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Abstract. Let F be a field of characteristic ^ 2, {/>,} a set of Pfister forms over 
F and K = •?({/>«}) the iterated function field of the />,'s over F. We investigate 
tbe isotropy behaviour of quadratic forms over F under this field extension. Elman-
Lam-Wadsworth have shown that if the Hasse number û of F is < 2n, n = 1,2, and 
if ail the />,• are of fold > n, then K/F is excellent and the Witt kernel W(K/F) is 
generated by {/>,}. We extend and generalize these résulta. We show, for example, 
that if û(F) < 6 or if F is linked and ail the p.-'s are of fold > 3, then K/F is excellent. 
More generally, if û(F) < 2" and ail the /J,'S are of fold > n + 1 (resp. > n), then 
K/F is excellent (resp. W(K/F) is generated by {p,}). We also investigate so-called 
if-minimal forms, i.e. anisotropic forms over F which become isotropic over K but 
no proper subform does. In two examples, one over R(<) and one over a formally real 
global field, we use the methods developed in this paper to compute the if-minimal 
forms explicitly. 

1 Introduction 

Let F be a field of characteristic ^ 2. In this paper we want to investigate the behaviour of 
quadratic forms over F over extensions K/F where if is a function field of the form F({/>;}) 
of Pfister forms {/>,}. We will call such a field extension a Pfister extension. Extensions 
of this type have been given a thorough treatment by Elman, Lam and Wadsworth in 
[ELW1], [ELW2] and [ELW3]. They focussed on the following questions: What is the 
Witt kernel W(K/F) of the ring homomorphism WF —• WK between the Witt rings of 
F and K induced by scalar extension ? Is the extension K/F excellent, i.e., does there 
exist to any form <p over F a form ifi over F such that the anisotropic part of (p over K, 
(<PK)an, is isometric to ip^t 

Our main motivation will be the détermination of so-called if-minimal forms for such 
extensions. These are anisotropic forms over F which become isotropic over K but no 
proper subforms of them will become isotropic over K. Knowing the if-minimal forms 
amounts to knowing which anisotropic forms over F become isotropic over K. This prob-
lem is related to the excellence problem and to some extent also to the problem of deter-
mining W(K/F) as will become clear from our investigations. Thus, it is not surprising 
that the machinery we develop also leads to some extensions and generalizations of some 
of the results in the papers mentioned above, most notably [ELW 3]. 

It is well-known that if w is an anisotropic Pfister form over F then W(F(ir)/F) = 
n W F (see, e.g., [S, Ch. 4, Theorem 5.4(iv)]). Thus, it seems natural to ask whether 
W(K/F) is generated by {/>,•} where K = F({pi}) is a Pfister extension, i.e., 

W(F({Pi})/F) = 1£PiWF-
t 

In [ELW 1], F was called n-amenable if équation (1) holds for any finite set {/>,•} of Pfister 
forms of fold < n, and F was said to be amenable if F is n-amenable for every n > 1. 



In the context of our paper, it proves useful to extend this définition. We call F co-n-
amenable if équation (1) holds for any finite set {/),} of Pfister forms of fold > n. Thus, 
F being amenable is the same as F being co-l-amenable. In analogy to the définition 
of amenabiiity, we say that F is n-Pfister excellent (resp. co-n-Pfister excellent) if for 
every finite set {/>,} of Pfister forms over F of fold < n (resp. > n), the Pfister extension 
F({pi})/F is excellent. We call F Pfister excellent if F is co-l-Pfister excellent (or, 
equivalently, if F is n-Pfister excellent for every n). 

Recall that the Hasse number û(F) of F is defined to be the supremum of the dimen-
sions of ail anisotropic forms over F which are indefinite with respect to each ordering on 
F (if there are any). If F is not formally real (i.e. there are no orderings on F), then 
û(F) coincides with the u-invariant of F, where u(F) (in the generalized sense) is defined 
to be the supremum of the dimensions of ail anisotropic torsion forms over F. Let us now 
state a summary of known "positive" results. In parts (i)-(iv), p, a, and ir will dénoté 
anisotropic Pfister forms over F with dim p = 2 and dim <r = 4. 

(i) W(F(x)/F) = irWF (see above); 
(ii) F(p)/F and F(o)/F are excellent (see, e.g., [Ll, Ch.VII, Lemma 3.1] or [S, 

Ch. 2,Lemma 5.1] for F(p), and [ELW1, Appendix II by Arason] for F(o)); 
(iii) If a is universal then F(p,a)/F is excellent (see [ELW1, Corollary 2.5]); 
(iv) W(F(p,ir)/F) = pWF + *WF, W(F(a,v)/F) = aWF + irWF, and if a is 

universal then W(F(p, a, ir)/F) = pWF + aWF + vWF. (cf. [ELW 1, Corollary 
2.12 and p. 466]); 

(v) If u(F) < 2n (n = 1,2) then F is co-n-amenable and co-n-Pfister excellent (so 
F is amenable and Pfister excellent if û(F) < 2). Furthermore, if û(F) = 4 
and F is 1-amenable then F is amenable and Pfister excellent (cf. [ELW 3, Main 
Theorem, Theorem 6.5]). 

On the negative side, if p\,p2,p$ are 1-fold Pfister forms then generally F(pi ,p2) /F is 
not excellent and W{F{p\,p2,pz)/F) J2PiWF (in fact, ail biquadratic extensions over 
F are excellent iff ail triquadratic extensions yield the "expected" Witt kernel, but these 
équivalent conditions generally do not hold, cf. [ELTW]). Thus, fields are neither 1-
amenable nor 1-Pfister excellent in général. Izhboldin [I] showed recently, that if x is an 
anisotropic n-fold Pfister form, n > 3, then there always exists a field extension E/F such 
that E(ir)/Eis not excellent. In particular, function fields of n-fold Pfister forms, n > 3, 
are generally not excellent. 

We will extend the above list of positive results. Recall that F is called linked if the 
quaternion algebras form a subgroup in the Brauer group of F. It is well-known that if 
F is linked then û(F) € {0,1,2,4,8}, and ail these values do occur (cf. [E]). Also, F is 
called n-linked if any two n-fold Pfister forms over F have a common (n — l)-fold subform. 
F is linked iff F is 2-linked. 

(vi) Let n > 1 and let û(F) < 2n . Then F is co-n-amenable and co-{n + 1 )-Pfister 
excellent. If F is (n—\)-amenable then F is amenable. If F is n-Pfister excellent 
then F is Pfister excellent. 

(vii) If û(F) < 6 or if F is linked, then F is co-3-Pfister excellent. 
(viii) Let n > 2 and let F be an n-linked field with I?+ÏF = 0. Suppose that InF = 

JnF. Then F is co-n-amenable. 
These results, especially those in (vi) and (viii), are of interest mainly in the case of 



formaily real fields because only then do there exist anisotropic Pfister forms of dimension 
> 2n which can be taken to construct Pfister extensions. If one restricts oneself to function 
fields of n-fold Pfister forms in the above statements about amenability, then these results 
become a spécial case of the Linked Group Theorem which we state in the next section. 

This paper is structured as follows. In the next section, we will recall several important 
results which we will need in our proofs. We will also say a little about (n-)linked fields 
and about fields with finite Hasse number. Some familiarity with the basic facts about 
SAP fields is assumed on the reader's part throughout this paper. The relevant facts can 
be found in [L 2], [KS], and [ELP]. Many of the proofs consist of rather intricate arguments 
using signatures of quadratic forms, and very often we will use the fact that certain sets 
of orderings we define are clopen sets and that F is SAP (which is always guaranteed if F 
is n-linked or the Hasse number is finite). We will not always prove these facts explicitly 
since they can be readily checked by the reader. In § 3, we provide two main lemmas which 
are somewhat technical in nature but designed in a way so that they can be readily used 
in the proofs of the results mentioned above and in our investigations of if-minimal forms. 
We will prove above results in § 4. In § 5, we provide bounds for if-minimal forms where 
K/F is a Pfister extension over a field with finite Hasse number. For some of the Pfister 
extensions K/F we will be dealing with, we will give a characterization of the if-minimal 
forms in § 6. To round things off, we explicitly compute the if-minimal forms for certain 
Pfister extensions K/F in § 7 to demonstrate the power of our approach. In one example, 
the field F will be a formaily real global field, and in the other example F will be R ( t ) , 
the rational function field in one variable over the real numbers. 

