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CHAPTER 1

Introduction






1. Background

Number theory finds its origins in the study of integral and rational numbers, and the
problem of finding integral or rational numbers that satisfy some given equation. An old
result on integral numbers—usually called integers—that was already known to Euclid
(300 B.C.) is the so called fundamental theorem of arithmetic. It states that every positive
integer can be written as a product of prime numbers, and that this prime number decom-
position is essentially unique. Finding integral or rational solutions to a given equation is
a problem that was studied by Diophantos of Alexandria (250 A.D.), and his name has
been attached to such equations. Solving diophantine equations is a notoriously difficult
problem that has stimulated the development of new methods until our days. There is no
general method to find the solutions to these equations, but many interesting results have
been obtained for certain classes of equations. A diophantine equation that has acquired
some fame even outside mathematical circles is the Fermat equation X™ + Y™ = Z". As
to date, it is unknown whether Fermat’s statement (1637) that there are no solutions in
non-zero integers when n larger than 2 is true.

History has shown that, even though a problem is formulated entirely in terms of
rational numbers, it is often fruitful to admit numbers that are not necessarily rational.
Real and complex numbers are probably the examples that most readily come to mind,
but there are many more. For instance, many of the results on the Fermat equation were
derived by studying the equation over the cyclotomic field Q((,), where it can be written
as

X" =(2-Y)Z-GY)NZ-GQY)...(Z2-7'Y).

Here (, denotes a primitive n-th root of unity, i.e. a number such that (? =1 and ¢F #1
for k =1,2,...,n — 1. Such a number is not rational if n > 2, and in that case the field
Q((x), which consists of elements z that can be written as

z = ag + a1(n + Csz,zl + o+ an-1C,?'_1

for certain rational a;, is strictly larger than the field of rational numbers Q. The field
Q(¢n) can be viewed as a subfield of the field of complex numbers C by taking ¢, = e%*,
but it has finite dimension as a vector space over Q and is therefore much smaller than C. It
has been proved for many n that the Fermat equation does not have non-zero solutions X,
Y and Z in Q((.). Note that the Fermat equation has infinitely many non-zero solutions
for any n if we allow them to be in C or the field of real numbers R.

Fields like the cyclotomic field Q((,) that are finite dimensional as a vector space over
the field of rational numbers Q are called algebraic number fields. They play a major role

in algebraic number theory. An algebraic number field can always be obtained from @ by
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adjoining a root a of an polynomial with coefficients in Q. This means that all elements
of this number field can be written in the form

E = a9+ a0+ azaz + e akak

with a; in Q.

Number fields are usually much better tools for studying arithmetical questions than
a large field like C. The most important reason is that they allow an arithmetical theory
that is not too different from the arithmetic of Q as described by Euclid. This theory was
developed in the 19-th century by mathematicians as Kummer, Kronecker and Dedekind.

Any number field K has a ring of integers O that is defined as the integral closure of
the ring of ordinary integers Z. This means that O consists of those z in K that are zeroes
of a monic polynomial with coefficients in Z. For K = Q we find O = Z. In general, O is
a ring that contains Z, and every element of K is the quotient of two elements from O.

Rings of integers behave somewhat differently from Z in the sense that their group of
invertible elements may be infinite—in Z one only has {1} as the unit group—and that
they need not have unique prime factor decomposition. However, the structure of the unit
group of a ring of integers O is given explicitly by the Dirichlet unit theorem, and unique
factorization can be obtained by looking at prime ideals rather than prime elements of
this ring. One has unique prime factor decomposition of elements in O if and only if all
ideals of O are principal, i.e. generated by a single element in the ideal. In general, if one
considers the group of all fractional O-ideals the subgroup of principal fractional ideals is
always of finite index. The corresponding factor group is the class group CI of O (or of
K). It is a finite abelian group that measures how many ideals in O are principal. Its
order is the class number h of K. Fields with unique prime factor decomposition are the
fields for which h = 1.

Prime numbers from Z need no longer be prime elements in the ring of integers O of
K. If weset i = /=1, the field Q(i) has ring of integers O = Z[i] =Z+Z - i. The prime
numbers that are not the sum of two squares in Z, like 3, 7, 11 or 163, are prime elements
in O. Fermat proved that these are exactly the prime numbers that are congruent to 3
modulo 4. All other prime numbers, like 2 = 12 + 12 and 13 = 2% 4 32, split in O, as is
shown by the equations

2=(14+i)1—-i)=i(1-i)? and 13 = (2 +31)(2 — 3i).

Primes that remain prime in O are called inert, and primes that split into different primes
in O are said to be split. The prime 2, which has a square factor in O, is a ramified prime.

For fields of the form Q(\/(z), called quadratic fields, the splitting behaviour of a prime
p depends on whether p can be represented by quadratic expressions, like X 2 + Y2 in the
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preceding example. This is part of the theory of quadratic forms, which was developed by
Gauss (1801). It furnishes the oldest description of the class group of a quadratic field.

The splitting of primes in fields of degree larger than 2, such as the cyclotomic fields
Q(({n) for n = 5 and n > 6, was initiated by Kummer (1847). It turns out that the splitting
behaviour of a prime number p in a cyclotomic extension is particularly simple to describe:
it only depends on the residue class of p modulo n. There are only finitely many primes
p that divide n, and—if p = 2 is treated with care—these are exactly the primes that
are ramified in Q((,). The other prime numbers p split into a number of primes that is
exactly the index of the subgroup generated by p mod n in the (Z/nZ)*. Here (Z/nl)*
denotes the multiplicative group of integers modulo n that are coprime to n. The order
of p mod n gives us the ‘size’ the primes over p. In particular, it follows that the prime
numbers that are congruent to 1 modulo n split into the maximal number of different
primes. Such primes are said to split completely. The reader may check that we find the
result of Fermat for Q((4) = Q(1).

It turns out that the only number fields in which the splitting of prime numbers is
determined by congruence conditions are the fields Q((,) and their subfields. These fields
have the special property that their automorphisms form an abelian group, i.e. a group
in which o7 = 7o for all elements ¢ and 7. Indeed, for each element ¢ mod n in (Z/nZ)*
there is an automorphism o, that sends (, to (%, and any automorphism of Q({,) must
be of this form. One deduces that the automorphism group of Q(¢,) is given by

Aut(Q(Cr)) = (Z/nZ)*,

and this is an abelian group. A theorem due to Kronecker and Weber (1886) states that
the cyclotomic fields and their subfields are the only number fields with this property.

Kummer’s splitting theory for cyclotomic fields was generalized by Dedekind, Kro-
necker and Hilbert to arbitrary extensions of number fields K C L rather than Q C Q((,).
The theory of the automorphisms of fields in a general setting had already been developed
by Galois (1821). Enlarging L to a ‘normal’ field when necessary, one can define the Galois
group Gal(L/K) as consisting of all automorphisms of L that are the identity on K. If
one excludes the finite number of primes that are ramified from consideration, the splitting
behaviour of a prime p from K in the extension L can now be described by associating
to the prime p certain elements in Gal(L/K), called Frobenius symbols. If Gal(L/K) is
abelian there is exactly one such element, the Artin symbol of p. The Artin symbol of
a prime number p in the cyclotomic extension @ C Q((») is the element ¢, = pmod n
that raises (, to the p-th power. In the general case, the Artin symbol is also character-
ized as the element in Gal(L/K) that in a certain sense ‘raises to the power p’. Its order
in Gal(L/K) gives the size of the primes over p in L, and the index of the subgroup it
generates in Gal(L/K) is just the number of primes into which p splits in L.



Led by the analogy with cyclotomic extensions, one may now ask whether the splitting
behaviour of p in abelian extensions L of K is determined by congruence conditions on
the prime p, and whether this characterizes the abelian extensions of K. The positive
answer to this question is given by class field theory, a theory developed between 1895 and
1955 by several mathematicians including Hilbert, Weber, Takagi, Artin, Hasse, Chevalley
and Tate. It gives an intimate connection between the arithmetic of a number field K—
described by groups like the class group CI of K—and the existence of certain abelian
extensions of K.

If the splitting behaviour of a prime number p in an extension L of Q only depends on
pmod f, we know that L/Q is abelian, and even a subfield of the cyclotomic field Q(().
Analogously, if the splitting behaviour of a prime p in an extension L of K only depends
on the ‘residue class’ of p modulo f, then L/K is an abelian extension that is a subfield
of the ray class field Hs. There is again a Kronecker-Weber theorem that asserts that
all abelian extensions of K are obtained as subfields of a ray class field H;. There is no
general method to find the ray class fields H; of K explicitly in terms of K and f, except
when K equals Q or a field Q(v/d) with d < 0. However, the Galois groups Gal(H;/K)
are explicitly given by class field theory. They are the ray class groups C; that form the
main object of study in this thesis.

The class group CI of the field K, which occurs as C; for § = 1, is the simplest ray
class group of K. All other class groups are larger in the sense that there is a natural

surjection

C; — CI

for all f. One way to specify the structure of C; is to describe which extension of CI it
gives. Homological algebra gives a formalism to describe extensions of abelian groups that
are again abelian. If one takes for f only primes p of K, fixes an integer m and restricts
attention to a group C; that is slightly smaller than Cy, the extension types one obtains
are elements of certain extension groups Ext(CI, ((,)) with n dividing m. The obvious
question is: which primes p give rise to which extension classes? In this thesis, it is proved
that the answer to such questions is given by a governing field for the extension structure.
An extension M/K is said to be a governing field for the extension structure if the class
of the extension C| in the extension group Ext(CI,((.)) is determined by the splitting
behaviour of p in the extension M/K. The precise formulation of this statement is given
by homomorphisms from automorphism groups of M to extension groups that map Artin
symbols over p to extension classes coming from C,. The type of question sketched above is
the subject of the second chapter of this thesis. It introduces a new type of extension group
that is especially well-suited to describe extension structures that arise in the context of
ray class groups.

An interesting feature of the existence of a governing field is that it enables us to
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derive density statements for the set of primes p in K that give rise to ray class groups
with a given extension behaviour. These statements are based on an analytic theorem,
due to Cebotarev (1925), which tells us how many primes p in K give rise to prescribed
Frobenius symbols in Gal(M/K).

The third chapter of this thesis considers ray class groups of K with respect to a prime
from a base field k that is smaller than K. It leads to extensions of ray class groups with
a fixed group, and methods from idelic class field theory are employed to show that these
structures can also be described by governing fields.

In the fourth and last chapter, our main theorem on ray class group extensions is
applied to a problem of Cohn and Lagarias. It was in this context that the concept of a
governing field was originally introduced. The problem counsists of finding governing fields
for certain invariants, the 2F-ranks, that determine the structure of the 2-primary part
of the class group of the field Q(+/dp). Such fields had been found for certain values of
k and d, and computer calculations led Cohn and Lagarias to enounce a set of conjec-
tures concerning the existence of governing fields. For k = 1 (Gauss, 1801) and k = 2
(Rédei-Reichardt, 1934) the conjectures were already known to hold. We prove the 8-rank

conjecture corresponding to the case k = 3. The conjectures remain open for k > 4.

