correspond under / for i — 1,2, since 7.4(b) and 
the définition of Sm imply that we have local isomorphisms of the extensions Fi/K at ail 
primes that ramify in Km/K. • 

In the rest of the proof we will assume that K contains a primitive m-th root of unity, 
which implies that Sm = S. Under this assumption, no confusion will arise from our 
notation y/V for a subset V" of K to dénoté the set of ail elements x in some algebraic 
closure of K that satisfy xm G V. 

For the proof of 8.1, we take two distinct finite primes pi and p2 of k outside (mA^/k)' 
Q-Sîor which [pi, M/k] = [p2,M/k]. For brevity of notation, we write L{ = L(p;), i = 1,2. 
Note that L\ fl L2 = L. By Kummer theory, there exist subgroups W,- of K* containing 
K*m such that L; = K(y/WÏ). There is a perfect pairing 

« : G a l ( L i / K ) x Wi/K*m - «m>, 

(<r,w) i-» 

By the normality of Lj over k, the Galois group T acts on W{. We clearly have L, = 
k(\/Wï). As Gal(L,/fe) acts on iyW~i, there is a natural inclusion 

Gal(Li/k) C {a G A u t V ^ = <r \ K* eT}. 

For each 7 G T, there are ft^Wi/K* = #Wi/K*m = #Gsl(Li/K) elements <r G Aut^Wï 
with cr | K* = 7 , so there is in fact an equality 

G a i ( L i / k ) = {a G A u f 0 ^ ï : a \ K* G T}. 

Define W C W\ fl W2 to be the group 

W = {a: G Wx D W2 : ord<p(®) = 0 for each prime | p!p2 of K}. 

We claim that L = K(VW), although obviously W K*m, so W is not the maximal 
subgroup of i f* with this property. The inclusion L D K(\/W) is the trivial part of our 



claim. For the other inclusion, one only needs to observe that if K(y/x)/K has conductor 
dividing î), then m | ord(p(x) for ail ty | P1P2, s o there exists y G K*m such that yx is a 
unit at ail primes in P 1 P 2 , i.e. yx G W. 

The idea of the proof is as follows. We use the main theorem of class field theory 
to translate the equality [pi ,M/k] — [p2 ,M/k] into an idèlic statement that furnishes an 
element of K* having certain local properties. This element will be used to construct a 
T-isomorphism <f> : K *—>K* that is the identity on fl K*, maps W\ onto and has 
a prescribed behaviour at primes in S (lemma 8.7). By général facts (lemma 8.4) there 
then exists an extension of (f) to m-th roots that induces the isomorphism from 7.4 for the 
Galois groups (lemma 8.5). The local conditions on <j> establish the isomorphisms from 
7.4(b) for the complétions (lemma 8.6), and condition 7.4(a) cornes automatically with the 
construction (corollary 8.8). 

8.4 Lemma. Let K be an algebraic closure of K and write y/K* = {x G K : xm G K*}. 
Then every automorphism of the group K* that is the identity on fl K* can be 
extended to an automorphism of y/K* that is the identity on and such an extension 
is unique up to multiplication by a character y/K* j K* • y/W —• (Cm)-

Proof . Let <f> be an automorphism of K * that is the identity on \/WnK*. Then the 
homomorphism K 

* • Vw K* that maps aj3 to <f>(a)/3 is well-defined, and it has an 
extension to a homomorphism ip : Vît* K since the group K is divisible. The map 

is injective: an element a G ker^ satisfies am G ker<^ = {1}, so a £ (Cm) C K* 
and consequently a — 1. From the fact that i/j[K*] = 4>{K*} = K* one easily deduces 
that ij) furnishes an isomorphism and that this is an extension of </> that is 
the identity on \/W. If ip' is another extension of <f> with these properties, then is a 
homomorphism on \/K* that is the identity on 

K* • \/W, so it induces a character on the 
factor group y/K*/K* • y/W with image in (Cm)- Conversely, multiplication of 1/) by such 
a character gives another extension of (f>. • 8.5 Lemma. Suppose (j) : K*—>K* is a T-isomorphism that is the identity on 

y/WnK* 
and induces an isomorphism Then there exist an isomorphism x[> : 
y/W2 extending (f> and an isomorphism f : Gal(£i/fc)-^Gal(I2/Jfe) 

induced by tp that respects the projections Gal(Li/k) ->• G a l ( L / k ) . Another choice of the 
extension tp changes f by an inner automorphism of Gal(L 2/k) by an element of Gal(L2/L)• 

Proof . By 8.4, there exists an extension of (f> to an automorphism of y/K* that is the 
identity on \ /W, so we can take ip to be the restriction of this map to y/W\. From the 



identification G a l ( L j / f c ) = {a G kuï^/Wl : a \ K* € T} for i = 1,2 and the fact that 
if> | K = <f> is a T-isomorphism it is clear that ip induces an isomorphism 

f = U: Gal(£i/Jfe)-^Gal(L2/Jfe) 

T • 

that respects the projection onto Gal(K/k). As ip is the identity on it even respects 
the projection onto Gsl(K(y/W)/k) = Gal(L/Jb). 

Now let ij> be another extension of (j> that is that is the identity on 
y/W. Then ipij) 1 is 

an automorphism of y/W2 that is the identity on K*y/W, so it corresponds to an element 
X of Gal(L2 /£). For r G Gal(£i/fc), we find that 

f ^ j ) = 1 = xV'TV'-1*-1 = XU{T)X~X, 

as asserted. • 

Given an extension : y/Wi —» of a T-isomorphism (f> : K* K* that is the identity 
on 

y/W f)K* as in 8.5, we identify the Galois groups Gal(Li/&) and GaI(L2/jfc) by the 
isomorphism from 8.5 and dénoté them by G. 
8.6 Lemma. Let <f>, tf>, G be as above, and q a prime of k. Suppose that there exists a 
T -homomorphism 

x = xq : wx —• K* = (K® kqy 

such that for ail x G K* we have x(®m) = ((f>(x)/x) <g> 1. Then there is an isomorphism of 
kq-algebras 

Li <8>Jt kq L2 <g>jfc kq 

that respects the action of G. 

Proof . For i = 1,2, let K[^/Wi] be the group ring of y/W) with coefficients in K. The 
Galois group G acts on this group ring by its natural action on K and y/Wi. We claim that 
there is a G-isomorphism of if-algebras L i =G K[y/Wi]/Ii, where /,• is the idéal generated 
by the elements of the form 1 • x — x • 1 for x G K*. In this expression the two a;'s are viewed 
as an element of the group y/Wï and a coefficient from K, respectively. As /,• is certainly 
contained in the kernel of the canonical surjective ring homomorphism K[y/Wi\ —» K, the 
claim follows from the observation that dimA- Kft/W;]//,- < [y/Wl : K*] = [Z,; : K). 