2 Prel iminaries 

By InF we dénoté the n-th power of the fundamental idéal IF of even-dimensional forms 
in WF. InF is additively generated by the n-fold Pfister forms ((ai, • • •,an)) = ( l ,a i ) ® 
• • • <g> (1 ,an). The set of forms over F isometric (resp. similar) to n-fold Pfister forms 
will be denoted by PnF (resp. GPnF). PF dénotés the set of ail Pfister forms over F 
(GPF is defined accordingly). WtF dénotés the torsion part of the Witt ring WF, and 
we put I?F = InF n WtF. JnF dénotés the idéal of forms of degree > n in WF as 
defined by Knebusch in [K 1]. It is conjectured that InF = JnF for ail n and ail fields 
F, and it is known to be true in général when n < 4 (and also for n = 5 due to some 
unpublished results by Rost, see [Ka, Théorème 2.8] and the remarks and references there; 
recently, Voevodsky announced certain results which would imply that this is true for ail 
n). A generic splitting tower of a form <p over F is, in our context, a tower of fields 
F = F0 C F\ C • • • C Fh with the Fi defined as follows. Let <p0 ~ tp^, and for i > 1 let 
Fi = Fi_i(y>i_1) and <pi ~ ((<A-i)Fi)an- ^ > 0 is the smallest integer for which dim tp^ < 1 
and Fh is called the generic splitting field of <p (cf. [K 1] for this construction and other 
facts about generic splitting towers). 

Let $ C PnF be a set of n-fold Pfister forms over F. Following the terminology in 
[ELW 3], we call $ a linked group of n-fold Pfister forms if $ = {TT (mod In+1F) | x € 
is a subgroup of InF/In+1F. In other words, $ is a linked group of n-fold Pfister forms if 
to any xi, X2 € $ there exists TT3 € $ such that TTJ — TT3 (mod In+1F). Furthermore, 
we say that $ C PnF generates a linked group of Pfister forms if there exists a linked 
group 9 C PnF such that $ generates Recall that two n-fold Pfister forms ir\,ii2 are 
called linked if there exist an (n — l)-fold Pfister form p and 1-fold Pfister forms ri , r2 such 
that 7T,- ~ p ® Ti, i = 1,2. In a linked group of n-fold Pfister forms any two Pfister forms 



are linked. The field F is called n-linked if PnF is a linked group of Pfister forms. If n > 2 
then it is easy to see that F being n-linked implies that F is m-linked for ail m > n. If 
n = 2 then F is simply called linked. 

The next few results show how certain properties of F imply that F is n-linked. Here 
and througout the remainder of the paper, we dénoté the space of orderings on F by XF, 
and the signature of a quadratic form tp with respect to P G XP will be denoted by sgnp ip. 
The next lemma is rather obvious and we omit its proof. 

Lemma 2.1 Let (p be a form over F. Then 

dim tp^ < sup{û(P), |sgnP <p\;P G 

Lemma 2.2 F is n-linked if one of the following properties holds: 
(i) û(F) < 2n + 2n~1. 

(ii) F is SAP and I?F = 0. 

Proof. (i) Let xj , 7r2 G P„P. If F is formally real then, for ail P G Xp, we have sgnp ir,- G 
{0,2"} and thus |sgnP (iï\ ± —""2)! € {0,2n}. In any case, the previous lemma implies 
that dim(7Ti 1 - t ^ ) ^ < 2n + 2 n _ 1 . Hence, by [EL 1, Theorem 4.5], d i r n ^ 1 -7r2)an = 0 
or 2n and 7Ti and 7r2 aie linked. 

(ii) If F is not formally real then there are no anisotropic n-fold Pfister forms and 
there is nothing to show. So assume that F is formally real and that 7Ti, 7r2 G PnF. As F 
is SAP and as |sgnp(7Ti _L — TT2)| G {0,2n} there exist ir G PnF and x G F such that 

sgnp 7r = |sgnp (xi _L —1*2)1 for ail P G Xp 

and 
x <P 0 for ail P G X f with sgnP (wi ± -7T2) = - 2 " 
x >p 0 otherwise. 

Thus, sgnp (JTI ± -7T2) = sgnp XJT for a11 P G Xp and therefore 

7Ti ± -7T2 ± —XJT G I?F = 0. 

Hence, 7Ti _L — jr2 = x?r in WF which shows that 7Ti and tt2 are linked. • 

Example 2.3 Generally, it is not true that F being SAP and / " P = 0 implies that F is 
(n — l)-linked. For let P be a field with û(F) = 6 (such fields exist by Merkurjev's results 
on the u-invariant of fields [M]). Clearly, F is SAP as «(F) is finite, and i f F = 0 by the 
Arason-Pfister Hauptsatz (see below). However, F is not (2-)linked as the Hasse number 
of a linked field is never 6 (see the remarks in the introduction). As another example, 
consider the Laurent sériés field in one variable over the rational numbers, P = Q((/))-
Now u(Q) = 4, and thus, by Springer's theorem (cf. [S, Ch. 6, Corollary 2.6]), u(F) = 8. 
Hence, i f F = 0. On the other hand, P is SAP (cf. [L2, p. 124]). However, P is not 
3-linked because, for example, ((1,1,1)) and ((1, —3, t)) are not linked as one can easily 
check. It will turn out that P is co-4-amenable (see Example 4.3). 

For reference reasons, let us now state some well-known and important results which 
we will use frequently. 



Proposition 2.4 (i) (Cassels-Pfister subform theorem, cf. [S, Ch. 4, Theorem 5.4].) Let 
(p be an anisotropic form over F and i[) be another form over F. If ,s hyperbolic 
then aif) C <p for any a £ D(<p)D(i()). In particular, dim ip > dim V*. 

(ii) (Arason-Pfister Hauptsatz (APH), cf. [S, Ch.4, Theorem 5.6].) Let (p be an 
anisotropic form in InF. Then dim (p > 2n. Furthermore, if dim (p = 2n then <p is 
similar to an n-fold Pfister form. 

(iii) ("Anisotropy Criterion", [H4, Theorem 1].) Let (p and V> be forms over F and let 
ip be anisotropic. If dim <p < 2n < dim xj> for some n then <Pf(^) anisotropic. 

(iv) (Extension of orderings, cf. [ELW 2, Theorem 3.5].) Let F be formaily real and 
let (p be a form over F. Then P £ Xp extends to an ordering on F(<p) if and only if 
<p is indefinite with respect to P, i.e., |sgnP <p\ < dim <p. In particular, if K is a generic 
splitting field as defined above then P £ Xp extends to an ordering on K if and only if 
| sgnPv| < 1. 

Here, aV> C <p means that aV> is a subform of ip, i.e., there exists r £ WF such that 
<p ~ ai/> -L T. We will use this notation frequently. Also, D(<p) = {x £ F | (x) C <p} 
dénotés the set of non-zero elements in F which are represented by <p. 

The last resuit we shall mention will play a most crucial rôle in our investigations. It 
is the Linked Group Theorem (we will refer to it as LGT) and was proved in [ELW 3, 
Theorem 2.1]. 

Theorem 2.5 (Linked Group Theorem.) Let {/?,} C PnF generate a linked group $ of 
Pfister forms over F. Let E/F be a field extension and let L = E({pi}). Then 

$ Ç Y,PiWE Ç W(L/E). 
i 

Moreover, if ip £ PnE then if) £ W(L/E) if and only if there exists p £ $ such that 
V> PE-

Our version here is a touch more général than the original one in which only the case 
E = F was considered. However, only very minor modifications of the original proof are 
needed to yield the present form of the theorem. 

3 Two lemmas 

Lemma 3.1 Let F be formaily real and n-linked. Let Y C Xp be clopen and let E/F be a 
field extension such that each P € Y extends to E. Let <p € WF such that cpp £ PnE. Let 
{*•<»} C PF and suppose that <pE({-Ka}) = Then there exists * £ PnFr\Y^TraWFnGPnF) 
such that sgnp <p = sgnP TT for ail P £ Y. 

Proof. If <pE is hyperbolic then sgnPip = 0 for ail P £ Y and we can choose TT £ PnF 
to be hyperbolic. So suppose ipE is anisotropic. Now dim y? = 2n and ^ ( ^ j ) = 0. 
Thus, we may assume that {îra} is finite and ail ira are of fold < n. So let {jra} = 
{pi, • • •, pr, ai, • • •, <rs} with r + s > 0, pi £ PF of fold < n — 1, and crj £ PnF. We define 
a tower of fields E = Lo Ç L\ Ç • • • Ç Lr = L Ç M by i,- = Z,_1(p,) for 1 < i < r and 
M = L{a\, • • •, <ts). 

Now <pL £ W(M/L) fi PnL. Since F is n-linked, LGT implies that there exists a £ 
PnF H OiWF with (pL ~ <tl- It is clear by our assumptions that sgnP ip, sgnp a £ 
{0,2n} for ail P € F . Let — V -L -<r over F. Then |sgnPV>| £ {0,2n} for ail P G y 
as well. Since F is SAP (recall that F is n-linked !), we can choose x £ F such that 



sgnFa;V € {0,2"} for ail P € Y. Note also that if)E € W(L/E). Let now Z = {P G 
Y | sgnP xrj) = 2"}, Y0 = 0, and for 1 < i < r let 

Yi = {P G Z \ (Yo U • • • U y;_i) I pi is definite at P} . 