2. Outline

This section serves two purposes. First of all, it introduces most of the notations and
results from class field theory that are used throughout this thesis. Secondly, it sketches
the results and the main ideas of the proofs in this thesis by treating several simple cases
in some detail. In doing so, it also serves as a motivation for the more technical approach

in the following chapters.

We start with some basic facts from class field theory that are essential to the formulation
of our results. More details and proofs of all statements can be found in [7} and [21].

The oldest version of class field theory (Takagi-Artin, 1927) uses the concept of cycles
of K. A cycle of K is a formal product f = [[p™® over all primes p of K, with non-
negative integral exponents that are almost all zero. The exponent is required to be at
most one at real primes, and zero at complex primes. Divisibility of cycles is defined in the
obvious way. For a finite abelian extension K C L and a cycle § = [] ™ that is divisible
by all primes that ramify in K C L, one considers the Artin map

“gb:'l/)st/K: I(f) E— Gal(L/K)

on the group Z(f) of fractional O-ideals that have no primes occurring in f in their prime
ideal decomposition. This map is defined as the homomorphism that sends a prime ideal
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p € I(f) to its Artin symbol in Gal(L/K). The main theorem of class field theory states
that given K C L, the exponents of f at the ramifying primes can be chosen in such a way
that

(2.1) kerip D S(f),

where S(f), the ray modulo f, is the subgroup of Z(f) consisting of the principal ideals aO
that are generated by an element & = 1 mod™f. This multiplicative congruence means that
ordp(a—1) > n(p) at all finite primes p in f, and that « is positive in the completions of K at
the real primes in f. A multiplicative congruence a = #mod*{ stands for o871 = 1 mod™{.
The minimal cycle satisfying (2.1) is the conductor fr x of the extension K C L. It is
exactly divisible by the primes that ramify in K C L, and tamely ramifying primes have
exponent 1 in the conductor. The maximal abelian extension of K that has conductor f
is called the ray class field H; of K modulo f. It is a finite extension of K, and the Artin

map induces an isomorphism
(2.2) C; = I(§)/S(f) — Gal(H;/K).

The group C; is known as the ray class group modulo f. There is an inclusion reversing
bijection between the set of abelian extensions of K inside some algebraic closure and
the set of ideal groups of K. An ideal group of K is a set of groups {B(f)}sez, with
S(f) € B(f) € Z(f). Here By is the canonical inverse image of B; if f | g and f,g € §, and
§ counsists of all multiples of a minimal cycle, the conductor of the ideal group. Inclusions
between ideal groups are defined by looking at representatives B(f) modulo a common f.
The extension K C L corresponds to the ideal group {kerv;,/x};, ,xli- 1t follows that
every finite abelian extension of K can be obtained as a subfield of a ray class field. For
K = Q, where the ray class fields are the cyclotomic fields and their maximal real subfields,
this is the Kronecker-Weber theorem.

In the special case that { is the trivial cycle, the ray class group modulo f is the
ordinary class group CI of O. It follows that Cl is canonically isomorphic to the Galois
group Gal(H/K), where the Hilbert class field H of K is the maximal abelian extension
of K that is unramified at all primes. Taking for f the product of the real primes of K,
usually abbreviated to co, one obtains an analogous statement for the strict class group
and the strict Hilbert class field, which is defined as the maximal abelian extension of K
that is unramified at all finite primes.

We now come to the contents of the chapters IT and III of this thesis.
Let §f and g be cycles of K, and suppose that { is divisible by g. Then there is
an inclusion Hy C Hj and a corresponding surjection of ray class groups C; — C;. In
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particular, if we take g = 1 and write f = Hp p™(®), we see that all ray class fields contain
the Hilbert class field H of K, and that there is an extension of abelian groups

0 — A4 — C— Cl— 0.

Denote by F the unit group of O. Then the kernel A can be given explicitly as

(2.3) Ai=8)/s() =( [] ©@/p"®)y x ] (-1)) / im[E]

pif finite pl§ real
[@O] +~ ({a mod p“(p})p,(signpcz)p).

Several natural questions about the number field K can be translated into questions
about this extension. For instance, one might ask (Cornell [10]): for how many primes
p does K have a cyclic extension of degree m that is totally and only ramified at p, if
m € g is fixed? An equivalent question is, for p not dividing m: for how many p is #A4,
divisible by m and does the exact sequence

Ep: 00— ApJAT — Cp/A) — Cl— 0

split? From (2.3) we see that in this case, we have to deal with extensions of Cl with a
cyclic group of order dividing m. In case K contains a primitive m-th root of unity (.,
there is an m-th power residue symbol at all primes p + m that ensures that the group
Ap/A% is canonically isomorphic to a subgroup of {(,). For those p that split completely
in K(VE)/K, it is the full group {(;). For these p we can view £, as an element of the
abelian group Ext(Cl, (¢)) that classifies all abelian extensions of Cl with the group ()
(cf. [15, 24]).

Chapter I investigates how the extension classes £, depend on p. As a special case of
the main theorem 5.6 and its corollary 5.12 in the next chapter, we present the following
theorem.

2.4 Theorem. Suppose (, € K. Then there is a canonical isomorphism
Gal(K(VW)/K(EY™)) = Ext(CL{(m)).

mapping the Frobenius at a prime p { m of K that splits completely in K(¥/E)/K to the
class of the extension £,. Here E is the unit group of the ring of integers O of K, and
W C K* consists of the elements a for which a© is an m-th power of an ideal.

Let us sketch a proof of theorem 2.4, It is based on a homological lemma that describes
the group of extension classes of an arbitrary abelian group with a cyclic group of order
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m. The lemma itself is proved in the next chapter (3.5). For an arbitrary abelian group
B, it gives a canonical isomorphism

Ext(B, ((m))—Hom(Bm, {(m)),

where B, is the subgroup of B consisting of all elements of order dividing m. Now take
B = Cl. If the ideal class [a] has order m, there exists a € W that generates a™. The
class [a] determines a up to multiplication by principal ideals, and a ™ determines a up to
multiplication by an element of E, so there is a canonical isomorphism Cl,,—W/EK*™,

It follows that there is an isomorphism
Ext(CL (¢n))—Hom(W/EK*™, ({))-

If {,, is in K, the right hand side is isomorphic to Gal(K(¥/W)/K(%¥/E)) by Kummer
theory. Looking at the explicit form of all isomorphisms above, one arrives at the statement
given in the theorem.

It follows from 2.4 that the splitting behaviour of the sequence £, for primes p that
split completely in K(%/E) is determined by the splitting behaviour of the prime p in the
extension K(¥/W)/K. In fact, if one also uses the theorem with the divisors m' of m in
place of m, this statement is even true for all finite p + m. The Cebotarev density theorem
[21] now implies that all extensions of Cl with a subgroup of ((,,) can be realized as
extensions £y, and that the set of primes realizing a given extension has a natural density
that can be given explicitly. For instance, the extensions £, of the primes p that split
completely in K (¥/E) are equidistributed over Ext(Cl, ((:n)). Note that Ext(CI, ((,)) is a
non-trivial group whenever ged(m, #CI) > 1.

If we no longer require that K contains the m-th roots of unity, two problems arise.
First of all, we need an extension of p to K(() in order to map A,/A}* canonically into
(¢m). On the other hand, Kummer theory now shows that Hom(W/EK*™ ((,,)) contains
a subgroup isomorphic to Gal( K (¢ m, ¥YW)/ K ((m, VE)). The extension K(¢m, /W) is not
necessarily abelian over K, so Artin symbols of primes p are no longer uniquely determined
in this extension: we only have Frobenius symbols at primes lying over p. The ambiguity on
both sides is circumvented by considering extensions £¢ depending on primes 0 lying over
p in K((m). The extension class of £, now corresponds to a conjugacy class of Frobenius
symbols. Still, the essential feature that the extension class of £, is determined by the
splitting behaviour in a normal extension M of K is preserved. In the terminology of the
previous section, we say that the structure of £, for variable p is governed by M, or that M
is a governing fleld for the extension structure. In particular, we obtain a precise answer
to Cornell’s question: the primes p + m that split completely in M/K are precisely those
primes p for which K has a cyclic extension of degree m that is totally and only ramified
at p.
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More generally, we can take By = ker|[Cyp — Cp] for an arbitrary conductor 0 and try
to generalize the preceding theorem to extensions of the {ype

(2.5) 0-—>.Bp/B;n ——-’Cap/B;n—*Ca e {3,

The results tend to be much weaker than for » = 1. This is due to the fact that the
‘arithmetical extensions’ (2.5) have additional structure coming from the primes in 0 that
arbitrary extensions need not share. For instance, we know that the inertia groups in C,
at the primes in ? are isomorphic images of the corresponding inertia groups in Cop/B}".
This imposes a certain partial splitting condition on the extensions (2.5) that is most
conveniently described by considering ray class groups as factor groups of the idéle group
J of K.
The idéle group of K is the restricted product

i

J = K

IL, %
of the multiplicative groups of the completions K at the finite and infinite primes p of K.
The restriction is that all but finitely many coordinates of an element # € J lie in the unit
group U, of the ring of integers of K. The group K* is diagonally embedded into J, and

the factorgroup C = J/K* is the idéle class group of K.

For finite p, the unit element 1 € K has a local base of open subgroups ng) = 14p*
(k > 0) in the topology on K. We set U‘Eo) = U,. For archimedean p we let Uéo) = Ky
and, in case p is real, Ugl) = Kp,>o. With this notation, a subgroup H of J is open in

the restricted product topology if and only if there exists a cycle § = [] p*®) such that H
contains the subgroup

(2.6) Wf — I_Ip U‘En(p))‘

The open subgroups of the idéle class group C' are those subgroups that contain the
homomorphic image D; of W; for some f. A straightforward computation shows that
there is an isomorphism

C/Ds—=I(f)/S()

that sends the residue class of a prime element 7, € K; C J in C/Dj to the class of the
finite prime p when p + §. It follows that each class of ideal groups corresponding to an
abelian extension L/K gives rise to an open subgroup D of C. If the ideal group has a
representative modulo f, then Dj is contained in D. The conductor of the ideal group is
the smallest cycle f for which Dj is contained in the corresponding open subgroup of C.
In its idélic form, class field theory can be formulated as the statement that there is
an inclusing reversing bijection between the set of open subgroups of the ideéle class group
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C of K and the set of abelian extensions of K (Chevalley, 1942). The open subgroup
corresponding to L/K is the norm subgroup Nz, Cy, of Ck. The exponent n(p) to which
a finite prime p occurs in the conductor fr/x can be computed in a local extension L,/ K,
at p. It is the smallest non-negative integer k for which U ék) C N, /k,[Uq).

Returning to our sequence (2.5), we see that there is a concise way of giving the
additional structure of such extensions: the canonical map f : J — C; from the idéle group
J of K onto Cy factors via Cpp/ B, This is not necessarily true for arbitrary extensions of
Co with By /B, and the obstruction to this ‘lifting property’ exists only for the components
of J at primes that are real or divide 9. The presence of arithmetical obstructions leads
us to introduce a new type of extension groups that classify group extensions together
with a lift of a given homomorphism. Section 3 of this thesis defines such groups, derives
some of their fundamental properties and shows their relation to the ordinary Ext-groups
(3.1-3.4). It contains only homological algebra, and furnishes the technical basis for the
main section of the next chapter, section 5.