We let G act on Kq = K ( g k q via T and on the group ring Kq[y/Wï] via its actions 
on and y/Wi. Now define a homomorphism of Xq-algebras 

g:Kq[ï/wl] —* tfqft/wS 



by its action on the generators w i G \/Wï over i f q as 

Wi = 1-W! :—> 

From the fact that x i s a T-homomorphism it follows that g is a G-homomorphism. Further 
g has a two-sided inverse sending a group element w2 G y/W^ to x(wT) ' w i th wi = 
ip~1(w2), so it is an isomorphism. For x G K* C i f q we have 

g{x. l - l . x ) = x.l-X(xm)~1 -H*) 

= x • 1 — x<£(x)_1 • 4>(x) 

= ( x . <f>(X))(i. ^ ( s ) - 1 - ^ r 1 • 1), 

from which it follows easily that ) = i 2 . We conclude that p induces a G-isomorphism 

But this is exactly the isomorphism we need, since 
K.l^/Wlyii = K[y/wi]/Ii ®K Kq 

= Li <8>K i f q = Li ®K K (g)* fcq = L; fcq. • 

Since pi and p2 have the same Artin class in M/k, we can choose primes over pi and p2 

in M that have the same Frobenius in G a l ( M / k ) . The common décomposition group of 
the restrictions and of these primes to i f in T is denoted by D. Write E for the 
fixed field KD of D. In the sequel, we will dénoté primes in K by £}, primes in E by 
V, Q and primes in k by p, q. 

8.7 Lemma. Suppose there exists b £ E satisfying the following conditions: 
(a) b G E g m if Q is a prime of E that lies in S; 
(b) ordfp^fc) = —1, ord(p2(&) = 1 and ord<p(6) = 0 for ail other primes 3̂ | P1P2 in K; 
(c) the local conductor ofKQ(y/b)/KQ divides Q o r ( V a ) f o r aU primes Q f P1P2 in K. 

Then there exist a T-isomorphism <f> : K*—>K* that is the identity on y/W^K* and maps 
Wi ontoW2. Moreover, for each q G S, there is a T-homomorphism x q W\ —>• (if<8>fcfcq)* 
such that for ail x G K* we have %(xm) = (<f>(x)/x) (gi 1. 

Proof . We use the element b to construct an isomorphism <j> : K * —• K* such that, for 
any x G K* and 7 G T, 

ord7<px(x) = ord7<p2(<£(x)), 

ord7qj2(x) = ord7<p1(<^(x)). 



Let Z[T/D] be the free abelian group on the left cosets of D in T. This is in a natural way 
a Z[r]-module. Define the "valuation maps" A; : K* —* Z[r/D] at the primes over pi in 
K as the r-homomorphisms that send x G K * to 

M®) = ord7<p,(a;)-7. 
l£T/D 

The element b X i i s weil defined since b is in E. Note that xbXl^ and xb~xare 
local units at primes over pi and p2, respectively. Now we define the homomorphism 
<f>: K* K* by 

4>(x) = a j ^ 1 ( x ) - A a ( « ) > 

It is immediate from the construction of (f> that this is a T-homomorphism that interchanges 
the valuations at primes over pi and p2 in the way required above. It is the identity on 

\/W n K* = {x G K* : ord<p(x) = 0 for each prime ty | pip2 of K} = ker A. 

Further <f>2 — idjf, so (j) is an isomorphism. 
Now take x G W\. By définition, this means that K(y/x)/K has conductor dividing 

Dpi. In particular, it is unramified at p2- This implies that ail orders of x at primes 
in K over p2 are divisible by m. But then <j>(x) has orders divisible by m at primes in 
K over pi, so K (if/<f)(x)) / K is unramified at pi. It follows from condition (c) and the 
fact that primes of K dividing P1P2 are tamely ramified in K(y/b)/K that the extension 
K(\/b)/K has conductor dividing 0pip2 . The T-invariance of D implies that K(\fb^)/K 
also has conductor dividing t>pip2 for any 7 G Z[T]. Consequently, K ( y<j>{x ) ) /K = 

is of conductor dividing OP1P2. Since we showed it to be unramified over 
pi, its conductor actually divides 0p2, whence x G W2. We conclude that ^[Wx] C W2. 
Interchanging the rôle of Wi and W2 in the argument above, one obtains </>[W2] C W\. 
Finally, the observation that <f>2 — id k shows that <f> is a T-isomorphism K*—>K* inducing 
an isomorphism Wi~~>W2. 

Let q be a prime in S. Since b is an m-th power in the complétions of E above q, 
there exists (3 G E* = (E <S>k &q)* satisfying f3m — b (g) 1. As before, T acts on Kq via the 
first factor. We view the canonical map Eq >—• ifq as an inclusion. The element /? is used 
to define : Wi —> Kq* by 

This is again a T-homomorphism, and it satisfies 

•C 

which is exactly what we want. • 



For a construction in a différent context that has the same basic idea as the construction 
given above we refer to [11]. 

Before proceeding with the proof of 8.1, we give a corollary of the preceding lemma 
that shows that the requirement 7.4(a) is automatic in our construction. 

8.8 Corollary. Define 4> as in the proof of lemma 8.7. Then the isomorphism 

f : Gal(L2/A;)^Gal(jLi/&) 

that was constructed from (j) in lemma 8.5 maps the inertia groups of primes above p i in 
Gal(Li/&) to the inertia groups of primes above p2 in G a i ( L 2 / k ) . 

Proof . The inertia group of j ty i in Gal(L,/&) consists exactly of those elements in 
Gal(Li/k) that act trivially on K and on 

{y /w £ V\/WÎ : ord7<p;(w) = 0 mod m}. 

The construction of <j) in the preceding lemma shows that, for any 7 £ I \ 

(j>[{w £ Wi : oTdy^l(w) = 0 mod m}] = {w £ W2 : ord7qj2(w) = 0 mod m}. 

Our claim follows immediately. • 

To finish the proof of 8.1, we will show that the condition that p\ and p2 have the same 
Artin class in Gal(M/fc) ensures the existence of an element b £ E as in 8.7. This will be 
done via an idèlic reformulation of this condition. 

By class field theory [7, 20], the abelian extension M/K corresponds to the open 
subgroup K*NM/KJM OF the idèle group JK- We claim that this subgroup can be described 
explicitly as 

K*( n ( < r d f l { 8 ) v * n x n ' 
^ord^D)), 
Q 

Q € ( m - 9 o o ) \ S Û 6 S other Q 

Here the subgroup of local units in K^ is written as UQ. By the symbol _L we dénoté 
orthogonal compléments with respect to the m-th norm residue symbol, which is defined 
for any completion F of a number field that contains a primitive m-th root of unity ( m as 
follows (cf. [7, 20]). The norm residue symbol ( . , . ) m for F is a pairing 

F* X F* + (Cm) 



where aa is the Artin symbol of a in the local extension F(\fF)/F. This symbol has the 
property that (a,p) = (/?, a ) - 1 , so the orthogonal complément of any subset of F* is well 
defined and contains the open subgroup F*m of F*. 