Then P £ Z extends to but not to Li iff P G Y,. Since V>L = 0, no P G Z can extend to 
L. Hence, Z is the disjoint union of the Yî's. Let now G F and r,- ~ ((1, • • •, 1, /,•)) G P P 
be such that r, ®pi G PnF, r,- is definite for ail P G Yi and torsion for ail P G Xp\Yi. Such 
ti's exist as P is SAP and the Yi are clopen sets. One readily checks that sgnp r, ®/),- = 2n 

for ail P G YI and 0 for ail P G XP \ YI. Hence, 

^ ^ f 2n for P G Z 
s g n p X > ® p , = j Q forP6XFU 

and thus sgnp r» ® Pi = s ë n P ^ for ail P G y . Hence, 
r 

sgnp v? = sgnp(<r + ^ xrt ® /o,) for ail P G y . 
t=i 

Since P is n-linked, there exists x G P n P with a + XTi ® Pi = * (mod / n + 1 P ) . In 
particular, this yields sgnpip = sgnP x (mod 2n + 1) for ail P G Y. In fact, sgnP(p = 
sgnp x for ail P G Y because sgnp <p, sgnp x G {0,2n}. It is now easy to conclude, using 
that P is n-linked, that x G CTWF + H(T» ® Pi)WF. Moreover, n-linkage readily implies 
that 

r s 

7T = X) X'T> ® /»< + E ^ ^ X^a^P 0 GPnF) 
i=i i=i 

for suitable a;,-, yj G P. • 

Lemma 3.2 le t P 6e formally real with ô(F) < 2n /or some n > 1. Le* G W F 6e 
anisotropic with max{û(P),2n - 1} < dim <p < 2n . Let {xa} C P P be a set of Pfister forms 
of fold > 1 and if = F({xa}). Suppose that <pK is isotropic. Then there exists an n-fold 
Pfister form x G YK^aWF fl GPnF) such that (p contains a Pfister neighbor of x. In 
particular, there exists ip G WF with dim ip < dim (p such that <px = in WK. 

Proof. Since û(F) < 2n we have that P is n-linked and SAP. Now let 0 < m < 2"_ 1 

such that dim <p = 2" — m. Since P is SAP, we may assume that after scaling we have 
sgnp ip > 0 for ail P G Xp. Let 

Yo = {P G Xp | sgnp (p = dim <p, i.e., (p is definite at P } 
Yi = {P G Xp j 0 < sgnp <p< m} 

As P is SAP, there exists tp' G WF, dim <p' = m, such that sgnp <p' = m (resp. sgnp (p' = 
- s g n P f o r ail P G Y0 (resp. P 6 Y\). Let 7 ~ (p 1 (p1. Then dim7 = 2n and we have 

f 2" for ail P G Y0 
S g n ^ 7 = \ 0 for ail P G Y\ 

Again by the SAP property, there exists r G P n P such that sgnpr = sgnp 7 for ail 
P G YQ U YI = Y. Let E be the generic splitting field of r _L - 7 . Since T L — 7 has 
signature 0 at each P G lo U Yi = Y, it follows that each P G Y extends to E (see 



Proposition 2.4(iv)), and we a!so have TE û* JE € PnE. Let L = £({7ra}). Now <pK and 
hence 7k is isotropic. Thus, 7 l — tl^ PnL is hyperbolic as K C L. By Lemma 3.1, there 
exists 7T € Yli^aWF n GPnF) such that sgnP 7 = sgnP jt for ail P G Y. Hence, using that 
m < sgnP <p < 2n - m for ail P G Xp \ Y and that sgnP jr € {0,2n} for ail P, we get 

for ail P G Y 1 1 1 M ^ / m for ail P € |sgnP(y, 1 < | 2„ _ m _ ! o t h e r w i g e 

Now m < 2n — m = dim and «(F) < dim (p and we get by Lemma 2.1 

dim(y> J. — Tr)^ < max{2n — m — 1, «(F)} < dim <p . 

Hence, iw{<P -L — *) > § dim r which implies that (p contains a subform of 7r of dimension 
> 2 n _ 1 + 1, i.e., <p contains a Pfister neighbor of JT. 

The remaining statement of the lemma follows readily by putting ip ~ (<p _L —fl")an 
because wk = 0. • 

4 Amenabi l i ty and excellence results 

Théo rem 4.1 Let n > 2. Let F be an n- linked field with I?+1F = 0. Suppose that 
InF = JnF. Then F is co-n-amenable. 

Proof. Let n C U r > n PTF, i-e., n is a set of Pfister forms of fold > n over F. Let 
9 = 12wai*WF- For m > n let n m = {TT J TT G U „ < r < m PrF D n}, i.e. Um consists 
of ail Pfister forms in n of fold < m. Let 3 m = £ir€nm ^WF. We obviously have 
^ = Um>n ^m- Let K = F(II). We have to show that W(K/F) = 3 . 

Clearly, 9 C W(K/F). So let V G W(K/F) be anisotropic. Since K is obtained by 
taking the function field of forms of dimension > 2n and since becomes hyperbolic over 
K, it follows from [K 1, Proposition 6.11] that the degree of V> has to be > n, i.e. tp G JnF. 
By assumption, we then have that ip G InF. By [E, Lemma 4.4], there are forms a,- G Pi F 
and 2 ,6 F, n < i < r for some r > n, such that 

r 

V> = ZiGti in WF. 
t'=n 

It follows immediately from [ELW1, Lemma 1.3] that a,- G W(K/F) for n < i < r. 
However, as dima,- = 2* we must already have that a, becomes hyperbolic over F(II,). 
Now for i = n we know that n„ generates a linked group of Pfister forms because F is 
n-linked. It readily follows from LGT that an G 

Now if ail a, = 0 in WF for i > n then we are done. So suppose i > n and a,- ^ 0. 
Then a,- G Pi F is anisotropic, and because I\F = 0 by assumption we necessarily have 
that F is formally real. Also, F is i-linked because it is n-linked. Thus, we can apply 
Lemma 3.1 to conclude that there exists a form G f~l Pi F such that sgnP a,- = sgnP fi 
for ail P G Xp. Now the form a,- _L ~/3 is in PF because ai, fi G PF, and it has signature 
0 at each ordering of F. Hence, ai ± —fi G PtF = 0. It follows that a,' = /? in WF and 
thus a,- G 9,. Therefore, 

r r 

>=n i = n 



Corollary 4.2 Let n > 2 and suppose that InF = JnF. Then F is co-n-amenable if F 
satisfies one of the following conditions : 

(i) F is (n - l)-linked. 
(ii) û(F) < 2n + 2n~1. 

(iii) F is SAP and / t
n F = 0. 

(iv) F is SAP and « (F) < 2n . 
(v) F is n-linked and u(F) < 2 n + 1 . 

In particular, if F satisfies any of these conditions and if n < 4 then F is co-n-amenable. 

Proof. In order to apply the previous theorem we have to verify that F is n-linked and 
I?+1F = 0. In (i), this follows from [EL 2, Lemma 2.3, Cor. 2.8]. It is clear that in the 
remaining cases I?+1 F = 0. F is n-linked in (ii) and (iii) by Lemma 2.2. One readily 
sees that (iv) implies (iii). F is n-linked in (v) by assumption. Finally, if n < 4 then, as 
mentioned in the introduction, one has InF = JnF which then implies the last statement. • 

It is well-known that if û(F) < 2" then InF = JnF (see, e.g., [AK, Lemma 2], or [F, 
Lemma 4.8]). The above then implies that if û(F) < 2n then F is co-n-amenable. We do 
not state this here as another corollary because below we will prove stronger results under 
the assumption that û(F) < 2" (Theorem 4.4 and corollary). 

Example 4.3 Let F = Q((f)) be the Laurent sériés field in one variable over the ratio-
nal numbers. F is easily seen to be 4-linked, the only anisotropic 4-fold Pfister forms 
being ((1,1,1,1)) and «1,1,1 ,±t)). Also, by Springer's theorem, u(F) = 2u(Q) = 8. 
By Corollary 4.2, F is co-4-amenable. Note that û(F) = oo as for example the form 
(1, - 2 ) ± (n x (t)) is t.i. and anisotropic for each n. 

Before we state our next main resuit, we will fix some notation. Let {<r,} C PF be a 
set of Pfister forms of fold < n — 1, let {pj} C PF be a set of Pfister forms of fold n, and 
let {fl-fc} C PF be a set of Pfister forms of fold > n + 1. Let 

Ki = F({<r,-}) 
K* = F({<n},{Pi}) 
Kz = F({*ih{Pi},{*k}) 

and let 
% = £ , OiWF 

= ZiViWF + EjPjWF 
= E , + E j PjWF + J2k irkWF . 

Clearly, KXCK2C K3, 3 i C 3 2 C and 3 m C W(Km/F) for 1 < m < 3. 

Theorem 4.4 Suppose û(F) < 2". 
(i) If K2IF is excellent then K$/F is excellent. 

(ii) IfW(K\/F) = 3X then W(K3/F) = 

Proof. (i) We have to show that if v? € WF is anisotropic and IPX3 is isotropic then 
(<PK3 )an is defined over F. 