Theorem 5.6 is the main theorem of chapter II. It is a fairly general result on the
extensions (2.5) in terms of our generalized extension groups. The main characteristic is
that there always exists a normal extension that governs the structure of ray class group
extensions. We show that for special choices of the parameters and under additional as-
sumptions concerning roots of unity, special cases as the theorem stated above are obtained
(5.11, 5.12). It turns out that it is not easy to determine in general whether the field ex-
tensions occurring in our theorem are non-trivial, and whether the homomorphism whose
existence is given by the theorem is in fact an isomorphism. The investigation of these
matters leads to purely field theoretic questions that can be solved using some not too
well known results on radical extensions (5.13). A separate section preceding section 5 is
devoted to an exposition of these results.

The final section of chapter II is concerned with density statements for the set of
primes that give rise to some fixed extension type of ray class groups (6.1, 6.3). The
main ingredients are the results from section 5 and the theorems from field theory given in
section 4. In particular, it gives a precise answer to the question of Cornell we mentioned

before. In more general situations, the result becomes less precise (6.7).

So far, our treatment of the splitting behaviour of exact sequences involving ray class
groups has been purely algebraic. The fact that they can be thought of as representing
certain Galois groups is the underlying motivation, but it is actually never used in the
proofs. This is no longer the case if one takes for the prime p in (2.5) not a prime of K,
but a prime of a subfield k of K. In that case, p factors in K as a product of primes.
Some information is given by a formal extension 7.2 of the results in section 5 to include
‘multi-prime extensions’, but this is less than we want.
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More precisely, one considers for all primes p ¥ 0 of the subfield & C K the maximal
abelian extension L(p) = L(p, D, m) of K of conductor dividing 9p in which the ramification
indices at primes over p in L(p) divide m. Then L(p) contains the ray class field Hy of K

of conductor 0 and there is an exact sequence
0 — Gal(L(p)/Hy) — Gal(L(p)/K) — Gal(H/K) — 0.

The group Gal(L(p)/Hy) is generated by the inertia groups of the primes in p, and in
terms of ray class groups this is exactly the sequence (2.5). If the extensions for primes
p1 and p, of k are isomorphic, there is an isomorphism Gal(L(p 1)/ K)-—-Gal(L(p;)/K)
of Galois groups that respects the projection onto Gal(H3/K) and maps inertia groups at
primes over P; to inertia groups of primes over p,. The special conditions about the lifting
of decomposition groups in section 5 even imply a much stronger equivalence: they give a
Galois isomorphism

L(p1) ®x Kq— L(p2) @k K,

of algebras over the local field K, for a finite number of primes q of K that can be
prescribed.

If K/k is Galois and 0 is Galois invariant, the fields L(p) and H, are Galois over k and
it is natural to require that we have isomorphisms for Gal(L(p)/k) and for algebras over
the local fields k4. Note however that these are isomorphisms of not necessarily abelian
groups, and that this introduces a behaviour of primes p that is not in an obvious way
described by an element of an Ext-group. Of course, this does not imply that the purely
algebraic approach of chapter II cannot be made to work. One needs that all isomorphisms
of Galois groups over K are in fact isomorphisms over k, and this just means that they
have the same extension with Gal(K/k). Such extensions are described by canonical
classes, but so far it is not clear how the algebraic formalism can force a correspondence of
canonical classes. We therefore use an approach that explicitly constructs the isomorphism
Gal(L(p1)/k)——Gal(L(pz)/k). In fact, we slightly redefine the extensions L(p) so as to
have Kummer theory at our disposal (7.4). This does not essentially change the situation
as the former extensions are contained in extensions of the new type and conversely. Our
explicit construction can be performed if there exists an element z of K that satisfies
various local conditions. If Py and P, are primes over p; and p; in K, and m; and my
are prime elements at these primes in the idéle group J of K, the condition requires that
gmym, ' be contained in a certain open subgroup of J. By class field theory, this simply
means that {B; and P, have the same Artin symbol in a corresponding abelian extension
M of K, so we once more arrive at a governing field theorem (8.1) for the structure of the
extensions L(p)/k. This governing field construction, which is the core of chapter III, can

be found in section 8.
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The last chapter of this thesis contains an application of our governing field results to prove

a conjecture of Cohn and Lagarias concerning the 8-rank of the (strict) class group of a

quadratic order C(A). We discuss these conjectures in the remaining part of this section.
For any integer A = 0,1 mod 4 that is not a perfect square, the quadratic order of

discriminant A is the ring

A+ VA

—z

It is a subring of finite index f in the ring of integers O of the quadratic field Q(+/A), and

there exists an integer d such that

Oa=1]

d++vd
2

The integer d in this equation is the discriminant of the quadratic field Q(vA). It is
the integer without odd square factors that satisfies Q(vd) = Q(v/A) and either d =
1mod 4 or d = 8,12 mod 16. Discriminants A that have f = 1 are called fundamental
discriminants. The order O 4 is said to be real quadratic if A > 0, and imaginary quadratic
if A <0.

The strict ideal class group C{A) of the quadratic order O, is defined as the factor
group Za /Pa, where Tp is the group of invertible O 4 -ideals and P, is the group of those

A=fd and Oa=I+f-1] ]=2+f-0.

principal ideals @ that are generated by an element o € Q(+/d) that has positive norm
in Q. Factoring out by the subgroup of all principal ideals, one obtains the ordinary ideal
class group. The strict ideal class group coincides with the ordinary ideal class group for
imaginary quadratic orders and for real quadratic orders having a unit of negative norm.
In real quadratic orders having units of positive norm only, the kernel of the canonical
map from C(A) onto the ordinary class group has order two and is generated by the class
of the ideal VA -Oa. If f =1, then A = d and C(A) is also known as the narrow or strict
class group of Q(+/d). Its order is the strict class number of Q(+/d).

The class group C(A) was originally introduced by Gauss as a group of equivalence
classes of primitive integral binary quadratic forms of discriminant A. It was inspired by
old problems concerning the representations of integers by quadratic forms. In Gauss’s
definition, the class group of quadratic forms of discriminant A is the set of SL 5(Z)-orbits
of primitive quadratic forms a X? + bXY + cY? € Z[X,Y] of discriminant A = b? — 4ac.
Primitivity means that ged(e,b,¢) = 1, and SL2(Z) acts on the right on the set of forms
F=aX?4+bXY +cY? by

F. (u 'v) = F(uX + oY, wX +z2Y).

w =z

If A <0, one restricts to quadratic forms in which the coefficient a of X? is positive. The
set of orbits of quadratic forms of discriminant A has a group structure since there is a
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natural bijection to C(A) that is given by

b+ VA

[aX? +bXY +cY2 ] e—{Z-a+Z- 5 ]

when a > 0, and

[aX? +bXY + Y] e [(Z-a+Z- b+2\/£_1-) VA
when a < 0 and A > 0.

If p is a rational prime number and F = aX? + bXY + c¥? is a quadratic form that
assumes the value pon Z x Z, then F is said to represent p. Replacing F' by an equivalent
form when necessary, one can assume that F(1,0) = p. Then A = b% — 4pc, s0o A is a
square modulo p and the middle coefficient of F' is a square root of A modulo p. From the
bijection given above, one sees that the ideal class corresponding to the class of F' contains
an ideal of norm p. Conversely, an ideal of norm p gives rise to a quadratic form that
represents p in the corresponding class of quadratic forms.

The description of C(A) by means of quadratic forms is mainly useful for computa-
tional purposes [23]. From a theoretical point of view, the ideal class description is usually
to be preferred.

Being a finite abelian group, C{A) can be written as a product of a group of odd
order and a 2-group, its 2-primary part. The group of odd order is not easily described as
a function of A, and not very much has been proved about its structure. The 2-primary
part, however, turns out to be a manageable object that has been studied extensively. Like
any finite abelian 2-group, it can be characterized up to isomorphism by giving its 2 ¥-rank
for k > 1. The 2F-rank of a finite abelian group G is defined as the number of factors
2 in the index [G2*™" : G2*]. Thus, the 2*-rank of a product of cyclic groups of orders
My, Mg, ..., My is exactly the number of ¢ for which m; is divisible by 2*. It is obvious that
Tor+1 < Tox, and that rye = 0 for k sufficiently large.

The computation of the 2-rank of the class group C(A) goes back to Gauss. Taking
squares in C{A), one obtains an exact sequence

0 — C(A)z — C(A)-C(A) — C(A)/C(A)? — 0,

which shows that the order of C(A}/C(A)? equals the order of the 2-torsion subgroup
C(A),. Elements in C(A); are called ambiguous forms or ambiguous ideal classes. Gauss
determined their number and showed that the 2-rank of C(A) is equal to or one or two less
than the number of distinct prime factors in the discriminant A.

The same result can be obtained by genus theory, which describes the factor group
C(A)/C(A)? as a Galois group Gal(H,/K) for a field H» that is abelian over Q. Combined
with the previous approach, it leads to a description of the 4-rank r4 since

ry = dimg, (ker [C(A); — C(A)/C(A)?)).
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For the 8-rank, the corresponding equation is
(2.7) rg = dimg, (ker [C(A)z — C(A)/C(A)*)),

so one would like to describe the extension H4/K that has C(A)/C(A)* as its Galois group.
The field H4 is normal, but not necessarily abelian over @, and its generators are not as
easily given as for Hy. However, sufficient information can sometimes be obtained by
looking at an appropriate subfield.

As an example, take for C(A) the class group of the imaginary quadratic field K =
Q(+/=p), with p > 2 a rational prime number. If p = 3 mod 4, the discriminant of Q( \/=p)
is prime and its class number is odd. Therefore, we shall further assume that p = 1 mod 4
and study the 2-primary part of C = C(—4p). In this case we have H; = Q(i, /p), so
re = 1 and the 2-primary part of C is cyclic.

The field H; is an unramified extension of degree < 2 of H,, and it is normal over
Q(1). It cannot be cyclic of order 4 over Q(1) because there is a ramification group at p in
Gal(H4/Q(1) of order 2 that is not Gal(H,/H,). Consequently, Hy is a Galois extension
of Q(i) with a group that is an elementary abelian 2-group. Since H4 is unramified over
H, = Q(i,./p), it must be a subfield of the ray class field of Q(i) modulo (p). As the
class group Cl is trivial for Q(i), the ray class group of Q(i) modulo (p) is given by (2.3)

as

T = (k} x k})/im{i)

Here k, and ks are the residue class fields at the primes 7 and # over p in Q(i). As
Gal(H,/Q(i)) is of exponent 2, it is the surjective image of T/T2. It is clear that
#(T/T?) < 4. We thus have

ra =1 &> [Hy: Q(i,/P)] =2 & [Hy:Q(i)] =4
= #T/T?) =1
<= 11is a square in k, and ks
&= —1 is a 4-th power modulo p
<= p splits completely in QW/—1) = Q((s).

The converse is also true, since #(7/7?) = 4 implies that there is a Vy-extension F of
Q(i) containing Q(i,./p) that is ramified at 7 and # only. The ramification indices at
these primes cannot exceed two since the ramification is tame, so F' is a normal unramified
extension of degree 4 of Q(\/—p), hence equal to Hj.