For the proof of our claim, we first observe that for any extension M/K that has a 
group of exponent m and is unramified outside S • (m) • 5 • oo, the subgroup K *NjM/K^M 
contains j f ^ m for ail primes Q of K and H q ^q with Q ranging over the primes not in 

S • (m) • 5 • oo. Recall that for real primes Q of K—they can only exist when m < 2—we 
have UQ = i f * . 

The requirement that M be contained in a t t h e primes in (ra) • D 
outside S is équivalent to saying that ^M /K^M contains (U^ at the correspond-
ing components. This condition is trivially satisfied for the real primes outside 3. The 
maximality of M implies that K*NM/K^M does not merely contain the open subgroup of 
JK exhibited above, but is actually equal to it. 

This open subgroup of JK remains unaltered if we change the local components 
U q K a t finitely many O. outside S • m • 5 • oo into UQ. Indeed, if the Frobenius el-
ements of almost ail primes in an abelian extension are annihilated by ra, then the group 
is of exponent dividing m and ail m-th powers in the idèles are norms. Thus, we can Write 
K*Nm/kJM as 

* • ( n ( u ^ ' v x n * n * * - n ' 
û e ( m - a - o o ) \ 5 Q e s Û|PiP 2 other Q 

Since m, S and P1P2 are invariant under T, this is a subgroup of JK that is its own 
T-image. Viewing the canonical map JE JK as an inclusion, we conclude that the 
subgroup K*NM/KJM of JK is mapped to itself by the idèle norm N K / E - ^ follows that 
E*NM/EJM — E*NK/£?[if*NM/K JM] C JE can be embedded in JK as a subgroup of 

n ( < i d ° ( î ) v x n « r * n >< n ' 
Û e ( m - 9 - o o ) \ S des Û|pip2 Other Q 

Here Q stands for the restriction Û f l B and the product is taken over the primes Q of i f , 
so a prime Q may occur more than once in this product. 

Class field theory [7, 20] tells us that E*Nm/eJM is the kernel of the Artin map 
JE Gai (M'/E), where M'/E is the maximal abelian subextension of M/E. Let 7r,' G JE 
dénoté a prime element at Vi = fl E for i = 1,2, i.e. an element that has ail components 
equal to 1 outside Vi and equal to a prime element at Vi at the prime itself. Under the 
Artin map JE Gal(M'/E), the element 7r; is sent to the Artin symbol of Vi. By our 



assumption on pi and p2 , these are the same for i = 1 and i = 2, so 7TI7T2
 1 is in the kernel 

of the Artin map. Consequently, there exists an element b G E* such that 

e n KIdaii)y >< n x n ^ >< n' w -
Û€(m-9-oo)\S û e s Û|PiP2 other Q 

This means that the element b (z E* satisfies 
(a) b G E*Q

m if Q is a prime of E that lies in S; 
(b) ord-p1(b) = —1, ord-p2(b) = 1 and ordg(6) = 0 for ail other Q \ pip2; 
(c) b acts trivially via the m-th normresidue symbol on U^ a^ ^ at primes Q j (m)-D-oo 

of K; 
(d) ordQ(6) = 0 mod m for ail finite primes Û of i f outside (m) • 0pip2 . 
We are done if we can show that these conditions imply the conditions on the element 
b E E that occur in lemma 8.7. Condition (a) here is identical to condition (a) in 8.7, and 
the same is true for condition (b) since, by définition of E, the prime Vi is inert in K/E. 

To finish the proof, we will show that for an element b satisfying the conditions 
(a)-(d) here, the local extension K^i^y/b)/KQ has conductor dividing at primes 
Û \ P1P2 in K. This only needs to be checked at the potentially ramified primes, and 
by conditions (a) and (d) these are only the primes in î) • m • oo that are not in S. At 
these primes, we know that b acts trivially via the m-th norm residue symbol on 
This is the same as saying that these subgroups of K^ are in the kernel of the Artin map 
K*q —• G a l ( K Q ( y / b ) / K Q ) , and this just means that the local conductor divides 

This finishes the proof of theorem 8.1. • 

Proposition 5.11 is again helpful when one needs explicit generators for the governing field 
M that occurs in 8.1. In fact, the following reformulation of 8.1 for the case K = Km 

shows the striking similarity between the governing field construction in this chapter and 
the construction from 5.6. It suggests that, at least if Cm G K, the isomorphisms in 7.2 
automatically hold for the Galois groups over k if we are in the spécial situation described 
before 7.4. The situation remains to be clarified. 

8.9 Corollary. Let the situation be as in 8.1, and define the group W C K* by 

W = Ws,a,m = {x G K* : ordQ(a;) = 0 mod m for ail finite Ùg S and 

x = 1 mod*Ûorda (0) for ail Ù G D \ 5} . 

If K contains a primitive m-th root of unity, then M = is a governing field for 
( î , m, S)-equivalence of primes of k. 

Proof . This is immediate from 8.1 if one realizes that for the primes Û in m outside î) • S 
the requirement that M can be obtained by adjoining m-th roots of elements x that satisfy 
ordQ(x) = 0 mod m simply means that M can be embedded in K o v e r K. • 



CHAPTER IV 

The conjectures of Cohn and Lagarias 





9. Class groups of quadratic orders 

In this section, we show how class field theory can be used to study the strict class group 
C ( A ) = TA/VA of the quadratic order C ' A - We write A = f2d as in section 2. 

Let K = Q(V^) = Q(\ /Â) be the quadratic field of discriminant d and define the 
cycle f = fO • oo of K as the product of fO and the real primes in K. It is easily checked 
that the canonical injection T ( f ) —> TA that maps intégral C-ideals a G J( f ) to a fl O A 
induces an isomorphism 

(9.1) m / W ) ï a / P A = C(A) 

with 
72.(f) = {aO G J(f ) : NK/Çl(a) > 0 and a = z mod*/ for some z € Z}. 