If dimy> < 2", then by the Anisotropy Criterion <p must become isotropic already over 
K2. AS K2/F is excellent there exists an anisotropic /Z £ WF with /I/F2 ~ IT 



follows again from the Anisotropy Criterion that hk2 stays anisotropic over K3. Therefore, 
fiK3 — (<PK3)*a and we are done. 

Now if dim <p > 2n then by Lemma 3.2 there exists rp G W F with dim V> < dim (p such 
that <pKs = if)K3 in WK3. The assertion now follows easily by using induction on dim <p. 

(ii) We want to show that W(K3/F) = S3 . So let <p G W(K3/F) be anisotropic. If 
dim <p < 2N we already must have ip G W(K\/F) = C because anisotropic forms of 
dimension < 2" cannot become hyperbolic over the function field of forms of dimension 
> 2N by the Cassels-Pfister subform theorem. So we are done in this case. 

So suppose dimy> — 2n. If dim(<^^-1)an < 2n we already have (pKl = 0 by the same 
argument as above. Again, <p G W{K\/F) = C §3. So suppose dim(<^,)an = dim (p = 
2n. As K3/K1 is obtained by taking function fields of forms of dimension > 2n, we must 
have deg <pKl > n because <pKî = 0 (see [K 1, Proposition 6.11]). But dim <pKl = 2" and 
thus <pKl G GPnK\. After possibly scaling, we may assume that <p represents 1 over F and 
thus over K\. Hence, <pKl G PnK\. Now <pKî is hyperbolic. It is immediate that therefore 
<Pk2 is already hyperbolic as K3 is a function field extension of forms of dimension > 2n + 1 

over K2. Hence, 
<PKl e W(K2/Kl)nPnKl. 

Now K2 = Ki({Pj}), and as F is n-linked because û(F) < 2n, we have that {pj} generates 
a linked group on n-fold Pfister forms over F. Thus, by LGT, there exists 7r G PnF H 
(EPiWF) such that -kkx — <Pki- particular, 

<p 1 -X G W(Ki/F) = SI . 

Thus, <p G » ! + ZpjWF C 3 3 . 
Now if dimy> > 2n and <pKs is hyperbolic then, by Lemma 3.2, there exists 1r G 

$3 n GPF such that for V> — (<£> -i- -n")an we have dim V* < dim (p. As 7r G ^3 C W(K3/F) 
we have = <Pk3 ~ w k 3 = 0 in WK3. Using induction on dimension we conclude 
that if> G and thus <p Ç $s3 because <p = ^ -L T in WF. • 

Corollary 4.5 Let û(F) < 2". Then the following holds. 
(i) F is co-(n + 1 )-Pfister excellent. If F is n-Pfister excellent then F is Pfister excel-

lent. 
(ii) F is co-n-amenable. If F is (n — l)-amenable then F is amenable. 

We can improve on the above results if we assume that the Hasse number is small 
enough. These improvements are achieved by invoking well-understood properties of forms 
of small dimension. In particular, we have the following theorem. 

Theorem 4.6 (i) If û(F) < 2 then F is Pfister excellent. 
(ii) Ifû(F) < 4 then F is co-2-Pfister excellent. 

(iii) Ifû(F) < 4 and F is 1-amenable then F is Pfister excellent. 
(iv) If û(F) < 6 then F is co-Z-Pfister excellent. 
(v) If F is linked then F is co-3-Pfister excellent. 

Our proof of parts (i)-(iii) will be shorter than the one given in [ELW 3] although some 
of our arguments will be in a similar spirit. To prove parts (iv) and (v), we will need the 
following resuit. 



Proposition 4.7 Let {pi} C P3F generate a linked group $ of 3-fold Pfister forms over 
F and let K = -F({^>,}). Let tp G WF be anisotropic and suppose that one of the following 
conditions is satistied. 

(i) dim ip < 6; 
(ii) dim <p = 7, or dim <p = 8 and (p G I2F, and in addition c(<p) G BrF can be 

represented by a single quaternion algebra, i.e., c(<p) = (x,y)E in BrF for some 
x,yeF; 

(iii) F is linked and dim <p < 8. 
Then <px is isotropic if and only if there exists x G $ such that tp contains a Pfister 
neighbor of x. 

Proof. It clearly suffi ces to show the "only if"-part. By the Anisotropy Criterion we must 
have dim <p > 5 for <pK to be isotropic. If dim <p < 6 the above statement was essentially 
shown in [H 3, Corollary 4.2] in the case of a function field of a single 3-fold Pfister form. 
The above more général statement can be shown in a similar way after invoking LGT and, 
at a certain point, the fact that anisotropic 6-dimensional forms in 12 stay anisotropic 
over function fields of forms of dimension > 7 (see, e.g., [L3, Theorem 4.3]). We leave it 
to the reader to fill in the détails. 

(ii) has been shown in [H 5, Theorem 4.5, Corollary 4.6]. 
Finally suppose we are in the situation of (iii) and let us assume that (pK is isotropic. 

If dimv? < 6 we are done by part (i). So suppose dim <p = 7 or 8. As F is linked there 
exist x,y G F such that c{<p) = (x,y)E G BrF. If dimv? = 7, or if dimv? = 8 and 
cp G I2F the resuit then follows from (ii). So let us assume that dim = 8 and that 
d = d±<p / 1 Ç F/F2. Let E = F(y/d). Suppose that <pE is isotropic. Then there 
exist z £ F and a G W F such that (p ~ a _L z(l,—d). This yields d±a = 1, i.e., a is 
a 6-dimensional form in I2F. But over a linked field 6-dimensional J2-forms are always 
isotropic, a contradiction to tp being anisotropic. Hence, ipE is anisotropic. 

Let L = E(((—x,—y))). If ((—x, —y))E is isotropic then L/E is purely transcendental 
and (p stays anisotropic over L. If ((—x, —y))E is anisotropic then obviously ((—x, —y))i = 0 
or, equivaiently, (x,y) i , = 1 in BrL. Thus, <pL G I3L, and as dim tp — 8 we have tpL g 
GPzL. Suppose (pL is isotropic. Then in fact <pL = 0, i.e., ipE G W(L/E) and there exists 
a form r G WE, dimr = 2, such that (pE ~ t ® ((—x, -y))E. In particular, <pE G GP3E 
and thus c(ipE) = 1 = (x,y)E in BrE, which in turn implies that ((—x,—y))E = 0, a 
contradiction. Hence, ip^ G GP$L is anisotropic. We may assume that <p represents 1 
over F and thus, tpL G P3L. Now clearly <pL becomes isotropic and hence hyperbolic over 
L({pi}). By LGT, there exists 7r G $ such that <pL ~ 1tl- AS F is linked we have û(F) < 8 
(cf. [E, Theorem 4.7]). As F is SAP there exists a £ F such that |sgnP(y> 1 -air)\ < 8 
for ail P G XF- Let ^ — {<P -L — W e then have dim ^ < max{û(i;i), |sgnp(y3 L 
—a7r)|; P G XE} < 8. 

Suppose dim tp = 8. We have d± V = d±(ip L — ir) = d±ip = d and c(V0 = c(ip ± —ir) = 
c(<p) = (x,y)p. By the same argument as before, we see that ipL is anisotropic. But 

%j)L = <pL 1 -axx, = 7T£, 1 -aitL in WL. 

Comparing dimensions, we see that •kl -L —ÛTL G P4L is isotropic and hence hyperbolic, 
which in turn implies that Vi = 0 in WL, a contradiction. Hence, dimV> < 8, i.e., 
dimV> < 6. Then we have iw(<P -L — ÛTT) > 5 and there exists x G WF with dimx = 5, 
X C <p and x C aw, which concludes the proof. • 



An analogous resuit to that in (ii) also holds if (p G I2F, dimy> = 8, and c(<p) = 
(XIV)F ® (UIV)F in BrF, where x,y,u,v G F (i.e., c((p) can be represented by a bi-
quaternion algebra in BrF, or equivalently, ind c(<p) < 4). This follows easily from [Lag, 
Théorème 2(iv)] after a minor modification of the proof given there. If (p G I2F and 
dim ip = 8 then one easily shows that ind c(tp) < 8, and if it is 8 then <p is necessarily 
anisotropic and it follows from Merkurjev's index réduction theorem [M] that <p will stay 
anisotropic over function fields of 3-fold Pfister forms. If dim ip = 8 and d±<p ^ 1, then 
the above conclusion generally fails to be true as follows from Izhboldin's results in [I], see 
also [H 6]. 

Proof of Theorem 4.6. Let n = 1 in (i), n = 2 in (ii) and (iii), and n = 3 in (iv) and (v). 
We then have û(F) < 2n. By the définition of (co-n) Pfister excellence and after invoking 
Theorem 4.4 it suffices to show that if {p,} C PnF (resp. {/>,} C Pi F U P2F in part (iii) ) 
and if K = F({/>,}) then K/F is excellent. To show this, let *p G WF be anisotropic and 
suppose that <pK is isotropic. If dim <p > u(F) then, by Lemma 3.2, there exists V* € WF 
with dim tp < dim V such that ipx = <pK in WK. Hence, it suffices to show that if <p G WF 
is anisotropic with dim v? < Û(F), and if <PK is isotropic then there exists IP G WF with 
dim ip < dim (p such that ipx = <PK iQ WK. This then establishes the excellence of K/F. 