Assume now that r4 = 1, i.e. p = 1 mod 8. In order to find the 8-rank of C, we use
the fact that the prime ideal p; in Q(y/=p) that lies over 2 is non-principal—there is no
element of norm 2—but its square is. As the 2-torsion subgroup of C is cyclic it is generated
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by the class [p2]. In this case, (2.7) tells us that the order of the cyclic group C is divisible
by 8 if and only if there is an element of order 2 that is a 4-th power, and we find

rg =1 < [py]eCt
<=> p, has a trivial Artin symbol in C/C*
<= P, splits completely in Hy/Q(1/~p)
<= (1+ 1) splits completely in H,/Q(1)
<= (14 i) has a trivial Artin symbol in 7/7?
<= 14 /=1 is a square modulo p
<= p splits completely in Q((s,v1+ 1).

Note that the choice of v/—1 modulo p in the penultimate condition is irrelevant as the
product (1 ++/=1)(1 —+/—1) = 2 is a square modulo p. We have found a characterization
of the primes for which 8 divides the class number of Q(1/=p) that goes back to Barrucand
and Cohn [1].

Summarizing, we see that the 2-, 4- and 8-ranks of the class group of Q(/=p) only
depend on the splitting behaviour of p in the extension Q((s, /I + 1)/Q. This means that
Q({s,v/1+ 1) is a governing field for the 2-, 4- and 8-ranks of the class group of Q(/=p).

The existence of a governing field in the example above directly implies that the set
of primes p for which the ranks r9, 74 and rg of the class group of Q(1/=p) have prescribed
values has a natural density inside the set of all prime numbers. More precisely, the
Cebotarev density theorem shows that r = 1 for 1/2 of the primes, r4 = 1 for 1/4 of the
primes and rg = 1 for 1/8 of the primes.

This example rises two natural questions. First, one might ask whether there exist
governing fields that determine the 16-rank or even higher 2-power ranks of Q(+/=p).
Secondly, one might wonder whether the situation above is special for the fields Q(/=p),
or that one parameter families of fields as Q(1/2p) exhibit a similar behaviour. More
generally, one can pose the question for the class groups C(Dp) for some fixed D and
variable primes p for which Dp = 0,1 mod 4.

In their general form, the Cohn-Lagarias conjectures [9] assert that the answer to both

questions is positive.

2.8 Conjecture (Cohn-Lagarias). Let D # 2 mod 4 be an arbitrary integer, and w a
power of 2. Then there exists a normal extension M /Q such that the w-rank of the class
group C(Dp) for odd primes p + D satisfying Dp = 0,1 mod 4 only depends on the Artin
class of p in M/Q.

For w = 2, the truth of the conjecture is a direct consequence of Gauss’s results: the
2-rank of C(Dp) simply does not depend on p. For w = 4, the conjecture is true for all
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fundamental discriminants D by a result of Rédei and Reichardt [29, 30]. For w > 16, the
conjecture is not even known to hold for a single value of D, and so far there is not much
evidence supporting it.

The study of the 8-rank of quadratic class groups originated with work of Rédei [31,
32|, who proved that for each integral triple (a,b,¢) with @ > b > ¢ > 0, there exist
infinitely many real quadratic fields for which r4 = a, r4 = b and rs = ¢. Many papers on
the subject have appeared since then. An especially large number of criteria concerning
the 8-rank of class groups with cyclic 2-primary part has been derived, usually in terms
of the solutions of certain Diophantine equations (E. Brown [3, 4, 5], H. Hasse [13, 14],
P. Kaplan [186, 17], H. Koch & W. Zink [20]). A considerable part of the literature still
uniquely uses Gauss’s early 19-th century terminology of quadratic forms. The governing
field approach to the problem starts with the already mentioned paper of Barrucand and
Cohn [1]. The most satisfactory results in this direction have been obtained by Morton [25,
26, 27, 28]. The conjecture 2.8 for the 8-rank has been proved by him for special classes
of fundamental discriminants D. His methods do not furnish an obvious dependence on D
of the governing fields that are obtained.

The main result of chapter IV, theorem 10.4, is a slightly sharpened version of the
following theorem.

2.9 Theorem. Let D # 2 mod 4 be an arbitrary non-zero integer, and define K by
K =Q(/q: q|D is a fundamental prime power discriminant).

Then the isomorphism type of C(Dp)/C(Dp)® for primes p satisfying Dp = 0,1 mod 4
only depends on the Frobenius class of p in the maximal abelian extension of K that is
unramified outside 2D - oo and has a Galois group of exponent 2 over K.

Note that we obtain the governing field from our example if we set D = —4.

The idea in the proof of 2.9 is that one knows the 8-rank of C(Dp) if one knows the
structure of C(Dp)/C(Dp)* and the canonical image of the 2-torsion subgroup C(Dp); in
C(Dp)/C(Dp)*. Indeed, one can rewrite (2.7) as

rg = ry — dimg, (im[C(Dp), — C(Dp)/C(Dp)*)).

Just as in the case D = —4 considered above, the field H(p) that is invariant under
C(Dp)* is abelian of exponent 2 over a field Kp that does not depend on p. Moreover, its
conductor over Kp equals 8p, where 0 is some fixed cycle depending on D. This means
that the extensions H(p)/Q are subextensions of extensions L(p)/Q that we have studied
in chapter III. One deduces that the structure of C(Dp)/C(Dp)* is determined by the
splitting behaviour of p in some governing field. Moreover, the formalism in chapter III
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allows us to take into account the local behaviour at a finite set of rational primes. In
section 9, we describe class groups of quadratic orders by class field theory and reformulate
classical results on their 2-torsion subgroup in order to show that the 2-torsion of C(Dp)
comes from the inertia groups of primes over D and co (lemma 9.8). We can then use the
governing field theorem 8.1 for the extensions L{p) with local conditions at the primes in
D - oo to prove that there exists a governing field for the structure of C(Dp)/C(Dp)* plus
the canonical image of the 2-torsion. By what we said above, this gives the Cohn-Lagarias
conjecture for the 8-rank.

If D has only few distinct prime factors, one can often find more precise descriptions
of the 8-rank than that from 2.9. For instance, the argument we gave for D = —4 is easily
adapted to treat the case of fundamental discriminants that have cyclic 2-class groups
[35]. The situation is more complicated when r; > 1. To give an idea of the methods that
can be employed for small D, we conclude this chapter by an example that shows how to
compute the 8-rank for D = —21, using explicit descriptions of C(Dp)/C(Dp)* and C(Dp),
as sketched above. It proves a conjecture based on computational evidence in [9]. See also
[28].

2.10 Theorem. Let p = 3 mod 4 be a prime number. Then the 4-rank of C(—21p) equals
1 unless p= "7 or (g) = ——(73) =1, when it is 0. The 8-rank of C(—21p) is 1 if and only if p
splits completely in one of following fields:

My = Q(V=3,V7,1/2 — V=3)

M, = Q(V3,V7,4/2(7 + V21))

Ms; = Q(v-3,V-T7,4/—3+2V-3).
Proof. Write C for C(—21p). For p = 3 and p = 7 the group C is cyclic of order respectively
4 and 2, so the theorem holds for these values of p. We will further assume p > 7.

The discriminant —21p of K = Q(+/—21p) has three distinct prime factors, so ac-
cording to standard theory that will be recalled in section 9 one has r, = 2. It also gives

H; = Q(v-3,V-7,/=p) = K(v=3,/-T7) and
C/C? = Gal(K(V=3,V=T)/K).

The 2-torsion group C, is also a Klein four group V4. As there are no elements in O of
norm 3, 7 or 21, the primes p3 and p7 in K lying over 3 and 7 have order 2 in the class
group and generate C;. The 4-rank of C equals

T4 = dim;:z(ker {Cz — C/CZD
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As pj is inert in K(+/—T7)/K, it is not in this kernel and one has r4 < 1.
Suppose first that (%) = 1, so p splits in Q( VT ). In this case, py splits completely in
H, = K(v/—3,4/=p), so [p7] generates ker[C; — C/C?]) and r4 = 1. We see that

rg = dimg, (ker[C, — C/C*])

equals 1 if and only if p; splits completely in Hy/K. This splitting behaviour can be
treated by class field theory over a field F = K _5; = Q( V=3, ) that does not depend
on p.

The field F is a totally complex biquadratic field of class number one. Its fundamental
unit € = (v/=3 + +/—7)/2 has a square (—5 — 1/21)/2 that is a fundamental unit in the
real subfield Q(v/21). As 1 — €% = (7 + \/21)/2 is an element of norm 7 in Q(+/21), we see
that (1 — €) generates a prime ideal over 7 in F. We arrive at

rg =1 <= (1 — ¢) splits completely in Hy/F.

As H, = F(\/—p) and Hy/H, is unramified, H4/F is a Vi-extension of conductor p. By
(2.3), the ray class group modulo p over F' is isomorphic to

p2 X Fpa)/(=1,¢€).

We have 7/7? = Gal(H4/F), so the last equivalence can be rewritten as

T =(Op/pOr)*[{—1,¢) = (F

rg =1 <= 1—¢ isasquarein Of/pOp = F,2 x Fpe.
If p splits in Q(+/—3), then we can take the norm to this field and find

rs =1 <= Np/qy=5)(l —€)=2—-+-3isasquarein F,
<= p splits completely in M, /Q.

If this is not the case, p splits in @(+v/21) and taking the norm N, o 57, gives

rs =1 <> Npgmm)(l—€)=(7+V21)/2 is a square in F,
&= p splits completely in M,/Q.
This proves the theorem for the primes that satisfy (%) = 1.
Suppose now that (;{—) = —1, so that p splits in Q(+/—7)/Q. Then p7 is inert in
K(v/=p)/K, so [ps] and [p7] are both non-trivial in C/C2. In order for the 4-rank to be

non-zero the only other element [p3p7] of order 2 must be trivial in C/C%2. As pap; is
equivalent to the prime v = (/=2Ip)p; ' p7! over p in C, we now have

ry =1 <= t splits completely in K(v/'-3,vV/-7)/K
<= p splits completely in Q(v/—-3,v=T7).
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As before, we derive that
rg =1 <= vt splits completely in Hy/ K.

This time, we have to look at the splitting behaviour of a prime lying over p. As such
primes are ramified in H4/F we cannot use the method above. Instead, we will use explicit

generators for Hy. We can further assume that r4 = 1, so p splits in the ring of integers
Z[(s] of Q(v=3) as p = 7.