The group X(f)/72.(f) is called the (strict) ring class group modulo f of Q( \fd). It is a 
factor group of the ray class group modulo f = f O • oo, so there is a canonical isomorphism 

J(f) /7e(f) 2 Gal(JWQ(V3)) 

for some subfield RA of H^ by (2.2). The field RA is called the (strict) ring class ûeld 
modulo f . For any idéal a G Z(f) one has N^/qO • O G 7£(f), so the non-trivial element 
o- G Gal(Q(V3)/Q) acts on J(f)/7?.(f) by inversion. The décomposition group of any prime 
in RA that lies over a rational prime p f / that is inert in Q( \Zd)/Q, has order 2. One 
easily dérivés that the extension RA/Q, is dihedral: its Galois group can be written as a 
semidirect product 

(9.2) GaI(i2A/Q) = T ( f ) / n ( f ) X! (a) 

with (r acting on 2(f)/7?.(f) by inversion. Note that the above splitting is not canonical as 
it depends on the choice of an extension of a to H. In fact, RA is the maximal abelian 
extension of Q ( y f d ) of conductor dividing ( / ) • oo that is dihedral over Q. It can also be 
characterized as the maximal subfield of the ray class field modulo ( / ) • oo in which ail 
primes p f / of Q(\/S) that he over an inert rational prime split completely [6]. It follows 
from the discussion in section 2 that the splitting behaviour in R A/Q of rational primes 
that split in Q(\/^)/Q can be described in terms of représentations by quadratic forms of 
discriminant A. In particular, a rational prime p f A splits completely in the full extension 
RA /Q if and only if it is represented by the principal form of discriminant A, i.e. the form 

X2 + XY - —-Y2 if A = 1 mod 4 
(9-3) 4

a 

X2 - -Y2 if A = 0 mod 4 



For / = 1, the group J(f)/7?.(f) is the strict class group of Q(y/d) and R& is the strict 
Hilbert class field of Q(Vd). 

Because of (9.1), we can rewrite (9.2) as 

(9.4) Gal(i?A/Q) * C(A) XI (a). 

This isomorphism will be exploited to relate the 2fe-rank of C(A) to the degree of suitable 
field extensions. 

The invariant subfield G A C RA of the commutator subgroup of Gal(i?A/Q) is called 
the genus field of the extension R<\/Q,(\/D). It is the maximal subextension of RA/Q, that 
is abelian over Q. As the commutator subgroup of C(A) x («r) equals C(A)2 , we see that 
Gal(GA/Q) is an elementary abelian 2-group whose 2-rank exceeds the 2-rank of C(A) 
by one. Explicit generators for G A over Q can be given as follows [12]. Décomposé d 
as a product IIj=i dj of fundamental prime power discriminants. This means that each 
dj is a fundamental discriminant whose absolute value is a prime power or, even more 
explicitly, that dj = —4, ±8 or (—1 )(P~^/2p with p an odd prime. We assume that d\ has 
the same parity as d. Let q\, q2,..., qt be the odd primes in / that do not divide d. Write 
E = Q ( { y 3 7 } j = 1 , { y ? J } } = i ) , with qï = (_i)(? J - i ) /2 Ç j = 1 mod 4. Then [E : Q] = 2'+* 
and one has 

(9.5) Ga = < 

E if d\ — ±8 and / is odd, or 8 \ d and 4 \ / ; 
if di = ±8 and 2 | / , or d is odd and 4| | /; 

E(V2) if <fi = - 4 and 4 | / ; 
k E(y/-[, y/2) if d is odd and 8 | / . 

It is easy to check that the field given above is abelian over Q and of conductor dividing 
( / ) • oo over Q ( y f d ) . In fact, it is the maximal field with these properties, as is easily 
checked by looking at the quadratic fields that it can contain. Thus, it must be equal to 
the genus field. We conclude that the 2-rank of C(A), which is the number of factors 2 in 
the degree of the extension [GA : depends in the following way of the number u 
of distinct prime factors of A: 

{u if 32 | A; 

u-2 if d is odd and 2||/; 
u — 1 in ail other cases. 

We see from (9.6) that the 2-rank of C( A) for fundamental A is one less than the number 
of distinct prime factors in A. In particular, quadratic fields of (absolute) prime power 
discriminant have an odd class number. 

Equation (9.6) was derived by Gauss by looking at the structure of the 2-torsion 
subgroup C(A)2. This group can also be described by class field theory. As we have to 



deal with the local behaviour at ramifying primes, it is more convenient to view C( A) as 
a factor group of the idèle group J of K. 

The canonical surjection 

(f> : JK^C(A) Gal(i?A/Q(Vd)) 

has kernel 

p r i r a e ( z ; n p b ^ ( o r d p ( / ) ) ) x ^ 

K * • U P prime (Zp Flply X fl^ K p , > 0 

where Kc stands for the completion of K at the complex prime. The map (j) can be 
described explicitly in the following way. Let the ring A& = lim OA/nO& be the closure of 
OA in the adèle ring of K, and x = (a;p)p an element of JK- Multiplying x by an element 
of K*, if necessary, we may assume that x has an archimedean component whose local 
norm to Q ^ = R* is positive. Then one has 

<f>(x) = [(x^a) n Q(v /Â)] € C(A). 

Restricting the homomorphism J C( A) introduced above to the subgroup J s n of finite 
idèles—the restricted product over the multiplicative groups of the finite complétions of 
K—we obtain a surjective homomorphism Jfin -»• C(A) that factors via the homomorphism 

X Jfin —• Ta 
x i—> (aAA)nQ(VÂ). 

We have AA = IJp where the semilocal ring 

Oa,p = l im(CA /p f cCA) = Zp + f • [ J Od,p 
k p|p 

is the completion of O A in = Ilp|p -Kp- Correspondingly, ZA can be written as a direct 

1A S ©pX(Oa,p) 

where T(OA,P) is the group of invertible C?A>;)-ideals. Since each invertible idéal in the 
semilocal ring OA,P is principal, this local idéal group is isomorphic to p when 
we identify each idéal with the class of its generator modulo O^ . Note that OA,p and 

if A < 0 
(9.7) 

if A > 0, 



X(OA,P) coincide with Od,p and I(Od>p) at rational primes p \ f . The homomorphism x 
defined above is a sum Xpi with p ranging over the rational primes and Xp the canonical 
map 

XP = K*p) —• K{p)l°l,p-

The following lemma describes the 2-torsion subgroup C(A) 2 of C(A) in terms of the 
homomorphisms <f> and Xp defined above. 

9.8 Lemma. Let a be a generator of <Ô = Gal(Q(\/Â)/Q). 
(a) There is a canonical isomorphism 

C( A)2 ^ i l j v l 

where 1% = {a e 1A : VA = a} and V% = {a • OA G VA • <R(a • Oa) = a • Oa}. 
The subgroup {a • OA G VA : a G Q*} has index 2 in V%. 

(b) The subgroup JA = n p | A Q(>/Â); of J satisfies <f>[JA] D C(A)2. 
(c) Let p be an odd prime number that occurs in A with multiplicity 1, and J^ C J the 

product of the archimedean components of J. Then the subgroup 

H = Joox n x - ^ m j o i ^ ) 

of J satisfies <f>[H] = C(A)2. 