Now if dim <p < 3 or <p G GPF then for any field extension K/F we have that {<Pk)»h 
is defined over F. We thus are done with (i). To establish (ii) (resp. (iii) ), it suffices 
to consider an anisotropic form <p ~ (d, a, 6, ab) G WF with <px isotropic and show that 
(Vi<-)an is defined over F. If <pK = 0 there is nothing else to show, so we may assume 
d K2. First, consider (ii). Since û(F) < 4, the {p,} C P2F form a linked group $ 
of 2-fold Pfister forms. Now over E = F(y/d) we have <pE G P2E. Clearly, <p becomes 
isotropic and hence hyperbolic over £({/>,} and by LGT there exists p ~ ((u, v)) G $ such 
that (pE ~ pe- But then also <pE ~ (d,a,b,ab)E ~ (d,u,v,uv)E and by [W, Theorem 7] 
it follows that (p and (d, a, b, ab) are similar over F. In particular, (p contains a subform 
similar to (u, v, uv) which is a Pfister neighbor of p G $ C W(K/F). Thus, for suitable 
x E F and with — (<P -i- £/>)an we get dim IP = 2 < dim <p and V'jf = <PK -1- XPK = <PK iQ 

WK, and we are done. 
To prove (iii), let <p ~ (d, a, b, ab) be as above with <pK isotropic but not hyperbolic, so 

that again d £ K2 and <pK is similar to (1, —d)K. Over L = K(( 1, — d)) = F{{pi), {1, — d)) 
we have ipL = 0. We know from Corollary 4.5 that F is amenable. Thus, there are 
r , Ti G WF such that <p = r,- ® pi + r <gi (1, - d ) in WF. Now over K we have <pK = 
tk ® (1) —d)i( in WK, and as d £ K2 we must have that dim r is odd. Choose b £ F such 
that r 1 (-b) G I2F. We then get that (r 1 (-b)) ® {1, -d) G IZF. Thus, 

(<p L -6(1, -d))K = (r ± {-b))K ® (1, -d)K G I3K . 

But dim(<p 1 -b( 1, - d ) ) = 6 and therefore, APH implies that (ip L -6(1, ~d])K = 0 and 
thus <pK = 6(1, —d)K in WK. (iii) now follows. 

If û(F) < 6 then F is 3-linked and therefore {p,} C P3F generates a linked group $ of 
3-fold Pfister forms. In this case, it suffices to consider the case dim <p < 6. By invoking 
Proposition 4.7(i), we can conclude that there exists w G W(K/F) ("I GP3F such that 
IF) ~ ((P I. — ÎT^ has dimension < 4. But then I\>K stays anisotropic (its dimension is < 4 
and K is a function field of forms of dimension 8 !). Clearly, i[)k = <px and the anisotropic 
part of <pK is therefore defined over F by ipx. This establishes (iv). 

In (v), excellence of K/F follows in a similar manner from Proposition 4.7(iii). • 



Corollary 4.8 Let F be a field such that u(F) < 6 or F is linked. Then F(x)/F is 
excellent for any Pfister form n over F. 

5 i f - m i n i m a l forms 

Let K/F be a field extension. In [H 1], the notion of a A-minimal form has been intro-
duced. A form <p over F is said to be A'-minimal if ip is anisotropic, ipK is isotropic, and 
t)k is anisotropic for any subform 17 C <p with dim rj < dim <p. In général, the character-
ization of A'-minimal forms seems to be a rather difficult problem so that it is already 
quite desireable just to have some information on bounds for the dimensions of A'-minimal 
forms. This leads to the définition of the following two invariants tmikX and t n ^ of the field 
extension K/F which have been introduced in [H 1] : 

tmax{KlF) = sup{dim <p \ <p G WF is A-minimal} 
tmin(K/F) = min{dim (p \ ip G WF is A-minimal} 

We put tnàa{KIF) = tmax(K/F) = 1 if there are no A'-minimal forms, i.e., if ail anisotropic 
forms over F stay anisotropic over A. 

Our interest is focused on the case where K/F is a Pfister extension. As an easy 
example, let p ~ (1, —d) G P\F be anisotropic and let A = F(p) = F(y/d). Then the 
A-minimal forms over F are exactly the forms similar to p. In particular, t^^K/F) = 
tm*x(K/F) = 2 (see [L 1, Ch.VII, 3.1], or [S, Ch.2,5.1]). The situation is considerably more 
complicated in the case where A = F(p) with an anisotropic p G P2F. A characterization 
of A'-minimal forms in this case can be found in [HLVG], and in [HVG] it has been dealt 
with the question how properties of F might affect tm&x{K/F). In particular, an example 
of a field F and an anisotropic p G P2F has been constructed such that tm&x(K / F) = 00. 

Generally, very little is known regarding A-minimal forms when A = F(p) for an 
anisotropic p G PnF if n > 3. In these cases, we do not even have that K/F is excellent 
in général. In [I], beside these non-excellence results one can also find examples of such 
F and p where there exist 2"-dimensional A'-minimal forms. These examples have been 
generalized in [H 6]. 

We do have the following. 

Theorem 5.1 Let 0 ^ {p,} C PnF be a set of anisotropic Pfister forms and let L = 
F({/>,}). Let K/L with t ^ K / L ) = 1 or t ^ K / L ) > 2""1 + 1. Then t ^ K / F ) = 
2 n _ 1 + 1. Furthermore, if the set {p,} generates a linked group $ of n-fold Pfister forms 
then an anisotropic form (p G WF with dim (p = 2" - 1 + 1 is K-minimal i f f cp is a Pfister 
neighbor of some p G In particular, if{pi} = {/>} is a singelton set then the K-minimal 
forms of dimension 2 n _ 1 + 1 are exactly the Pfister neighbors of p of dimension 2 n _ l + 1. 

Proof. Any anisotropic form ip over F of dimension < 2 n _ 1 + 1 which becomes isotropic 
over A must already becomes isotropic over L. By the Anisotropy Criterion we have 
tmin(L/F) > 2" - 1 -1- 1 and thus t ^ K / F ) > 2 n _ 1 + 1. However, clearly any Pfister 
neighbor of dimension 2 n _ 1 + 1 of any Pfister form in {p,} becomes isotropic over K. 
Hence, t ^ K / F ) = 2n"x + 1. 

To show the second part of the theorem, it suffices to show that if (p G W F is anisotropic 
and dim <p = 2 n _ 1 + 1, and if <pK is isotropic, then (p is a Pfister neighbor of some p G 
So let y? be as above. By the above, <p already becomes isotropic over L = F({p,}). In 
[H 4, Theorem 3], it was shown that if {/>,-} = {/>} is a singelton set then </>L being isotropic 
implies that (pis a, Pfister neighbor of p. The proof of this statement given in [H 4] readily 



carries over to the général case using the assumption that the set {/>,} generates a linked 
group of Pfister forms and then invoking LGT. This then leads to the desired conclusion 
that there exists /> G $ such that ip is a Pfister neighbor of p. We omit the détails. • 

This theorem applies in particular to the situation where K = F({pi}, {x,}) with 
{xj} C PF a set of anisotropic Pfister forms of fold > n. In this case, K = L{{xj}) and 
the Anisotropy Criterion implies that either tmïn(K/L) = 1 or tmxn{K/L) > 2n . 

Remark 5.2 Suppose the p,-'s in the above theorem generate a linked group of Pfister 
forms. If n = 2, one can show that there are no 4-dimensional minimal forms (this is 
implicit in our proof of Theorem 4.6(ii) ), and if n = 3, it follows from Proposition 4.7 
that there are no 6-dimensional minimal forms. But as mentioned above, there can be 
8-dimensional minimal forms. 

The next theorem provides upper bounds for a Pfister extension K/F under the addi-
tional assumption that û(F) < oo. 

Theorem 5.3 Let k > 1 and let {x a } c PF be a set of anisotropic Pfister forms of 
dimension < 2k such that {x a } n PkF jé 0. Let K = F({7ra}). Then tm&x(K/F) < 
max{û{F),2k + 1}. 

Furthermore, if {7ra} n P^F = {p} is a singleton set then tmax(K/F) < max{û(F), 
2*"1 + 1}. 

Proof. We clearly may assume that ù(F) < oo, say û(F) < 21 for some l. We also may 
assume that F is formaily real because otherwise there are no anisotropic forms over F of 
dimension > û(F). 

Let <p G WF be anisotropic with dim <p > û(F) and <pK isotropic. Then by Lemma 
3.2, (p contains a Pfister neighbor 7 of dimension 2 n _ 1 + 1 of some tt G PnF n W(K/F) 
for some n > 1. Obviously, f x is isotropic because xk — 0- To show the first part of 
the theorem, it therefore suffices to show that if n — 1 > max{fc,^ — 1} then 7 is not 
/f-minimal. 