The decomposition field of p; in Hy/K is quadratic over of K(1/Tp) = Q(v/=3,/Tp)
and does not contain +/=7. It follows that H;/K(,/Tp) is an unramified V-extension.
The norm map Clg( sr; — Clg/=3) is trivial, and this implies by class field theory

that Gal(K(v/7p)/Q(v/=3)) acts on Gal(H,/K(/Tp)) by inversion. One deduces that
Gal(H4/Q(+/—3)) is the direct product of Vy and the inertia group of some prime dividing
7p, i.e. elementary abelian of type 2 x 2 x 2. Using (2.3) once more, we find that H, is
the maximal elementary abelian 2-extension of Q(1v/—3) of conductor dividing 7p. It can
be given explicitly as

H4 = Q(\/:'—;—i \/:va \/:'.T:D‘: 71’(2 + \/:—5))3

where the prime element 7 |p in Z[(3] has to be chosen such that 7(2 + +/—3) = 1 mod 4.
Writing 7« = a + b{ and 2+ +/—3 = 3 + 2(, one sees that this comes down to a = 3 mod 4
and b = 2 mod 4. One obtains

rg = 1 <= v splits completely in H,/K
<= 7 splits completely in Q(y/7(2 4+ v/—3))/Q(v-3)
T

As ( = (* is a square modulo 7, the quadratic character of # modulo # equals that of
(m—(T=a(( - ()= —aV-3.
The equation p = 77 = a? — ab + b? gives quadratic symbols
DR
% q P/a T/ ew=E

so we have

rg =1 <=:>("m3(2j'“3)) -1
i Q(V=3)
— (\/——3(2 + \/——3)) 1
p Q

<=> p splits completely in M3/Q.
This finishes the proof of 2.10.
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CHAPTER II

On the structure of ray class groups
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3. Generalized group extensions.

In the preceding chapter, we discussed the need for a type of extension groups that classify
group extensions admitting the lift of some given homomorphism. In this section we
introduce such generalized Ext-groups. Their definition is similar to the definition of the
ordinary Ext-groups Ext(B, A) given in [15] or [24]. Here Ext(B, A) is defined as a set
of isomorphism classes of extensions 0 — A — F — B — 0 of B with A in the category
of abelian groups, and an explicit addition formula for extensions is written down. We

modify this procedure in the following way.

3.1. Definition. Let A be an abelian group and f : C — B a homomorphism of abelian
groups. Then an extension (E, ¢) of A with f is a commutative diagram of abelian groups

C
)/q&lf
0 —— A —s FE s B — 0.

Two extensions (E1,¢1) and (E,,¢2) are said to be isomorphic if there exists an isomor-
phism j : Ey — E, that induces the identity on A and B and satisfies jo ¢y = ¢o. The
set of isomorphism classes of extensions of A with f is denoted by Ext(f; A).

When C = 0, the set Ext(f; A) can be identified with the underlying set of the ordinary
extension group Ext(B, A). It turns out that for any f, the set Ext(f; A) can be equipped
with a natural abelian group structure such that the natural map Ext(f; A) — Ext(B, A)
becomes a group homomorphism.

In order to define a group structure, we first observe that the functor Ext(f;—) is
covariant in its second argument. That is, given f : C — B and a homomorphism of
abelian groups a : A; — Aj, there is a natural map «a, : Ext(f;4:) — Ext(f;42)
that sends the class of an extension (E,¢) in Ext(f; A1) to the class of the fibred sum
(A2 +4, E,00 ¢) in Ext(f; Az). Here the fibred sum is defined as

Az +4, E= (42 @ E) [ {(a(a1),~a1)}, .-

It is the push-out of @ : A; — A, and the inclusion map A; — F.
Analogously, given A and f; : C3 — Bj, a transformation (8,v) of fi to fos—Dby this

we mean a commutative diagram

¢ 5 B
AL
c, % B,
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—gives rise to a natural map Ext(f2; A) — Ext(f1; A). In this case the class of an extension
(E, ) in Ext(f2; A) is sent to the class of the fibred product (E xp, B1,(¢ 07, f1)) in
Ext(f1;A4). The fibred product is defined by

E xp, B1 = {(e,b1) € E x By : 7(e) = B(b1)},

where 7 is the homomorphism F — Bs. It is the pull-back of # and S.

In order to define the sum of the classes of two extensions (E1,¢;) and (E,,¢3) in
Ext(f; A), we consider the extension (Ey @ Es,¢1 @ ¢2) of Ab Awith fof:CdC —
B @ B. Transform this to an extension of A with f by subsequently taking (in arbitrary
order) the push-out induced by the addition map V : A® A — A and the pull-back
induced by the ‘diagonal embedding’ A : f — f @ f. The class of the resulting extension
V.A*(Ey @ Eq, 1 @ ¢2) is the required sum in Ext(f; A).

3.2 Proposition. Under the definition of addition of extension classes

[(Br,d1)] + [(E2y62)] = [VLA™(E1 @ E2, 1 & ¢2)]

given above, the set Ext(f; A) has a natural abelian group structure. The unit element in
the group Ext(f; A) is the class of the split extension (A& B,0& f).

Proof. The verification that the addition is well defined on Ext(f; A) and that it induces
an abelian group structure on Ext(f; A) is essentially the same as the corresponding ver-
ification for the ordinary Ext-groups. The latter is written out in detail in [24, IIL.2], so
there is no need to repeat the argument here. i

The following theorem gives some fundamental properties of the groups Ext(f; A). It uses
the fact that the ordinary Ext-functor Ext(—, A) is the right derived functor of Hom(—, 4).

3.3 Theorem. Let A be an abelian group and f : C — B a homomorphism of abelian
groups.
(a) There is a natural exact sequence

Hom(B, A) — Hom(C, A) — Ext(f;A) — Ext(B,A) — Ext(C, A).

Here the first and the last homomorphisms are induced by f, the second maps g €
Hom(C, A) to the class of the extension (A ® B, (g, f)) and the third is the canonical

map.
(b) If f is surjective, there is a canonical isomorphism

Ext(f; A) — Hom(ker f, A)
that maps the class of (E,¢) t0 ¢|xers: kerf — A C E.
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(c) If f is injective and cok f denotes the cokernel of f, there is a canonical isomorphism
Ext(f; A) — Ext(cok f, A)

that maps the class of (E, ¢) to the class of the extension0 — A — E/¢[C] — cok f —
0.

Proof. (a) For exactness at Ext(B, A), we observe that the upper sequence in the diagram

0 — A — ExglC —m C — 0

fa l

0 —m A — E  — B — 0,

is split if and only if there is a retract homomorphism C - Exg C. f ¢: C — E is

the composition of this homomorphism with the projection to the first coordinate, this

amounts to saying that the lower sequence comes from the element (E, ¢) € Ext(f; A).
Exactness at Ext(f; A): an extension of A with f is split if and only if it is of the form

C

\/s@flf
9 —» A — A®B - B —s 0

for some g € Hom(C, A). This means exactly that it is the image of the homomorphism
g € Hom(C, A) in our sequence,

Exactness at Hom(C, A): a homomorphism g € Hom(C, A) gives rise to the trivial
element in Ext(f;A) if and only if there is an isomorphism y : A ® B-—A @ B that
respects the embedding A — A & B and the projection A ® B — B and satisfies g @ f =
xo(0@® f) € Hom(C, A @ B). Since x(a,b) = (a + h(b),b) for some h € Hom(B, A), this
means exactly that g = hf for some h € Hom(B, A).

(b) Let x : Ext(f; A) — Hom(ker f, A) be the given map. Apply Hom(—, A) to the
short exact sequence 0 — kerf — C — B — 0, form the long exact Ext-sequence and

compare with the sequence in (a).

Hom(B,A) — Hom(C,A) —  Ext(f;4) — Ext(B,A) — Ext(C,A4)
Jia Ji | [ [

Hom(B,A) — Hom(C,A) — Hom(kerf,A) — Ext(B,A) — Ext(C,A4)

By the five lemma, we are done if we can show that y makes the diagram commute. For
the square to the left of x, this is immediate from the definition of the map Hom(C, A) —
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Ext(f; A). For the square to the right, we consider for an extension (E, ¢) of A with f the

diagram f
0 — kerf — C -— B — 0

[ewes o |a

6 — 4 -— E -— B — 0,

which shows that E is the push-out of ¢lker f and ker f — C. By the explicit description
[24, II1.3] of Hom(ker f,A) — Ext(B, A), this implies that the class of E in Ext(A4, B) is
the image of ¢|ker f.

As a consequence of the proof, we note that x has an inverse x ! : Hom(ker f, A)
—Ext(f; A) that maps g € Hom(ker f, A) to the class of the extension (A +xer f C,0+idc)
in Ext(f; A).

(¢) By the same argument for 0 — C — B — cok f — 0, we obtain

Hom(B,A) — Hom(C,A) —  Ext(f;A) — Ext(B,A) — Ext(C,A)

l*l l-——l lx lid lid
Hom(B,A) — Hom(C,A) — Ext(cokf,A) — Ext(B,A) — Ext(C,A)

and we verify that the given map x : Ext(cok f,A) — Ext(f;A) makes the diagram
commute. For the square to the left of y, this comes down to the observation that for any
g € Hom(C, A), the extension (A® B)/(—g, f)[C] of cok f with A is the push-out of g and
f. For the square to the right, the diagram

o4
< lf
6 — A — E @ —m B -5 0

b !

0 — A — E/$[C] — cokf — 0
shows that E can be viewed as the pull-back of E/$[C] — cok f and B — cok f. This is

just the commuting of the square under consideration.

Here the inverse map x ™! : Ext(cok f, A)——Ext(f; A) maps the class of an extension
E in Ext(cok f, A) to the class of (E Xcox s B, (0, f)) in Ext(f; A).

This finishes the proof of 3.3. O

Parts (b) and (c) of the preceding theorem show that the groups Ext(f;A) are easily
expressed in terms of Hom-groups and ordinary Ext-groups in case f is either surjective or
injective. In general, one can ‘enlarge the domain of f’ such that (b) becomes applicable.
More precisely, the result is as follows.

30



3.4 Theorem. Let A be an abelian group and f : C — B a homomorphism of abelian
groups. If F is a free abelian group and f' : C x F — B is a surjective homomorphism
that extends f, there is an isomorphism

Ext(f; A) — cok [Hom(F, A)—LHom(ker f', A)]

with g induced by the projectionker f' C Cx F — F. Under this isomorphism, the class of
an extension (E, ¢) in Ext(f; A) is mapped to the residue class of ¢'|xer g : ker f' - A C E
for an extension (E,¢') of f' with A that extends (E,¢).

Proof. Application of the snake lemma to the commutative diagram
0 —+ C — OxF — F —s 0
T
0 — B — B ey {3

furnishes an exact sequence
0— kerf — kerf' — F — cok f — 0.

Taking homomorphisms to A, we obtain
0 — Hom(cok f, A) — Hom(F, A)—Hom(ker f', A)

We have an isomorphism Hom(ker f', 4) = Ext(f’'; A) by theorem 3.4(b), and a natural
map Ext(f'; A) — Ext(f;A) that is surjective because F is free. We claim that their

combination leads to an exact sequence
Hom(cok f, A} — Hom(F, A) — Hom(ker f', A) — Ext(f; A) — 0.

Thus, we have to check which extensions of f' by A lead to the trivial extension of 4
by f. For such extensions, the extension group is the split extension A @ B and there
exists g : F —> A such that thelift x : C x F — A@® B of f' sends (¢,z) € C x F to
g(z) & f'(c,z). From the commutative diagram

0—>kerf'——éC><F—fi+B—>0

lglkerf’ lx lid
0 — A —r A®B — B — 0,

we see that this implies that the extension comes from the homomorphism g: F — A,
and that, conversely, any homomorphism g : F — A gives rise to the trivial extension in

Ext(f; A). O
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We conclude this section with a proof of the result on ordinary Ext-groups that was used
in the preceding chapter to sketch a proof of theorem 2.4.