Proof . For (a), we employ Tate cohomology. Recall that for a (S-module M, the norm 
N on M is the endomorphism 1 + a and that the Tate cohomology groups are defined as 
H°(M) = ker (<r - l ) / im(N) = M®/N[M] and H1 (M) = ker(N)/im(<r - 1). Write F for 

and let U be the unit group of the ring of integers of Q( y/K). We use subscripts + 
and 1 to dénoté elements of positive norm and norm equal to 1. The cohomology sequence 
for the exact sequence 

0 —> U+ —> F+ —> V A —• 0 

is an exact hexagon 

H1 (VA) —> ( - 1 ) —> Q - / N F + —> H°(VA) —> 

—. U+/U2
+ —, F./ia - 1 )F+ —, H1 {VA). 

Since ( - 1 ) -» Q * / N F + is injective, H1^) H1(VA) is surjective. If A < 0, then 
H1(F+) = 0 by Hilbert 90 and U+ = U is cyclic of even order, so H1(VA) = F1/(A-l)F+ = 

0 and H°(VA) contains Q * / ( ( - l ) - N F + ) as a subgroup of index 2. If A > 0 and x is in FI, 

then x = (a — l ) a and thus —x = (a - \){ay/K) for 
some A (Z F by Hilbert 90. Since —1 

is not in (a — 1).F+, exactly one of the elements x and — x is in (cr — 1)F+. It follows that 



H1(F+) = ( - 1 mod (<t - 1 )F+) is cyclic of order 2, and that the map U+/U\ -»• H1(F+) 
is surjective. Further U+ = (—1) x Z, so U+/U+ has order 4. We conclude again that 
H°(VA) contains Q * / ( ( - l ) • NF+) as a subgroup of index 2 and that H1(VA) = 0. This 
proves the second statement in (a). 

From the cohomology sequence for 

0 —+ VA — > I A — * C ( A ) — > 0 

we obtain 
H ° ( V A ) — H ° ( X A ) C ( A ) 2 ^ ( P A ) = 0 , 

which gives 

C(A)2 = Xi / V% = {fl e J A : <ra = a} / {(a) e 7>a : = («)}• 

This proves (a). 

Now suppose a G TA satisfies <ra = a. Since a acts componentwise on T a = 
0 p ail local components of o are er-invariant. Suppose p { A. Then Oa,p = 
Od,P and p is unramified in Q( \ /Â) /Q. If p is inert in Q( \ /Â) /Q, then K*p)/0\p = 
(p mod O^ p) is invariant under a. If p splits in Q( \ /Â) /Q, then p = (n mod 

p) x (TT' mod O^ p) and the subgroup of invariant ideals equals (7T7r' mod O^ p) = 
(p mod C>A,p)' ^ f ° l l ° w s that there exists a nonzero rational number a such that a a G Ta 
has trivial components at ail primes p \ A. We conclude that the image of 

P|A 

contains i m [ J | C(A)] = C(A)2. This proves (b). 
Suppose p divides A with multiplicity 1. Then p \ / , so p ramifies in Q( v / Â)/Q but 

not in HA/Q(>/S). It follows from the reasoning above that the </>-image of the group 

î|A 

equals C ( A ) 2 . Thus, it suffices to prove that 4>[H] = <f>[D]. The inclusion C is clear since 
(^[JOO] = ( [ \ / Â C A ] ) C C ( A ) 2 . Let V be the prime lying over p in Q ( \ / Â ) , and write F-p 
for Q(A/Â)^> C J. Then the other inclusion follows if we prove that <j>[F-p] C <f>[H]. As 
p f f , the local units in F-p are in the kernel of </>. Thus, it suffices to show that the 
i^-image of a prime element at V is in <j>[H}. As a prime element n in F-p, we take the idèle 
that has component \/Â at V and 1 elsewhere. Let x = (®p)p G J be the idèle that has 
components xp = \ / Â at ail finite primes p in A and 1 elsewhere, and y G J the idèle that 



has components \fK at ail finite primes and 1 at the infinité primes. Then yx 1 G ker^ 
by (9.7), so we see that <f>(x) = <f>(y) = [VÂOA] G <f>[Joo] C <j>[H]. It is clear from the 
définition of 7r that 7rx-1 G H. Consequently, <j>(7r) = (f>('KX~1)(f)(x) G <f>[H], as required. • 

9.9 Corollary. Let A be a fondamental discriminant, and Q G Z[X, Y] the principal 
quadratic form of discriminant A. 
(a) The 2-torsion subgroup of C( A) is generated by the classes of the prime ideals dividing 

A, subject to a single relation. 
(b) There is a unique divisor d = dA > 1 of A for which the équation Q(x,y) = d is 

solvable in coprime integers x,y G Z. 

Proof . The statement in (a) is immediate from 9.8. 
For (b), we let g,-, i — 1,2, . . . ,s , be the prime divisors of A, and q,- the unique prime 

idéal in Q( VÂ) that lies over g,-. By (a), there is a unique non-empty subset R C {1,2,... , s} 
such that UIER = with a G OA an element of norm d > 1. It is clear that d | A. 
If x, y are the coordinates of a on a Z-basis 1, S of OA, with S = (1 + \fÂ)/2 if A is odd 
and 8 = VÂ/2 if A is even, then x and y are coprime and N a = Q(x,y) = d. Conversely, 
if d > 1 divides A and Q(x,y) = d for coprime integers x and y, then x + yS G has 
norm d. The prime idéal factorization of x + yS reads (x + yS)0A = IlieH li f° r some 
non-empty subset R C {1,2, . . . ,«} because q | | (x + yS)0A would imply that g,- divides 
both x and y. It follows that d is uniquely determined by R, and (b) is proved. • 

If A < 0, the relation in (a) is obtained by factoring the idéal y/ÂOA that is in the unit 
class of C(A). Consequently, the element dA in (b) then equals 

{- A if A is odd; 
- A / 2 if 4|| A; 
- A / 4 if 8 | A 

and is an uninteresting quantity. If A > 0, the idéal VÂOA is not necessarily in the 
unit class. One can obtain the relation between the ramifying ideals in the class group by 
taking the smallest power r) of the fondamental unit of O a that has positive norm and 
factor the idéal (1 + ti)0A. In this case the divisor dA depends on the fondamental unit of 
OA. Here dA — A (or A / 2 and A / 4 when 4||A and 8 | A, respectively) occurs only when 
the fondamental unit of Oa has norm —1. 

Part (a) of the lemma is also true for non-fondamental discriminants, in the sense 
that the kernel of the canonical surjection 

n < * ( . > / ° Â , . ) e —• c < a ) 2 ( 9 - i q ) 
«|A 

from lemma 9.8 is generated by n^A^^A,?) o n e ^-invariant idéal in this group that 
does not come from a rational number. As in the fondamental case, this is the idéal 



for negative A and (1 + T])OA for positive A. However, the relation obtained by factoring 
(1 + T])OA for positive A cannot be described in terms of a divisor of A that is represented 
by the principal form. The statement in [9] that 9.9(b) is true for non-fundamental A 
is wrong. For A = 32 • 12, the principal form Q = X2 - 27Y 2 satisfies Q(6, l ) = 32 and 
Q(9,1) = 2 • 33. A meaningful way to generalize 9.9(b) is furnished by the following lemma. 