So let n - 1 > max{fc,^ — 1}, let n e PnF n W(K/F) be anisotropic and let 7 be a 
Pfister neighbor of ir. As û(F) < 00 we have that F is SAP, so we may assume that after 
scaling we have sgnp 7 > 1 for ail P G Xp (note that dim 7 is odd because n — 1 > 1). By 
Lemmas 3.1 and 3.2, there exist an integer r > 0, U € F, pi G {xa}, 1 < i < r, such that 
for Ti ~ ( (1, . . . , 1, /,-)) G Pn-m(i)F (where m(i) < k dénotés the fold of />,), we have that 

r 

x = (mod In+1F) . 
i=l 

Note that n - m(i) > n - k > 2. Thus, let fi ~ ((1, . . . , 1,*,-)) G Pn-m(i)-iF so that 
Ti ~ ((1)) ® fi. As û(F) <2l < 2 n _ 1 , we have that F is (n — l)-linked. Hence, there exists 
# G Pn-\F such that 

r 
7T = fi ® Pi ( m o d ^F) • 

«=1 
We observe that iïK = 0 (mod JnK). Thus, by APH, jrK = 0, i.e., jr G Pn-iFnW{K/F). 
Now sgnp(tv ® pî) = sgnp(((l)) (g) ft- ® pi) = 2sgnp(f,- ® p,) for ail P G Xp, and one easily 
checks that therefore 

sgnp 7r = 2sgnp x for ail P G Xp. 



In particular, 7 is indefinite at P (i.e., 1 < sgnp 7 < 2 n _ 1 — 1) iff sgnp ir = 0 iff sgnp jf = 0, 
and 7 is definite at P (i.e., sgnp 7 = 2" - 1 +1) iff sgnp t = 2n iff sgnp # = 2 n _ 1 . It follows 
immediately that 

|sgnP (7 1 - f ) | < 2 n _ 1 - 1 for ail P € Xp, 

and since û(F) < 2 n _ 1 it follows from Lemma 2.1 that dim(7 ± —îrj&n < 2 n _ 1 - 1 (recall 
that n > 2 and thus dim(7 ± — jr) is odd). Comparing this with the dimension of 7 J_ - f 
itself, we get for the Witt index iw(j -L — > 2 n - 2 + 1. It follows that 7 contains a 
Pfister neighbor 7 of f with dim 7 = 2"~2 + 1 < dim 7. 7k is isotropic because iïx — 0 
and we conclude that 7 is not if-minimal. 

To prove the remaining part of the theorem, let now {jra}nPfcP = {/>}. Let 1r G PnPrï 
W(K/F) and let 7 be a Pfister neighbor of 7r with dim 7 = 2 n _ 1 + 1. Again, we assume 
that sgnp 7 > 1 for ail P G Xp. By a similar reasoning as above, in order to establish that 
tm*x(K/F) < max{û(P), 2* - 1 + 1}, it suffices to show that if n - 1 > max{fc - - 1} 
then 7 is not if-minimal (as before, £ is such that û(F) < 2'). 

So let us assume that n — 1 > max{A; — 1,1 — 1}. In fact, if n — 1 > k then the above 
proof of the fîrst part of the theorem carries over without any changes. Hence, we assume 
from now on that n — 1 = k and thus necessarily k > t. Again, let us write 

r 
7T = Ti ® Pi (mod / n + 1 F) 

«'=1 

with Ti, pi, and also U and m(i) as above. If m(i) < k — 1 for ail 1 < t < r then the proof 
given above for the first part of the theorem also applies in this situation and we are done. 
So we may assume that at least one of the p, 's has fold k. By the proof of Lemma 3.1, we 
may also assume that the s are pairwise non-isometric. Since there is only one fc-fold 
Pfister form p in {îra}, we may therefore assume that pr ~ p, m(r) = k, and m(i) < k — 1 
for 1 < i < r — 1. We put tT = t and get that r r ~ ((t)) (recall that n - 1 = k and thus 
n - m(r) = n - k = 1). We now define the following clopen sets in Xf • 

Y = {P € Xp | T is definite at P} 
Yi = {P G Y | p is definite at P and / < P 0} 
Y2 = {P G Y | p is definite at P and t >P 0} 
y3 = {P G Y | p is indefinite at P}. 

Comparing signatures, one easily checks that 

sgnP((t))®p=^ 2„ . { p € Y 2 

and 
^ ^ / 2" (mod 2n + 1) i î P e Y t U Y s 

s g n p g r , ® ^ = | Q ( m o d 2 „ + 1 ) if p G Y2. 

Let Zi = {P G Yi | ti >P 0} for 1 < i < r - 1 and let x{ G F such that n < P 0 if P G Zi 
and Xi >P0 iîP i Zi. Finally, let f,- ~ ((1,.. G Pn-m(i)-iF for 1 < i < r - 1. One 
readily concludes that for 1 < i < r — 1 we get 

/ 0 if P G Y1 

sgnp r ;® | s 6 n p r» ® Pi if Pi Y, 



and furthermore 
_ / 2 n _ 1 if P G l i 

S g n p / , - \ | s g n P((t))®p if P eY\Yi. 
As F is (n — l)-linked, there exists x € Pn-\F with 

r - l 
x s £ fi ® Pi + P (mod FF) . 

i=i 

We note that x G Pn-iF D W(K/F). Comparing signatures modulo 2n , one readily 
concludes that for ail P G 7 we have sgnpf = ^sgnp x = 2 n _ 1 = 2*. Similarly as 
above, we see that sgnp 7 = 2 n _ 1 + 1 ifF sgnpx = 2n, i.e., x is definite at P, which 
by définition means that P G Y and thus sgnp x = 2 n _ 1 . As sgnp x G {0,2 n - 1} and 
1 < sgnP 7 < 2 n _ 1 - 1 for ail P g Y, we get 

|sgnP (7 J_ - x ) | < 2 n _ 1 - 1 for ail P G 

Using the same reasoning as before, there exists a Pfister neighbor 7 of x of dimension 
2«-2 j ^ j j .y ç -y. is isotropic because îtk = 0, and dim 7 = 2 n - 2 + 1 < dim 7 = 
2" - 1 + 1, which yields that 7 is not Jif-minimal. • 

Corollary 5.4 Let F be linked and w G PnF be anisotropic. Let K = F(ir). Then the 
K-minimal forms are exactly the Pfister neighbors of k of dimension 2 n _ 1 + 1. 

Proof. The case n = 1 has been mentioned before (and we don't need F being linked in 
this case). The case n = 2 was first proved in [Hl, Theorem 4.5.2], a simplified proof 
can be found in [HLVG, Prop. 4.4]. If n > 3 the statement follows from the fact that 
if F is linked then û(F) < 8 and by invoking Theorems 5.1 and 5.3. Finally, if n = 3 
then Theorem 5.3 implies that any /^-minimal form has dimension < 8. However, any 
anisotropic form over F of dimension < 8 which becomes isotropic over K contains a 
Pfister neighbor of ir of dimension 5 by Proposition 4.7, which complétés the proof. • 

6 Characterization of K-minimal forms 

In the previous section, we have provided certain bounds for the dimensions of if-minimal 
forms for Pfister extensions K/F and found an exact lower bound in ail cases, and upper 
bounds under the assumption that û(F) < 00. We now will give a précisé description 
of if-minimal forms for Pfister extensions K/F where û(F) < 00 and where the Pfister 
forms involved are of "suitably" large dimension. 

It follows easily from the définition of if-minimal forms that anisotropic Pfister forms of 
fold > 2 can never be if-minimal for any field extension K/F. This is simply because if 7TK 
is isotropic then * k is hyperbolic and any subform of x of dimension 2 n _ 1 +1 < 2" = dim x 
will be isotropic over K. Nevertheless, we will define a version of if-minimality for Pfister 
forms which will be useful later on. 

Définition 6.1 Let K/F be a field extension. Then x G PnF, n > 1, is a Pfister K-
minimal form if the following three conditions are fulfilled : 

(i) x is anisotropic over F. 
(ii) tïk is isotropic and hence hyperbolic, i.e., x G W(K/F). 

(iii) For any a G PmF with <r C x and m < n we have that OR is anisotropic. 



One easily sees that to check whether condition (iii) holds it suffices to check that it 
holds for m = n — 1. In this case (m = n — 1) and with a and x as above, there exists 
t G F such that x ~ a (g> ((*)). 

We would like to describe the if-minimal forms for some of the Pfister extensions 
K/F dealt with in the previous sections. It turns out that they will be Pfister neighbors. 
Indeed, they will be Pfister neighbors of Pfister if-minimal forms. The following lemma 
relates if-minimal forms which are Pfister neighbors and Pfister if-minimal forms. The 
assumptions are in a way so that they apply directly to the cases we consider. 