3.5 Theorem. Let B be an abelian group and A a cyclic group of order m. Denote by
B,, the subgroup of m-torsion elements of B. Then there is an isomorphism

Ext(B,A) — Hom(B,,, 4),

that is functorial in A and B and sends the class of an extension 0 — A — E——B — 0 to
the homomorphism B, — A that maps 8 € By, to mn~}(8) € ACE.

Proof. Choose a free presentation 0 — R — F-£.B - 0 of B. Standard homology gives
the first isomorphism in

Ext(B,A) = cok [Hom(F, A) — Hom(R, A)]
= cok [Hom(F/mF,A) — Hom(R/mR, A)]
=~ Hom(ker[R/mR — F/mF), A).

The second isomorphism is clear from the fact that A is of exponent m, for the third
isomorphism one should observe that the injectivity of A as a Z/mZ-module implies that
Hom(—, A) is an exact functor on Z/mZ-modules.

The snake lemma applied to the diagram

g —~— B — F s B —5 0

ool

0 — B — F — B — 0

shows that we have an isomorphism B,,——ker[R/mR — F/mF] that sends b € B,, to
the residue class of mf~1(b) in R/mR. The theorem follows immediately. O

Other proof of 3.5. This proof—for B finitely generated—shows that 3.6 is an isomor-
phism by identifying both groups with the dual of Hom(B, A4).

First take B = A. Then Ext(A4, A) and Hom(A, A) are both cyclic of order m, and
the kernel of the map Ext(A, A) — Hom(A, A) is just the class of the split extension. It
follows that the theorem holds in this case. For the general case, write ¢ for the map in

the theorem and consider the diagram

Ext(B,A) ® Hom(A,B) — Ext(4,4)

s |

Hom(B,, A) ®z Hom(A,B) — Hom(A4,A).
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For the upper horizontal arrow we use the fact that Ext(—, A) is contravariant to define
a homomorphism Ext(B, A) — Ext(A, A) for each element g of Hom(A4, B). If g induces

the zero map, then 0 — kerg — A — B gives
Ext(B,A) — Ext(4, A)——Ext(kerg, 4) — 0,

so Ext(A, A) = Ext(kerg, A) and g = 0. Since Ext(B, A) and Hom(A, B) both have order
#B,,—ior Ext(B, A) this follows from the case that B is cyclic—we conclude that we have
a perfect pairing that identifies Ext(B, A) with the dual of Hom(A, B).

It is even easier to verify that the lower horizontal arrow, that sends f ® g to the
composition f o g € Hom(A, A), is also a perfect pairing that identifies Hom(B,,, A) with
the dual of Hom(A4, B).

All arrows are functorial, so we are done if we can show that the diagram commutes.
Take the class £ of an extension 0 — A — E-5B — 0 and a homomorphism g €
Hom(A, B). Then the image of £ ® g in Ext(A, A) is the extension class of the top row in

0—>A—>E'><BAL>A——>0

| | g
0 — A — E I, B — 0.

In Hom( A, A) this corresponds to the map a + mh~(a). Taking the image the other way
around, we arrive at the homomorphism a — mnx ~!g(a). Looking at the diagram, we see
that these homomorphisms coincide. O

4. Three theorems from fleld theory

We start with a result that is due to Schinzel [33].

4.1 Theorem. Let K be a field, m a positive integer not divisible by char(K) and w the
number of m-th roots of unity in K. Let L be the splitting field of X™ — a over K for

some ¢ € K. Then one has

L/K is abelian <= a" € K™.

Proof. If a¥ = b™ for some b € K, then a = (b™/¥ for some w-th root of unity ¢ and
L/K is a subextension of the abelian extension K(¥/b,(wm)/K. It follows that L/K is
abelian.

For the converse, take ¢ € Gal(L/K) and suppose o acts on a primitive m-th root of
unity (m by o((m) = (K9, For arbitrary 7 € Gal(L/K) and o € L satisfying a™ = a the
assumption that Gal(L/K) is abelian implies that

To(a) _ O_(T(CI)) _ (T(a))k(") _ 7(a*(2))

o(a) o a ak(e)
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so the element a*(?) /o(a) is invariant under all 7 € Gal(L/K), whence in K. It follows
that its m-th power a*(?)~1 is in K™,

We conclude that av is in K™, where v denotes the greatest common divisor of m
and all numbers k(o) -1, ¢ € Gal(L/K). As ((,) is exactly the set of Gal(L/K )-invariant
m-th roots of unity, we have v = w. O

Remark. The proof of the implication = in 4.1 can also be phrased in terms of cohomol-
ogy. If L/ K is Galois with group G and (,, is in L, Hilbert 90 furnishes an isomorphism

Food

(L™ N K*)/ K™ 5 HY(G, (Cm))

that sends the class of a™ € L*™ N K* to the class of the cocycle 7 — 7(a)/a. The proof
given above shows that such cocycles are annihilated by k(o) — 1 when G = Gal(L/K) is
abelian. Alternatively, one can prove directly that H(G,((m)) is annihilated by k(¢) — 1
by observing that the action of ¢ on this group via an inner automorphism of G and via the
natural action on (() coincide [7, IV 4.3]: the first action is trivial because G is abelian,
the second raises to the power k(c), so k(o) — 1 kills all elements.

Our next result, due to Kneser, is useful in determining the degree of radical extensions of
a field K. The problem comes down to finding the degree of K(M)/K for subgroups M
of the multiplicative group of the separable closure of K that are of finite index over K *.
Obviously, one has [K(M) : K] < [M : K*|. If M/K* has exponent m and K contains a
primitive m-th root of unity, K (M)/K is a Kummer extension and equality holds. On the
other hand, it is easily seen that cyclotomic extensions can give rise to strict inequality.

4.2 Theorem. Let K be a field with separable closure K .p,, and suppose M is a subgroup
of K*  containing K* such that [M : K*| < co. Then one has

[K(M): K] =[M : K*]

if and only if the following conditions are satisfied:

(1) if p is an odd prime dividing [M : K*| and M contains a primitive p-th root of unity
€p, then one has (p € K;

(2) If (4 is a primitive 4-th root of unity and M contains 1 + (4, then one has {4 € K.

Proof. Kneser’s original paper [19] has a short proof. See also [18]. O

We give an application of 4.2 that will prove to be useful in section 6. It is a degree

computation for certain radical extensions of a number field K. For W a subset of a
field K, we denote by K (/W) the extension of K that is obtained by adjoining to K all
elements « in an algebraic closure of K for which a™ € W.
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4.3 Proposition. Let K be a number field, and r the free rank of the unit group E of
its ring of integers. Suppose l is an odd prime, and L = K( 'VE—) for some integer k > 1.

Then
wtm_{Wﬂn ifGeK;

W””ﬁ%ﬁ%%w ifGeK.

In particular, if | does not divide 2+ A(K/Q) one has [L : K] = (I — 1)[*(r+1)-1,
For L = K({3*, 2@) the degree is given by

[L . K] - 2’°("+1) , lfC4 € K,’
' PR s e G K.

Here agp = 1 if all 2¥-th roots of unity in K((4) are of the form ¢/&, with € a unit in
K((4) and € its K-conjugate, and ak = 2 otherwise.

Proof. If {; € K, Kneser’s theorem gives
[L:K]=[K"* WVE: K*| = ['VE:'VEOK*} = [‘VE: E] = [Kr+D),

This also works for | = 2 when {4 € K.
If (; ¢ K, we apply Kneser’s theorem over K((;) to obtain

[L:K(W)) = [VE: VENK(¢)"] = [VE : E|- [VENK(¢)* : E]™
Let o be a generator of Gal(K((;)/K). Then the homomorphism

VENK(GQ)* — () 0 K(Q)*

a— o(a)/a

has kernel E, so [VVE N K(¢;)* : E] is bounded by the order of (Cie) N K(¢)*. The
latter group intersects E in {1}, so the inclusion () N K(()* € VEN K(() shows
that we have equality. The desired formula follows immediately. If [ + A(K/Q) we have

[K(¢): K]=1-1and ({) N K({) = (). X
We are left with the case that L = K((3*, 2\/173) and {4 ¢ K. As above, we have

[L: K(¢)] = VE : VEN K(()*] = "D . [VE N K(¢o)* : B
With Gal(K({4)/K) = (¢), we have again a homomorphism
$: VENK(G)" — (Car) N K(Cs)

with kernel E. The index [f/ﬁn K((4)* : E]is bounded by the order of ({5} N K({s), but
this group now intersects E in (—1). It follows that the index equals a g, #({(ox) N K((4)),
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with ax r = 1 when ¢ is surjective and ax . = 2 otherwise. Surjectivity of ¢ means that all
elements in ((5x) N K({4) have the form ¢/€, with € a unit in K((4) and € its K-conjugate.
Note that ag i only depends on K for k sufficiently large. O

In the following theorem, we write F# to denote the multiplicative group of a field F
modulo its torsion elements. In other words, F'# = F* /Zp, where Zp is the subgroup of
roots of unity in F*. Note that F# C E# if F C E is an extension of F. The following
result was originally proved by Van Tieghem in [36]. We give a proof that is much shorter.
See also [18].

4.4 Theorem. Let L/K be a finite separable field extension. Then the torsion subgroup
of L*# |K# is a finite group of order dividing [L : K].

Proof. Let #(L/K) be the torsion subgroup of L#/K# = L*/Z; K*. An element z mod
ZrK* isin t(L/K) if and only if 2™ € K* for some integer » > 1, and this is equivalent to
saying that any quotient of z by one of its K-conjugates is a root of unity. Looking at the
action of the norm L — K on #(L/K), one concludes that the group ¢{(L/K) is annihilated
by [L : K].

If L/K is abelian with group G, one takes the Galois cohomology sequence for

0 — Zp — L* — L¥ — 0.
By Hilbert 90, this gives
0 — Zxg — K* — (L*)® — HY(G,Z1) — 0,

and the argument above implies that {(L/K) & HY(G,Z). In particular, if G is cyclic,

generated by o, one has
HYG,Z1) =2 H™YG,Z1) = {z € Z : Ny x(z) = 1}/227.

Now any subgroup of Zy is an injective limit of finite cyclic groups, and {z € Z :
Npjk(z) =1}/Z§"" is annihilated by [L : K]|. We conclude that in this case H!(G,Z.)
is finite cyclic of order dividing [L : K] and the theorem holds for L/ K.

If there is an intermediate field M in the extension L/K, we have an exact sequence

0 — H{M/K) — t(L/K) — t(L/M),

so the theorem is true for L/ K if it holds for L/M and M/K. We give two different ways
to finish the proof.

First method. We may assume that there are no intermediate fields between K and
L different from K and L. In particular, K(Z;) = L or K(Zy) = K. If K(Z1) = L,
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the extension L/K is abelian, even cyclic of prime degree, and we are done. Let now
K(Zi) = K. In this case t(L/K) is the torsion subgroup of L*/K*. We may assume that
there exists £ mod K* in L*/K* of prime order p, since otherwise ¢(L/K) = 1 and there is
nothing to prove. Thus L = K(z) is an extension of K of degree p. As L/K is separable,
we let L' = L((,) be the normal closure of L, and write K' = K((;). The extension L'/ K’
is cyclic of order p, so |t(L'/K")| divides p. We are done if we show that the composite
map #H{L/K) — #(L'/K) — t(L'/K') is injective. Now the first arrow is injective, and
the kernel of the second is isomorphic to {(K'/K). Our claim follows from the fact that
t(L/K) has exponent p and #(K'/K) has order dividing p — 1 by the theorem for cyclic
extensions.