9.11 Lemma. Let A be a discriminant, and write <3 = Then there is 
a unique intégral divisor DA ^ 1 of y/ÂO& in J | that is not contained in kO& for any 
integer k > 1 and is in the unit class of C( A). 

Proof . It is clear from the discussion preceding the lemma that there is a unique intégral 
idéal DA ^ 1 in TA that is not contained in kOA for any integer k > 1 and is in the 
unit class of C(A). Let x G OA be a generator of DA- Then OA/XOA is cyclic as an 
additive group, since otherwise it would be a product of two cyclic groups C m x Cn with 
k = gcd(ra,n) > 1, which entails xOa C kOA, contradicting the assumptions. The group 
<5 acts on OA/XOA since XOA G T®, and this action is trivial as the generator 1 + xO A 
is (Ô-invariant. Let 1, S be an intégral basis for O A- Then S and its conjugate E have the 
same image in OA/XOA, and consequently Y/Â = 6 — E is in XOA• It follows that 5A 
divides \/Â0A> as required. • 

The idéal 3 A is generated by y/Â/k when A is negative and (1 +rj)/k when A is positive, 
where A; G Z is the maximal integer for which these elements are in O A-

The explicit form of the 2-torsion subgroup of C(A) for fundamental discriminants A 
was used by Rédei [30] to find the 4-rank of C( A) in terms of quadratic residue criteria 
between the prime factors of A. By elementaxy group theory one has an exact sequence 
of elementary abelian 2-groups 

C(A)2 — C ( A ) / C ( A ) 2 ^ C ( A ) 2 / C ( A ) 4 — 0 . 

Viewing these groups as vector spaces over the field of two elements F2, it follows immedi-
ately that 

T-4 = r2 — dimp2 im[/& : C(A)2 —> C(A)/C(A)2]. 

An element of C(A)/C(A)2 = GaI(ff2 /Q(VÂ)) 
can be specified by giving its action on the 

elements y/dî, i = 1,2,. . . , s, that generate the field extension GA = #2 over Q(\ /Â) in 4.9. 
Let e;)(7 G F2 be the exponent of —1 that describes the action of a G C(A)/C(A)2 on y/d[, 

Using the relation JJ di = A, one obtains an isomorphism 

C(A)/C(A)2 H = {(*)?=! : = 0} C F / 



that sends a to (ej)tr)j. If pj is the prime in Q( \ /Â) that lies over di—for even di we take p; 
to be the prime over 2—the image of h is generated by the Artin symbols (p i,H2/Q(V~Â)). 
Denoting the element e,)(7 for A = (pj, H2/Q(\/K)) by e , j , one has 

r4 = r 2 - r a n k F 2 ( e i , i ) ' i = 1 . 

The elements e2)j are easily computed. If i ^ j, the définition of the Artin symbol implies 
that 

ydj/ 

since both expressions are powers of —1 that are congruent to mod dj, and e^- = 

Yljjti ej,i• For even dj we have to read the Legendre symbol as the Kronecker symbol 
= ( - l ) ^ ' " 1 ) / 4 . This gives Rédei's description of r 4 . 
It is easily seen that the Cohn-Lagarias conjecture for w = 4 and fondamental dis-

criminants Dp follows immediately from this description. We will state and prove the 
général 4-rank case in as another direct application of the existence theorem 7.4 in the 
next section. 

10. Proo f of the 8-rank conjecture 

Before we come to the main theorem 10.4 of this section, we construct for any nonzero 
integer D ^ 2 mod 4 a number field KO such that for a prime number p, the genus 
field H2 of RDp/Q(\/DP) equals KD(^/P*), where p* = (—l)(p_1)/2p. Some cumbersome 
bookkeeping is necessary to ensure that K o has the right ramification at 2 for the various 
values of D and p mod 4. 

For each odd prime p satisfying Dp = 0,1 mod 4, there is a unique décomposition 

8 

Dp = / » ( n * y ( îo . i ) 
i = l 

in which / > 0 and the d{ are distinct fondamental prime power discriminants. If there 
is an even di among them, we will assume that this is d\. If D is odd, the congruence 
Dp = 1 mod 4 détermines p modulo 4, and f and the di do not depend on p. If D is even, 
there are two essentially différent décompositions, depending on whether p = 1 mod 4 or 
p = — 1 mod 4. The indeterminacy is restricted to the sign of d\ = ±8 in case the number 
of factors 2 in i ) is odd, and concerns the presence of a fondamental discriminant —4 
versus an extra factor 2 in / if the number of factors 2 in D is even. This phenomenon 
gives rise to a définition of the fields KD that depends on the number of factors 2 in D 
and the possible choices of p mod 4. 



10.2 Définit ion. Let D ^ 2 mod 4 be a non-zero integer, c the number of factors 2 in D 
and deûne 

E = Q(y/q*; q \ D an odd prime). 

If c = 0, i.e. D is odd, we take 

If c = 2, we take 

K+ = K„ = E. 

K+ = E and Kp = if D/4 = 1 mod 4 

Kp = E and = E(y/-Ï) if D/4 = - 1 mod 4. 

If c = 3, we take 

= E(V2) and K^ = E(y/^2) ifD/8 = 1 mod 4 

Kp = E(V2) and JT+ = E(y/^2) ifD/8 = - 1 mod 4. 

If c = 4, we take 
K+ = Kâ = E(y/=1). 

If c > 5, we take 
K+ = Kp = E(V=Ï,V2). 

The following lemma shows that this is exactly the définition we need. 

10.3 Lemma. Let D ^ 2 mod 4 be a non-zero integer and p an odd prime number 
satisfying Dp = 0,1 mod 4. Then the genus ûeld H2 of RDp / Qiy/TJp) equals 

H2 = Kp(y/p) if p = 1 mod 4 

#2 = i f p = - 1 mod 4. 

Proof . This is a straightforward déduction from (9.5). • 

If a G {±1}, we will use the notation Kq to dénoté that field from K ^ and K p that has 
"sign" a. 

We can now formulate and prove our answer to the Cohn-Lagarias conjectures 2.8 for 
w = 8. 

10.4 Theorem. Let D ^ 2 mod 4 be a nonzero integer, and suppose a G {±1} satisûes 
Da = 0,1 mod 4. Deûne K = Kp as in 10.2, and let M be the maximal abelian extension 
of K that 
(a) is of exponent dividing 2; 
(b) is unramiûed outside 2D • 00; 



(c) can locally at primes over 2 be obtained from K by adjoining square roots of local 
units in case D is odd. 