Lemma 6.2 Let F be formaily real with û(F) < 2n. Let K/F be a field extension such that 
K-minimal forms are always Pfister neighbors. Let x G Pn+iF fl W(K/F) be anisotropic 
and let ip be a Pfister neighbor of v. Then the following statements are équivalent. 

(i) <p is K-minimal. 
(ii) dim <p = 2n 1 and x is Pfister K-minimal. 

Proof. The case n = 0 is trivial. So let n > 1. Also, we may assume from the beginning 
that dim <p = 2n + 1. For if a Pfister neighbor <p of the (n + 1)-Pfister form x is isotropic, 
then x is hyperbolic and any subform of ip of dimension 2" + 1 is isotropic as well. 

(i)=»(ii). Suppose x is not Pfister if-minimal. Then there exist a G PnF, t £ F, 
such that crK = 0 and x ~ a ® ((*)). Let Y = {P G XF | sgnPa = 0} and Z = {P G 
XF | sgnP x = 0}. Note that Y C Z, and that sgnP a = 2n for ail P G XF \ Y and 
sgnP x = 2 n + 1 for ail P G Xp \ Z. As û(F) < oo, F is SAP and we may assume that 
after possibly scaling, we have sgnP ip > 1 for ail P G Xp (note that dim y? is odd). In 
particular, sgnP <p = 2" + 1 for ail P G XF \ Z and 1 < sgnP (p < 2n - 1 for ail P G Z. We 
get 

|sgnP(y> 1 —o)| < 2n - 1 for ail P G Xp. 

Hence, by Lemma 2.1 and with û(F) < 2n, it follows that dim(y> _L — a)m < 2n — 1 (note 
that dim(y> X —<r)M1 is odd). By comparing dimensions, we conclude that iwi f -L —f) > 
2"_ 1 + 1. Therefore, there exists x C o with dim \ — 2 n _ 1 + 1 such that x C <p. In 
particular, x ig a Pfister neighbor of <r, and because = 0 we have that xk is isotropic. 
But x C <p and dim x < dim a < dim <p which implies that tp is not if-minimal. 

(ii)=>-(i). As xjc = 0 we have that <pK is isotropic. If y is not if-minimal then there 
exists a if-minimal form ^ C ^ with dim x < dim <p = 2n + 1. By assumption, x itself 
is a Pfister neighbor. Thus, x is a Pfister neighbor of some r G PmF with m < n. Then 
XF(T) IS isotropic, hence also V'F(T) a n d therefore I"F(T) IS hyperbolic. We readily conclude 
that by the Cassels-Pfister subform theorem, r C x. Also, xk is isotropic and thus tk is 
hyperbolic. In particular, x is not Pfister if-minimal. • 

It should be noted that the assumption on F being formaily real with û(F) < 2n was 
only needed to show (i)=i>-(ii), and that the assumption on if-minimal forms being Pfister 
neighbors was only used to show (ii)=>-(i). 

Remark 6.3 There are examples of field extensions K/F where there exists a Pfister i f -
minimal form x which contains K-minimal forms of dimension < | dim x. For instance, let 
F be any field with an anisotropic 3-fold Pfister form x such that x contains a subform ip 
with dim V* = 4 and ip £ GP2F. Let K = F(tp). The only anisotropic forms of dimension 
< 4 over F which become isotropic over K are exactly the forms similar to V> (see, e.g., 
[H 2]). It follows that which is not a Pfister neighbor, is if-minimal, and that x is 



Pfister A'-minimal. (ii)7$-(i) in this case because no 5-dimensionaI subform of 7r containing 
ip will be A-minimal. Note that in this example, K/F is not excellent because V> is not a 
Pfister neighbor. 

Remark 6.4 If ail A-minimal forms are Pfister neighbors then one readily sees that K/F 
is excellent. However, the converse is not true in général. In [HVG], there is an example 
of a field F with an anisotropic conic p ~ (1 ,a,b) over F such that for A = F(p) one 
has t m a x (A /F ) = oo. In particular, by [HLVG, Corollary 3.4], there exist 7-dimensional 
A-minimal forms. Such a form cannot be a Pfister neighbor because if <p is an anisotropic 
7-dimensional Pfister neighbor over F with <px isotropic then it is an easy excercise to 
show that (p contains a subform similar to p and is therefore not A-minimal. Hence, there 
exist (7-dimensional) A-minimal forms which are not Pfister neighbors. On the other 
hand, K/F is known to be excellent (see the introduction). 

For the remainder of this section, we fix the following notations. 

m an integer > 1 
F a field (char F ^ 2) which fulfills the following: 

If m = 1 or 2 then û(F) < 2m . 
If m = 3 then û(F) < 6 or û(F) = 8 and F linked. 
If m > 4 then û(F) < 2 m _ 1 

n > m a set of n-fold anisotropic Pfister forms over F, possibly empty if 
n > m, but with ^ 0. 

the linked group of m-fold Pfister forms generated by {p,-"^}. 
&m the set {2 m - 1 H} consisting only of the hyperbolic m-fold Pfister form. 

n > m the set {ît <gi ((t)) | w € $ n _ i , t € F} of n-fold Pfister forms. 
n > m the linked group of n-fold Pfister forms generated by the sets and 

{p!n)}. 

Theorem 6.5 With the notations as above, let K = n > m). Let ip Ç WF be 
anisotropic. Then the following statements are équivalent. 

(i) <p is K-minimal. 
(ii) There exist n > m and w £ \ such that (p is a Pfister neighbor of dimension 

2""1 + 1 of*. 

Proof It follows from Lemma 3.2 and Proposition 4.7 (see also Remark 5.2 in the case 
m = 2), that any anisotropic form over F which becomes isotropic over A already contains 
a Pfister neighbor which becomes isotropic over A. In particular, A-minimal forms will 
always be Pfister neighbors. Now if y? is a Pfister neighbor of some n-fold Pfister form 
7r and if <p is A-minimal, then clearly dim <p = 2 n _ 1 + 1 and necessarily n > m by the 
Anisotropy Criterion. Thus, A-minimal forms are Pfister neighbors of dimension 2 n _ 1 + 1 
where n > m. 

The A'-minimal forms of dimension 2 m _ 1 + 1 are exactly the Pfister neighbors of 
dimension 2 m _ 1 + 1 of anisotropic Pfister forms in $ m (i.e., Pfister forms in $ m \ $'m) by 
Theorem 5.1. 



It remains to determine those Pfister neighbors of dimension 2 n _ 1 + 1, n > m, which 
are if-minimal. Note that û(F) < 2m < 2 n _ 1 . By Lemma 6.2, these are exactly the 
Pfister neighbors of dimension 2 n _ 1 -f 1 of n-fold Pfister if-minimal forms. It therefore 
suffices to determine Pfister if-minimal forms of dimension 2n, n > m. We have to show 
that 7T is Pfister if-minimal of dimension 2" iff x G \ 

One easily shows by induction and by invoking LGT that $ n C W(Kf F). Now let 
x e PnF n W(K/F). It follows immediately from Lemma 3.2 that x G $„. Thus, 
PnF n W(K/F) = $„. (This also holds for m because by LGT, $ m = PmF n W(K/F).) 
Suppose that TT € is anisotropic but not Pfister if-minimal. Then, by définition of 
Pfister if-minimality, there exist t G F and r G Pn-iFr\W(K/F) such that x ~ ((t)) ® r . 
By the above, r G Thus, x G Conversely, if x € then x ~ ((<)) ® r for some 
f € F and r € But then r € P n _ i f n W(K/F) which implies that x is not Pfister 
if-minimal. 

This shows that for ail n > m, the set of Pfister if-minimal forms of dimension 2n is 
exactly the set \ $'n, and that therefore the if-minimal forms are exactly the Pfister 
neighbors of dimension 2 n _ 1 -f 1, n > m, of Pfister forms in \ • 

There is an alternative description of if-minimal resp. Pfister if-minimal forms which 
uses properties of Xp. 

The clopen sets in any topological space T form an abelian group of exponent 2 with 
addition defined as follows: 

U + V = (UUV)\(UNV) , {/,F clopen. 

Let F be formally real. To each <p 6 WF we associate a clopen set Y(<p) C Xp by 

Y((p) = {P € XF | (p is definite at P}. 

One easily checks that Y(<p ® V>) = Y(<f) H Y(ip), and that if ip is a Pfister neighbor of the 
Pfister form x then Y(<p) = Y(x). It is also rather obvious that if Xi,X2 € PnF are linked 
with x = xi + x2 (mod In+1F), where x G PnF, then 

y(x) = Y(xi) + y(x2) . (2) 
Let Xp°v be the abelian group of clopen sets in Xp with addition defined as above. 
Suppose furthermore that $ n C PnF is a linked group of n-fold Pfister forms. Then 
équation (2) immediately yields a group homomorphism 

r : —» XcJop : x — Y(x). 

If / " F = 0 then T is injective because one readily sees that in this case two n-fold Pfister 
forms are isometric iff they have the same total signatures. 