Second method. It suffices to prove the theorem for the p-part of {(L/K), with p an
arbitrary prime. Let N be the normal closure of I over K, and H C G = Gal(N/K)
the subgroup corresponding to L. Let H, and G, D H, be p-Sylow subgroups of H and
G, and L' and K' the corresponding fixed fields. By the solvability of p-groups, L' can
be obtained from K’ by repeated cyclic extensions of degree p, so the theorem holds for
L'/K'. As K'/K is of degree prime to p, the theorem trivially holds for X'/ K if we restrict
our attention to p-parts. It follows that the order of the p-part of #(L'/K) divides [L' : K]
and, as [L' : L] is coprime to p, it even divides [L : K]. The same is now true for the
subgroup t(L/K) C #(L'/K), and the proof is finished. O

5, Main theorem

We now come to the main result of this chapter, theorem 5.6. Before we can formulate
the theorem, we need some introductory remarks that lead to a precise description (5.5)
of the extensions we will consider.

Let K be a number field, ? a cycle in K and m € £+ an integer. For a finite prime
p 1 0in K, we let L(p) = L(p,0,m) be the maximal abelian extension of K of conductor
dividing ?p in which the ramification indices at primes over p in L(p) divide m. As L(p)

contains the ray class field Hy of K of conductor D, there is an exact sequence
(5.1) 0 — Gal(L(p)/Hy) — Gal(L(p)/K) — Gal(H»/K) — 0.

The group Gal(L(p)/H,) is the inertia group of the prime p. Under the Artin map J —
Gal(L(p)/K) on the idéle group J of K, it is the image of the unit group Uy of the ring of
integers in the local field K. As p divides 0p to the first power, the ramification at p is
tame and the homomorphism Uy — Gal(L(p)/H,) factors via the unit group ky = U,/ Ugl)
of the residue class field ky at p. Our hypothesis that the ramification indices at p divide
m implies that Gal(L(p)/Hy) is the image under the Artin map of k;/k;™. In particular,
it is a cyclic group of order dividing m.
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We want to rewrite the exact sequence above in terms of ray class groups. As L(p)is a
subfield of the ray class field Hyp of K, we start by rewriting the surjection Gal(Hop/K) —
Gal(H,/K) as a surjection of ray class groups Cpp — Cp. By the argument above, the kernel
of this map is the homomorphic image of k; = U,/ Uél). Using the definition of the ray

class groups, we see that the kernel equals

_ {principal ideals (z) with 2 =1 mod*0 and |z|, = 1}

Y {principal ideals (z) with z = 1 mod*dp}

Mapping ideals to the residue class of a generator that is 1mod*? in kj, we obtain an

isomorphism Y —k;} /im[E,], where E denotes the group of global units that are 1 mod*?.
Note however that the composition of the homomorphism kj = U,/ Uél) — Y induced by
the canonical map J — Cy, with the isomorphism ¥ =k} /im[F,] just given sends z mod p
to the residue class of 7! in kj/im[E;]. We have proved the following.

5.2 Lemma. Let 0 be a cycle in K and p a finite prime not in 9. Then there is an exact
sequence

0 — k;/lm[Eb] “‘?“"’Cbp %Ca —p 0

Here E, is the group of global units that are 1 mod* 9, and a sends the residue class of a

global element z = 1 mod™*d satisfying |z|p, = 1 to the class of (z) in Cpyp. O

By the lemma above, we can rewrite the exact sequence of Galois groups (5.1) as
(5.3) 0 — ky/(im[Eo] - k; ™) — Cop/alk;™] — Co — 0.

We can view this ‘arithmetical extension’ as an element of an Ext-group Ext(Cp,—) that
does not depend on p if we identify the group k;/(im[Es] - k;™) with some fixed cyclic
group. For any divisor n of m, one has

n|#(ky/(im[Es] - k;™)) <= Np =1 mod n and im{E,] C k;"
<=3 p splits completely in K((n,%/ Es)/K and p t n.

It follows that the primes p for which the order is m are exactly those primes p + m
that split completely in K((m,%/Ey)/K. We will further restrict our attention to these
primes. In order to study the behaviour of the sequence for primes p for which the order
of k;/(im[Es] - k;™) is n < m, one has to replace m by n in the definition of L(p).

Given a prime p that splits completely in K((m,%/Esy)/K, we choose an extension
Blp in K,,, = K((»n) and consider the m-th power residue symbol ('fif)m on the unit group
of the residue class field kg at P. This symbol is the homomorphism k3 — ({) that is
defined by

L) = p(NP-1/m g
o = & mo .
(m)m ¥
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In accordance with the name of the symbol, the kernel consists of the m-th powers in k3.
Qur splitting assumption on p implies that we have an isomorphism

& §* # YL * #* 73 Y ® 1L ()m
oy i Bo] < k3™ = ki /ey ™ =k k™ T (Cm)

for each prime B|p in K,,. Thus, by the choice of a prime *B|p, our arithmetical extension
gives rise to a well defined element Eg € Ext(Cp, {(m))-
If P’ is also an extension of p to K,,, there exists 0 € Gal(K,,/K) such that P’ = ¢P.
The commutative diagram (%)
ky/ky™ 7 {Cm)
lo

j(d'
kol kap™ (‘é}_flm {Cm)

shows that E,p = Eg, where 0 € Gal(K,/K) acts on Ext(Cy, (()) via its action on ((n).

If we compose the natural surjection from the idéle group J of K onto Cpp with
the canonical map Cyp, — Cp, we obtain the natural surjection J —» Cp. This implies
that our extension (5.3) admits a lift of the canonical map J — Cp to a homomorphism
J — Cop/alk;™]. This lifting property exists for the restriction of J — Cp to any local
component Ky, but it is special to our arithmetic exiension only at components K for
which q divides 9. This is because the homomorphism K § — C; factors via the group
K/ Ul ™ | which is isomorphic to Z at finite primes outside 0 and trivial at the infinite
primes outside 9. Let S be an arbitrary finite set of primes of K. Then our arithmetic
extension has the special property that for any prime p { 0 outside S, it admits a lift of
the canonical map

4ES

to g5 : B — Cop/alk;™]. The map ¢s is the composition
D o> T Wap < J/K*Wop = Cop — Cop/alky™].

Here Why is defined as in (2.6). Note that £ and fg do not change if we add the infinite
primes outside ¥ to S. We summarize the preceding discussion in the following way.

5.5 Proposition. Let K be a number field, 9 a cycle in K and m € Z ¢ an integer.
Denote for a finite set S of primes by fg the canonical map in (5.4). Suppose p + md is
a prime of K outside S that splits completely in K,,(%/Ey)/K. Then the isomorphism
class of the extension (5.3) is an element E(P) € Ext(fs;{{m)) for each prime Pl|p in
Km = K((m) by the identification kj/(im[Es] - k3™) = ((m) via (;p—)m and the canonical
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lift ¢s5: & — Cop/alk;™]. Under the natural action of Gal(K,,/K) on Ext(fs;((m)), one
has E('P)? = E(a'P).

We are ready to formulate the main theorem of this chapter.

5.6 Theorem. Let K be a number field, 0 a cycle in K and m € Z~¢ an integer. Write
Ky, for K((m) and E, for the group of units in Ok that are 1 mod* 0. Let S be a finite
set of primes and fg the canonical map from (5.4). Denote by D the set of primes in 0
and define W C K* by

W=Wspm={z € K": ordg(z) = 0 mod m for all finite q ¢ S and
z = 1mod*q®%® forall qe D\ S}.

Then there is a canonical Gal(K , /K }-linear injection
w: Gal(Km(VW)/Kn(V Es)) — Ext(fs;{(m))

such that for a prime P in K,, lying over a prime p of K not in md or S that splits
completely in K,,(%/Ey)/ K, one has

(P, K/ W)/ Kpm) — E(F)

with £(B) as in 5.5. If P ranges over the extensions of p to K,,, then E(*B) ranges
over a Gal(K,,/K)-orbit in Ext(fs; ((m)). If (s is in K and S contains D, then w is an

isomorphism.

Remarks. It should be noted that the Artin symbol (B, K (YW)/K,,) in 5.6 is indeed
an element of Gal( K (¥YW)/Km(%/Ey)), because P splits completely in K (W Ep)/ K.
Further any element of Gal( K, (YW)/ K m(%/Ey)) is of this form by the Cebotarev density
theorem, so w is uniquely determined by its values on Artin symbols.

For the prime p in 5.6, there is no unique Artin symbol but only a Artin class in
Gal( K (YW)/ Km(%/Ey)), consisting of the Frobenius symbols of primes 9 over p. It is
a conjugacy class in Gal( K, (¥YW)/K) that is an orbit under the natural action by inner
automorphisms of Gal(K,,/K). We see that w maps this class to the Gal(K,,/K)-orbit
consisting of the elements £(*P) for PB|p. Thus, the Artin symbol of p in Gal( K, (VYW)/K)
and the isomorphism class of the extension (5.3) in Ext(fs,{(m)) are not uniquely deter-
mined in exactly the same way.

In theorem 5.13, we will give several conditions under which w is an isomorphism.

Proof. The main idea is to use the isomorphism from 3.3(b) to realize the group
Ext(fs;{¢m)) as a group of homomorphisms of the form Hom(A4, (()) with A a certain
subquotient of K*. Kummer theory can then be used to make the transition to a Galois
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group of an extension over K,. The problem is that our map fs need not satisfy the
requirement of surjectivity that is essential for 3.3(b). Note however that fg is surjective
if § O D and the classes of the finite primes in S generate the ideal class group of K. Our
proof deals with this problem by ‘extending’ fs to a surjective map, applying 3.3(b) and
going back to fs.

As we observed just before proposition 5.5, we may assume that S contains all infinite
primes outside 0. This will allow us to write ‘q ¢ SU D’ instead of ‘q € SU D and ¢ finite’

in the rest of the proof.
Let Wy be defined as in (2.6), and consider the subgroup T' C J/W3, containing T

defined by

T= @ K/UT™ «35x o L
a¢D\S g¢SuD

It is clear that the restriction fr of the canonical map ¢ : J/Wp — Cp to T is surjective.
If S O D we have T' = J/Wj. More generally, there is an exact sequence

0—T — J/Wy — @& KU o,
qeD\S

As Ey = Wy N K*, there is a derived sequence

0 — kerfr — kerp = K" /Ey — & K;/Uéordq(h))
qED\S

that shows that ker fr = X/E,, where

X={zecK*: 2=1mod"q"%® forall qe D\ S}.

Note that X = K*if S > D.
Analogously, the sequence 0 = £ — T — @qgsupZ — 0 gives

(5.7) 0 — ker fg —+ ker fr = X/Ey — & I — cok fg — 0.
qgSuD

This shows that ker fs = Xs/FE,, where Xs denotes the group of S-units in X:
Xs={zeX: |z|g=1i q¢ S}.