If pi,p2 f 2D are rational primes that are congruent to a mod 4 and satisfy [pi ,M/Q] = 
[p2,M/Q], then there is an isomorphism 

C(DPl)/C(DPl)s * C(Dp2)/C(Dp2)8. 

We remark that condition (c) in theorem 8.3 is équivalent to the requirement that the local 
conductors of M/K at primes over 2 divide 4 in case D is odd. 

It should be noted that theorem 2.9 is a direct conséquence of 10.4. 

Proof of 10.4. let p = a mod 4 be a prime number, and dénoté the subfield of R £>p 

that is invariant under C8 = C(Dp)8 by Hs. The following diagram of fields illustrâtes the 
situation. 

Ht 

c*/c* 

H2 = K(y/jF) 

c/c> 

K Q(VI^) 

2 

Q 

Extend the generator a of Gal(Q(i/£)p)/Q) to RDP such that it is the identity on K. Then 
(9.4) gives us 

GA(Ht/K) C(Dp)2/C(Dpf x (a), 

so G a \ ( H t j K ) is an elementary abelian 2-group. Define the 'non-fundamental part' / of 
Dp by 10.1. The conductor of RDp/Q(y/T>p) then divides ( / ) • oo. We claim that the 
conductor of Ht/K divides ( fp) • oo. For the p-part of the conductor, this is clear from 
the diagram as H^/K(y/p*) is unramified at primes over p. For the finite non-p-part of 
the conductor, it follows from lemma 8.2, with M = K(y/p*) and L = Ht. For the infinité 
part of the conductor, there is nothing to prove. 

We can now apply theorem 8.1 for the extension K/k = K^/Q with parameters 
m = 2, D = ( / ) - oo and S the set of primes dividing D • oo. In this case Km = K2 = K and 
the governing field for (D, m, S)-equivalence furnished by theorem 8.1 is the field that is 
claimed to govern the 8-rank in 10.4. Thus, let pi and p2 be two primes that do not divide 
2D and are congruent to a modulo 4, and suppose that the Frobenius classes of p 1 and p2 

in G a l ( M / K ) coincide. Then these primes are (D, 2,5)-equivalent in the sense of 7.4. If 



we write L(p) for the maximal abelian extension of K that has exponent 2 and conductor 
dividing ( f p ) • oo, this means that there exists an isomorphism 

g : G a l ( L ( P l ) / Q ) ^ G a l ( L ( P 2 ) / Q ) 

that respects the projections onto Gal(JC/Q) such that the following is satisfied: 
(a) the <7-image of the inertia group of any prime above p\ is the inertia group of a prime 

above p2 • 
(b) for each rational prime q dividing D and q = oo, there is an isomorphism of Q q-

algebras 
L(pi) ®Q Q q = L(P2) ®q Q q 

such that the group actions of Gal(L(pi)/Q) on Z-(p2) <8> Qg via this isomorphism and 
via g coincide. Here the g-adic field Qg for q = oo is the field of real numbers. 
We have to prove that the conditions above imply that there is an isomorphism 

C(DPl)/C(DPl)s C(Dp2)/C(Dp2f. 

We first prove that g induces an isomorphism 

G a l ( X ( p 1 ) / Q ( % / ^ T ) ) - ^ G a I ( L ( p 2 ) / Q ( V ^ ) ) . 

Let E C L(p2) be the quadratic field for which Gal(Z<(p2)/J5) is the g-image of the Galois 
group Gal(i(pi)/Q(-y/Z)pi)). Then E/Q is ramified at p2 by 6.5(a) and locally isomorphic 
to Q(y/Dpi)/Q at the primes in D • oo by 6.5(b). This implies that the local conductors of 
Q ( a / Z ? P i ) / Q and E/Q are equal at the primes in D- oo. As E/Q is unramified outside Dp 2 

and infinity, its conductor equals the conductor of the extension Q(v /Z)p2)/Q. It follows 
that E = Q ( y / D p ï ) , since quadratic fields are uniquely determined by their conductor over 
Q. 

Dénoté the maximal abelian extension F of Q ( y / U p ï ) inside L(pi) that is dihedral 
over Q with group 

Gal(F/Q) S Gal (F/Q(v/D^)) x G a l ( Q ( v / 5 ^ ) / Q ) 

by F(Dpi). Then we have isomorphisms 

Gal(F(Dpi )/Q(y/Dpï))—yGal(F(Dp2 )/Q( y/Dp?)). 

The field F(Dpi) is abehan of exponent dividing 4 over Q ( y / D p ï ) and dihedral over Q, but 
it need not be equal to H^(Dpi) since we only know that its conductor over H2(Dp i)— 
and not Q (y /Dpi)—divides ( / ) • 0 0 . The extension H^Dpi)/Q(y/Dpî) is the maximal 



subextension of F(Dpi)/Q(\/Dpi) that is of conductor dividing ( / ) • oo. It follows from 
the existence of the local isomorphisms at primes dividing / (condition (b)) that the 
extensions Hi(Dpi) /Q(\ /Dpi) for i = 1 and i = 2 correspond. We conclude that we have 
an isomorphism 

that is compatible with the local isomorphisms H ^ D p i )<8)Q Qg-^->i?4(.Dp2)®Q Qg for each 
rational prime q in D • oo. From these local isomorphisms we obtain for each q | D • oo an 
isomorphism between the subgroups 

Q (VÔPÙU) = { Q i V W i ) ®Q Q?)* C Ji = J^y/Dà) 

for i = 1 and i = 2. Note that this isomorphism respects the action of the group <3 = <5 ; = 
Gal(Q(v/£>p,)/Q) under the obvious identification (Ô i = Combining the isomorphisms 
for the various q, we have a commutative diagram of ©-homomorphisms 

n ( < i ( V W i r { q ) / o * D p u q ) 
q\D q\D 

l' i' 
q\D q\D 

Taking inverse images of elements that are mapped to (5-invariant ideals, we obtain an 
isomorphism 

q\D q\D 

Combining this with the isomorphism at the infinité primes, we have an isomorphism 
H i ~ ^ H 2 , with Hi the subgroup defined in lemma 9.8(c) for p = pi and A = Dpi that 
maps onto C(Dpi)2. 

By the canonicity of the local Artin map, the local isomorphisms at the primes over 
D • oo give rise to a commutative diagram 

I I — G a l ( t f 4 ( Z > p i ) / Q ( / D ^ ) ) C(DPl) / C(DPl)* 
q\D-oo 

II Q(>/P»)(ï) — GaI(ff4(£>P2)/Q(v^)) C(DP2) / C(DP2)\ 
q\D-oo 



Pasting ail information together yields a commutative diagram 

Hl C(DPl)2 — C(DPl) / C{DPlf 

H2 — C(£>p2)2 — C(Dp2) / C(Dp2)\ 

The homomorphism H{ —» C(Dpi)2 is surjective, so the right vertical arrow induces an 
isomorphism between the images of C(Z)p,)2 in C(Dpi)/C(Dpi)4 for i = 1 and i = 2. This 
implies that C(Dpi) and C(Dp2) have equal 8-ranks, since the 8-rank is given by 

r8 = dimF2[ker(C(Z)pi)2 — • C(Dpi)/C(Dpi)4)] 

= r2 - dimF2[im(C(DPi)2 C{DPi)/C(DPi)*)] 

and we know the 2-ranks of C(Dpi) and C(Dp2) to be equal. This finishes the proof of 
theorem 10.4. • 

From the proof of 10.4 we obtain the following corollary. 