Let F, m > 1, {pj"^}, $n> n > m, be as defined at the beginning of this section. 
Let 

% = { F ( x ) | x G $ „ } C X ^ 
n = ( H T ) I T G # ; } C x p 

If / " F = 0 then by définition, Tn is a subgroup of Xp0p isomorphic to and there is 
bijection between and (both bijections are induced by T). Recall that we assumed 
û(F) < oo so that F is in fact SAP. This implies that to each clopen Y C Xp there 
exists t € F such that Y = Y(((t))). Recall also that = {x ® ((t)) | x G *„-! ,* € F}. 



Using the fact that Y(x ® ((t))) = Y{ir) n Y(((t))), we conclude that if 2n > û(F) then 
rn ' = {Yi n Y2 | Yi e % . u Y 2 G X$op}, and 7"n is the subgroup of X p ^ generated by 
{Y(x),xG{/>Jn)}}UTn ' . 

If n > m then 2 n _ 1 + 1 > û(F) by the définition of m. In this case, it follows that if <p 
is a form over F of dimension 2 n _ 1 + 1 then <p is a Pfister neighbor (see [F, Prop. 4.7]), 
say, of x G PnF. So if <p is anisotropic then <px is isotropic iff x G and (p is if-minimal 
iff x € \ Using the fact that Y(<p) = F(x) , we now get the following alternative 
version of Theorem 6.5. 

Theorem 6.6 Let m > 1, F, K, Tn, n>m, be as above. Let ip G WF. Then (p 
is K-minimal if and only if either 

(i) dim <p = 2 m _ 1 + 1 and <p is a Pfister neighbor of some anisotropic x G or 
(ii) dim <p = 2 n _ 1 + 1 with n > m and Y(<p) çTn\T£. 

Furthermore, ifû(F) < 2 m _ 1 then the K-minimal forms of dimension 2m~1 +1 ore exactly 
the forms <p of dimension 2 m _ 1 + 1 with Y{(p) €Tm\ {0}. 

7 T w o e x a m p l e s 

Example 7.1 Consider the global field F = Q(y/2,V3). We have û(F) = 4. There are 
four orderings on F, Xp = {P, Q,R, 5"}, which correspond to the four embeddings of F 
into the real numbers R as follows. Let x = x\ + x2y/2 + x3\/3 + x^y/E with x,- G Q. Then 

P : x i—• x1 + x2y/2 + z3y/3 + z4y/6 
Q : x i—• Xl-x2V2 + x3V3-x4V6 
R : x i—• xx + x2y/2 - x3V3 — X4\/6 
S : x i—• xi — x2y/2 — x3y/% + X4V6 

Let 

ao = - 1 , ai = y/2 + — y/% , a2 = —y/2 + y/3 + y/6 , a3 = —a\a2 = 5 — 4\/3 

and 

61 = y/2 — y/3 + y/6 , b2 = -y/2-V3-y/ë, b3 = 1 . 

Let m >2. We now define m-fold and (m + l)-fold Pfister forms as follows : 
a , ~ ( ( l , - - - , l , a , ) ) G P m F i = 0 ,1 ,2 ,3 
/ ? , ~ ( ( l , - - - , l , 6 , ) ) G P m + i F < = 1 , 2 , 3 

Let K = F(ot\,a2). Then {«1,0:2} generates the linked group = {a 0 ,a i ,«2> a 3} of 
m-fold Pfister forms (note that ao = 0), and one easily checks that with the notations as 
at the end of the previous section, we have 

Tm = {Y(a 0 ) ,Y(a i ) ,Y(a 2 ) ,Y(a 3 )} = {0 ,{P ,Q ,£} ,{P ,Q ,5} ,{£ ,S}} . 

We find that consists of ail subsets of Xp other than those of cardinality > 3 which 
contain both R and S, i.e., 

TUi = *Fop \ {{P, R, S),{Q, R, S}, {P, Q, R, S}} . 



Note that = {Z \ 3Y G Tm : Z C y} . Tm+1 is the group generated by and one 
easily checks that Tm+\ = Xp0p. Thus, 

= {{P,R,S},{Q,R,S},{P,Q,R,S}} = {Y(fix),Y(fi2),Y(fiz)} • 

Theorems 5.3 and 6.6 now yield the following resuit. 

Proposition 7.2 With the same notations as above, the K-minimal forms are exactly the 
Pfister neighbors of dimension 2m _ 1 + 1 of the ai's, i = 1,2,3, and the Pfister neighbors 
of dimension 2m + 1 of the /?, 's, i = 1,2,3. 

Example 7.3 Let F = R(i). It is well-known that û(F) = 2. Furthermore, the orderings 
on F can be described as follows (see [KS, Ch. II, § 9, Satz 1]). To each c G RU {oo} thére 
exist two orderings PCi+ and Pc-, and for / G R(<) we have that 

/ >pc+ 0 if 3c > 0 : f(x) > 0 Vc < x < c + e, where c G R 
/ >pc_ 0 if 3c > 0 : / (x) > 0 Vc - e < x < c, where c G R 
/ >PL,+ 0 i f / ( « ) > 0 f o r aU x > 0 

/ >Poo'_ 0 if / (x) > 0 for ail x < 0 
For convenience, let us define the following "intervais" of orderings in Xp 

(a, b) = {Pc<+, Pc-,Pat+,Pb-; a < c < b} , where a < b in R. 

For a = —oo we replace Pa>+ by Poo,-, and for b = +oo we replace Pbt~ by P<x,,+- If 
0 £ f(t) = where g(t),h(t) G K[t], then / > P 0 for aU P G (a,b) if and only if 
g(x)h(x) > 0 for ail a < x < b. Every clopen set in Xp is just a finite union of intervais 
(a,b). 

For each n > 1, we now define an anisotropic n-fold Pfister form F3N over F by /?„ 
((1,• • • ,l,n — t)), and we let K = F(Pi,/32,-- •). We have that 

Y(fin) = {P G XF | fin is positive definite at P} = (-oo, n). 

With this, we conclude that for n > 2 we get 

Z = {Y CXF clopen | F C ( - o o , n - 1)} 
Tn - {y ,y U (n - l , n ) | y c ( -oo ,n - 1) clopen} . 

We know by Theorems 6.5 resp. 6.6, that the A-minimal forms are Pfister neighbors 
of dimension 2 n _ 1 + 1. For n = 1, these theorems imply that the A-minimal forms are 
exactly those forms similar to fi\ ~ ((1 — t)). For n > 2, we recall that u(F) = 2 and that 
therefore, by these theorems, the A-minimal forms are exactly the Pfister neighbors of 
dimension 2 n _ 1 + 1 of Pfister forms fi with Y (fi) 6 T„ \ Tn'. However, û(F) = 2 and .thus 
F is SAP and I™F = 0 for n > 2. Hence, n-fold Pfister forms are uniquely determined 
by their total signatures and thus, every fi G PnF with n > 2 can be written in the form 
((1, — ,1, /)) for some non-zero polynomial / G R[<]. For such a fi we have Y ( f i ) £Tn\T„ 
if and only if f(x) < 0 for ail x > n and f(x) > 0 for ail n — 1 < x < n. We can summarize 
our results as follows. 

Proposition 7.4 With the same notations as above, the K-minimal forms of dimension 
2 are exactly the forms similar to fi\ ~ ((1 — t)), and the K-minimal forms of dimension 
2 n _ 1 + 1, n >2, are exactly the Pfister neighbors of dimension 2 n _ 1 +1 of n-fold Pfister 
forms (( 1, - - -, 1 , / ) ) , where f is a non-zero polynomial with f(x) < 0 for ail x > n and 
f(x) > 0 for ail n — 1 < x < n. In particular, ail Pfister neighbors of fin of dimension 
2 n _ 1 + 1 are K-minimal (for example, 2n - 1{l) 1 (n - t)), and we have tmax(K/F) = oo. 



We can describe the if-minimal forms of dimension m + 1 = 2 n _ 1 + 1, n > 2, in an 
alternative way. Recall that any form y of dimension m + 1 = 2 n _ 1 + 1, n > 2, is 
a Pfister neighbor because û(F) = 2. Furthermore, any such form can be written as 
<p ~ g{l,fi, • ' ' i fm) with 0 ^ g, fi 6 R[<], 1 < i < m. Also, such a form p is if-minimal 
iff it is a Pfister neighbor of some n-fold Pfister form 0 as above iff it is definite for ail 
P £ (n — l , n ) and indefinite for ail P € (n, +oc). If we translate these (in)definiteness 
conditions into evaluating the / , 's at certain values t = x, we get : 

Proposition 7.5 The form (p ~ s ( l , / i , • • - , / m ) , m = 2n _ 1 > 2, g, fi € R[f], is K-
minimal if and only if fi(x) > 0 /or ail n — 1 < x < n and ail 1 < i < m, and to each 
x > n and t > 0 there exist i € {1, • • •, m} and y with |x — < e such that fi(y) < 0. 
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