We now apply theorem 3.4, with F' = ®q4gsup Z and A = ((,,) and homomorphisms
f=fsand f' = fr. As ker fr = X/ E,, we obtain isomorphisms

EXt(f.S'; (Cm)) & cok [Hom(qe’?UD Z, (Cm)) — Hom(X/Eba (Cm»]

&~ cok [Hom(qeg}UD Z/mZ,{(m)) — Hom(X/Ea X™, ((m))].
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If fs is surjective, (5.7) and projectivity of @ggsupZ show that this is the isomorphism

(5.8) Ext(fs; {((m)) = Hom(Xs/E»,{(n)),

in accordance with 3.3(b). For the general case, we use our group W = W g, ,, and consider
the exact sequence of Z/mZ-modules

0 — W/EX™ — X/EX™ — & 1I/ml.
qESuUD

Application of Hom(—, ((,»)) to this sequence gives

Hom( @& Z/miZ,{(m})) — Hom(X/E;X™,{(n)) — Hom(W/Ep X™ {(m)) — 0
qESuUD

because {(m} is injective as a Z/mZ-module. We conclude that an isomorphism
(5.9) Ext(fs; ({m)) — Hom(W/Ey X™, ()

is induced. Inspection of the various homomorphisms leads to the following explicit descrip-
tion. Given an extension of fs with ((n), lift it to an extension (E, ¢1) of fr with {(m).
By restriction, a homomorphism W — ((,,) is obtained that is trivial on E,X™. Note
that ¢p(w) for w € W does not depend on the choice of ¢ because ordg(w) = 0 mod m
at ¢ ¢ SUD. In particular, for the extension class £(B) in Ext(fs;((m)), we have
E = Cyp/afk;™] and we can choose for ¢ the composition of an embedding

T=Ex @ K;/Uj — EZx @ K;/UxK,

qEgSUD ¢gSUD
a#p

with the canonical map to Cop/alk;™]. If w is an element of W, it can be multiplied by
an element of X™ to ensure that w is a local unit at p. In that case, we see that the
homomorphism pg € Hom(W/Ey X™, ((;n)) corresponding to £(*P) sends w to

pp(w) = dr((w)agp\ 5,039 X (1)p)-

As we have w = 1 mod*q°™%(®) at all primes in D\ S, this is the image under ¢ : J/W, —
Cop/axk;™] of the element ((w)gpp X (1)p). Using the fact that K*/E, is in the kernel of
¢, we arrive at

¢((’“’)q¢p x (1)9) = @((1)#9 X (’w_l)p) = a(w mod p).

In the last equation, we used the observation preceding lemma 5.2. Finally, our identifica-
tion of ky/k;™ with ((,,) implies that

pp(w) = (—;5) .
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From the surjection W/ E, X™ —» WK} ™ /E;K%™ we obtain an injection that is the

lower horizontal arrow in the diagram
Gal(Kn(VW)/Kn(VEr)) Ext(fs; ((m))

5 5

Hom(WKL™/BoK3™, (Gn)) — Hom(W/EoX™, (Gm).

The left vertical isomorphism comes from Kummer theory, the right vertical isomorphism

has just been derived. Note that the induced injection w is an isomorphism if and only if
(5.10) WnNEK:,™ =EX™.

This condition is trivially satisfied when (,, is in K and S contains D, since then X =
K*=K}.

We still have to show that w satisfies the description given in the theorem. The image
of the Artin symbol op = (B, K (VW)/Km) € Gal( K (YW)/ K (/E5)) under the left

vertical arrow is the homomorphism

W — f_‘*i(:_@ = wN¥=1/m mod B,
W

T

As all m-th roots of unity are distinct modulo P, this congruence shows that o g(w) =
pp(w) for each p-adic unit w € W, hence for all w € W. It follows that w maps oy to
£(P).

The fact that w respects the action of Gal(K,,/K) is a direct consequence of the
canonicity of all arrows in this proof. Alternatively, one can check that the action on

Gal(Kp (YW)/ K (YEy)) and Ext(fs; (¢m)) are the same by observing that
(TP, Kn(VW)/Kr)) = E(rP) = E(P)"

for any 7 € Gal( K,/ K).
This finishes the proof of theorem 5.6. O

Remark. Suppose that m = 2 in 5.6 and that p ¥ D is a real prime of K that splits
completely in K ,,(%/E:) = K(v/E;). Then p gives rise to an element £(p) € Ext(fs; (1))
by the sign map k;/k;zw—té(——l). As might be expected, this element is the w-image of the
Artin symbol g, = (p, K(vVW)/K), which is by definition the element of the Galois group
that induces the non-trivial automorphism on the local extensions K(vVW),/K, = C/R at
q|p. The verification of this fact comes down that to the fact that, in the terminology of
the proof of 5.6, the elements py(w) = sign,(w) and oy(v/w)//w coincide for all w € W.
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There are other descriptions of the field K ,,(VW) in the preceding theorem in case S
satisfies additional conditions.

5.11 Proposition. Let W be as in 5.6, with S containing the primes in 9 and the infinite
primes, and set M = K ,(%Y/W). Then the following holds.
(i) If the class group of K is generated by the classes of the finite primes in S, then
M = K,,(%/Ks), where K¢ denotes the group of S-units

{se K" :|e|g=11if q¢ S}.

(ii) If K contains the m-th roots of unity and S contains the primes dividing (m), then
M is the maximal abelian extension of K of exponent dividing m that is unramified
outside S.

Proof. The conditions in (i) imply that the map fs is surjective. In that case the proof of
5.6 is much easier: one can use equation (5.8) to see that M = K,,(%/X5s), and the inclusion
S D D implies Xs = Kg. Of course, one can also be prove directly that W = KgK*™.
Indeed, suppose a has order divisible by m at all primes not in S. Then we can write
(@) = 5-a™ with 5 a fractional ideal built up from the finite primes in S. By assumption,
there is an ideal b built up from the finite primes in S that is in the same ideal class as a.
Write (8) = a-b~1, then af~™ € Kg, as required.

For (ii), note that any abelian extension of K is of the form K(X/V) for some V C K*
by Kummer theory. Further an extension K(%/z)/K is unramified at a prime g { (m) - oo
if and only if ord,(z) = 0 mod m. The assertion follows. O

Making the choices ? =1, S = @, we obtain a theorem of which 2.4 is a special case.

5.12 Corollary. Let K be a number field, Cl its class group, E the unit group of the
ring of integers of K and W the subset of elements o € K* for which («) is an m-th ideal
power. Then there is a canonical Gal(K,, /K )-linear injection

Gal(Km(VYW)/Km(VE)) — Ext(CL ((m))

that is an isomorphism when K = K,,. It maps the Artin symbol of a prime B of K,
lying over a prime p + m in K that splits completely in K m(YE)/K to the class of the

extension
E: 0— ky/ky™ — Cp/alk;™] — C — 0,

where k /k;™ 2 ((m) via the norm residue symbol at P. [

The following theorem shows that if S contains the primes in 9, the hypothesis (,, € K
in the last statement of theorem 5.6 can be substantially weakened without losing the

isomorphy of w.
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5.13 Theorem. Suppose the set S in theorem 5.6 contains D. Then the injection
w: Gal(Km(VW)/Km(VEs)) — Ext(fs;{(m}))
in theorem 5.6 and the injection
Gal(Km (VYW)/Kn(VE)) — Ext(Cl,{(m))

in 5.12 are isomorphisms in each of the following cases:

(1) (m € K5

(2) (Cm> NK=1;

(3) m is prime;

(4) m is an odd prime power;

(5) K contains a primitive r-th root of unity, where 7 is the product of all odd primes in

m, and a primitive 4-th root of unity in case 4 | m.

Proof. As 5.12 is a corollary of 5.6, it suffices to look at the injection w from 5.6. By our
assumption on S, condition (5.10) that is necessary and sufficient for isomorphy of w can

be rewritten as

Es(WNKL™) = By K*™,

with W = Wsp m and Ep as in 5.6, Note that the inclusion O is always valid, and that
equality follows when W N K;,™ = K*™,

For (1) there is nothing to prove.

If {{m) N K =1, we use Schinzel’s theorem 4.1. Take z € W N K}},". Then one has a
K-homomorphism K(%/z) — K, so K C K(%/z) is abelian. It follows that ¢ € K*™ by
4.1, and we are done.

If m is prime we are either in case (1) or in case (2), so (3) follows immediately.

In case (5) we have the necessary roots of unity to apply Kneser’s theorem 4.2. It
follows that

(VW : K*] = [Kn(YW) : K]

and that

[ %/ By K] = [Kn(V/Bo) : K.

Consequently, one has [K,,(YW) : Kn(VEy)] = #(VW/(K* - VEY)) = #(W/EyK*™),
so that the natural map Gal(K ,»(YW)/Kn(VEs)) — Hom(W/Ey K*™, (()) is an iso-
morphism. This group is just Ext(fs; (()) by (5.9).

We finally treat case (4). If m = p* is an odd prime power, then {¢,,) is cyclic and
K N {(n) is either trivial or a subgroup of ({,,) containing (,. Thus we are either in case
(2) or in case (5). O

45



The case that m is a power of 2 larger than 2 is not covered by 5.13. The following example
shows that we do not necessarily have an isomorphism for such m, not even in the special
case 5.12,

5.14 Example. Take K = Q(+/—5) and m = 4 in 5.12. Then CI is cyclic of order 2,
generated by the class of the prime ideal over 2 in K, so one has W = (4) EK **, Further
E = (-1), s0o KFW) = K(v/2,(s) = K((3) = K(/E). The injection w becomes

1= Gal(KFW)/K{E)) — Ext(Cl, (¢s)) = 2/22,

which is not surjective.

Theorem 5.13 shows that the generalized Ext-group Ext(fs; ((m)) is appropriate in describ-
ing ‘arithmetical extensions’. That is, if we take into account that arithmetical extensions
have the special property of admitting lifts of decomposition groups at primes in ? by
including such primes in S, mild conditions ensure that all elements of Ext(fs; ((m)) are
realized as extensions of this type. One might ask to which extent the same is true for the
ordinary Ext-group Ext(Cy, ((;n}). First of all, there is the following special case of 5.6.

5.15 Theorem. Let K,m and 0 be as in 5.6, and define Wy C K* by
Wy ={a€ K*: a=1mod"d and ordg(a) = 0 mod m for all finite q {1 0}.

Then there is a canonical Gal(K, /K )-linear injection

W' Gal(Km (Y Wo)/ K (¥ Es)) — Ext(Co,(Cm))

that maps the Artin symbol of a prime P of K, lying over a prime p + md in K that splits
completely in K, (%/ Ey)/ K to the class of the extension

0 — ky/ky™ — Cop/afky™] — C — 0,

where kj /ky™ = ((;n) via the norm residue symbol at . It is an isomorphism if and only
if
Wo NEu K™ = EyKT oaen

Here Ky yoq+2 denotes the subgroup of K* consisting of those elements ¢ € K* that satisfy
z = 1 mod™0.

Proof. Take S to be empty in 5.6 and use (5.10). O

One can compare the ordinary Ext-group to our modified Ext-group by looking at