10.5 Corollary. In the situation of 10.4 let p\ and p2 be rational primes congruent to 
a mod 4 that have the same Frobenius class in Gal(ilf/Q). Suppose that the 8-ranks of 
C(Dpi) and C(Dp2) equal zéro. Then there is a commutative diagram 

Hl — C(DPl)2 

! ! 

Hz —+ C(DP2)2 

where H{ is the subgroup H from 9.8(c) for p = p,- and A = Dpi. 

Proof . The fact that the 8-ranks are zéro implies that the canonical maps C(Dpi)2 —> 
C(Dpi)/C(Dpi)é are injective, so the isomorphism between the images from the proof of 
10.4 induces the required isomorphism. • 

Since our theorem 8.1 can prove the existence of governing fields for 8-ranks, it is not too 
surprising that there also is a choice of parameters that gives governing fields for 4-ranks. 

10.6 Theorem. Let D ^ 2 mod 4 be a non-zero integer, and let M be the field 

Q(\/—1, \fq : q is a prime divisor of D). 

If pi,p2 \ 2 D are two rational primes that have the same Artin symbol in M/ Q and satisfy 
Dpi = 0,1 mod 4, i = 1,2, then C(Dpi)/C(Dpi)4 S C(Dp2)/C(Dp2)4. 



P r o o f . Apply 8.1 for K = k = Q with m = 2, 0 = (D) • oo and S the set of primes 
dividing ( D ) • oo. The field M defined above is the maximal abelian extension of Q that 
is of exponent 2 and unramified outside 2D • oo and can locally be obtained from Q 2 

by adjoining square roots of units if D is odd, so it governs (3, m, S)-equi valence on Q. 
It follows from (9.5) and the définition of L(p), for p \ 2D a rational prime satisfying 
Dp = 0 ,1 mod 4, that 

H2(p) C UP) C H2(P)((S), 

with H2(p) = GDp the genus field of discriminant Dp. If p\ and are équivalent, then one 
argues along the lines of the proof of theorem 10.4 to conclude that there is a commutative 
diagram 

Hl —> C(DPl)2 — C(Dpi) / C(Dpi)2 

1 

H2 —. C(Dp 2)2 —» C(DP2)/C(DP2)2. 

It follows as in the proof of 10.4 that C(Dpi) and C(Dp2) are isomorphic modulo 4-th 
powers. • 

As a conséquence of 10.4, we give the following extension of the theorem. 

10.7 T h e o r e m . Let D, a, M be as in 10.4, and let pi,p2 \ 2D be rational primes that 
are congruent to a mod 4 and satisfy [p i ,M/Q] = \p2,M/Q]. If C(Dpi) has 8-rank zéro, 
the following holds. 
(a) If Dpi is fundamental and d&Vi is defined as in 7.3(6), then 

doPl if Pi \ dç>pl ; 
dDPl - Pi/Pi if Pi | dDpi. 

(b) If dDPi is defined as in 7.5 and p j E 1oPi is the unique prime idéal overpi, then there is 
an isomorphism : ® ®q\D^-Dp2,q C TDP2 induced by local isomorphisms 
Q(y/Dpi )(a) )(g) such that 

dDp2 — 

0D = (<J>C0DPL) IFP1\*DPI; 
\<F>(*DPlPï1)-p2 if Pl | ^Dpr-

P r o o f . Since î)nPi and do P i are quantities that describe the non-trivial relation between 
the generators of C(Dpi) from 9.9(b), it suffices for both (a) and (b) to prove that there is 
a commutative diagram 

n (̂VWiriq)/obP1,qf n Wy/ôâ)(<)/°b,a,qy 
q\Dpi q\Dp2 

can can 

C(Dp x)2 —. C(DP2)2, 



where (Ô = 0 ; = Gal(Q(\ZDpj)/Q) under the obvious identification (&i = and the 
vertical maps are those from (9.10). Here h is induced by (Ô-isomorphisms 

for each rational prime q \ D and an isomorphism 

mapping y / U p l moà 0*Dpipx to y / T ï f r mod 0*Dp2P2. 
It follows from 10.5 that the local isomorphisms at q \ D exist and that the diagram 

above is commutative for the components at q \ D. The groups (Q(Y/Dpi)* p .^ /0* D p . p.)<& 

are infinité cyclic, generated by the class of y/Upï. Correspondence of the images of 
(UqlD 1) X y/Thfi under C(£>p! )^C(Dp 2 ) follows from 10.5 if one realizes that this image 
in C(Dpi) equals that of n 3 | D o o V W i ' 1 x ri8tz>.oo 1 ^ i n C ( D P i ) i7-1)- T h i s 

proves 10.7. • 

10.8 E x a m p l e . We consider the 8-rank of the class group 
of Q( for p = 3 mod 4 

a variable prime. This is the case that was treated in détail in theorem 2.10. We have 
K = KZ21 = Q ( 7 z 3 , V / = 7 ) by 10.3. Our 

governing field M is the maximal exponent 2 
extension of K that is unramified outside (2 • 3 • 7), and has complétions at primes over 
2 that can be obtained from the 2-adic completion Q2(\/—3, y/—7) = Qz(V—3) of K by 
adjoining square roots of local units. 

We know already that K has class number one, and that its fundamental unit is 
e = (Y/^3 + \ / = 7 ) / 2 . We write 7/ = - e 2 = (5 + y/21)/2. The unit group of OK is 
0*K = (6 x (e). The field M is obtained from K by adjoining the square roots of ail units 
in K and the square roots of a set of generators of primes over 3 and 7. The primes over 
3 and 7 in K are = (v ~ 1), = (e - 1) and ^ = (e + 1). We find m = i , y/i, y / v - i , v m , VT+i). 

Theorem 2.9 of chapter I shows that the smallest governing field for the 8-rank of Q( yj—21p) 
is the field 

M' = Q(V^Ï, V3, >/7, ^ 2 - ^ 2 ( 7 + ^21), yj-Z + . 

The field M' is contained in M as it is obtained from K by taking square roots of elements 
that are divisible by primes over 3 and 7 only. Thus, we have found a quadratic extension 
of M' as a governing field for the 8-rank of Q( yj—21p). This example shows that that our 
theorem does not necessarily give the minimal governing field for the 8-rank of C(Dp). 
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